1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 unsigned integrity_added:1; 51 52 /* 53 * Indicates the rw permissions for the new logical 54 * device. This should be a combination of FMODE_READ 55 * and FMODE_WRITE. 56 */ 57 fmode_t mode; 58 59 /* a list of devices used by this table */ 60 struct list_head devices; 61 62 /* events get handed up using this callback */ 63 void (*event_fn)(void *); 64 void *event_context; 65 66 struct dm_md_mempools *mempools; 67 }; 68 69 /* 70 * Similar to ceiling(log_size(n)) 71 */ 72 static unsigned int int_log(unsigned int n, unsigned int base) 73 { 74 int result = 0; 75 76 while (n > 1) { 77 n = dm_div_up(n, base); 78 result++; 79 } 80 81 return result; 82 } 83 84 /* 85 * Calculate the index of the child node of the n'th node k'th key. 86 */ 87 static inline unsigned int get_child(unsigned int n, unsigned int k) 88 { 89 return (n * CHILDREN_PER_NODE) + k; 90 } 91 92 /* 93 * Return the n'th node of level l from table t. 94 */ 95 static inline sector_t *get_node(struct dm_table *t, 96 unsigned int l, unsigned int n) 97 { 98 return t->index[l] + (n * KEYS_PER_NODE); 99 } 100 101 /* 102 * Return the highest key that you could lookup from the n'th 103 * node on level l of the btree. 104 */ 105 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 106 { 107 for (; l < t->depth - 1; l++) 108 n = get_child(n, CHILDREN_PER_NODE - 1); 109 110 if (n >= t->counts[l]) 111 return (sector_t) - 1; 112 113 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 114 } 115 116 /* 117 * Fills in a level of the btree based on the highs of the level 118 * below it. 119 */ 120 static int setup_btree_index(unsigned int l, struct dm_table *t) 121 { 122 unsigned int n, k; 123 sector_t *node; 124 125 for (n = 0U; n < t->counts[l]; n++) { 126 node = get_node(t, l, n); 127 128 for (k = 0U; k < KEYS_PER_NODE; k++) 129 node[k] = high(t, l + 1, get_child(n, k)); 130 } 131 132 return 0; 133 } 134 135 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 136 { 137 unsigned long size; 138 void *addr; 139 140 /* 141 * Check that we're not going to overflow. 142 */ 143 if (nmemb > (ULONG_MAX / elem_size)) 144 return NULL; 145 146 size = nmemb * elem_size; 147 addr = vzalloc(size); 148 149 return addr; 150 } 151 EXPORT_SYMBOL(dm_vcalloc); 152 153 /* 154 * highs, and targets are managed as dynamic arrays during a 155 * table load. 156 */ 157 static int alloc_targets(struct dm_table *t, unsigned int num) 158 { 159 sector_t *n_highs; 160 struct dm_target *n_targets; 161 162 /* 163 * Allocate both the target array and offset array at once. 164 */ 165 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 166 sizeof(sector_t)); 167 if (!n_highs) 168 return -ENOMEM; 169 170 n_targets = (struct dm_target *) (n_highs + num); 171 172 memset(n_highs, -1, sizeof(*n_highs) * num); 173 vfree(t->highs); 174 175 t->num_allocated = num; 176 t->highs = n_highs; 177 t->targets = n_targets; 178 179 return 0; 180 } 181 182 int dm_table_create(struct dm_table **result, fmode_t mode, 183 unsigned num_targets, struct mapped_device *md) 184 { 185 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 186 187 if (!t) 188 return -ENOMEM; 189 190 INIT_LIST_HEAD(&t->devices); 191 192 if (!num_targets) 193 num_targets = KEYS_PER_NODE; 194 195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 196 197 if (!num_targets) { 198 kfree(t); 199 return -ENOMEM; 200 } 201 202 if (alloc_targets(t, num_targets)) { 203 kfree(t); 204 return -ENOMEM; 205 } 206 207 t->type = DM_TYPE_NONE; 208 t->mode = mode; 209 t->md = md; 210 *result = t; 211 return 0; 212 } 213 214 static void free_devices(struct list_head *devices, struct mapped_device *md) 215 { 216 struct list_head *tmp, *next; 217 218 list_for_each_safe(tmp, next, devices) { 219 struct dm_dev_internal *dd = 220 list_entry(tmp, struct dm_dev_internal, list); 221 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 222 dm_device_name(md), dd->dm_dev->name); 223 dm_put_table_device(md, dd->dm_dev); 224 kfree(dd); 225 } 226 } 227 228 void dm_table_destroy(struct dm_table *t) 229 { 230 unsigned int i; 231 232 if (!t) 233 return; 234 235 /* free the indexes */ 236 if (t->depth >= 2) 237 vfree(t->index[t->depth - 2]); 238 239 /* free the targets */ 240 for (i = 0; i < t->num_targets; i++) { 241 struct dm_target *tgt = t->targets + i; 242 243 if (tgt->type->dtr) 244 tgt->type->dtr(tgt); 245 246 dm_put_target_type(tgt->type); 247 } 248 249 vfree(t->highs); 250 251 /* free the device list */ 252 free_devices(&t->devices, t->md); 253 254 dm_free_md_mempools(t->mempools); 255 256 kfree(t); 257 } 258 259 /* 260 * See if we've already got a device in the list. 261 */ 262 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 263 { 264 struct dm_dev_internal *dd; 265 266 list_for_each_entry (dd, l, list) 267 if (dd->dm_dev->bdev->bd_dev == dev) 268 return dd; 269 270 return NULL; 271 } 272 273 /* 274 * If possible, this checks an area of a destination device is invalid. 275 */ 276 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 277 sector_t start, sector_t len, void *data) 278 { 279 struct queue_limits *limits = data; 280 struct block_device *bdev = dev->bdev; 281 sector_t dev_size = 282 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 283 unsigned short logical_block_size_sectors = 284 limits->logical_block_size >> SECTOR_SHIFT; 285 char b[BDEVNAME_SIZE]; 286 287 if (!dev_size) 288 return 0; 289 290 if ((start >= dev_size) || (start + len > dev_size)) { 291 DMWARN("%s: %s too small for target: " 292 "start=%llu, len=%llu, dev_size=%llu", 293 dm_device_name(ti->table->md), bdevname(bdev, b), 294 (unsigned long long)start, 295 (unsigned long long)len, 296 (unsigned long long)dev_size); 297 return 1; 298 } 299 300 /* 301 * If the target is mapped to zoned block device(s), check 302 * that the zones are not partially mapped. 