xref: /openbmc/linux/drivers/md/dm-table.c (revision a701d28e)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/lcm.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25 
26 #define DM_MSG_PREFIX "table"
27 
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 /*
33  * Similar to ceiling(log_size(n))
34  */
35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37 	int result = 0;
38 
39 	while (n > 1) {
40 		n = dm_div_up(n, base);
41 		result++;
42 	}
43 
44 	return result;
45 }
46 
47 /*
48  * Calculate the index of the child node of the n'th node k'th key.
49  */
50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52 	return (n * CHILDREN_PER_NODE) + k;
53 }
54 
55 /*
56  * Return the n'th node of level l from table t.
57  */
58 static inline sector_t *get_node(struct dm_table *t,
59 				 unsigned int l, unsigned int n)
60 {
61 	return t->index[l] + (n * KEYS_PER_NODE);
62 }
63 
64 /*
65  * Return the highest key that you could lookup from the n'th
66  * node on level l of the btree.
67  */
68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70 	for (; l < t->depth - 1; l++)
71 		n = get_child(n, CHILDREN_PER_NODE - 1);
72 
73 	if (n >= t->counts[l])
74 		return (sector_t) - 1;
75 
76 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78 
79 /*
80  * Fills in a level of the btree based on the highs of the level
81  * below it.
82  */
83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85 	unsigned int n, k;
86 	sector_t *node;
87 
88 	for (n = 0U; n < t->counts[l]; n++) {
89 		node = get_node(t, l, n);
90 
91 		for (k = 0U; k < KEYS_PER_NODE; k++)
92 			node[k] = high(t, l + 1, get_child(n, k));
93 	}
94 
95 	return 0;
96 }
97 
98 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
99 {
100 	unsigned long size;
101 	void *addr;
102 
103 	/*
104 	 * Check that we're not going to overflow.
105 	 */
106 	if (nmemb > (ULONG_MAX / elem_size))
107 		return NULL;
108 
109 	size = nmemb * elem_size;
110 	addr = vzalloc(size);
111 
112 	return addr;
113 }
114 EXPORT_SYMBOL(dm_vcalloc);
115 
116 /*
117  * highs, and targets are managed as dynamic arrays during a
118  * table load.
119  */
120 static int alloc_targets(struct dm_table *t, unsigned int num)
121 {
122 	sector_t *n_highs;
123 	struct dm_target *n_targets;
124 
125 	/*
126 	 * Allocate both the target array and offset array at once.
127 	 */
128 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
129 					  sizeof(sector_t));
130 	if (!n_highs)
131 		return -ENOMEM;
132 
133 	n_targets = (struct dm_target *) (n_highs + num);
134 
135 	memset(n_highs, -1, sizeof(*n_highs) * num);
136 	vfree(t->highs);
137 
138 	t->num_allocated = num;
139 	t->highs = n_highs;
140 	t->targets = n_targets;
141 
142 	return 0;
143 }
144 
145 int dm_table_create(struct dm_table **result, fmode_t mode,
146 		    unsigned num_targets, struct mapped_device *md)
147 {
148 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
149 
150 	if (!t)
151 		return -ENOMEM;
152 
153 	INIT_LIST_HEAD(&t->devices);
154 
155 	if (!num_targets)
156 		num_targets = KEYS_PER_NODE;
157 
158 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
159 
160 	if (!num_targets) {
161 		kfree(t);
162 		return -ENOMEM;
163 	}
164 
165 	if (alloc_targets(t, num_targets)) {
166 		kfree(t);
167 		return -ENOMEM;
168 	}
169 
170 	t->type = DM_TYPE_NONE;
171 	t->mode = mode;
172 	t->md = md;
173 	*result = t;
174 	return 0;
175 }
176 
177 static void free_devices(struct list_head *devices, struct mapped_device *md)
178 {
179 	struct list_head *tmp, *next;
180 
181 	list_for_each_safe(tmp, next, devices) {
182 		struct dm_dev_internal *dd =
183 		    list_entry(tmp, struct dm_dev_internal, list);
184 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
185 		       dm_device_name(md), dd->dm_dev->name);
186 		dm_put_table_device(md, dd->dm_dev);
187 		kfree(dd);
188 	}
189 }
190 
191 void dm_table_destroy(struct dm_table *t)
192 {
193 	unsigned int i;
194 
195 	if (!t)
196 		return;
197 
198 	/* free the indexes */
199 	if (t->depth >= 2)
200 		vfree(t->index[t->depth - 2]);
201 
202 	/* free the targets */
203 	for (i = 0; i < t->num_targets; i++) {
204 		struct dm_target *tgt = t->targets + i;
205 
206 		if (tgt->type->dtr)
207 			tgt->type->dtr(tgt);
208 
209 		dm_put_target_type(tgt->type);
210 	}
211 
212 	vfree(t->highs);
213 
214 	/* free the device list */
215 	free_devices(&t->devices, t->md);
216 
217 	dm_free_md_mempools(t->mempools);
218 
219 	kfree(t);
220 }
221 
222 /*
223  * See if we've already got a device in the list.
224  */
225 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
226 {
227 	struct dm_dev_internal *dd;
228 
229 	list_for_each_entry (dd, l, list)
230 		if (dd->dm_dev->bdev->bd_dev == dev)
231 			return dd;
232 
233 	return NULL;
234 }
235 
236 /*
237  * If possible, this checks an area of a destination device is invalid.
238  */
239 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
240 				  sector_t start, sector_t len, void *data)
241 {
242 	struct queue_limits *limits = data;
243 	struct block_device *bdev = dev->bdev;
244 	sector_t dev_size =
245 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
246 	unsigned short logical_block_size_sectors =
247 		limits->logical_block_size >> SECTOR_SHIFT;
248 	char b[BDEVNAME_SIZE];
249 
250 	if (!dev_size)
251 		return 0;
252 
253 	if ((start >= dev_size) || (start + len > dev_size)) {
254 		DMWARN("%s: %s too small for target: "
255 		       "start=%llu, len=%llu, dev_size=%llu",
256 		       dm_device_name(ti->table->md), bdevname(bdev, b),
257 		       (unsigned long long)start,
258 		       (unsigned long long)len,
259 		       (unsigned long long)dev_size);
260 		return 1;
261 	}
262 
263 	/*
264 	 * If the target is mapped to zoned block device(s), check
265 	 * that the zones are not partially mapped.
266 	 */
267 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
268 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
269 
270 		if (start & (zone_sectors - 1)) {
271 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
272 			       dm_device_name(ti->table->md),
273 			       (unsigned long long)start,
274 			       zone_sectors, bdevname(bdev, b));
275 			return 1;
276 		}
277 
278 		/*
279 		 * Note: The last zone of a zoned block device may be smaller
280 		 * than other zones. So for a target mapping the end of a
281 		 * zoned block device with such a zone, len would not be zone
282 		 * aligned. We do not allow such last smaller zone to be part
283 		 * of the mapping here to ensure that mappings with multiple
284 		 * devices do not end up with a smaller zone in the middle of
285 		 * the sector range.
