xref: /openbmc/linux/drivers/md/dm-table.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	unsigned integrity_added:1;
51 
52 	/*
53 	 * Indicates the rw permissions for the new logical
54 	 * device.  This should be a combination of FMODE_READ
55 	 * and FMODE_WRITE.
56 	 */
57 	fmode_t mode;
58 
59 	/* a list of devices used by this table */
60 	struct list_head devices;
61 
62 	/* events get handed up using this callback */
63 	void (*event_fn)(void *);
64 	void *event_context;
65 
66 	struct dm_md_mempools *mempools;
67 
68 	struct list_head target_callbacks;
69 };
70 
71 /*
72  * Similar to ceiling(log_size(n))
73  */
74 static unsigned int int_log(unsigned int n, unsigned int base)
75 {
76 	int result = 0;
77 
78 	while (n > 1) {
79 		n = dm_div_up(n, base);
80 		result++;
81 	}
82 
83 	return result;
84 }
85 
86 /*
87  * Calculate the index of the child node of the n'th node k'th key.
88  */
89 static inline unsigned int get_child(unsigned int n, unsigned int k)
90 {
91 	return (n * CHILDREN_PER_NODE) + k;
92 }
93 
94 /*
95  * Return the n'th node of level l from table t.
96  */
97 static inline sector_t *get_node(struct dm_table *t,
98 				 unsigned int l, unsigned int n)
99 {
100 	return t->index[l] + (n * KEYS_PER_NODE);
101 }
102 
103 /*
104  * Return the highest key that you could lookup from the n'th
105  * node on level l of the btree.
106  */
107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108 {
109 	for (; l < t->depth - 1; l++)
110 		n = get_child(n, CHILDREN_PER_NODE - 1);
111 
112 	if (n >= t->counts[l])
113 		return (sector_t) - 1;
114 
115 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 }
117 
118 /*
119  * Fills in a level of the btree based on the highs of the level
120  * below it.
121  */
122 static int setup_btree_index(unsigned int l, struct dm_table *t)
123 {
124 	unsigned int n, k;
125 	sector_t *node;
126 
127 	for (n = 0U; n < t->counts[l]; n++) {
128 		node = get_node(t, l, n);
129 
130 		for (k = 0U; k < KEYS_PER_NODE; k++)
131 			node[k] = high(t, l + 1, get_child(n, k));
132 	}
133 
134 	return 0;
135 }
136 
137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138 {
139 	unsigned long size;
140 	void *addr;
141 
142 	/*
143 	 * Check that we're not going to overflow.
144 	 */
145 	if (nmemb > (ULONG_MAX / elem_size))
146 		return NULL;
147 
148 	size = nmemb * elem_size;
149 	addr = vzalloc(size);
150 
151 	return addr;
152 }
153 EXPORT_SYMBOL(dm_vcalloc);
154 
155 /*
156  * highs, and targets are managed as dynamic arrays during a
157  * table load.
158  */
159 static int alloc_targets(struct dm_table *t, unsigned int num)
160 {
161 	sector_t *n_highs;
162 	struct dm_target *n_targets;
163 
164 	/*
165 	 * Allocate both the target array and offset array at once.
166 	 */
167 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
168 					  sizeof(sector_t));
169 	if (!n_highs)
170 		return -ENOMEM;
171 
172 	n_targets = (struct dm_target *) (n_highs + num);
173 
174 	memset(n_highs, -1, sizeof(*n_highs) * num);
175 	vfree(t->highs);
176 
177 	t->num_allocated = num;
178 	t->highs = n_highs;
179 	t->targets = n_targets;
180 
181 	return 0;
182 }
183 
184 int dm_table_create(struct dm_table **result, fmode_t mode,
185 		    unsigned num_targets, struct mapped_device *md)
186 {
187 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
188 
189 	if (!t)
190 		return -ENOMEM;
191 
192 	INIT_LIST_HEAD(&t->devices);
193 	INIT_LIST_HEAD(&t->target_callbacks);
194 
195 	if (!num_targets)
196 		num_targets = KEYS_PER_NODE;
197 
198 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
199 
200 	if (!num_targets) {
201 		kfree(t);
202 		return -ENOMEM;
203 	}
204 
205 	if (alloc_targets(t, num_targets)) {
206 		kfree(t);
207 		return -ENOMEM;
208 	}
209 
210 	t->type = DM_TYPE_NONE;
211 	t->mode = mode;
212 	t->md = md;
213 	*result = t;
214 	return 0;
215 }
216 
217 static void free_devices(struct list_head *devices, struct mapped_device *md)
218 {
219 	struct list_head *tmp, *next;
220 
221 	list_for_each_safe(tmp, next, devices) {
222 		struct dm_dev_internal *dd =
223 		    list_entry(tmp, struct dm_dev_internal, list);
224 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
225 		       dm_device_name(md), dd->dm_dev->name);
226 		dm_put_table_device(md, dd->dm_dev);
227 		kfree(dd);
228 	}
229 }
230 
231 void dm_table_destroy(struct dm_table *t)
232 {
233 	unsigned int i;
234 
235 	if (!t)
236 		return;
237 
238 	/* free the indexes */
239 	if (t->depth >= 2)
240 		vfree(t->index[t->depth - 2]);
241 
242 	/* free the targets */
243 	for (i = 0; i < t->num_targets; i++) {
244 		struct dm_target *tgt = t->targets + i;
245 
246 		if (tgt->type->dtr)
247 			tgt->type->dtr(tgt);
248 
249 		dm_put_target_type(tgt->type);
250 	}
251 
252 	vfree(t->highs);
253 
254 	/* free the device list */
255 	free_devices(&t->devices, t->md);
256 
257 	dm_free_md_mempools(t->mempools);
258 
259 	kfree(t);
260 }
261 
262 /*
263  * See if we've already got a device in the list.
264  */
265 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
266 {
267 	struct dm_dev_internal *dd;
268 
269 	list_for_each_entry (dd, l, list)
270 		if (dd->dm_dev->bdev->bd_dev == dev)
271 			return dd;
272 
273 	return NULL;
274 }
275 
276 /*
277  * If possible, this checks an area of a destination device is invalid.
278  */
279 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
280 				  sector_t start, sector_t len, void *data)
281 {
282 	struct request_queue *q;
283 	struct queue_limits *limits = data;
284 	struct block_device *bdev = dev->bdev;
285 	sector_t dev_size =
286 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
287 	unsigned short logical_block_size_sectors =
288 		limits->logical_block_size >> SECTOR_SHIFT;
289 	char b[BDEVNAME_SIZE];
290 
291 	/*
292 	 * Some devices exist without request functions,
293 	 * such as loop devices not yet bound to backing files.
294 	 * Forbid the use of such devices.
295 	 */
296 	q = bdev_get_queue(bdev);
297 	if (!q || !q->make_request_fn) {
298 		DMWARN("%s: %s is not yet initialised: "
299 		       "start=%llu, len=%llu, dev_size=%llu",
300 		       dm_device_name(ti->table->md), bdevname(bdev, b),
301 		       (unsigned long long)start,
302 		       (unsigned long long)len,
303 		       (unsigned long long)dev_size);
304 		return 1;
305 	}
306 
307 	if (!dev_size)
308 		return 0;
309 
310 	if ((start >= dev_size) || (start + len > dev_size)) {
311 		DMWARN("%s: %s too small for target: "
312 		       "start=%llu, len=%llu, dev_size=%llu",
313 		       dm_device_name(ti->table->md), bdevname(bdev, b),
314 		       (unsigned long long)start,
315 		       (unsigned long long)len,
316 		       (unsigned long long)dev_size);
317 		return 1;
318 	}
319 
320 	/*
321 	 * If the target is mapped to zoned block device(s), check
322 	 * that the zones are not partially mapped.