303 */ 304 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 305 unsigned int zone_sectors = bdev_zone_sectors(bdev); 306 307 if (start & (zone_sectors - 1)) { 308 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 309 dm_device_name(ti->table->md), 310 (unsigned long long)start, 311 zone_sectors, bdevname(bdev, b)); 312 return 1; 313 } 314 315 /* 316 * Note: The last zone of a zoned block device may be smaller 317 * than other zones. So for a target mapping the end of a 318 * zoned block device with such a zone, len would not be zone 319 * aligned. We do not allow such last smaller zone to be part 320 * of the mapping here to ensure that mappings with multiple 321 * devices do not end up with a smaller zone in the middle of 322 * the sector range. 323 */ 324 if (len & (zone_sectors - 1)) { 325 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 326 dm_device_name(ti->table->md), 327 (unsigned long long)len, 328 zone_sectors, bdevname(bdev, b)); 329 return 1; 330 } 331 } 332 333 if (logical_block_size_sectors <= 1) 334 return 0; 335 336 if (start & (logical_block_size_sectors - 1)) { 337 DMWARN("%s: start=%llu not aligned to h/w " 338 "logical block size %u of %s", 339 dm_device_name(ti->table->md), 340 (unsigned long long)start, 341 limits->logical_block_size, bdevname(bdev, b)); 342 return 1; 343 } 344 345 if (len & (logical_block_size_sectors - 1)) { 346 DMWARN("%s: len=%llu not aligned to h/w " 347 "logical block size %u of %s", 348 dm_device_name(ti->table->md), 349 (unsigned long long)len, 350 limits->logical_block_size, bdevname(bdev, b)); 351 return 1; 352 } 353 354 return 0; 355 } 356 357 /* 358 * This upgrades the mode on an already open dm_dev, being 359 * careful to leave things as they were if we fail to reopen the 360 * device and not to touch the existing bdev field in case 361 * it is accessed concurrently. 362 */ 363 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 364 struct mapped_device *md) 365 { 366 int r; 367 struct dm_dev *old_dev, *new_dev; 368 369 old_dev = dd->dm_dev; 370 371 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 372 dd->dm_dev->mode | new_mode, &new_dev); 373 if (r) 374 return r; 375 376 dd->dm_dev = new_dev; 377 dm_put_table_device(md, old_dev); 378 379 return 0; 380 } 381 382 /* 383 * Convert the path to a device 384 */ 385 dev_t dm_get_dev_t(const char *path) 386 { 387 dev_t dev; 388 struct block_device *bdev; 389 390 bdev = lookup_bdev(path); 391 if (IS_ERR(bdev)) 392 dev = name_to_dev_t(path); 393 else { 394 dev = bdev->bd_dev; 395 bdput(bdev); 396 } 397 398 return dev; 399 } 400 EXPORT_SYMBOL_GPL(dm_get_dev_t); 401 402 /* 403 * Add a device to the list, or just increment the usage count if 404 * it's already present. 405 */ 406 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 407 struct dm_dev **result) 408 { 409 int r; 410 dev_t dev; 411 struct dm_dev_internal *dd; 412 struct dm_table *t = ti->table; 413 414 BUG_ON(!t); 415 416 dev = dm_get_dev_t(path); 417 if (!dev) 418 return -ENODEV; 419 420 dd = find_device(&t->devices, dev); 421 if (!dd) { 422 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 423 if (!dd) 424 return -ENOMEM; 425 426 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 427 kfree(dd); 428 return r; 429 } 430 431 refcount_set(&dd->count, 1); 432 list_add(&dd->list, &t->devices); 433 goto out; 434 435 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 436 r = upgrade_mode(dd, mode, t->md); 437 if (r) 438 return r; 439 } 440 refcount_inc(&dd->count); 441 out: 442 *result = dd->dm_dev; 443 return 0; 444 } 445 EXPORT_SYMBOL(dm_get_device); 446 447 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 448 sector_t start, sector_t len, void *data) 449 { 450 struct queue_limits *limits = data; 451 struct block_device *bdev = dev->bdev; 452 struct request_queue *q = bdev_get_queue(bdev); 453 char b[BDEVNAME_SIZE]; 454 455 if (unlikely(!q)) { 456 DMWARN("%s: Cannot set limits for nonexistent device %s", 457 dm_device_name(ti->table->md), bdevname(bdev, b)); 458 return 0; 459 } 460 461 if (blk_stack_limits(limits, &q->limits, 462 get_start_sect(bdev) + start) < 0) 463 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 464 "physical_block_size=%u, logical_block_size=%u, " 465 "alignment_offset=%u, start=%llu", 466 dm_device_name(ti->table->md), bdevname(bdev, b), 467 q->limits.physical_block_size, 468 q->limits.logical_block_size, 469 q->limits.alignment_offset, 470 (unsigned long long) start << SECTOR_SHIFT); 471 return 0; 472 } 473 474 /* 475 * Decrement a device's use count and remove it if necessary. 476 */ 477 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 478 { 479 int found = 0; 480 struct list_head *devices = &ti->table->devices; 481 struct dm_dev_internal *dd; 482 483 list_for_each_entry(dd, devices, list) { 484 if (dd->dm_dev == d) { 485 found = 1; 486 break; 487 } 488 } 489 if (!found) { 490 DMWARN("%s: device %s not in table devices list", 491 dm_device_name(ti->table->md), d->name); 492 return; 493 } 494 if (refcount_dec_and_test(&dd->count)) { 495 dm_put_table_device(ti->table->md, d); 496 list_del(&dd->list); 497 kfree(dd); 498 } 499 } 500 EXPORT_SYMBOL(dm_put_device); 501 502 /* 503 * Checks to see if the target joins onto the end of the table. 