286 		 */
287 		if (len & (zone_sectors - 1)) {
288 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
289 			       dm_device_name(ti->table->md),
290 			       (unsigned long long)len,
291 			       zone_sectors, bdevname(bdev, b));
292 			return 1;
293 		}
294 	}
295 
296 	if (logical_block_size_sectors <= 1)
297 		return 0;
298 
299 	if (start & (logical_block_size_sectors - 1)) {
300 		DMWARN("%s: start=%llu not aligned to h/w "
301 		       "logical block size %u of %s",
302 		       dm_device_name(ti->table->md),
303 		       (unsigned long long)start,
304 		       limits->logical_block_size, bdevname(bdev, b));
305 		return 1;
306 	}
307 
308 	if (len & (logical_block_size_sectors - 1)) {
309 		DMWARN("%s: len=%llu not aligned to h/w "
310 		       "logical block size %u of %s",
311 		       dm_device_name(ti->table->md),
312 		       (unsigned long long)len,
313 		       limits->logical_block_size, bdevname(bdev, b));
314 		return 1;
315 	}
316 
317 	return 0;
318 }
319 
320 /*
321  * This upgrades the mode on an already open dm_dev, being
322  * careful to leave things as they were if we fail to reopen the
323  * device and not to touch the existing bdev field in case
324  * it is accessed concurrently.
325  */
326 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
327 			struct mapped_device *md)
328 {
329 	int r;
330 	struct dm_dev *old_dev, *new_dev;
331 
332 	old_dev = dd->dm_dev;
333 
334 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
335 				dd->dm_dev->mode | new_mode, &new_dev);
336 	if (r)
337 		return r;
338 
339 	dd->dm_dev = new_dev;
340 	dm_put_table_device(md, old_dev);
341 
342 	return 0;
343 }
344 
345 /*
346  * Convert the path to a device
347  */
348 dev_t dm_get_dev_t(const char *path)
349 {
350 	dev_t dev;
351 	struct block_device *bdev;
352 
353 	bdev = lookup_bdev(path);
354 	if (IS_ERR(bdev))
355 		dev = name_to_dev_t(path);
356 	else {
357 		dev = bdev->bd_dev;
358 		bdput(bdev);
359 	}
360 
361 	return dev;
362 }
363 EXPORT_SYMBOL_GPL(dm_get_dev_t);
364 
365 /*
366  * Add a device to the list, or just increment the usage count if
367  * it's already present.
368  */
369 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
370 		  struct dm_dev **result)
371 {
372 	int r;
373 	dev_t dev;
374 	struct dm_dev_internal *dd;
375 	struct dm_table *t = ti->table;
376 
377 	BUG_ON(!t);
378 
379 	dev = dm_get_dev_t(path);
380 	if (!dev)
381 		return -ENODEV;
382 
383 	dd = find_device(&t->devices, dev);
384 	if (!dd) {
385 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
386 		if (!dd)
387 			return -ENOMEM;
388 
389 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
390 			kfree(dd);
391 			return r;
392 		}
393 
394 		refcount_set(&dd->count, 1);
395 		list_add(&dd->list, &t->devices);
396 		goto out;
397 
398 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
399 		r = upgrade_mode(dd, mode, t->md);
400 		if (r)
401 			return r;
402 	}
403 	refcount_inc(&dd->count);
404 out:
405 	*result = dd->dm_dev;
406 	return 0;
407 }
408 EXPORT_SYMBOL(dm_get_device);
409 
410 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
411 				sector_t start, sector_t len, void *data)
412 {
413 	struct queue_limits *limits = data;
414 	struct block_device *bdev = dev->bdev;
415 	struct request_queue *q = bdev_get_queue(bdev);
416 	char b[BDEVNAME_SIZE];
417 
418 	if (unlikely(!q)) {
419 		DMWARN("%s: Cannot set limits for nonexistent device %s",
420 		       dm_device_name(ti->table->md), bdevname(bdev, b));
421 		return 0;
422 	}
423 
424 	if (blk_stack_limits(limits, &q->limits,
425 			get_start_sect(bdev) + start) < 0)
426 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
427 		       "physical_block_size=%u, logical_block_size=%u, "
428 		       "alignment_offset=%u, start=%llu",
429 		       dm_device_name(ti->table->md), bdevname(bdev, b),
430 		       q->limits.physical_block_size,
431 		       q->limits.logical_block_size,
432 		       q->limits.alignment_offset,
433 		       (unsigned long long) start << SECTOR_SHIFT);
434 	return 0;
435 }
436 
437 /*
438  * Decrement a device's use count and remove it if necessary.
439  */
440 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
441 {
442 	int found = 0;
443 	struct list_head *devices = &ti->table->devices;
444 	struct dm_dev_internal *dd;
445 
446 	list_for_each_entry(dd, devices, list) {
447 		if (dd->dm_dev == d) {
448 			found = 1;
449 			break;
450 		}
451 	}
452 	if (!found) {
453 		DMWARN("%s: device %s not in table devices list",
454 		       dm_device_name(ti->table->md), d->name);
455 		return;
456 	}
457 	if (refcount_dec_and_test(&dd->count)) {
458 		dm_put_table_device(ti->table->md, d);
459 		list_del(&dd->list);
460 		kfree(dd);
461 	}
462 }
463 EXPORT_SYMBOL(dm_put_device);
464 
465 /*
466  * Checks to see if the target joins onto the end of the table.
467  */
468 static int adjoin(struct dm_table *table, struct dm_target *ti)
469 {
470 	struct dm_target *prev;
471 
472 	if (!table->num_targets)
473 		return !ti->begin;
474 
475 	prev = &table->targets[table->num_targets - 1];
476 	return (ti->begin == (prev->begin + prev->len));
477 }
478 
479 /*
480  * Used to dynamically allocate the arg array.
481  *
482  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483  * process messages even if some device is suspended. These messages have a
484  * small fixed number of arguments.
485  *
486  * On the other hand, dm-switch needs to process bulk data using messages and
487  * excessive use of GFP_NOIO could cause trouble.
488  */
489 static char **realloc_argv(unsigned *size, char **old_argv)
490 {
491 	char **argv;
492 	unsigned new_size;
493 	gfp_t gfp;
494 
495 	if (*size) {
496 		new_size = *size * 2;
497 		gfp = GFP_KERNEL;
498 	} else {
499 		new_size = 8;
500 		gfp = GFP_NOIO;
501 	}
502 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503 	if (argv && old_argv) {
504 		memcpy(argv, old_argv, *size * sizeof(*argv));
505 		*size = new_size;
506 	}
507 
508 	kfree(old_argv);
509 	return argv;
510 }
511 
512 /*
513  * Destructively splits up the argument list to pass to ctr.