323 	 */
324 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
325 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
326 
327 		if (start & (zone_sectors - 1)) {
328 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
329 			       dm_device_name(ti->table->md),
330 			       (unsigned long long)start,
331 			       zone_sectors, bdevname(bdev, b));
332 			return 1;
333 		}
334 
335 		/*
336 		 * Note: The last zone of a zoned block device may be smaller
337 		 * than other zones. So for a target mapping the end of a
338 		 * zoned block device with such a zone, len would not be zone
339 		 * aligned. We do not allow such last smaller zone to be part
340 		 * of the mapping here to ensure that mappings with multiple
341 		 * devices do not end up with a smaller zone in the middle of
342 		 * the sector range.
343 		 */
344 		if (len & (zone_sectors - 1)) {
345 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
346 			       dm_device_name(ti->table->md),
347 			       (unsigned long long)len,
348 			       zone_sectors, bdevname(bdev, b));
349 			return 1;
350 		}
351 	}
352 
353 	if (logical_block_size_sectors <= 1)
354 		return 0;
355 
356 	if (start & (logical_block_size_sectors - 1)) {
357 		DMWARN("%s: start=%llu not aligned to h/w "
358 		       "logical block size %u of %s",
359 		       dm_device_name(ti->table->md),
360 		       (unsigned long long)start,
361 		       limits->logical_block_size, bdevname(bdev, b));
362 		return 1;
363 	}
364 
365 	if (len & (logical_block_size_sectors - 1)) {
366 		DMWARN("%s: len=%llu not aligned to h/w "
367 		       "logical block size %u of %s",
368 		       dm_device_name(ti->table->md),
369 		       (unsigned long long)len,
370 		       limits->logical_block_size, bdevname(bdev, b));
371 		return 1;
372 	}
373 
374 	return 0;
375 }
376 
377 /*
378  * This upgrades the mode on an already open dm_dev, being
379  * careful to leave things as they were if we fail to reopen the
380  * device and not to touch the existing bdev field in case
381  * it is accessed concurrently inside dm_table_any_congested().
382  */
383 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
384 			struct mapped_device *md)
385 {
386 	int r;
387 	struct dm_dev *old_dev, *new_dev;
388 
389 	old_dev = dd->dm_dev;
390 
391 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
392 				dd->dm_dev->mode | new_mode, &new_dev);
393 	if (r)
394 		return r;
395 
396 	dd->dm_dev = new_dev;
397 	dm_put_table_device(md, old_dev);
398 
399 	return 0;
400 }
401 
402 /*
403  * Convert the path to a device
404  */
405 dev_t dm_get_dev_t(const char *path)
406 {
407 	dev_t dev;
408 	struct block_device *bdev;
409 
410 	bdev = lookup_bdev(path);
411 	if (IS_ERR(bdev))
412 		dev = name_to_dev_t(path);
413 	else {
414 		dev = bdev->bd_dev;
415 		bdput(bdev);
416 	}
417 
418 	return dev;
419 }
420 EXPORT_SYMBOL_GPL(dm_get_dev_t);
421 
422 /*
423  * Add a device to the list, or just increment the usage count if
424  * it's already present.
425  */
426 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
427 		  struct dm_dev **result)
428 {
429 	int r;
430 	dev_t dev;
431 	struct dm_dev_internal *dd;
432 	struct dm_table *t = ti->table;
433 
434 	BUG_ON(!t);
435 
436 	dev = dm_get_dev_t(path);
437 	if (!dev)
438 		return -ENODEV;
439 
440 	dd = find_device(&t->devices, dev);
441 	if (!dd) {
442 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
443 		if (!dd)
444 			return -ENOMEM;
445 
446 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
447 			kfree(dd);
448 			return r;
449 		}
450 
451 		refcount_set(&dd->count, 1);
452 		list_add(&dd->list, &t->devices);
453 		goto out;
454 
455 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
456 		r = upgrade_mode(dd, mode, t->md);
457 		if (r)
458 			return r;
459 	}
460 	refcount_inc(&dd->count);
461 out:
462 	*result = dd->dm_dev;
463 	return 0;
464 }
465 EXPORT_SYMBOL(dm_get_device);
466 
467 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
468 				sector_t start, sector_t len, void *data)
469 {
470 	struct queue_limits *limits = data;
471 	struct block_device *bdev = dev->bdev;
472 	struct request_queue *q = bdev_get_queue(bdev);
473 	char b[BDEVNAME_SIZE];
474 
475 	if (unlikely(!q)) {
476 		DMWARN("%s: Cannot set limits for nonexistent device %s",
477 		       dm_device_name(ti->table->md), bdevname(bdev, b));
478 		return 0;
479 	}
480 
481 	if (bdev_stack_limits(limits, bdev, start) < 0)
482 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
483 		       "physical_block_size=%u, logical_block_size=%u, "
484 		       "alignment_offset=%u, start=%llu",
485 		       dm_device_name(ti->table->md), bdevname(bdev, b),
486 		       q->limits.physical_block_size,
487 		       q->limits.logical_block_size,
488 		       q->limits.alignment_offset,
489 		       (unsigned long long) start << SECTOR_SHIFT);
490 
491 	limits->zoned = blk_queue_zoned_model(q);
492 
493 	return 0;
494 }
495 
496 /*
497  * Decrement a device's use count and remove it if necessary.
498  */
499 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
500 {
501 	int found = 0;
502 	struct list_head *devices = &ti->table->devices;
503 	struct dm_dev_internal *dd;
504 
505 	list_for_each_entry(dd, devices, list) {
506 		if (dd->dm_dev == d) {
507 			found = 1;
508 			break;
509 		}
510 	}
511 	if (!found) {
512 		DMWARN("%s: device %s not in table devices list",
513 		       dm_device_name(ti->table->md), d->name);
514 		return;
515 	}
516 	if (refcount_dec_and_test(&dd->count)) {
517 		dm_put_table_device(ti->table->md, d);
518 		list_del(&dd->list);
519 		kfree(dd);
520 	}
521 }
522 EXPORT_SYMBOL(dm_put_device);
523 
524 /*
525  * Checks to see if the target joins onto the end of the table.
526  */
527 static int adjoin(struct dm_table *table, struct dm_target *ti)
528 {
529 	struct dm_target *prev;
530 
531 	if (!table->num_targets)
532 		return !ti->begin;
533 
534 	prev = &table->targets[table->num_targets - 1];
535 	return (ti->begin == (prev->begin + prev->len));
536 }
537 
538 /*
539  * Used to dynamically allocate the arg array.
540  *
541  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
542  * process messages even if some device is suspended. These messages have a
543  * small fixed number of arguments.
544  *
545  * On the other hand, dm-switch needs to process bulk data using messages and
546  * excessive use of GFP_NOIO could cause trouble.
547  */
548 static char **realloc_argv(unsigned *size, char **old_argv)
549 {
550 	char **argv;
551 	unsigned new_size;
552 	gfp_t gfp;
553 
554 	if (*size) {
555 		new_size = *size * 2;
556 		gfp = GFP_KERNEL;
557 	} else {
558 		new_size = 8;
559 		gfp = GFP_NOIO;
560 	}
561 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
562 	if (argv && old_argv) {
563 		memcpy(argv, old_argv, *size * sizeof(*argv));
564 		*size = new_size;
565 	}
566 
567 	kfree(old_argv);
568 	return argv;
569 }
570 
571 /*
572  * Destructively splits up the argument list to pass to ctr.