504 */ 505 static int adjoin(struct dm_table *table, struct dm_target *ti) 506 { 507 struct dm_target *prev; 508 509 if (!table->num_targets) 510 return !ti->begin; 511 512 prev = &table->targets[table->num_targets - 1]; 513 return (ti->begin == (prev->begin + prev->len)); 514 } 515 516 /* 517 * Used to dynamically allocate the arg array. 518 * 519 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 520 * process messages even if some device is suspended. These messages have a 521 * small fixed number of arguments. 522 * 523 * On the other hand, dm-switch needs to process bulk data using messages and 524 * excessive use of GFP_NOIO could cause trouble. 525 */ 526 static char **realloc_argv(unsigned *size, char **old_argv) 527 { 528 char **argv; 529 unsigned new_size; 530 gfp_t gfp; 531 532 if (*size) { 533 new_size = *size * 2; 534 gfp = GFP_KERNEL; 535 } else { 536 new_size = 8; 537 gfp = GFP_NOIO; 538 } 539 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 540 if (argv && old_argv) { 541 memcpy(argv, old_argv, *size * sizeof(*argv)); 542 *size = new_size; 543 } 544 545 kfree(old_argv); 546 return argv; 547 } 548 549 /* 550 * Destructively splits up the argument list to pass to ctr. 551 */ 552 int dm_split_args(int *argc, char ***argvp, char *input) 553 { 554 char *start, *end = input, *out, **argv = NULL; 555 unsigned array_size = 0; 556 557 *argc = 0; 558 559 if (!input) { 560 *argvp = NULL; 561 return 0; 562 } 563 564 argv = realloc_argv(&array_size, argv); 565 if (!argv) 566 return -ENOMEM; 567 568 while (1) { 569 /* Skip whitespace */ 570 start = skip_spaces(end); 571 572 if (!*start) 573 break; /* success, we hit the end */ 574 575 /* 'out' is used to remove any back-quotes */ 576 end = out = start; 577 while (*end) { 578 /* Everything apart from '\0' can be quoted */ 579 if (*end == '\\' && *(end + 1)) { 580 *out++ = *(end + 1); 581 end += 2; 582 continue; 583 } 584 585 if (isspace(*end)) 586 break; /* end of token */ 587 588 *out++ = *end++; 589 } 590 591 /* have we already filled the array ? */ 592 if ((*argc + 1) > array_size) { 593 argv = realloc_argv(&array_size, argv); 594 if (!argv) 595 return -ENOMEM; 596 } 597 598 /* we know this is whitespace */ 599 if (*end) 600 end++; 601 602 /* terminate the string and put it in the array */ 603 *out = '\0'; 604 argv[*argc] = start; 605 (*argc)++; 606 } 607 608 *argvp = argv; 609 return 0; 610 } 611 612 /* 613 * Impose necessary and sufficient conditions on a devices's table such 614 * that any incoming bio which respects its logical_block_size can be 615 * processed successfully. If it falls across the boundary between 616 * two or more targets, the size of each piece it gets split into must 617 * be compatible with the logical_block_size of the target processing it. 618 */ 619 static int validate_hardware_logical_block_alignment(struct dm_table *table, 620 struct queue_limits *limits) 621 { 622 /* 623 * This function uses arithmetic modulo the logical_block_size 624 * (in units of 512-byte sectors). 625 */ 626 unsigned short device_logical_block_size_sects = 627 limits->logical_block_size >> SECTOR_SHIFT; 628 629 /* 630 * Offset of the start of the next table entry, mod logical_block_size. 631 */ 632 unsigned short next_target_start = 0; 633 634 /* 635 * Given an aligned bio that extends beyond the end of a 636 * target, how many sectors must the next target handle? 637 */ 638 unsigned short remaining = 0; 639 640 struct dm_target *ti; 641 struct queue_limits ti_limits; 642 unsigned i; 643 644 /* 645 * Check each entry in the table in turn. 646 */ 647 for (i = 0; i < dm_table_get_num_targets(table); i++) { 648 ti = dm_table_get_target(table, i); 649 650 blk_set_stacking_limits(&ti_limits); 651 652 /* combine all target devices' limits */ 653 if (ti->type->iterate_devices) 654 ti->type->iterate_devices(ti, dm_set_device_limits, 655 &ti_limits); 656 657 /* 658 * If the remaining sectors fall entirely within this 659 * table entry are they compatible with its logical_block_size? 660 */ 661 if (remaining < ti->len && 662 remaining & ((ti_limits.logical_block_size >> 663 SECTOR_SHIFT) - 1)) 664 break; /* Error */ 665 666 next_target_start = 667 (unsigned short) ((next_target_start + ti->len) & 668 (device_logical_block_size_sects - 1)); 669 remaining = next_target_start ? 670 device_logical_block_size_sects - next_target_start : 0; 671 } 672 673 if (remaining) { 674 DMWARN("%s: table line %u (start sect %llu len %llu) " 675 "not aligned to h/w logical block size %u", 676 dm_device_name(table->md), i, 677 (unsigned long long) ti->begin, 678 (unsigned long long) ti->len, 679 limits->logical_block_size); 680 return -EINVAL; 681 } 682 683 return 0; 684 } 685 686 int dm_table_add_target(struct dm_table *t, const char *type, 687 sector_t start, sector_t len, char *params) 688 { 689 int r = -EINVAL, argc; 690 char **argv; 691 struct dm_target *tgt; 692 693 if (t->singleton) { 694 DMERR("%s: target type %s must appear alone in table", 695 dm_device_name(t->md), t->targets->type->name); 696 return -EINVAL; 697 } 698 699 BUG_ON(t->num_targets >= t->num_allocated); 700 701 tgt = t->targets + t->num_targets; 702 memset(tgt, 0, sizeof(*tgt)); 703 704 if (!len) { 705 DMERR("%s: zero-length target", dm_device_name(t->md)); 706 return -EINVAL; 707 } 708 709 tgt->type = dm_get_target_type(type); 710 if (!tgt->type) { 711 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 712 return -EINVAL; 713 } 714 715 if (dm_target_needs_singleton(tgt->type)) { 716 if (t->num_targets) { 717 tgt->error = "singleton target type must appear alone in table"; 718 goto bad; 719 } 720 t->singleton = true; 721 } 722 723 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 724 tgt->error = "target type may not be included in a read-only table"; 725 goto bad; 726 } 727 728 if (t->immutable_target_type) { 729 if (t->immutable_target_type != tgt->type) { 730 tgt->error = "immutable target type cannot be mixed with other target types"; 731 goto bad; 732 } 733 } else if (dm_target_is_immutable(tgt->type)) { 734 if (t->num_targets) { 735 tgt->error = "immutable target type cannot be mixed with other target types"; 736 goto bad; 737 } 738 t->immutable_target_type = tgt->type; 739 } 740 741 if (dm_target_has_integrity(tgt->type)) 742 t->integrity_added = 1; 743 744 tgt->table = t; 745 tgt->begin = start; 746 tgt->len = len; 747 tgt->error = "Unknown error"; 748 749 /* 750 * Does this target adjoin the previous one ? 