514  */
515 int dm_split_args(int *argc, char ***argvp, char *input)
516 {
517 	char *start, *end = input, *out, **argv = NULL;
518 	unsigned array_size = 0;
519 
520 	*argc = 0;
521 
522 	if (!input) {
523 		*argvp = NULL;
524 		return 0;
525 	}
526 
527 	argv = realloc_argv(&array_size, argv);
528 	if (!argv)
529 		return -ENOMEM;
530 
531 	while (1) {
532 		/* Skip whitespace */
533 		start = skip_spaces(end);
534 
535 		if (!*start)
536 			break;	/* success, we hit the end */
537 
538 		/* 'out' is used to remove any back-quotes */
539 		end = out = start;
540 		while (*end) {
541 			/* Everything apart from '\0' can be quoted */
542 			if (*end == '\\' && *(end + 1)) {
543 				*out++ = *(end + 1);
544 				end += 2;
545 				continue;
546 			}
547 
548 			if (isspace(*end))
549 				break;	/* end of token */
550 
551 			*out++ = *end++;
552 		}
553 
554 		/* have we already filled the array ? */
555 		if ((*argc + 1) > array_size) {
556 			argv = realloc_argv(&array_size, argv);
557 			if (!argv)
558 				return -ENOMEM;
559 		}
560 
561 		/* we know this is whitespace */
562 		if (*end)
563 			end++;
564 
565 		/* terminate the string and put it in the array */
566 		*out = '\0';
567 		argv[*argc] = start;
568 		(*argc)++;
569 	}
570 
571 	*argvp = argv;
572 	return 0;
573 }
574 
575 /*
576  * Impose necessary and sufficient conditions on a devices's table such
577  * that any incoming bio which respects its logical_block_size can be
578  * processed successfully.  If it falls across the boundary between
579  * two or more targets, the size of each piece it gets split into must
580  * be compatible with the logical_block_size of the target processing it.
581  */
582 static int validate_hardware_logical_block_alignment(struct dm_table *table,
583 						 struct queue_limits *limits)
584 {
585 	/*
586 	 * This function uses arithmetic modulo the logical_block_size
587 	 * (in units of 512-byte sectors).
588 	 */
589 	unsigned short device_logical_block_size_sects =
590 		limits->logical_block_size >> SECTOR_SHIFT;
591 
592 	/*
593 	 * Offset of the start of the next table entry, mod logical_block_size.
594 	 */
595 	unsigned short next_target_start = 0;
596 
597 	/*
598 	 * Given an aligned bio that extends beyond the end of a
599 	 * target, how many sectors must the next target handle?
600 	 */
601 	unsigned short remaining = 0;
602 
603 	struct dm_target *ti;
604 	struct queue_limits ti_limits;
605 	unsigned i;
606 
607 	/*
608 	 * Check each entry in the table in turn.
609 	 */
610 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
611 		ti = dm_table_get_target(table, i);
612 
613 		blk_set_stacking_limits(&ti_limits);
614 
615 		/* combine all target devices' limits */
616 		if (ti->type->iterate_devices)
617 			ti->type->iterate_devices(ti, dm_set_device_limits,
618 						  &ti_limits);
619 
620 		/*
621 		 * If the remaining sectors fall entirely within this
622 		 * table entry are they compatible with its logical_block_size?
623 		 */
624 		if (remaining < ti->len &&
625 		    remaining & ((ti_limits.logical_block_size >>
626 				  SECTOR_SHIFT) - 1))
627 			break;	/* Error */
628 
629 		next_target_start =
630 		    (unsigned short) ((next_target_start + ti->len) &
631 				      (device_logical_block_size_sects - 1));
632 		remaining = next_target_start ?
633 		    device_logical_block_size_sects - next_target_start : 0;
634 	}
635 
636 	if (remaining) {
637 		DMWARN("%s: table line %u (start sect %llu len %llu) "
638 		       "not aligned to h/w logical block size %u",
639 		       dm_device_name(table->md), i,
640 		       (unsigned long long) ti->begin,
641 		       (unsigned long long) ti->len,
642 		       limits->logical_block_size);
643 		return -EINVAL;
644 	}
645 
646 	return 0;
647 }
648 
649 int dm_table_add_target(struct dm_table *t, const char *type,
650 			sector_t start, sector_t len, char *params)
651 {
652 	int r = -EINVAL, argc;
653 	char **argv;
654 	struct dm_target *tgt;
655 
656 	if (t->singleton) {
657 		DMERR("%s: target type %s must appear alone in table",
658 		      dm_device_name(t->md), t->targets->type->name);
659 		return -EINVAL;
660 	}
661 
662 	BUG_ON(t->num_targets >= t->num_allocated);
663 
664 	tgt = t->targets + t->num_targets;
665 	memset(tgt, 0, sizeof(*tgt));
666 
667 	if (!len) {
668 		DMERR("%s: zero-length target", dm_device_name(t->md));
669 		return -EINVAL;
670 	}
671 
672 	tgt->type = dm_get_target_type(type);
673 	if (!tgt->type) {
674 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675 		return -EINVAL;
676 	}
677 
678 	if (dm_target_needs_singleton(tgt->type)) {
679 		if (t->num_targets) {
680 			tgt->error = "singleton target type must appear alone in table";
681 			goto bad;
682 		}
683 		t->singleton = true;
684 	}
685 
686 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
687 		tgt->error = "target type may not be included in a read-only table";
688 		goto bad;
689 	}
690 
691 	if (t->immutable_target_type) {
692 		if (t->immutable_target_type != tgt->type) {
693 			tgt->error = "immutable target type cannot be mixed with other target types";
694 			goto bad;
695 		}
696 	} else if (dm_target_is_immutable(tgt->type)) {
697 		if (t->num_targets) {
698 			tgt->error = "immutable target type cannot be mixed with other target types";
699 			goto bad;
700 		}
701 		t->immutable_target_type = tgt->type;
702 	}
703 
704 	if (dm_target_has_integrity(tgt->type))
705 		t->integrity_added = 1;
706 
707 	tgt->table = t;
708 	tgt->begin = start;
709 	tgt->len = len;
710 	tgt->error = "Unknown error";
711 
712 	/*
713 	 * Does this target adjoin the previous one ?
714 	 */
715 	if (!adjoin(t, tgt)) {
716 		tgt->error = "Gap in table";
717 		goto bad;
718 	}
719 
720 	r = dm_split_args(&argc, &argv, params);
721 	if (r) {
722 		tgt->error = "couldn't split parameters (insufficient memory)";
723 		goto bad;
724 	}
725 
726 	r = tgt->type->ctr(tgt, argc, argv);
727 	kfree(argv);
728 	if (r)
729 		goto bad;
730 
731 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
732 
733 	if (!tgt->num_discard_bios && tgt->discards_supported)
734 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
735 		       dm_device_name(t->md), type);
736 
737 	return 0;
738 
739  bad:
740 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
741 	dm_put_target_type(tgt->type);
742 	return r;
743 }
744 
745 /*
746  * Target argument parsing helpers.