573  */
574 int dm_split_args(int *argc, char ***argvp, char *input)
575 {
576 	char *start, *end = input, *out, **argv = NULL;
577 	unsigned array_size = 0;
578 
579 	*argc = 0;
580 
581 	if (!input) {
582 		*argvp = NULL;
583 		return 0;
584 	}
585 
586 	argv = realloc_argv(&array_size, argv);
587 	if (!argv)
588 		return -ENOMEM;
589 
590 	while (1) {
591 		/* Skip whitespace */
592 		start = skip_spaces(end);
593 
594 		if (!*start)
595 			break;	/* success, we hit the end */
596 
597 		/* 'out' is used to remove any back-quotes */
598 		end = out = start;
599 		while (*end) {
600 			/* Everything apart from '\0' can be quoted */
601 			if (*end == '\\' && *(end + 1)) {
602 				*out++ = *(end + 1);
603 				end += 2;
604 				continue;
605 			}
606 
607 			if (isspace(*end))
608 				break;	/* end of token */
609 
610 			*out++ = *end++;
611 		}
612 
613 		/* have we already filled the array ? */
614 		if ((*argc + 1) > array_size) {
615 			argv = realloc_argv(&array_size, argv);
616 			if (!argv)
617 				return -ENOMEM;
618 		}
619 
620 		/* we know this is whitespace */
621 		if (*end)
622 			end++;
623 
624 		/* terminate the string and put it in the array */
625 		*out = '\0';
626 		argv[*argc] = start;
627 		(*argc)++;
628 	}
629 
630 	*argvp = argv;
631 	return 0;
632 }
633 
634 /*
635  * Impose necessary and sufficient conditions on a devices's table such
636  * that any incoming bio which respects its logical_block_size can be
637  * processed successfully.  If it falls across the boundary between
638  * two or more targets, the size of each piece it gets split into must
639  * be compatible with the logical_block_size of the target processing it.
640  */
641 static int validate_hardware_logical_block_alignment(struct dm_table *table,
642 						 struct queue_limits *limits)
643 {
644 	/*
645 	 * This function uses arithmetic modulo the logical_block_size
646 	 * (in units of 512-byte sectors).
647 	 */
648 	unsigned short device_logical_block_size_sects =
649 		limits->logical_block_size >> SECTOR_SHIFT;
650 
651 	/*
652 	 * Offset of the start of the next table entry, mod logical_block_size.
653 	 */
654 	unsigned short next_target_start = 0;
655 
656 	/*
657 	 * Given an aligned bio that extends beyond the end of a
658 	 * target, how many sectors must the next target handle?
659 	 */
660 	unsigned short remaining = 0;
661 
662 	struct dm_target *uninitialized_var(ti);
663 	struct queue_limits ti_limits;
664 	unsigned i;
665 
666 	/*
667 	 * Check each entry in the table in turn.
668 	 */
669 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
670 		ti = dm_table_get_target(table, i);
671 
672 		blk_set_stacking_limits(&ti_limits);
673 
674 		/* combine all target devices' limits */
675 		if (ti->type->iterate_devices)
676 			ti->type->iterate_devices(ti, dm_set_device_limits,
677 						  &ti_limits);
678 
679 		/*
680 		 * If the remaining sectors fall entirely within this
681 		 * table entry are they compatible with its logical_block_size?
682 		 */
683 		if (remaining < ti->len &&
684 		    remaining & ((ti_limits.logical_block_size >>
685 				  SECTOR_SHIFT) - 1))
686 			break;	/* Error */
687 
688 		next_target_start =
689 		    (unsigned short) ((next_target_start + ti->len) &
690 				      (device_logical_block_size_sects - 1));
691 		remaining = next_target_start ?
692 		    device_logical_block_size_sects - next_target_start : 0;
693 	}
694 
695 	if (remaining) {
696 		DMWARN("%s: table line %u (start sect %llu len %llu) "
697 		       "not aligned to h/w logical block size %u",
698 		       dm_device_name(table->md), i,
699 		       (unsigned long long) ti->begin,
700 		       (unsigned long long) ti->len,
701 		       limits->logical_block_size);
702 		return -EINVAL;
703 	}
704 
705 	return 0;
706 }
707 
708 int dm_table_add_target(struct dm_table *t, const char *type,
709 			sector_t start, sector_t len, char *params)
710 {
711 	int r = -EINVAL, argc;
712 	char **argv;
713 	struct dm_target *tgt;
714 
715 	if (t->singleton) {
716 		DMERR("%s: target type %s must appear alone in table",
717 		      dm_device_name(t->md), t->targets->type->name);
718 		return -EINVAL;
719 	}
720 
721 	BUG_ON(t->num_targets >= t->num_allocated);
722 
723 	tgt = t->targets + t->num_targets;
724 	memset(tgt, 0, sizeof(*tgt));
725 
726 	if (!len) {
727 		DMERR("%s: zero-length target", dm_device_name(t->md));
728 		return -EINVAL;
729 	}
730 
731 	tgt->type = dm_get_target_type(type);
732 	if (!tgt->type) {
733 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
734 		return -EINVAL;
735 	}
736 
737 	if (dm_target_needs_singleton(tgt->type)) {
738 		if (t->num_targets) {
739 			tgt->error = "singleton target type must appear alone in table";
740 			goto bad;
741 		}
742 		t->singleton = true;
743 	}
744 
745 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
746 		tgt->error = "target type may not be included in a read-only table";
747 		goto bad;
748 	}
749 
750 	if (t->immutable_target_type) {
751 		if (t->immutable_target_type != tgt->type) {
752 			tgt->error = "immutable target type cannot be mixed with other target types";
753 			goto bad;
754 		}
755 	} else if (dm_target_is_immutable(tgt->type)) {
756 		if (t->num_targets) {
757 			tgt->error = "immutable target type cannot be mixed with other target types";
758 			goto bad;
759 		}
760 		t->immutable_target_type = tgt->type;
761 	}
762 
763 	if (dm_target_has_integrity(tgt->type))
764 		t->integrity_added = 1;
765 
766 	tgt->table = t;
767 	tgt->begin = start;
768 	tgt->len = len;
769 	tgt->error = "Unknown error";
770 
771 	/*
772 	 * Does this target adjoin the previous one ?
773 	 */
774 	if (!adjoin(t, tgt)) {
775 		tgt->error = "Gap in table";
776 		goto bad;
777 	}
778 
779 	r = dm_split_args(&argc, &argv, params);
780 	if (r) {
781 		tgt->error = "couldn't split parameters (insufficient memory)";
782 		goto bad;
783 	}
784 
785 	r = tgt->type->ctr(tgt, argc, argv);
786 	kfree(argv);
787 	if (r)
788 		goto bad;
789 
790 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
791 
792 	if (!tgt->num_discard_bios && tgt->discards_supported)
793 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
794 		       dm_device_name(t->md), type);
795 
796 	return 0;
797 
798  bad:
799 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
800 	dm_put_target_type(tgt->type);
801 	return r;
802 }
803 
804 /*
805  * Target argument parsing helpers.