751 */ 752 if (!adjoin(t, tgt)) { 753 tgt->error = "Gap in table"; 754 goto bad; 755 } 756 757 r = dm_split_args(&argc, &argv, params); 758 if (r) { 759 tgt->error = "couldn't split parameters (insufficient memory)"; 760 goto bad; 761 } 762 763 r = tgt->type->ctr(tgt, argc, argv); 764 kfree(argv); 765 if (r) 766 goto bad; 767 768 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 769 770 if (!tgt->num_discard_bios && tgt->discards_supported) 771 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 772 dm_device_name(t->md), type); 773 774 return 0; 775 776 bad: 777 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 778 dm_put_target_type(tgt->type); 779 return r; 780 } 781 782 /* 783 * Target argument parsing helpers. 784 */ 785 static int validate_next_arg(const struct dm_arg *arg, 786 struct dm_arg_set *arg_set, 787 unsigned *value, char **error, unsigned grouped) 788 { 789 const char *arg_str = dm_shift_arg(arg_set); 790 char dummy; 791 792 if (!arg_str || 793 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 794 (*value < arg->min) || 795 (*value > arg->max) || 796 (grouped && arg_set->argc < *value)) { 797 *error = arg->error; 798 return -EINVAL; 799 } 800 801 return 0; 802 } 803 804 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 805 unsigned *value, char **error) 806 { 807 return validate_next_arg(arg, arg_set, value, error, 0); 808 } 809 EXPORT_SYMBOL(dm_read_arg); 810 811 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 812 unsigned *value, char **error) 813 { 814 return validate_next_arg(arg, arg_set, value, error, 1); 815 } 816 EXPORT_SYMBOL(dm_read_arg_group); 817 818 const char *dm_shift_arg(struct dm_arg_set *as) 819 { 820 char *r; 821 822 if (as->argc) { 823 as->argc--; 824 r = *as->argv; 825 as->argv++; 826 return r; 827 } 828 829 return NULL; 830 } 831 EXPORT_SYMBOL(dm_shift_arg); 832 833 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 834 { 835 BUG_ON(as->argc < num_args); 836 as->argc -= num_args; 837 as->argv += num_args; 838 } 839 EXPORT_SYMBOL(dm_consume_args); 840 841 static bool __table_type_bio_based(enum dm_queue_mode table_type) 842 { 843 return (table_type == DM_TYPE_BIO_BASED || 844 table_type == DM_TYPE_DAX_BIO_BASED || 845 table_type == DM_TYPE_NVME_BIO_BASED); 846 } 847 848 static bool __table_type_request_based(enum dm_queue_mode table_type) 849 { 850 return table_type == DM_TYPE_REQUEST_BASED; 851 } 852 853 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 854 { 855 t->type = type; 856 } 857 EXPORT_SYMBOL_GPL(dm_table_set_type); 858 859 /* validate the dax capability of the target device span */ 860 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 861 sector_t start, sector_t len, void *data) 862 { 863 int blocksize = *(int *) data; 864 865 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize, 866 start, len); 867 } 868 869 /* Check devices support synchronous DAX */ 870 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev, 871 sector_t start, sector_t len, void *data) 872 { 873 return dev->dax_dev && dax_synchronous(dev->dax_dev); 874 } 875 876 bool dm_table_supports_dax(struct dm_table *t, 877 iterate_devices_callout_fn iterate_fn, int *blocksize) 878 { 879 struct dm_target *ti; 880 unsigned i; 881 882 /* Ensure that all targets support DAX. */ 883 for (i = 0; i < dm_table_get_num_targets(t); i++) { 884 ti = dm_table_get_target(t, i); 885 886 if (!ti->type->direct_access) 887 return false; 888 889 if (!ti->type->iterate_devices || 890 !ti->type->iterate_devices(ti, iterate_fn, blocksize)) 891 return false; 892 } 893 894 return true; 895 } 896 897 static bool dm_table_does_not_support_partial_completion(struct dm_table *t); 898 899 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 900 sector_t start, sector_t len, void *data) 901 { 902 struct block_device *bdev = dev->bdev; 903 struct request_queue *q = bdev_get_queue(bdev); 904 905 /* request-based cannot stack on partitions! */ 906 if (bdev != bdev->bd_contains) 907 return false; 908 909 return queue_is_mq(q); 910 } 911 912 static int dm_table_determine_type(struct dm_table *t) 913 { 914 unsigned i; 915 unsigned bio_based = 0, request_based = 0, hybrid = 0; 916 struct dm_target *tgt; 917 struct list_head *devices = dm_table_get_devices(t); 918 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 919 int page_size = PAGE_SIZE; 920 921 if (t->type != DM_TYPE_NONE) { 922 /* target already set the table's type */ 923 if (t->type == DM_TYPE_BIO_BASED) { 924 /* possibly upgrade to a variant of bio-based */ 925 goto verify_bio_based; 926 } 927 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 928 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED); 929 goto verify_rq_based; 930 } 931 932 for (i = 0; i < t->num_targets; i++) { 933 tgt = t->targets + i; 934 if (dm_target_hybrid(tgt)) 935 hybrid = 1; 936 else if (dm_target_request_based(tgt)) 937 request_based = 1; 938 else 939 bio_based = 1; 940 941 if (bio_based && request_based) { 942 DMERR("Inconsistent table: different target types" 943 " can't be mixed up"); 944 return -EINVAL; 945 } 946 } 947 948 if (hybrid && !bio_based && !request_based) { 949 /* 950 * The targets can work either way. 951 * Determine the type from the live device. 