747  */
748 static int validate_next_arg(const struct dm_arg *arg,
749 			     struct dm_arg_set *arg_set,
750 			     unsigned *value, char **error, unsigned grouped)
751 {
752 	const char *arg_str = dm_shift_arg(arg_set);
753 	char dummy;
754 
755 	if (!arg_str ||
756 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
757 	    (*value < arg->min) ||
758 	    (*value > arg->max) ||
759 	    (grouped && arg_set->argc < *value)) {
760 		*error = arg->error;
761 		return -EINVAL;
762 	}
763 
764 	return 0;
765 }
766 
767 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
768 		unsigned *value, char **error)
769 {
770 	return validate_next_arg(arg, arg_set, value, error, 0);
771 }
772 EXPORT_SYMBOL(dm_read_arg);
773 
774 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
775 		      unsigned *value, char **error)
776 {
777 	return validate_next_arg(arg, arg_set, value, error, 1);
778 }
779 EXPORT_SYMBOL(dm_read_arg_group);
780 
781 const char *dm_shift_arg(struct dm_arg_set *as)
782 {
783 	char *r;
784 
785 	if (as->argc) {
786 		as->argc--;
787 		r = *as->argv;
788 		as->argv++;
789 		return r;
790 	}
791 
792 	return NULL;
793 }
794 EXPORT_SYMBOL(dm_shift_arg);
795 
796 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
797 {
798 	BUG_ON(as->argc < num_args);
799 	as->argc -= num_args;
800 	as->argv += num_args;
801 }
802 EXPORT_SYMBOL(dm_consume_args);
803 
804 static bool __table_type_bio_based(enum dm_queue_mode table_type)
805 {
806 	return (table_type == DM_TYPE_BIO_BASED ||
807 		table_type == DM_TYPE_DAX_BIO_BASED);
808 }
809 
810 static bool __table_type_request_based(enum dm_queue_mode table_type)
811 {
812 	return table_type == DM_TYPE_REQUEST_BASED;
813 }
814 
815 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
816 {
817 	t->type = type;
818 }
819 EXPORT_SYMBOL_GPL(dm_table_set_type);
820 
821 /* validate the dax capability of the target device span */
822 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
823 			sector_t start, sector_t len, void *data)
824 {
825 	int blocksize = *(int *) data, id;
826 	bool rc;
827 
828 	id = dax_read_lock();
829 	rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
830 	dax_read_unlock(id);
831 
832 	return rc;
833 }
834 
835 /* Check devices support synchronous DAX */
836 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
837 				  sector_t start, sector_t len, void *data)
838 {
839 	return dev->dax_dev && dax_synchronous(dev->dax_dev);
840 }
841 
842 bool dm_table_supports_dax(struct dm_table *t,
843 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
844 {
845 	struct dm_target *ti;
846 	unsigned i;
847 
848 	/* Ensure that all targets support DAX. */
849 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
850 		ti = dm_table_get_target(t, i);
851 
852 		if (!ti->type->direct_access)
853 			return false;
854 
855 		if (!ti->type->iterate_devices ||
856 		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
857 			return false;
858 	}
859 
860 	return true;
861 }
862 
863 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
864 				  sector_t start, sector_t len, void *data)
865 {
866 	struct block_device *bdev = dev->bdev;
867 	struct request_queue *q = bdev_get_queue(bdev);
868 
869 	/* request-based cannot stack on partitions! */
870 	if (bdev_is_partition(bdev))
871 		return false;
872 
873 	return queue_is_mq(q);
874 }
875 
876 static int dm_table_determine_type(struct dm_table *t)
877 {
878 	unsigned i;
879 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
880 	struct dm_target *tgt;
881 	struct list_head *devices = dm_table_get_devices(t);
882 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
883 	int page_size = PAGE_SIZE;
884 
885 	if (t->type != DM_TYPE_NONE) {
886 		/* target already set the table's type */
887 		if (t->type == DM_TYPE_BIO_BASED) {
888 			/* possibly upgrade to a variant of bio-based */
889 			goto verify_bio_based;
890 		}
891 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
892 		goto verify_rq_based;
893 	}
894 
895 	for (i = 0; i < t->num_targets; i++) {
896 		tgt = t->targets + i;
897 		if (dm_target_hybrid(tgt))
898 			hybrid = 1;
899 		else if (dm_target_request_based(tgt))
900 			request_based = 1;
901 		else
902 			bio_based = 1;
903 
904 		if (bio_based && request_based) {
905 			DMERR("Inconsistent table: different target types"
906 			      " can't be mixed up");
907 			return -EINVAL;
908 		}
909 	}
910 
911 	if (hybrid && !bio_based && !request_based) {
912 		/*
913 		 * The targets can work either way.
914 		 * Determine the type from the live device.
915 		 * Default to bio-based if device is new.
916 		 */
917 		if (__table_type_request_based(live_md_type))
918 			request_based = 1;
919 		else
920 			bio_based = 1;
921 	}
922 
923 	if (bio_based) {
924 verify_bio_based:
925 		/* We must use this table as bio-based */
926 		t->type = DM_TYPE_BIO_BASED;
927 		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
928 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
929 			t->type = DM_TYPE_DAX_BIO_BASED;
930 		}
931 		return 0;
932 	}
933 
934 	BUG_ON(!request_based); /* No targets in this table */
935 
936 	t->type = DM_TYPE_REQUEST_BASED;
937 
938 verify_rq_based:
939 	/*
940 	 * Request-based dm supports only tables that have a single target now.
941 	 * To support multiple targets, request splitting support is needed,
942 	 * and that needs lots of changes in the block-layer.
943 	 * (e.g. request completion process for partial completion.)
944 	 */
945 	if (t->num_targets > 1) {
946 		DMERR("request-based DM doesn't support multiple targets");
947 		return -EINVAL;
948 	}
949 
950 	if (list_empty(devices)) {
951 		int srcu_idx;
952 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
953 
954 		/* inherit live table's type */
955 		if (live_table)
956 			t->type = live_table->type;
957 		dm_put_live_table(t->md, srcu_idx);
958 		return 0;
959 	}
960 
961 	tgt = dm_table_get_immutable_target(t);
962 	if (!tgt) {
963 		DMERR("table load rejected: immutable target is required");
964 		return -EINVAL;
965 	} else if (tgt->max_io_len) {
966 		DMERR("table load rejected: immutable target that splits IO is not supported");
967 		return -EINVAL;
968 	}
969 
970 	/* Non-request-stackable devices can't be used for request-based dm */
971 	if (!tgt->type->iterate_devices ||
972 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
973 		DMERR("table load rejected: including non-request-stackable devices");
974 		return -EINVAL;
975 	}
976 
977 	return 0;
978 }
979 
980 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
981 {
982 	return t->type;
983 }
984 
985 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
986 {
987 	return t->immutable_target_type;
988 }
989 
990 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
991 {
992 	/* Immutable target is implicitly a singleton */
993 	if (t->num_targets > 1 ||
994 	    !dm_target_is_immutable(t->targets[0].type))
995 		return NULL;
996 
997 	return t->targets;
998 }
999 
1000 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1001 {
1002 	struct dm_target *ti;
1003 	unsigned i;
1004 
1005 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1006 		ti = dm_table_get_target(t, i);
1007 		if (dm_target_is_wildcard(ti->type))
1008 			return ti;
1009 	}
1010 
1011 	return NULL;
1012 }
1013 
1014 bool dm_table_bio_based(struct dm_table *t)
1015 {
1016 	return __table_type_bio_based(dm_table_get_type(t));
1017 }
1018 
1019 bool dm_table_request_based(struct dm_table *t)
1020 {
1021 	return __table_type_request_based(dm_table_get_type(t));
1022 }
1023 
1024 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1025 {
1026 	enum dm_queue_mode type = dm_table_get_type(t);
1027 	unsigned per_io_data_size = 0;
1028 	unsigned min_pool_size = 0;
1029 	struct dm_target *ti;
1030 	unsigned i;
1031 
1032 	if (unlikely(type == DM_TYPE_NONE)) {
1033 		DMWARN("no table type is set, can't allocate mempools");
1034 		return -EINVAL;
1035 	}
1036 
1037 	if (__table_type_bio_based(type))
1038 		for (i = 0; i < t->num_targets; i++) {
1039 			ti = t->targets + i;
1040 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1041 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1042 		}
1043 
1044 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1045 					   per_io_data_size, min_pool_size);
1046 	if (!t->mempools)
1047 		return -ENOMEM;
1048 
1049 	return 0;
1050 }
1051 
1052 void dm_table_free_md_mempools(struct dm_table *t)
1053 {
1054 	dm_free_md_mempools(t->mempools);
1055 	t->mempools = NULL;
1056 }
1057 
1058 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1059 {
1060 	return t->mempools;
1061 }
1062 
1063 static int setup_indexes(struct dm_table *t)
1064 {
1065 	int i;
1066 	unsigned int total = 0;
1067 	sector_t *indexes;
1068 
1069 	/* allocate the space for *all* the indexes */
1070 	for (i = t->depth - 2; i >= 0; i--) {
1071 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1072 		total += t->counts[i];
1073 	}
1074 
1075 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1076 	if (!indexes)
1077 		return -ENOMEM;
1078 
1079 	/* set up internal nodes, bottom-up */
1080 	for (i = t->depth - 2; i >= 0; i--) {
1081 		t->index[i] = indexes;
1082 		indexes += (KEYS_PER_NODE * t->counts[i]);
1083 		setup_btree_index(i, t);
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 /*
1090  * Builds the btree to index the map.