806  */
807 static int validate_next_arg(const struct dm_arg *arg,
808 			     struct dm_arg_set *arg_set,
809 			     unsigned *value, char **error, unsigned grouped)
810 {
811 	const char *arg_str = dm_shift_arg(arg_set);
812 	char dummy;
813 
814 	if (!arg_str ||
815 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
816 	    (*value < arg->min) ||
817 	    (*value > arg->max) ||
818 	    (grouped && arg_set->argc < *value)) {
819 		*error = arg->error;
820 		return -EINVAL;
821 	}
822 
823 	return 0;
824 }
825 
826 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
827 		unsigned *value, char **error)
828 {
829 	return validate_next_arg(arg, arg_set, value, error, 0);
830 }
831 EXPORT_SYMBOL(dm_read_arg);
832 
833 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
834 		      unsigned *value, char **error)
835 {
836 	return validate_next_arg(arg, arg_set, value, error, 1);
837 }
838 EXPORT_SYMBOL(dm_read_arg_group);
839 
840 const char *dm_shift_arg(struct dm_arg_set *as)
841 {
842 	char *r;
843 
844 	if (as->argc) {
845 		as->argc--;
846 		r = *as->argv;
847 		as->argv++;
848 		return r;
849 	}
850 
851 	return NULL;
852 }
853 EXPORT_SYMBOL(dm_shift_arg);
854 
855 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
856 {
857 	BUG_ON(as->argc < num_args);
858 	as->argc -= num_args;
859 	as->argv += num_args;
860 }
861 EXPORT_SYMBOL(dm_consume_args);
862 
863 static bool __table_type_bio_based(enum dm_queue_mode table_type)
864 {
865 	return (table_type == DM_TYPE_BIO_BASED ||
866 		table_type == DM_TYPE_DAX_BIO_BASED ||
867 		table_type == DM_TYPE_NVME_BIO_BASED);
868 }
869 
870 static bool __table_type_request_based(enum dm_queue_mode table_type)
871 {
872 	return table_type == DM_TYPE_REQUEST_BASED;
873 }
874 
875 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
876 {
877 	t->type = type;
878 }
879 EXPORT_SYMBOL_GPL(dm_table_set_type);
880 
881 /* validate the dax capability of the target device span */
882 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
883 			sector_t start, sector_t len, void *data)
884 {
885 	int blocksize = *(int *) data;
886 
887 	return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
888 				       start, len);
889 }
890 
891 /* Check devices support synchronous DAX */
892 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
893 				  sector_t start, sector_t len, void *data)
894 {
895 	return dev->dax_dev && dax_synchronous(dev->dax_dev);
896 }
897 
898 bool dm_table_supports_dax(struct dm_table *t,
899 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
900 {
901 	struct dm_target *ti;
902 	unsigned i;
903 
904 	/* Ensure that all targets support DAX. */
905 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
906 		ti = dm_table_get_target(t, i);
907 
908 		if (!ti->type->direct_access)
909 			return false;
910 
911 		if (!ti->type->iterate_devices ||
912 		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
913 			return false;
914 	}
915 
916 	return true;
917 }
918 
919 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
920 
921 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
922 				  sector_t start, sector_t len, void *data)
923 {
924 	struct block_device *bdev = dev->bdev;
925 	struct request_queue *q = bdev_get_queue(bdev);
926 
927 	/* request-based cannot stack on partitions! */
928 	if (bdev != bdev->bd_contains)
929 		return false;
930 
931 	return queue_is_mq(q);
932 }
933 
934 static int dm_table_determine_type(struct dm_table *t)
935 {
936 	unsigned i;
937 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 	struct dm_target *tgt;
939 	struct list_head *devices = dm_table_get_devices(t);
940 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
941 	int page_size = PAGE_SIZE;
942 
943 	if (t->type != DM_TYPE_NONE) {
944 		/* target already set the table's type */
945 		if (t->type == DM_TYPE_BIO_BASED) {
946 			/* possibly upgrade to a variant of bio-based */
947 			goto verify_bio_based;
948 		}
949 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 		goto verify_rq_based;
952 	}
953 
954 	for (i = 0; i < t->num_targets; i++) {
955 		tgt = t->targets + i;
956 		if (dm_target_hybrid(tgt))
957 			hybrid = 1;
958 		else if (dm_target_request_based(tgt))
959 			request_based = 1;
960 		else
961 			bio_based = 1;
962 
963 		if (bio_based && request_based) {
964 			DMERR("Inconsistent table: different target types"
965 			      " can't be mixed up");
966 			return -EINVAL;
967 		}
968 	}
969 
970 	if (hybrid && !bio_based && !request_based) {
971 		/*
972 		 * The targets can work either way.
973 		 * Determine the type from the live device.
974 		 * Default to bio-based if device is new.
975 		 */
976 		if (__table_type_request_based(live_md_type))
977 			request_based = 1;
978 		else
979 			bio_based = 1;
980 	}
981 
982 	if (bio_based) {
983 verify_bio_based:
984 		/* We must use this table as bio-based */
985 		t->type = DM_TYPE_BIO_BASED;
986 		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
987 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 			t->type = DM_TYPE_DAX_BIO_BASED;
989 		} else {
990 			/* Check if upgrading to NVMe bio-based is valid or required */
991 			tgt = dm_table_get_immutable_target(t);
992 			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 				t->type = DM_TYPE_NVME_BIO_BASED;
994 				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 				t->type = DM_TYPE_NVME_BIO_BASED;
997 			}
998 		}
999 		return 0;
1000 	}
1001 
1002 	BUG_ON(!request_based); /* No targets in this table */
1003 
1004 	t->type = DM_TYPE_REQUEST_BASED;
1005 
1006 verify_rq_based:
1007 	/*
1008 	 * Request-based dm supports only tables that have a single target now.
1009 	 * To support multiple targets, request splitting support is needed,
1010 	 * and that needs lots of changes in the block-layer.
1011 	 * (e.g. request completion process for partial completion.)
1012 	 */
1013 	if (t->num_targets > 1) {
1014 		DMERR("%s DM doesn't support multiple targets",
1015 		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1016 		return -EINVAL;
1017 	}
1018 
1019 	if (list_empty(devices)) {
1020 		int srcu_idx;
1021 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1022 
1023 		/* inherit live table's type */
1024 		if (live_table)
1025 			t->type = live_table->type;
1026 		dm_put_live_table(t->md, srcu_idx);
1027 		return 0;
1028 	}
1029 
1030 	tgt = dm_table_get_immutable_target(t);
1031 	if (!tgt) {
1032 		DMERR("table load rejected: immutable target is required");
1033 		return -EINVAL;
1034 	} else if (tgt->max_io_len) {
1035 		DMERR("table load rejected: immutable target that splits IO is not supported");
1036 		return -EINVAL;
1037 	}
1038 
1039 	/* Non-request-stackable devices can't be used for request-based dm */
1040 	if (!tgt->type->iterate_devices ||
1041 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
1042 		DMERR("table load rejected: including non-request-stackable devices");
1043 		return -EINVAL;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1050 {
1051 	return t->type;
1052 }
1053 
1054 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1055 {
1056 	return t->immutable_target_type;
1057 }
1058 
1059 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1060 {
1061 	/* Immutable target is implicitly a singleton */
1062 	if (t->num_targets > 1 ||
1063 	    !dm_target_is_immutable(t->targets[0].type))
1064 		return NULL;
1065 
1066 	return t->targets;
1067 }
1068 
1069 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1070 {
1071 	struct dm_target *ti;
1072 	unsigned i;
1073 
1074 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1075 		ti = dm_table_get_target(t, i);
1076 		if (dm_target_is_wildcard(ti->type))
1077 			return ti;
1078 	}
1079 
1080 	return NULL;
1081 }
1082 
1083 bool dm_table_bio_based(struct dm_table *t)
1084 {
1085 	return __table_type_bio_based(dm_table_get_type(t));
1086 }
1087 
1088 bool dm_table_request_based(struct dm_table *t)
1089 {
1090 	return __table_type_request_based(dm_table_get_type(t));
1091 }
1092 
1093 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1094 {
1095 	enum dm_queue_mode type = dm_table_get_type(t);
1096 	unsigned per_io_data_size = 0;
1097 	unsigned min_pool_size = 0;
1098 	struct dm_target *ti;
1099 	unsigned i;
1100 
1101 	if (unlikely(type == DM_TYPE_NONE)) {
1102 		DMWARN("no table type is set, can't allocate mempools");
1103 		return -EINVAL;
1104 	}
1105 
1106 	if (__table_type_bio_based(type))
1107 		for (i = 0; i < t->num_targets; i++) {
1108 			ti = t->targets + i;
1109 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1110 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1111 		}
1112 
1113 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1114 					   per_io_data_size, min_pool_size);
1115 	if (!t->mempools)
1116 		return -ENOMEM;
1117 
1118 	return 0;
1119 }
1120 
1121 void dm_table_free_md_mempools(struct dm_table *t)
1122 {
1123 	dm_free_md_mempools(t->mempools);
1124 	t->mempools = NULL;
1125 }
1126 
1127 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1128 {
1129 	return t->mempools;
1130 }
1131 
1132 static int setup_indexes(struct dm_table *t)
1133 {
1134 	int i;
1135 	unsigned int total = 0;
1136 	sector_t *indexes;
1137 
1138 	/* allocate the space for *all* the indexes */
1139 	for (i = t->depth - 2; i >= 0; i--) {
1140 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1141 		total += t->counts[i];
1142 	}
1143 
1144 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1145 	if (!indexes)
1146 		return -ENOMEM;
1147 
1148 	/* set up internal nodes, bottom-up */
1149 	for (i = t->depth - 2; i >= 0; i--) {
1150 		t->index[i] = indexes;
1151 		indexes += (KEYS_PER_NODE * t->counts[i]);
1152 		setup_btree_index(i, t);
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * Builds the btree to index the map.