952 * Default to bio-based if device is new. 953 */ 954 if (__table_type_request_based(live_md_type)) 955 request_based = 1; 956 else 957 bio_based = 1; 958 } 959 960 if (bio_based) { 961 verify_bio_based: 962 /* We must use this table as bio-based */ 963 t->type = DM_TYPE_BIO_BASED; 964 if (dm_table_supports_dax(t, device_supports_dax, &page_size) || 965 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 966 t->type = DM_TYPE_DAX_BIO_BASED; 967 } else { 968 /* Check if upgrading to NVMe bio-based is valid or required */ 969 tgt = dm_table_get_immutable_target(t); 970 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) { 971 t->type = DM_TYPE_NVME_BIO_BASED; 972 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */ 973 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) { 974 t->type = DM_TYPE_NVME_BIO_BASED; 975 } 976 } 977 return 0; 978 } 979 980 BUG_ON(!request_based); /* No targets in this table */ 981 982 t->type = DM_TYPE_REQUEST_BASED; 983 984 verify_rq_based: 985 /* 986 * Request-based dm supports only tables that have a single target now. 987 * To support multiple targets, request splitting support is needed, 988 * and that needs lots of changes in the block-layer. 989 * (e.g. request completion process for partial completion.) 990 */ 991 if (t->num_targets > 1) { 992 DMERR("%s DM doesn't support multiple targets", 993 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based"); 994 return -EINVAL; 995 } 996 997 if (list_empty(devices)) { 998 int srcu_idx; 999 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 1000 1001 /* inherit live table's type */ 1002 if (live_table) 1003 t->type = live_table->type; 1004 dm_put_live_table(t->md, srcu_idx); 1005 return 0; 1006 } 1007 1008 tgt = dm_table_get_immutable_target(t); 1009 if (!tgt) { 1010 DMERR("table load rejected: immutable target is required"); 1011 return -EINVAL; 1012 } else if (tgt->max_io_len) { 1013 DMERR("table load rejected: immutable target that splits IO is not supported"); 1014 return -EINVAL; 1015 } 1016 1017 /* Non-request-stackable devices can't be used for request-based dm */ 1018 if (!tgt->type->iterate_devices || 1019 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 1020 DMERR("table load rejected: including non-request-stackable devices"); 1021 return -EINVAL; 1022 } 1023 1024 return 0; 1025 } 1026 1027 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1028 { 1029 return t->type; 1030 } 1031 1032 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1033 { 1034 return t->immutable_target_type; 1035 } 1036 1037 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1038 { 1039 /* Immutable target is implicitly a singleton */ 1040 if (t->num_targets > 1 || 1041 !dm_target_is_immutable(t->targets[0].type)) 1042 return NULL; 1043 1044 return t->targets; 1045 } 1046 1047 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1048 { 1049 struct dm_target *ti; 1050 unsigned i; 1051 1052 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1053 ti = dm_table_get_target(t, i); 1054 if (dm_target_is_wildcard(ti->type)) 1055 return ti; 1056 } 1057 1058 return NULL; 1059 } 1060 1061 bool dm_table_bio_based(struct dm_table *t) 1062 { 1063 return __table_type_bio_based(dm_table_get_type(t)); 1064 } 1065 1066 bool dm_table_request_based(struct dm_table *t) 1067 { 1068 return __table_type_request_based(dm_table_get_type(t)); 1069 } 1070 1071 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1072 { 1073 enum dm_queue_mode type = dm_table_get_type(t); 1074 unsigned per_io_data_size = 0; 1075 unsigned min_pool_size = 0; 1076 struct dm_target *ti; 1077 unsigned i; 1078 1079 if (unlikely(type == DM_TYPE_NONE)) { 1080 DMWARN("no table type is set, can't allocate mempools"); 1081 return -EINVAL; 1082 } 1083 1084 if (__table_type_bio_based(type)) 1085 for (i = 0; i < t->num_targets; i++) { 1086 ti = t->targets + i; 1087 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1088 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1089 } 1090 1091 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1092 per_io_data_size, min_pool_size); 1093 if (!t->mempools) 1094 return -ENOMEM; 1095 1096 return 0; 1097 } 1098 1099 void dm_table_free_md_mempools(struct dm_table *t) 1100 { 1101 dm_free_md_mempools(t->mempools); 1102 t->mempools = NULL; 1103 } 1104 1105 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1106 { 1107 return t->mempools; 1108 } 1109 1110 static int setup_indexes(struct dm_table *t) 1111 { 1112 int i; 1113 unsigned int total = 0; 1114 sector_t *indexes; 1115 1116 /* allocate the space for *all* the indexes */ 1117 for (i = t->depth - 2; i >= 0; i--) { 1118 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1119 total += t->counts[i]; 1120 } 1121 1122 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1123 if (!indexes) 1124 return -ENOMEM; 1125 1126 /* set up internal nodes, bottom-up */ 1127 for (i = t->depth - 2; i >= 0; i--) { 1128 t->index[i] = indexes; 1129 indexes += (KEYS_PER_NODE * t->counts[i]); 1130 setup_btree_index(i, t); 1131 } 1132 1133 return 0; 1134 } 1135 1136 /* 1137 * Builds the btree to index the map. 1138 */ 1139 static int dm_table_build_index(struct dm_table *t) 1140 { 1141 int r = 0; 1142 unsigned int leaf_nodes; 1143 1144 /* how many indexes will the btree have ? */ 1145 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1146 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1147 1148 /* leaf layer has already been set up */ 1149 t->counts[t->depth - 1] = leaf_nodes; 1150 t->index[t->depth - 1] = t->highs; 1151 1152 if (t->depth >= 2) 1153 r = setup_indexes(t); 1154 1155 return r; 1156 } 1157 1158 static bool integrity_profile_exists(struct gendisk *disk) 1159 { 1160 return !!blk_get_integrity(disk); 1161 } 1162 1163 /* 1164 * Get a disk whose integrity profile reflects the table's profile. 