1091  */
1092 static int dm_table_build_index(struct dm_table *t)
1093 {
1094 	int r = 0;
1095 	unsigned int leaf_nodes;
1096 
1097 	/* how many indexes will the btree have ? */
1098 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1099 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1100 
1101 	/* leaf layer has already been set up */
1102 	t->counts[t->depth - 1] = leaf_nodes;
1103 	t->index[t->depth - 1] = t->highs;
1104 
1105 	if (t->depth >= 2)
1106 		r = setup_indexes(t);
1107 
1108 	return r;
1109 }
1110 
1111 static bool integrity_profile_exists(struct gendisk *disk)
1112 {
1113 	return !!blk_get_integrity(disk);
1114 }
1115 
1116 /*
1117  * Get a disk whose integrity profile reflects the table's profile.
1118  * Returns NULL if integrity support was inconsistent or unavailable.
1119  */
1120 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1121 {
1122 	struct list_head *devices = dm_table_get_devices(t);
1123 	struct dm_dev_internal *dd = NULL;
1124 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1125 	unsigned i;
1126 
1127 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1128 		struct dm_target *ti = dm_table_get_target(t, i);
1129 		if (!dm_target_passes_integrity(ti->type))
1130 			goto no_integrity;
1131 	}
1132 
1133 	list_for_each_entry(dd, devices, list) {
1134 		template_disk = dd->dm_dev->bdev->bd_disk;
1135 		if (!integrity_profile_exists(template_disk))
1136 			goto no_integrity;
1137 		else if (prev_disk &&
1138 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1139 			goto no_integrity;
1140 		prev_disk = template_disk;
1141 	}
1142 
1143 	return template_disk;
1144 
1145 no_integrity:
1146 	if (prev_disk)
1147 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1148 		       dm_device_name(t->md),
1149 		       prev_disk->disk_name,
1150 		       template_disk->disk_name);
1151 	return NULL;
1152 }
1153 
1154 /*
1155  * Register the mapped device for blk_integrity support if the
1156  * underlying devices have an integrity profile.  But all devices may
1157  * not have matching profiles (checking all devices isn't reliable
1158  * during table load because this table may use other DM device(s) which
1159  * must be resumed before they will have an initialized integity
1160  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1161  * profile validation: First pass during table load, final pass during
1162  * resume.
1163  */
1164 static int dm_table_register_integrity(struct dm_table *t)
1165 {
1166 	struct mapped_device *md = t->md;
1167 	struct gendisk *template_disk = NULL;
1168 
1169 	/* If target handles integrity itself do not register it here. */
1170 	if (t->integrity_added)
1171 		return 0;
1172 
1173 	template_disk = dm_table_get_integrity_disk(t);
1174 	if (!template_disk)
1175 		return 0;
1176 
1177 	if (!integrity_profile_exists(dm_disk(md))) {
1178 		t->integrity_supported = true;
1179 		/*
1180 		 * Register integrity profile during table load; we can do
1181 		 * this because the final profile must match during resume.
1182 		 */
1183 		blk_integrity_register(dm_disk(md),
1184 				       blk_get_integrity(template_disk));
1185 		return 0;
1186 	}
1187 
1188 	/*
1189 	 * If DM device already has an initialized integrity
1190 	 * profile the new profile should not conflict.
1191 	 */
1192 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1193 		DMWARN("%s: conflict with existing integrity profile: "
1194 		       "%s profile mismatch",
1195 		       dm_device_name(t->md),
1196 		       template_disk->disk_name);
1197 		return 1;
1198 	}
1199 
1200 	/* Preserve existing integrity profile */
1201 	t->integrity_supported = true;
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Prepares the table for use by building the indices,
1207  * setting the type, and allocating mempools.
1208  */
1209 int dm_table_complete(struct dm_table *t)
1210 {
1211 	int r;
1212 
1213 	r = dm_table_determine_type(t);
1214 	if (r) {
1215 		DMERR("unable to determine table type");
1216 		return r;
1217 	}
1218 
1219 	r = dm_table_build_index(t);
1220 	if (r) {
1221 		DMERR("unable to build btrees");
1222 		return r;
1223 	}
1224 
1225 	r = dm_table_register_integrity(t);
1226 	if (r) {
1227 		DMERR("could not register integrity profile.");
1228 		return r;
1229 	}
1230 
1231 	r = dm_table_alloc_md_mempools(t, t->md);
1232 	if (r)
1233 		DMERR("unable to allocate mempools");
1234 
1235 	return r;
1236 }
1237 
1238 static DEFINE_MUTEX(_event_lock);
1239 void dm_table_event_callback(struct dm_table *t,
1240 			     void (*fn)(void *), void *context)
1241 {
1242 	mutex_lock(&_event_lock);
1243 	t->event_fn = fn;
1244 	t->event_context = context;
1245 	mutex_unlock(&_event_lock);
1246 }
1247 
1248 void dm_table_event(struct dm_table *t)
1249 {
1250 	/*
1251 	 * You can no longer call dm_table_event() from interrupt
1252 	 * context, use a bottom half instead.
1253 	 */
1254 	BUG_ON(in_interrupt());
1255 
1256 	mutex_lock(&_event_lock);
1257 	if (t->event_fn)
1258 		t->event_fn(t->event_context);
1259 	mutex_unlock(&_event_lock);
1260 }
1261 EXPORT_SYMBOL(dm_table_event);
1262 
1263 inline sector_t dm_table_get_size(struct dm_table *t)
1264 {
1265 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1266 }
1267 EXPORT_SYMBOL(dm_table_get_size);
1268 
1269 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1270 {
1271 	if (index >= t->num_targets)
1272 		return NULL;
1273 
1274 	return t->targets + index;
1275 }
1276 
1277 /*
1278  * Search the btree for the correct target.
1279  *
1280  * Caller should check returned pointer for NULL
1281  * to trap I/O beyond end of device.