1160  */
1161 static int dm_table_build_index(struct dm_table *t)
1162 {
1163 	int r = 0;
1164 	unsigned int leaf_nodes;
1165 
1166 	/* how many indexes will the btree have ? */
1167 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1168 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1169 
1170 	/* leaf layer has already been set up */
1171 	t->counts[t->depth - 1] = leaf_nodes;
1172 	t->index[t->depth - 1] = t->highs;
1173 
1174 	if (t->depth >= 2)
1175 		r = setup_indexes(t);
1176 
1177 	return r;
1178 }
1179 
1180 static bool integrity_profile_exists(struct gendisk *disk)
1181 {
1182 	return !!blk_get_integrity(disk);
1183 }
1184 
1185 /*
1186  * Get a disk whose integrity profile reflects the table's profile.
1187  * Returns NULL if integrity support was inconsistent or unavailable.
1188  */
1189 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1190 {
1191 	struct list_head *devices = dm_table_get_devices(t);
1192 	struct dm_dev_internal *dd = NULL;
1193 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1194 	unsigned i;
1195 
1196 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1197 		struct dm_target *ti = dm_table_get_target(t, i);
1198 		if (!dm_target_passes_integrity(ti->type))
1199 			goto no_integrity;
1200 	}
1201 
1202 	list_for_each_entry(dd, devices, list) {
1203 		template_disk = dd->dm_dev->bdev->bd_disk;
1204 		if (!integrity_profile_exists(template_disk))
1205 			goto no_integrity;
1206 		else if (prev_disk &&
1207 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1208 			goto no_integrity;
1209 		prev_disk = template_disk;
1210 	}
1211 
1212 	return template_disk;
1213 
1214 no_integrity:
1215 	if (prev_disk)
1216 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1217 		       dm_device_name(t->md),
1218 		       prev_disk->disk_name,
1219 		       template_disk->disk_name);
1220 	return NULL;
1221 }
1222 
1223 /*
1224  * Register the mapped device for blk_integrity support if the
1225  * underlying devices have an integrity profile.  But all devices may
1226  * not have matching profiles (checking all devices isn't reliable
1227  * during table load because this table may use other DM device(s) which
1228  * must be resumed before they will have an initialized integity
1229  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1230  * profile validation: First pass during table load, final pass during
1231  * resume.
1232  */
1233 static int dm_table_register_integrity(struct dm_table *t)
1234 {
1235 	struct mapped_device *md = t->md;
1236 	struct gendisk *template_disk = NULL;
1237 
1238 	/* If target handles integrity itself do not register it here. */
1239 	if (t->integrity_added)
1240 		return 0;
1241 
1242 	template_disk = dm_table_get_integrity_disk(t);
1243 	if (!template_disk)
1244 		return 0;
1245 
1246 	if (!integrity_profile_exists(dm_disk(md))) {
1247 		t->integrity_supported = true;
1248 		/*
1249 		 * Register integrity profile during table load; we can do
1250 		 * this because the final profile must match during resume.
1251 		 */
1252 		blk_integrity_register(dm_disk(md),
1253 				       blk_get_integrity(template_disk));
1254 		return 0;
1255 	}
1256 
1257 	/*
1258 	 * If DM device already has an initialized integrity
1259 	 * profile the new profile should not conflict.
1260 	 */
1261 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1262 		DMWARN("%s: conflict with existing integrity profile: "
1263 		       "%s profile mismatch",
1264 		       dm_device_name(t->md),
1265 		       template_disk->disk_name);
1266 		return 1;
1267 	}
1268 
1269 	/* Preserve existing integrity profile */
1270 	t->integrity_supported = true;
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Prepares the table for use by building the indices,
1276  * setting the type, and allocating mempools.
1277  */
1278 int dm_table_complete(struct dm_table *t)
1279 {
1280 	int r;
1281 
1282 	r = dm_table_determine_type(t);
1283 	if (r) {
1284 		DMERR("unable to determine table type");
1285 		return r;
1286 	}
1287 
1288 	r = dm_table_build_index(t);
1289 	if (r) {
1290 		DMERR("unable to build btrees");
1291 		return r;
1292 	}
1293 
1294 	r = dm_table_register_integrity(t);
1295 	if (r) {
1296 		DMERR("could not register integrity profile.");
1297 		return r;
1298 	}
1299 
1300 	r = dm_table_alloc_md_mempools(t, t->md);
1301 	if (r)
1302 		DMERR("unable to allocate mempools");
1303 
1304 	return r;
1305 }
1306 
1307 static DEFINE_MUTEX(_event_lock);
1308 void dm_table_event_callback(struct dm_table *t,
1309 			     void (*fn)(void *), void *context)
1310 {
1311 	mutex_lock(&_event_lock);
1312 	t->event_fn = fn;
1313 	t->event_context = context;
1314 	mutex_unlock(&_event_lock);
1315 }
1316 
1317 void dm_table_event(struct dm_table *t)
1318 {
1319 	/*
1320 	 * You can no longer call dm_table_event() from interrupt
1321 	 * context, use a bottom half instead.
1322 	 */
1323 	BUG_ON(in_interrupt());
1324 
1325 	mutex_lock(&_event_lock);
1326 	if (t->event_fn)
1327 		t->event_fn(t->event_context);
1328 	mutex_unlock(&_event_lock);
1329 }
1330 EXPORT_SYMBOL(dm_table_event);
1331 
1332 inline sector_t dm_table_get_size(struct dm_table *t)
1333 {
1334 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1335 }
1336 EXPORT_SYMBOL(dm_table_get_size);
1337 
1338 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1339 {
1340 	if (index >= t->num_targets)
1341 		return NULL;
1342 
1343 	return t->targets + index;
1344 }
1345 
1346 /*
1347  * Search the btree for the correct target.