1165 * Returns NULL if integrity support was inconsistent or unavailable. 1166 */ 1167 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1168 { 1169 struct list_head *devices = dm_table_get_devices(t); 1170 struct dm_dev_internal *dd = NULL; 1171 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1172 unsigned i; 1173 1174 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1175 struct dm_target *ti = dm_table_get_target(t, i); 1176 if (!dm_target_passes_integrity(ti->type)) 1177 goto no_integrity; 1178 } 1179 1180 list_for_each_entry(dd, devices, list) { 1181 template_disk = dd->dm_dev->bdev->bd_disk; 1182 if (!integrity_profile_exists(template_disk)) 1183 goto no_integrity; 1184 else if (prev_disk && 1185 blk_integrity_compare(prev_disk, template_disk) < 0) 1186 goto no_integrity; 1187 prev_disk = template_disk; 1188 } 1189 1190 return template_disk; 1191 1192 no_integrity: 1193 if (prev_disk) 1194 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1195 dm_device_name(t->md), 1196 prev_disk->disk_name, 1197 template_disk->disk_name); 1198 return NULL; 1199 } 1200 1201 /* 1202 * Register the mapped device for blk_integrity support if the 1203 * underlying devices have an integrity profile. But all devices may 1204 * not have matching profiles (checking all devices isn't reliable 1205 * during table load because this table may use other DM device(s) which 1206 * must be resumed before they will have an initialized integity 1207 * profile). Consequently, stacked DM devices force a 2 stage integrity 1208 * profile validation: First pass during table load, final pass during 1209 * resume. 1210 */ 1211 static int dm_table_register_integrity(struct dm_table *t) 1212 { 1213 struct mapped_device *md = t->md; 1214 struct gendisk *template_disk = NULL; 1215 1216 /* If target handles integrity itself do not register it here. */ 1217 if (t->integrity_added) 1218 return 0; 1219 1220 template_disk = dm_table_get_integrity_disk(t); 1221 if (!template_disk) 1222 return 0; 1223 1224 if (!integrity_profile_exists(dm_disk(md))) { 1225 t->integrity_supported = true; 1226 /* 1227 * Register integrity profile during table load; we can do 1228 * this because the final profile must match during resume. 1229 */ 1230 blk_integrity_register(dm_disk(md), 1231 blk_get_integrity(template_disk)); 1232 return 0; 1233 } 1234 1235 /* 1236 * If DM device already has an initialized integrity 1237 * profile the new profile should not conflict. 1238 */ 1239 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1240 DMWARN("%s: conflict with existing integrity profile: " 1241 "%s profile mismatch", 1242 dm_device_name(t->md), 1243 template_disk->disk_name); 1244 return 1; 1245 } 1246 1247 /* Preserve existing integrity profile */ 1248 t->integrity_supported = true; 1249 return 0; 1250 } 1251 1252 /* 1253 * Prepares the table for use by building the indices, 1254 * setting the type, and allocating mempools. 1255 */ 1256 int dm_table_complete(struct dm_table *t) 1257 { 1258 int r; 1259 1260 r = dm_table_determine_type(t); 1261 if (r) { 1262 DMERR("unable to determine table type"); 1263 return r; 1264 } 1265 1266 r = dm_table_build_index(t); 1267 if (r) { 1268 DMERR("unable to build btrees"); 1269 return r; 1270 } 1271 1272 r = dm_table_register_integrity(t); 1273 if (r) { 1274 DMERR("could not register integrity profile."); 1275 return r; 1276 } 1277 1278 r = dm_table_alloc_md_mempools(t, t->md); 1279 if (r) 1280 DMERR("unable to allocate mempools"); 1281 1282 return r; 1283 } 1284 1285 static DEFINE_MUTEX(_event_lock); 1286 void dm_table_event_callback(struct dm_table *t, 1287 void (*fn)(void *), void *context) 1288 { 1289 mutex_lock(&_event_lock); 1290 t->event_fn = fn; 1291 t->event_context = context; 1292 mutex_unlock(&_event_lock); 1293 } 1294 1295 void dm_table_event(struct dm_table *t) 1296 { 1297 /* 1298 * You can no longer call dm_table_event() from interrupt 1299 * context, use a bottom half instead. 1300 */ 1301 BUG_ON(in_interrupt()); 1302 1303 mutex_lock(&_event_lock); 1304 if (t->event_fn) 1305 t->event_fn(t->event_context); 1306 mutex_unlock(&_event_lock); 1307 } 1308 EXPORT_SYMBOL(dm_table_event); 1309 1310 inline sector_t dm_table_get_size(struct dm_table *t) 1311 { 1312 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1313 } 1314 EXPORT_SYMBOL(dm_table_get_size); 1315 1316 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1317 { 1318 if (index >= t->num_targets) 1319 return NULL; 1320 1321 return t->targets + index; 1322 } 1323 1324 /* 1325 * Search the btree for the correct target. 1326 * 1327 * Caller should check returned pointer for NULL 1328 * to trap I/O beyond end of device. 