1282  */
1283 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1284 {
1285 	unsigned int l, n = 0, k = 0;
1286 	sector_t *node;
1287 
1288 	if (unlikely(sector >= dm_table_get_size(t)))
1289 		return NULL;
1290 
1291 	for (l = 0; l < t->depth; l++) {
1292 		n = get_child(n, k);
1293 		node = get_node(t, l, n);
1294 
1295 		for (k = 0; k < KEYS_PER_NODE; k++)
1296 			if (node[k] >= sector)
1297 				break;
1298 	}
1299 
1300 	return &t->targets[(KEYS_PER_NODE * n) + k];
1301 }
1302 
1303 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1304 			sector_t start, sector_t len, void *data)
1305 {
1306 	unsigned *num_devices = data;
1307 
1308 	(*num_devices)++;
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  * Check whether a table has no data devices attached using each
1315  * target's iterate_devices method.
1316  * Returns false if the result is unknown because a target doesn't
1317  * support iterate_devices.
1318  */
1319 bool dm_table_has_no_data_devices(struct dm_table *table)
1320 {
1321 	struct dm_target *ti;
1322 	unsigned i, num_devices;
1323 
1324 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1325 		ti = dm_table_get_target(table, i);
1326 
1327 		if (!ti->type->iterate_devices)
1328 			return false;
1329 
1330 		num_devices = 0;
1331 		ti->type->iterate_devices(ti, count_device, &num_devices);
1332 		if (num_devices)
1333 			return false;
1334 	}
1335 
1336 	return true;
1337 }
1338 
1339 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1340 				 sector_t start, sector_t len, void *data)
1341 {
1342 	struct request_queue *q = bdev_get_queue(dev->bdev);
1343 	enum blk_zoned_model *zoned_model = data;
1344 
1345 	return q && blk_queue_zoned_model(q) == *zoned_model;
1346 }
1347 
1348 static bool dm_table_supports_zoned_model(struct dm_table *t,
1349 					  enum blk_zoned_model zoned_model)
1350 {
1351 	struct dm_target *ti;
1352 	unsigned i;
1353 
1354 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1355 		ti = dm_table_get_target(t, i);
1356 
1357 		if (zoned_model == BLK_ZONED_HM &&
1358 		    !dm_target_supports_zoned_hm(ti->type))
1359 			return false;
1360 
1361 		if (!ti->type->iterate_devices ||
1362 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1363 			return false;
1364 	}
1365 
1366 	return true;
1367 }
1368 
1369 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1370 				       sector_t start, sector_t len, void *data)
1371 {
1372 	struct request_queue *q = bdev_get_queue(dev->bdev);
1373 	unsigned int *zone_sectors = data;
1374 
1375 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1376 }
1377 
1378 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1379 					  unsigned int zone_sectors)
1380 {
1381 	struct dm_target *ti;
1382 	unsigned i;
1383 
1384 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1385 		ti = dm_table_get_target(t, i);
1386 
1387 		if (!ti->type->iterate_devices ||
1388 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1389 			return false;
1390 	}
1391 
1392 	return true;
1393 }
1394 
1395 static int validate_hardware_zoned_model(struct dm_table *table,
1396 					 enum blk_zoned_model zoned_model,
1397 					 unsigned int zone_sectors)
1398 {
1399 	if (zoned_model == BLK_ZONED_NONE)
1400 		return 0;
1401 
1402 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1403 		DMERR("%s: zoned model is not consistent across all devices",
1404 		      dm_device_name(table->md));
1405 		return -EINVAL;
1406 	}
1407 
1408 	/* Check zone size validity and compatibility */
1409 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1410 		return -EINVAL;
1411 
1412 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1413 		DMERR("%s: zone sectors is not consistent across all devices",
1414 		      dm_device_name(table->md));
1415 		return -EINVAL;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 /*
1422  * Establish the new table's queue_limits and validate them.
1423  */
1424 int dm_calculate_queue_limits(struct dm_table *table,
1425 			      struct queue_limits *limits)
1426 {
1427 	struct dm_target *ti;
1428 	struct queue_limits ti_limits;
1429 	unsigned i;
1430 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1431 	unsigned int zone_sectors = 0;
1432 
1433 	blk_set_stacking_limits(limits);
1434 
1435 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1436 		blk_set_stacking_limits(&ti_limits);
1437 
1438 		ti = dm_table_get_target(table, i);
1439 
1440 		if (!ti->type->iterate_devices)
1441 			goto combine_limits;
1442 
1443 		/*
1444 		 * Combine queue limits of all the devices this target uses.
1445 		 */
1446 		ti->type->iterate_devices(ti, dm_set_device_limits,
1447 					  &ti_limits);
1448 
1449 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1450 			/*
1451 			 * After stacking all limits, validate all devices
1452 			 * in table support this zoned model and zone sectors.
1453 			 */
1454 			zoned_model = ti_limits.zoned;
1455 			zone_sectors = ti_limits.chunk_sectors;
1456 		}
1457 
1458 		/* Stack chunk_sectors if target-specific splitting is required */
1459 		if (ti->max_io_len)
1460 			ti_limits.chunk_sectors = lcm_not_zero(ti->max_io_len,
1461 							       ti_limits.chunk_sectors);
1462 		/* Set I/O hints portion of queue limits */
1463 		if (ti->type->io_hints)
1464 			ti->type->io_hints(ti, &ti_limits);
1465 
1466 		/*
1467 		 * Check each device area is consistent with the target's
1468 		 * overall queue limits.
1469 		 */
1470 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1471 					      &ti_limits))
1472 			return -EINVAL;
1473 
1474 combine_limits:
1475 		/*
1476 		 * Merge this target's queue limits into the overall limits
1477 		 * for the table.
1478 		 */
1479 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1480 			DMWARN("%s: adding target device "
1481 			       "(start sect %llu len %llu) "
1482 			       "caused an alignment inconsistency",
1483 			       dm_device_name(table->md),
1484 			       (unsigned long long) ti->begin,
1485 			       (unsigned long long) ti->len);
1486 	}
1487 
1488 	/*
1489 	 * Verify that the zoned model and zone sectors, as determined before
1490 	 * any .io_hints override, are the same across all devices in the table.
1491 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1492 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1493 	 * BUT...
1494 	 */
1495 	if (limits->zoned != BLK_ZONED_NONE) {
1496 		/*
1497 		 * ...IF the above limits stacking determined a zoned model
1498 		 * validate that all of the table's devices conform to it.
1499 		 */
1500 		zoned_model = limits->zoned;
1501 		zone_sectors = limits->chunk_sectors;
1502 	}
1503 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1504 		return -EINVAL;
1505 
1506 	return validate_hardware_logical_block_alignment(table, limits);
1507 }
1508 
1509 /*
1510  * Verify that all devices have an integrity profile that matches the
1511  * DM device's registered integrity profile.  If the profiles don't
1512  * match then unregister the DM device's integrity profile.
1513  */
1514 static void dm_table_verify_integrity(struct dm_table *t)
1515 {
1516 	struct gendisk *template_disk = NULL;
1517 
1518 	if (t->integrity_added)
1519 		return;
1520 
1521 	if (t->integrity_supported) {
1522 		/*
1523 		 * Verify that the original integrity profile
1524 		 * matches all the devices in this table.