1348  *
1349  * Caller should check returned pointer for NULL
1350  * to trap I/O beyond end of device.
1351  */
1352 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1353 {
1354 	unsigned int l, n = 0, k = 0;
1355 	sector_t *node;
1356 
1357 	if (unlikely(sector >= dm_table_get_size(t)))
1358 		return NULL;
1359 
1360 	for (l = 0; l < t->depth; l++) {
1361 		n = get_child(n, k);
1362 		node = get_node(t, l, n);
1363 
1364 		for (k = 0; k < KEYS_PER_NODE; k++)
1365 			if (node[k] >= sector)
1366 				break;
1367 	}
1368 
1369 	return &t->targets[(KEYS_PER_NODE * n) + k];
1370 }
1371 
1372 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1373 			sector_t start, sector_t len, void *data)
1374 {
1375 	unsigned *num_devices = data;
1376 
1377 	(*num_devices)++;
1378 
1379 	return 0;
1380 }
1381 
1382 /*
1383  * Check whether a table has no data devices attached using each
1384  * target's iterate_devices method.
1385  * Returns false if the result is unknown because a target doesn't
1386  * support iterate_devices.
1387  */
1388 bool dm_table_has_no_data_devices(struct dm_table *table)
1389 {
1390 	struct dm_target *ti;
1391 	unsigned i, num_devices;
1392 
1393 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1394 		ti = dm_table_get_target(table, i);
1395 
1396 		if (!ti->type->iterate_devices)
1397 			return false;
1398 
1399 		num_devices = 0;
1400 		ti->type->iterate_devices(ti, count_device, &num_devices);
1401 		if (num_devices)
1402 			return false;
1403 	}
1404 
1405 	return true;
1406 }
1407 
1408 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1409 				 sector_t start, sector_t len, void *data)
1410 {
1411 	struct request_queue *q = bdev_get_queue(dev->bdev);
1412 	enum blk_zoned_model *zoned_model = data;
1413 
1414 	return q && blk_queue_zoned_model(q) == *zoned_model;
1415 }
1416 
1417 static bool dm_table_supports_zoned_model(struct dm_table *t,
1418 					  enum blk_zoned_model zoned_model)
1419 {
1420 	struct dm_target *ti;
1421 	unsigned i;
1422 
1423 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1424 		ti = dm_table_get_target(t, i);
1425 
1426 		if (zoned_model == BLK_ZONED_HM &&
1427 		    !dm_target_supports_zoned_hm(ti->type))
1428 			return false;
1429 
1430 		if (!ti->type->iterate_devices ||
1431 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1432 			return false;
1433 	}
1434 
1435 	return true;
1436 }
1437 
1438 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1439 				       sector_t start, sector_t len, void *data)
1440 {
1441 	struct request_queue *q = bdev_get_queue(dev->bdev);
1442 	unsigned int *zone_sectors = data;
1443 
1444 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1445 }
1446 
1447 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1448 					  unsigned int zone_sectors)
1449 {
1450 	struct dm_target *ti;
1451 	unsigned i;
1452 
1453 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1454 		ti = dm_table_get_target(t, i);
1455 
1456 		if (!ti->type->iterate_devices ||
1457 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1458 			return false;
1459 	}
1460 
1461 	return true;
1462 }
1463 
1464 static int validate_hardware_zoned_model(struct dm_table *table,
1465 					 enum blk_zoned_model zoned_model,
1466 					 unsigned int zone_sectors)
1467 {
1468 	if (zoned_model == BLK_ZONED_NONE)
1469 		return 0;
1470 
1471 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1472 		DMERR("%s: zoned model is not consistent across all devices",
1473 		      dm_device_name(table->md));
1474 		return -EINVAL;
1475 	}
1476 
1477 	/* Check zone size validity and compatibility */
1478 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1479 		return -EINVAL;
1480 
1481 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1482 		DMERR("%s: zone sectors is not consistent across all devices",
1483 		      dm_device_name(table->md));
1484 		return -EINVAL;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 /*
1491  * Establish the new table's queue_limits and validate them.
1492  */
1493 int dm_calculate_queue_limits(struct dm_table *table,
1494 			      struct queue_limits *limits)
1495 {
1496 	struct dm_target *ti;
1497 	struct queue_limits ti_limits;
1498 	unsigned i;
1499 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1500 	unsigned int zone_sectors = 0;
1501 
1502 	blk_set_stacking_limits(limits);
1503 
1504 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1505 		blk_set_stacking_limits(&ti_limits);
1506 
1507 		ti = dm_table_get_target(table, i);
1508 
1509 		if (!ti->type->iterate_devices)
1510 			goto combine_limits;
1511 
1512 		/*
1513 		 * Combine queue limits of all the devices this target uses.
1514 		 */
1515 		ti->type->iterate_devices(ti, dm_set_device_limits,
1516 					  &ti_limits);
1517 
1518 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1519 			/*
1520 			 * After stacking all limits, validate all devices
1521 			 * in table support this zoned model and zone sectors.
1522 			 */
1523 			zoned_model = ti_limits.zoned;
1524 			zone_sectors = ti_limits.chunk_sectors;
1525 		}
1526 
1527 		/* Set I/O hints portion of queue limits */
1528 		if (ti->type->io_hints)
1529 			ti->type->io_hints(ti, &ti_limits);
1530 
1531 		/*
1532 		 * Check each device area is consistent with the target's
1533 		 * overall queue limits.
1534 		 */
1535 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1536 					      &ti_limits))
1537 			return -EINVAL;
1538 
1539 combine_limits:
1540 		/*
1541 		 * Merge this target's queue limits into the overall limits
1542 		 * for the table.
1543 		 */
1544 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1545 			DMWARN("%s: adding target device "
1546 			       "(start sect %llu len %llu) "
1547 			       "caused an alignment inconsistency",
1548 			       dm_device_name(table->md),
1549 			       (unsigned long long) ti->begin,
1550 			       (unsigned long long) ti->len);
1551 
1552 		/*
1553 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1554 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1555 		 */
1556 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1557 			/*
1558 			 * By default, the stacked limits zoned model is set to
1559 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1560 			 * this model using the first target model reported
1561 			 * that is not BLK_ZONED_NONE. This will be either the
1562 			 * first target device zoned model or the model reported
1563 			 * by the target .io_hints.
1564 			 */
1565 			limits->zoned = ti_limits.zoned;
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * Verify that the zoned model and zone sectors, as determined before
1571 	 * any .io_hints override, are the same across all devices in the table.
1572 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1573 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1574 	 * BUT...
1575 	 */
1576 	if (limits->zoned != BLK_ZONED_NONE) {
1577 		/*
1578 		 * ...IF the above limits stacking determined a zoned model
1579 		 * validate that all of the table's devices conform to it.
1580 		 */
1581 		zoned_model = limits->zoned;
1582 		zone_sectors = limits->chunk_sectors;
1583 	}
1584 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1585 		return -EINVAL;
1586 
1587 	return validate_hardware_logical_block_alignment(table, limits);
1588 }
1589 
1590 /*
1591  * Verify that all devices have an integrity profile that matches the
1592  * DM device's registered integrity profile.  If the profiles don't
1593  * match then unregister the DM device's integrity profile.