1329 */ 1330 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1331 { 1332 unsigned int l, n = 0, k = 0; 1333 sector_t *node; 1334 1335 if (unlikely(sector >= dm_table_get_size(t))) 1336 return NULL; 1337 1338 for (l = 0; l < t->depth; l++) { 1339 n = get_child(n, k); 1340 node = get_node(t, l, n); 1341 1342 for (k = 0; k < KEYS_PER_NODE; k++) 1343 if (node[k] >= sector) 1344 break; 1345 } 1346 1347 return &t->targets[(KEYS_PER_NODE * n) + k]; 1348 } 1349 1350 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1351 sector_t start, sector_t len, void *data) 1352 { 1353 unsigned *num_devices = data; 1354 1355 (*num_devices)++; 1356 1357 return 0; 1358 } 1359 1360 /* 1361 * Check whether a table has no data devices attached using each 1362 * target's iterate_devices method. 1363 * Returns false if the result is unknown because a target doesn't 1364 * support iterate_devices. 1365 */ 1366 bool dm_table_has_no_data_devices(struct dm_table *table) 1367 { 1368 struct dm_target *ti; 1369 unsigned i, num_devices; 1370 1371 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1372 ti = dm_table_get_target(table, i); 1373 1374 if (!ti->type->iterate_devices) 1375 return false; 1376 1377 num_devices = 0; 1378 ti->type->iterate_devices(ti, count_device, &num_devices); 1379 if (num_devices) 1380 return false; 1381 } 1382 1383 return true; 1384 } 1385 1386 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1387 sector_t start, sector_t len, void *data) 1388 { 1389 struct request_queue *q = bdev_get_queue(dev->bdev); 1390 enum blk_zoned_model *zoned_model = data; 1391 1392 return q && blk_queue_zoned_model(q) == *zoned_model; 1393 } 1394 1395 static bool dm_table_supports_zoned_model(struct dm_table *t, 1396 enum blk_zoned_model zoned_model) 1397 { 1398 struct dm_target *ti; 1399 unsigned i; 1400 1401 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1402 ti = dm_table_get_target(t, i); 1403 1404 if (zoned_model == BLK_ZONED_HM && 1405 !dm_target_supports_zoned_hm(ti->type)) 1406 return false; 1407 1408 if (!ti->type->iterate_devices || 1409 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1410 return false; 1411 } 1412 1413 return true; 1414 } 1415 1416 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1417 sector_t start, sector_t len, void *data) 1418 { 1419 struct request_queue *q = bdev_get_queue(dev->bdev); 1420 unsigned int *zone_sectors = data; 1421 1422 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1423 } 1424 1425 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1426 unsigned int zone_sectors) 1427 { 1428 struct dm_target *ti; 1429 unsigned i; 1430 1431 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1432 ti = dm_table_get_target(t, i); 1433 1434 if (!ti->type->iterate_devices || 1435 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1436 return false; 1437 } 1438 1439 return true; 1440 } 1441 1442 static int validate_hardware_zoned_model(struct dm_table *table, 1443 enum blk_zoned_model zoned_model, 1444 unsigned int zone_sectors) 1445 { 1446 if (zoned_model == BLK_ZONED_NONE) 1447 return 0; 1448 1449 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1450 DMERR("%s: zoned model is not consistent across all devices", 1451 dm_device_name(table->md)); 1452 return -EINVAL; 1453 } 1454 1455 /* Check zone size validity and compatibility */ 1456 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1457 return -EINVAL; 1458 1459 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1460 DMERR("%s: zone sectors is not consistent across all devices", 1461 dm_device_name(table->md)); 1462 return -EINVAL; 1463 } 1464 1465 return 0; 1466 } 1467 1468 /* 1469 * Establish the new table's queue_limits and validate them. 1470 */ 1471 int dm_calculate_queue_limits(struct dm_table *table, 1472 struct queue_limits *limits) 1473 { 1474 struct dm_target *ti; 1475 struct queue_limits ti_limits; 1476 unsigned i; 1477 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1478 unsigned int zone_sectors = 0; 1479 1480 blk_set_stacking_limits(limits); 1481 1482 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1483 blk_set_stacking_limits(&ti_limits); 1484 1485 ti = dm_table_get_target(table, i); 1486 1487 if (!ti->type->iterate_devices) 1488 goto combine_limits; 1489 1490 /* 1491 * Combine queue limits of all the devices this target uses. 1492 */ 1493 ti->type->iterate_devices(ti, dm_set_device_limits, 1494 &ti_limits); 1495 1496 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1497 /* 1498 * After stacking all limits, validate all devices 1499 * in table support this zoned model and zone sectors. 1500 */ 1501 zoned_model = ti_limits.zoned; 1502 zone_sectors = ti_limits.chunk_sectors; 1503 } 1504 1505 /* Set I/O hints portion of queue limits */ 1506 if (ti->type->io_hints) 1507 ti->type->io_hints(ti, &ti_limits); 1508 1509 /* 1510 * Check each device area is consistent with the target's 1511 * overall queue limits. 1512 */ 1513 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1514 &ti_limits)) 1515 return -EINVAL; 1516 1517 combine_limits: 1518 /* 1519 * Merge this target's queue limits into the overall limits 1520 * for the table. 1521 */ 1522 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1523 DMWARN("%s: adding target device " 1524 "(start sect %llu len %llu) " 1525 "caused an alignment inconsistency", 1526 dm_device_name(table->md), 1527 (unsigned long long) ti->begin, 1528 (unsigned long long) ti->len); 1529 } 1530 1531 /* 1532 * Verify that the zoned model and zone sectors, as determined before 1533 * any .io_hints override, are the same across all devices in the table. 