1525 		 */
1526 		template_disk = dm_table_get_integrity_disk(t);
1527 		if (template_disk &&
1528 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1529 			return;
1530 	}
1531 
1532 	if (integrity_profile_exists(dm_disk(t->md))) {
1533 		DMWARN("%s: unable to establish an integrity profile",
1534 		       dm_device_name(t->md));
1535 		blk_integrity_unregister(dm_disk(t->md));
1536 	}
1537 }
1538 
1539 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1540 				sector_t start, sector_t len, void *data)
1541 {
1542 	unsigned long flush = (unsigned long) data;
1543 	struct request_queue *q = bdev_get_queue(dev->bdev);
1544 
1545 	return q && (q->queue_flags & flush);
1546 }
1547 
1548 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1549 {
1550 	struct dm_target *ti;
1551 	unsigned i;
1552 
1553 	/*
1554 	 * Require at least one underlying device to support flushes.
1555 	 * t->devices includes internal dm devices such as mirror logs
1556 	 * so we need to use iterate_devices here, which targets
1557 	 * supporting flushes must provide.
1558 	 */
1559 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1560 		ti = dm_table_get_target(t, i);
1561 
1562 		if (!ti->num_flush_bios)
1563 			continue;
1564 
1565 		if (ti->flush_supported)
1566 			return true;
1567 
1568 		if (ti->type->iterate_devices &&
1569 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1570 			return true;
1571 	}
1572 
1573 	return false;
1574 }
1575 
1576 static int device_dax_write_cache_enabled(struct dm_target *ti,
1577 					  struct dm_dev *dev, sector_t start,
1578 					  sector_t len, void *data)
1579 {
1580 	struct dax_device *dax_dev = dev->dax_dev;
1581 
1582 	if (!dax_dev)
1583 		return false;
1584 
1585 	if (dax_write_cache_enabled(dax_dev))
1586 		return true;
1587 	return false;
1588 }
1589 
1590 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1591 {
1592 	struct dm_target *ti;
1593 	unsigned i;
1594 
1595 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1596 		ti = dm_table_get_target(t, i);
1597 
1598 		if (ti->type->iterate_devices &&
1599 		    ti->type->iterate_devices(ti,
1600 				device_dax_write_cache_enabled, NULL))
1601 			return true;
1602 	}
1603 
1604 	return false;
1605 }
1606 
1607 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1608 			    sector_t start, sector_t len, void *data)
1609 {
1610 	struct request_queue *q = bdev_get_queue(dev->bdev);
1611 
1612 	return q && blk_queue_nonrot(q);
1613 }
1614 
1615 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1616 			     sector_t start, sector_t len, void *data)
1617 {
1618 	struct request_queue *q = bdev_get_queue(dev->bdev);
1619 
1620 	return q && !blk_queue_add_random(q);
1621 }
1622 
1623 static bool dm_table_all_devices_attribute(struct dm_table *t,
1624 					   iterate_devices_callout_fn func)
1625 {
1626 	struct dm_target *ti;
1627 	unsigned i;
1628 
1629 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1630 		ti = dm_table_get_target(t, i);
1631 
1632 		if (!ti->type->iterate_devices ||
1633 		    !ti->type->iterate_devices(ti, func, NULL))
1634 			return false;
1635 	}
1636 
1637 	return true;
1638 }
1639 
1640 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1641 					 sector_t start, sector_t len, void *data)
1642 {
1643 	struct request_queue *q = bdev_get_queue(dev->bdev);
1644 
1645 	return q && !q->limits.max_write_same_sectors;
1646 }
1647 
1648 static bool dm_table_supports_write_same(struct dm_table *t)
1649 {
1650 	struct dm_target *ti;
1651 	unsigned i;
1652 
1653 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1654 		ti = dm_table_get_target(t, i);
1655 
1656 		if (!ti->num_write_same_bios)
1657 			return false;
1658 
1659 		if (!ti->type->iterate_devices ||
1660 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1661 			return false;
1662 	}
1663 
1664 	return true;
1665 }
1666 
1667 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1668 					   sector_t start, sector_t len, void *data)
1669 {
1670 	struct request_queue *q = bdev_get_queue(dev->bdev);
1671 
1672 	return q && !q->limits.max_write_zeroes_sectors;
1673 }
1674 
1675 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1676 {
1677 	struct dm_target *ti;
1678 	unsigned i = 0;
1679 
1680 	while (i < dm_table_get_num_targets(t)) {
1681 		ti = dm_table_get_target(t, i++);
1682 
1683 		if (!ti->num_write_zeroes_bios)
1684 			return false;
1685 
1686 		if (!ti->type->iterate_devices ||
1687 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1688 			return false;
1689 	}
1690 
1691 	return true;
1692 }
1693 
1694 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1695 				     sector_t start, sector_t len, void *data)
1696 {
1697 	struct request_queue *q = bdev_get_queue(dev->bdev);
1698 
1699 	return q && !blk_queue_nowait(q);
1700 }
1701 
1702 static bool dm_table_supports_nowait(struct dm_table *t)
1703 {
1704 	struct dm_target *ti;
1705 	unsigned i = 0;
1706 
1707 	while (i < dm_table_get_num_targets(t)) {
1708 		ti = dm_table_get_target(t, i++);
1709 
1710 		if (!dm_target_supports_nowait(ti->type))
1711 			return false;
1712 
1713 		if (!ti->type->iterate_devices ||
1714 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1715 			return false;
1716 	}
1717 
1718 	return true;
1719 }
1720 
1721 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1722 				      sector_t start, sector_t len, void *data)
1723 {
1724 	struct request_queue *q = bdev_get_queue(dev->bdev);
1725 
1726 	return q && !blk_queue_discard(q);
1727 }
1728 
1729 static bool dm_table_supports_discards(struct dm_table *t)
1730 {
1731 	struct dm_target *ti;
1732 	unsigned i;
1733 
1734 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1735 		ti = dm_table_get_target(t, i);
1736 
1737 		if (!ti->num_discard_bios)
1738 			return false;
1739 
1740 		/*
1741 		 * Either the target provides discard support (as implied by setting
1742 		 * 'discards_supported') or it relies on _all_ data devices having
1743 		 * discard support.
1744 		 */
1745 		if (!ti->discards_supported &&
1746 		    (!ti->type->iterate_devices ||
1747 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1748 			return false;
1749 	}
1750 
1751 	return true;
1752 }
1753 
1754 static int device_not_secure_erase_capable(struct dm_target *ti,
1755 					   struct dm_dev *dev, sector_t start,
1756 					   sector_t len, void *data)
1757 {
1758 	struct request_queue *q = bdev_get_queue(dev->bdev);
1759 
1760 	return q && !blk_queue_secure_erase(q);
1761 }
1762 
1763 static bool dm_table_supports_secure_erase(struct dm_table *t)
1764 {
1765 	struct dm_target *ti;
1766 	unsigned int i;
1767 
1768 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1769 		ti = dm_table_get_target(t, i);
1770 
1771 		if (!ti->num_secure_erase_bios)
1772 			return false;
1773 
1774 		if (!ti->type->iterate_devices ||
1775 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1776 			return false;
1777 	}
1778 
1779 	return true;
1780 }
1781 
1782 static int device_requires_stable_pages(struct dm_target *ti,
1783 					struct dm_dev *dev, sector_t start,
1784 					sector_t len, void *data)
1785 {
1786 	struct request_queue *q = bdev_get_queue(dev->bdev);
1787 
1788 	return q && blk_queue_stable_writes(q);
1789 }
1790 
1791 /*
1792  * If any underlying device requires stable pages, a table must require
1793  * them as well.  Only targets that support iterate_devices are considered:
1794  * don't want error, zero, etc to require stable pages.