1594  */
1595 static void dm_table_verify_integrity(struct dm_table *t)
1596 {
1597 	struct gendisk *template_disk = NULL;
1598 
1599 	if (t->integrity_added)
1600 		return;
1601 
1602 	if (t->integrity_supported) {
1603 		/*
1604 		 * Verify that the original integrity profile
1605 		 * matches all the devices in this table.
1606 		 */
1607 		template_disk = dm_table_get_integrity_disk(t);
1608 		if (template_disk &&
1609 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1610 			return;
1611 	}
1612 
1613 	if (integrity_profile_exists(dm_disk(t->md))) {
1614 		DMWARN("%s: unable to establish an integrity profile",
1615 		       dm_device_name(t->md));
1616 		blk_integrity_unregister(dm_disk(t->md));
1617 	}
1618 }
1619 
1620 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1621 				sector_t start, sector_t len, void *data)
1622 {
1623 	unsigned long flush = (unsigned long) data;
1624 	struct request_queue *q = bdev_get_queue(dev->bdev);
1625 
1626 	return q && (q->queue_flags & flush);
1627 }
1628 
1629 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1630 {
1631 	struct dm_target *ti;
1632 	unsigned i;
1633 
1634 	/*
1635 	 * Require at least one underlying device to support flushes.
1636 	 * t->devices includes internal dm devices such as mirror logs
1637 	 * so we need to use iterate_devices here, which targets
1638 	 * supporting flushes must provide.
1639 	 */
1640 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1641 		ti = dm_table_get_target(t, i);
1642 
1643 		if (!ti->num_flush_bios)
1644 			continue;
1645 
1646 		if (ti->flush_supported)
1647 			return true;
1648 
1649 		if (ti->type->iterate_devices &&
1650 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1651 			return true;
1652 	}
1653 
1654 	return false;
1655 }
1656 
1657 static int device_dax_write_cache_enabled(struct dm_target *ti,
1658 					  struct dm_dev *dev, sector_t start,
1659 					  sector_t len, void *data)
1660 {
1661 	struct dax_device *dax_dev = dev->dax_dev;
1662 
1663 	if (!dax_dev)
1664 		return false;
1665 
1666 	if (dax_write_cache_enabled(dax_dev))
1667 		return true;
1668 	return false;
1669 }
1670 
1671 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1672 {
1673 	struct dm_target *ti;
1674 	unsigned i;
1675 
1676 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1677 		ti = dm_table_get_target(t, i);
1678 
1679 		if (ti->type->iterate_devices &&
1680 		    ti->type->iterate_devices(ti,
1681 				device_dax_write_cache_enabled, NULL))
1682 			return true;
1683 	}
1684 
1685 	return false;
1686 }
1687 
1688 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1689 			    sector_t start, sector_t len, void *data)
1690 {
1691 	struct request_queue *q = bdev_get_queue(dev->bdev);
1692 
1693 	return q && blk_queue_nonrot(q);
1694 }
1695 
1696 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1697 			     sector_t start, sector_t len, void *data)
1698 {
1699 	struct request_queue *q = bdev_get_queue(dev->bdev);
1700 
1701 	return q && !blk_queue_add_random(q);
1702 }
1703 
1704 static bool dm_table_all_devices_attribute(struct dm_table *t,
1705 					   iterate_devices_callout_fn func)
1706 {
1707 	struct dm_target *ti;
1708 	unsigned i;
1709 
1710 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1711 		ti = dm_table_get_target(t, i);
1712 
1713 		if (!ti->type->iterate_devices ||
1714 		    !ti->type->iterate_devices(ti, func, NULL))
1715 			return false;
1716 	}
1717 
1718 	return true;
1719 }
1720 
1721 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1722 					sector_t start, sector_t len, void *data)
1723 {
1724 	char b[BDEVNAME_SIZE];
1725 
1726 	/* For now, NVMe devices are the only devices of this class */
1727 	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1728 }
1729 
1730 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1731 {
1732 	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1733 }
1734 
1735 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1736 					 sector_t start, sector_t len, void *data)
1737 {
1738 	struct request_queue *q = bdev_get_queue(dev->bdev);
1739 
1740 	return q && !q->limits.max_write_same_sectors;
1741 }
1742 
1743 static bool dm_table_supports_write_same(struct dm_table *t)
1744 {
1745 	struct dm_target *ti;
1746 	unsigned i;
1747 
1748 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1749 		ti = dm_table_get_target(t, i);
1750 
1751 		if (!ti->num_write_same_bios)
1752 			return false;
1753 
1754 		if (!ti->type->iterate_devices ||
1755 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1756 			return false;
1757 	}
1758 
1759 	return true;
1760 }
1761 
1762 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1763 					   sector_t start, sector_t len, void *data)
1764 {
1765 	struct request_queue *q = bdev_get_queue(dev->bdev);
1766 
1767 	return q && !q->limits.max_write_zeroes_sectors;
1768 }
1769 
1770 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1771 {
1772 	struct dm_target *ti;
1773 	unsigned i = 0;
1774 
1775 	while (i < dm_table_get_num_targets(t)) {
1776 		ti = dm_table_get_target(t, i++);
1777 
1778 		if (!ti->num_write_zeroes_bios)
1779 			return false;
1780 
1781 		if (!ti->type->iterate_devices ||
1782 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1783 			return false;
1784 	}
1785 
1786 	return true;
1787 }
1788 
1789 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1790 				      sector_t start, sector_t len, void *data)
1791 {
1792 	struct request_queue *q = bdev_get_queue(dev->bdev);
1793 
1794 	return q && !blk_queue_discard(q);
1795 }
1796 
1797 static bool dm_table_supports_discards(struct dm_table *t)
1798 {
1799 	struct dm_target *ti;
1800 	unsigned i;
1801 
1802 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1803 		ti = dm_table_get_target(t, i);
1804 
1805 		if (!ti->num_discard_bios)
1806 			return false;
1807 
1808 		/*
1809 		 * Either the target provides discard support (as implied by setting
1810 		 * 'discards_supported') or it relies on _all_ data devices having
1811 		 * discard support.
1812 		 */
1813 		if (!ti->discards_supported &&
1814 		    (!ti->type->iterate_devices ||
1815 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1816 			return false;
1817 	}
1818 
1819 	return true;
1820 }
1821 
1822 static int device_not_secure_erase_capable(struct dm_target *ti,
1823 					   struct dm_dev *dev, sector_t start,
1824 					   sector_t len, void *data)
1825 {
1826 	struct request_queue *q = bdev_get_queue(dev->bdev);
1827 
1828 	return q && !blk_queue_secure_erase(q);
1829 }
1830 
1831 static bool dm_table_supports_secure_erase(struct dm_table *t)
1832 {
1833 	struct dm_target *ti;
1834 	unsigned int i;
1835 
1836 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1837 		ti = dm_table_get_target(t, i);
1838 
1839 		if (!ti->num_secure_erase_bios)
1840 			return false;
1841 
1842 		if (!ti->type->iterate_devices ||
1843 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1844 			return false;
1845 	}
1846 
1847 	return true;
1848 }
1849 
1850 static int device_requires_stable_pages(struct dm_target *ti,
1851 					struct dm_dev *dev, sector_t start,
1852 					sector_t len, void *data)
1853 {
1854 	struct request_queue *q = bdev_get_queue(dev->bdev);
1855 
1856 	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1857 }
1858 
1859 /*
1860  * If any underlying device requires stable pages, a table must require
1861  * them as well.  Only targets that support iterate_devices are considered:
1862  * don't want error, zero, etc to require stable pages.