1795  */
1796 static bool dm_table_requires_stable_pages(struct dm_table *t)
1797 {
1798 	struct dm_target *ti;
1799 	unsigned i;
1800 
1801 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1802 		ti = dm_table_get_target(t, i);
1803 
1804 		if (ti->type->iterate_devices &&
1805 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1806 			return true;
1807 	}
1808 
1809 	return false;
1810 }
1811 
1812 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1813 			       struct queue_limits *limits)
1814 {
1815 	bool wc = false, fua = false;
1816 	int page_size = PAGE_SIZE;
1817 
1818 	/*
1819 	 * Copy table's limits to the DM device's request_queue
1820 	 */
1821 	q->limits = *limits;
1822 
1823 	if (dm_table_supports_nowait(t))
1824 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1825 	else
1826 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1827 
1828 	if (!dm_table_supports_discards(t)) {
1829 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1830 		/* Must also clear discard limits... */
1831 		q->limits.max_discard_sectors = 0;
1832 		q->limits.max_hw_discard_sectors = 0;
1833 		q->limits.discard_granularity = 0;
1834 		q->limits.discard_alignment = 0;
1835 		q->limits.discard_misaligned = 0;
1836 	} else
1837 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1838 
1839 	if (dm_table_supports_secure_erase(t))
1840 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1841 
1842 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1843 		wc = true;
1844 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1845 			fua = true;
1846 	}
1847 	blk_queue_write_cache(q, wc, fua);
1848 
1849 	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1850 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1851 		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1852 			set_dax_synchronous(t->md->dax_dev);
1853 	}
1854 	else
1855 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1856 
1857 	if (dm_table_supports_dax_write_cache(t))
1858 		dax_write_cache(t->md->dax_dev, true);
1859 
1860 	/* Ensure that all underlying devices are non-rotational. */
1861 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1862 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1863 	else
1864 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1865 
1866 	if (!dm_table_supports_write_same(t))
1867 		q->limits.max_write_same_sectors = 0;
1868 	if (!dm_table_supports_write_zeroes(t))
1869 		q->limits.max_write_zeroes_sectors = 0;
1870 
1871 	dm_table_verify_integrity(t);
1872 
1873 	/*
1874 	 * Some devices don't use blk_integrity but still want stable pages
1875 	 * because they do their own checksumming.
1876 	 */
1877 	if (dm_table_requires_stable_pages(t))
1878 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1879 	else
1880 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1881 
1882 	/*
1883 	 * Determine whether or not this queue's I/O timings contribute
1884 	 * to the entropy pool, Only request-based targets use this.
1885 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1886 	 * have it set.
1887 	 */
1888 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1889 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1890 
1891 	/*
1892 	 * For a zoned target, the number of zones should be updated for the
1893 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1894 	 * target, this is all that is needed.
1895 	 */
1896 #ifdef CONFIG_BLK_DEV_ZONED
1897 	if (blk_queue_is_zoned(q)) {
1898 		WARN_ON_ONCE(queue_is_mq(q));
1899 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1900 	}
1901 #endif
1902 
1903 	blk_queue_update_readahead(q);
1904 }
1905 
1906 unsigned int dm_table_get_num_targets(struct dm_table *t)
1907 {
1908 	return t->num_targets;
1909 }
1910 
1911 struct list_head *dm_table_get_devices(struct dm_table *t)
1912 {
1913 	return &t->devices;
1914 }
1915 
1916 fmode_t dm_table_get_mode(struct dm_table *t)
1917 {
1918 	return t->mode;
1919 }
1920 EXPORT_SYMBOL(dm_table_get_mode);
1921 
1922 enum suspend_mode {
1923 	PRESUSPEND,
1924 	PRESUSPEND_UNDO,
1925 	POSTSUSPEND,
1926 };
1927 
1928 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1929 {
1930 	int i = t->num_targets;
1931 	struct dm_target *ti = t->targets;
1932 
1933 	lockdep_assert_held(&t->md->suspend_lock);
1934 
1935 	while (i--) {
1936 		switch (mode) {
1937 		case PRESUSPEND:
1938 			if (ti->type->presuspend)
1939 				ti->type->presuspend(ti);
1940 			break;
1941 		case PRESUSPEND_UNDO:
1942 			if (ti->type->presuspend_undo)
1943 				ti->type->presuspend_undo(ti);
1944 			break;
1945 		case POSTSUSPEND:
1946 			if (ti->type->postsuspend)
1947 				ti->type->postsuspend(ti);
1948 			break;
1949 		}
1950 		ti++;
1951 	}
1952 }
1953 
1954 void dm_table_presuspend_targets(struct dm_table *t)
1955 {
1956 	if (!t)
1957 		return;
1958 
1959 	suspend_targets(t, PRESUSPEND);
1960 }
1961 
1962 void dm_table_presuspend_undo_targets(struct dm_table *t)
1963 {
1964 	if (!t)
1965 		return;
1966 
1967 	suspend_targets(t, PRESUSPEND_UNDO);
1968 }
1969 
1970 void dm_table_postsuspend_targets(struct dm_table *t)
1971 {
1972 	if (!t)
1973 		return;
1974 
1975 	suspend_targets(t, POSTSUSPEND);
1976 }
1977 
1978 int dm_table_resume_targets(struct dm_table *t)
1979 {
1980 	int i, r = 0;
1981 
1982 	lockdep_assert_held(&t->md->suspend_lock);
1983 
1984 	for (i = 0; i < t->num_targets; i++) {
1985 		struct dm_target *ti = t->targets + i;
1986 
1987 		if (!ti->type->preresume)
1988 			continue;
1989 
1990 		r = ti->type->preresume(ti);
1991 		if (r) {
1992 			DMERR("%s: %s: preresume failed, error = %d",
1993 			      dm_device_name(t->md), ti->type->name, r);
1994 			return r;
1995 		}
1996 	}
1997 
1998 	for (i = 0; i < t->num_targets; i++) {
1999 		struct dm_target *ti = t->targets + i;
2000 
2001 		if (ti->type->resume)
2002 			ti->type->resume(ti);
2003 	}
2004 
2005 	return 0;
2006 }
2007 
2008 struct mapped_device *dm_table_get_md(struct dm_table *t)
2009 {
2010 	return t->md;
2011 }
2012 EXPORT_SYMBOL(dm_table_get_md);
2013 
2014 const char *dm_table_device_name(struct dm_table *t)
2015 {
2016 	return dm_device_name(t->md);
2017 }
2018 EXPORT_SYMBOL_GPL(dm_table_device_name);
2019 
2020 void dm_table_run_md_queue_async(struct dm_table *t)
2021 {
2022 	if (!dm_table_request_based(t))
2023 		return;
2024 
2025 	if (t->md->queue)
2026 		blk_mq_run_hw_queues(t->md->queue, true);
2027 }
2028 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2029 
2030