1863  */
1864 static bool dm_table_requires_stable_pages(struct dm_table *t)
1865 {
1866 	struct dm_target *ti;
1867 	unsigned i;
1868 
1869 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1870 		ti = dm_table_get_target(t, i);
1871 
1872 		if (ti->type->iterate_devices &&
1873 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1874 			return true;
1875 	}
1876 
1877 	return false;
1878 }
1879 
1880 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1881 			       struct queue_limits *limits)
1882 {
1883 	bool wc = false, fua = false;
1884 	int page_size = PAGE_SIZE;
1885 
1886 	/*
1887 	 * Copy table's limits to the DM device's request_queue
1888 	 */
1889 	q->limits = *limits;
1890 
1891 	if (!dm_table_supports_discards(t)) {
1892 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1893 		/* Must also clear discard limits... */
1894 		q->limits.max_discard_sectors = 0;
1895 		q->limits.max_hw_discard_sectors = 0;
1896 		q->limits.discard_granularity = 0;
1897 		q->limits.discard_alignment = 0;
1898 		q->limits.discard_misaligned = 0;
1899 	} else
1900 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1901 
1902 	if (dm_table_supports_secure_erase(t))
1903 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1904 
1905 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1906 		wc = true;
1907 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1908 			fua = true;
1909 	}
1910 	blk_queue_write_cache(q, wc, fua);
1911 
1912 	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1913 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1914 		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1915 			set_dax_synchronous(t->md->dax_dev);
1916 	}
1917 	else
1918 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1919 
1920 	if (dm_table_supports_dax_write_cache(t))
1921 		dax_write_cache(t->md->dax_dev, true);
1922 
1923 	/* Ensure that all underlying devices are non-rotational. */
1924 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1925 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1926 	else
1927 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1928 
1929 	if (!dm_table_supports_write_same(t))
1930 		q->limits.max_write_same_sectors = 0;
1931 	if (!dm_table_supports_write_zeroes(t))
1932 		q->limits.max_write_zeroes_sectors = 0;
1933 
1934 	dm_table_verify_integrity(t);
1935 
1936 	/*
1937 	 * Some devices don't use blk_integrity but still want stable pages
1938 	 * because they do their own checksumming.
1939 	 */
1940 	if (dm_table_requires_stable_pages(t))
1941 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1942 	else
1943 		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1944 
1945 	/*
1946 	 * Determine whether or not this queue's I/O timings contribute
1947 	 * to the entropy pool, Only request-based targets use this.
1948 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1949 	 * have it set.
1950 	 */
1951 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1952 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1953 
1954 	/*
1955 	 * For a zoned target, the number of zones should be updated for the
1956 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1957 	 * target, this is all that is needed.
1958 	 */
1959 #ifdef CONFIG_BLK_DEV_ZONED
1960 	if (blk_queue_is_zoned(q)) {
1961 		WARN_ON_ONCE(queue_is_mq(q));
1962 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1963 	}
1964 #endif
1965 
1966 	/* Allow reads to exceed readahead limits */
1967 	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1968 }
1969 
1970 unsigned int dm_table_get_num_targets(struct dm_table *t)
1971 {
1972 	return t->num_targets;
1973 }
1974 
1975 struct list_head *dm_table_get_devices(struct dm_table *t)
1976 {
1977 	return &t->devices;
1978 }
1979 
1980 fmode_t dm_table_get_mode(struct dm_table *t)
1981 {
1982 	return t->mode;
1983 }
1984 EXPORT_SYMBOL(dm_table_get_mode);
1985 
1986 enum suspend_mode {
1987 	PRESUSPEND,
1988 	PRESUSPEND_UNDO,
1989 	POSTSUSPEND,
1990 };
1991 
1992 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1993 {
1994 	int i = t->num_targets;
1995 	struct dm_target *ti = t->targets;
1996 
1997 	lockdep_assert_held(&t->md->suspend_lock);
1998 
1999 	while (i--) {
2000 		switch (mode) {
2001 		case PRESUSPEND:
2002 			if (ti->type->presuspend)
2003 				ti->type->presuspend(ti);
2004 			break;
2005 		case PRESUSPEND_UNDO:
2006 			if (ti->type->presuspend_undo)
2007 				ti->type->presuspend_undo(ti);
2008 			break;
2009 		case POSTSUSPEND:
2010 			if (ti->type->postsuspend)
2011 				ti->type->postsuspend(ti);
2012 			break;
2013 		}
2014 		ti++;
2015 	}
2016 }
2017 
2018 void dm_table_presuspend_targets(struct dm_table *t)
2019 {
2020 	if (!t)
2021 		return;
2022 
2023 	suspend_targets(t, PRESUSPEND);
2024 }
2025 
2026 void dm_table_presuspend_undo_targets(struct dm_table *t)
2027 {
2028 	if (!t)
2029 		return;
2030 
2031 	suspend_targets(t, PRESUSPEND_UNDO);
2032 }
2033 
2034 void dm_table_postsuspend_targets(struct dm_table *t)
2035 {
2036 	if (!t)
2037 		return;
2038 
2039 	suspend_targets(t, POSTSUSPEND);
2040 }
2041 
2042 int dm_table_resume_targets(struct dm_table *t)
2043 {
2044 	int i, r = 0;
2045 
2046 	lockdep_assert_held(&t->md->suspend_lock);
2047 
2048 	for (i = 0; i < t->num_targets; i++) {
2049 		struct dm_target *ti = t->targets + i;
2050 
2051 		if (!ti->type->preresume)
2052 			continue;
2053 
2054 		r = ti->type->preresume(ti);
2055 		if (r) {
2056 			DMERR("%s: %s: preresume failed, error = %d",
2057 			      dm_device_name(t->md), ti->type->name, r);
2058 			return r;
2059 		}
2060 	}
2061 
2062 	for (i = 0; i < t->num_targets; i++) {
2063 		struct dm_target *ti = t->targets + i;
2064 
2065 		if (ti->type->resume)
2066 			ti->type->resume(ti);
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2073 {
2074 	list_add(&cb->list, &t->target_callbacks);
2075 }
2076 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2077 
2078 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2079 {
2080 	struct dm_dev_internal *dd;
2081 	struct list_head *devices = dm_table_get_devices(t);
2082 	struct dm_target_callbacks *cb;
2083 	int r = 0;
2084 
2085 	list_for_each_entry(dd, devices, list) {
2086 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2087 		char b[BDEVNAME_SIZE];
2088 
2089 		if (likely(q))
2090 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2091 		else
2092 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2093 				     dm_device_name(t->md),
2094 				     bdevname(dd->dm_dev->bdev, b));
2095 	}
2096 
2097 	list_for_each_entry(cb, &t->target_callbacks, list)
2098 		if (cb->congested_fn)
2099 			r |= cb->congested_fn(cb, bdi_bits);
2100 
2101 	return r;
2102 }
2103 
2104 struct mapped_device *dm_table_get_md(struct dm_table *t)
2105 {
2106 	return t->md;
2107 }
2108 EXPORT_SYMBOL(dm_table_get_md);
2109 
2110 const char *dm_table_device_name(struct dm_table *t)
2111 {
2112 	return dm_device_name(t->md);
2113 }
2114 EXPORT_SYMBOL_GPL(dm_table_device_name);
2115 
2116 void dm_table_run_md_queue_async(struct dm_table *t)
2117 {
2118 	struct mapped_device *md;
2119 	struct request_queue *queue;
2120 
2121 	if (!dm_table_request_based(t))
2122 		return;
2123 
2124 	md = dm_table_get_md(t);
2125 	queue = dm_get_md_queue(md);
2126 	if (queue)
2127 		blk_mq_run_hw_queues(queue, true);
2128 }
2129 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2130 
2131