1534 * - this is especially relevant if .io_hints is emulating a disk-managed 1535 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1536 * BUT... 1537 */ 1538 if (limits->zoned != BLK_ZONED_NONE) { 1539 /* 1540 * ...IF the above limits stacking determined a zoned model 1541 * validate that all of the table's devices conform to it. 1542 */ 1543 zoned_model = limits->zoned; 1544 zone_sectors = limits->chunk_sectors; 1545 } 1546 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1547 return -EINVAL; 1548 1549 return validate_hardware_logical_block_alignment(table, limits); 1550 } 1551 1552 /* 1553 * Verify that all devices have an integrity profile that matches the 1554 * DM device's registered integrity profile. If the profiles don't 1555 * match then unregister the DM device's integrity profile. 1556 */ 1557 static void dm_table_verify_integrity(struct dm_table *t) 1558 { 1559 struct gendisk *template_disk = NULL; 1560 1561 if (t->integrity_added) 1562 return; 1563 1564 if (t->integrity_supported) { 1565 /* 1566 * Verify that the original integrity profile 1567 * matches all the devices in this table. 1568 */ 1569 template_disk = dm_table_get_integrity_disk(t); 1570 if (template_disk && 1571 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1572 return; 1573 } 1574 1575 if (integrity_profile_exists(dm_disk(t->md))) { 1576 DMWARN("%s: unable to establish an integrity profile", 1577 dm_device_name(t->md)); 1578 blk_integrity_unregister(dm_disk(t->md)); 1579 } 1580 } 1581 1582 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1583 sector_t start, sector_t len, void *data) 1584 { 1585 unsigned long flush = (unsigned long) data; 1586 struct request_queue *q = bdev_get_queue(dev->bdev); 1587 1588 return q && (q->queue_flags & flush); 1589 } 1590 1591 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1592 { 1593 struct dm_target *ti; 1594 unsigned i; 1595 1596 /* 1597 * Require at least one underlying device to support flushes. 1598 * t->devices includes internal dm devices such as mirror logs 1599 * so we need to use iterate_devices here, which targets 1600 * supporting flushes must provide. 1601 */ 1602 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1603 ti = dm_table_get_target(t, i); 1604 1605 if (!ti->num_flush_bios) 1606 continue; 1607 1608 if (ti->flush_supported) 1609 return true; 1610 1611 if (ti->type->iterate_devices && 1612 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1613 return true; 1614 } 1615 1616 return false; 1617 } 1618 1619 static int device_dax_write_cache_enabled(struct dm_target *ti, 1620 struct dm_dev *dev, sector_t start, 1621 sector_t len, void *data) 1622 { 1623 struct dax_device *dax_dev = dev->dax_dev; 1624 1625 if (!dax_dev) 1626 return false; 1627 1628 if (dax_write_cache_enabled(dax_dev)) 1629 return true; 1630 return false; 1631 } 1632 1633 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1634 { 1635 struct dm_target *ti; 1636 unsigned i; 1637 1638 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1639 ti = dm_table_get_target(t, i); 1640 1641 if (ti->type->iterate_devices && 1642 ti->type->iterate_devices(ti, 1643 device_dax_write_cache_enabled, NULL)) 1644 return true; 1645 } 1646 1647 return false; 1648 } 1649 1650 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1651 sector_t start, sector_t len, void *data) 1652 { 1653 struct request_queue *q = bdev_get_queue(dev->bdev); 1654 1655 return q && blk_queue_nonrot(q); 1656 } 1657 1658 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1659 sector_t start, sector_t len, void *data) 1660 { 1661 struct request_queue *q = bdev_get_queue(dev->bdev); 1662 1663 return q && !blk_queue_add_random(q); 1664 } 1665 1666 static bool dm_table_all_devices_attribute(struct dm_table *t, 1667 iterate_devices_callout_fn func) 1668 { 1669 struct dm_target *ti; 1670 unsigned i; 1671 1672 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1673 ti = dm_table_get_target(t, i); 1674 1675 if (!ti->type->iterate_devices || 1676 !ti->type->iterate_devices(ti, func, NULL)) 1677 return false; 1678 } 1679 1680 return true; 1681 } 1682 1683 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev, 1684 sector_t start, sector_t len, void *data) 1685 { 1686 char b[BDEVNAME_SIZE]; 1687 1688 /* For now, NVMe devices are the only devices of this class */ 1689 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0); 1690 } 1691 1692 static bool dm_table_does_not_support_partial_completion(struct dm_table *t) 1693 { 1694 return dm_table_all_devices_attribute(t, device_no_partial_completion); 1695 } 1696 1697 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1698 sector_t start, sector_t len, void *data) 1699 { 1700 struct request_queue *q = bdev_get_queue(dev->bdev); 1701 1702 return q && !q->limits.max_write_same_sectors; 1703 } 1704 1705 static bool dm_table_supports_write_same(struct dm_table *t) 1706 { 1707 struct dm_target *ti; 1708 unsigned i; 1709 1710 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1711 ti = dm_table_get_target(t, i); 1712 1713 if (!ti->num_write_same_bios) 1714 return false; 1715 1716 if (!ti->type->iterate_devices || 1717 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1718 return false; 1719 } 1720 1721 return true; 1722 } 1723 1724 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1725 sector_t start, sector_t len, void *data) 1726 { 1727 struct request_queue *q = bdev_get_queue(dev->bdev); 1728 1729 return q && !q->limits.max_write_zeroes_sectors; 1730 } 1731 1732 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1733 { 1734 struct dm_target *ti; 1735 unsigned i = 0; 1736 1737 while (i < dm_table_get_num_targets(t)) { 1738 ti = dm_table_get_target(t, i++); 1739 1740 if (!ti->num_write_zeroes_bios) 1741 return false; 1742 1743 if (!ti->type->iterate_devices || 1744 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1745 return false; 1746 } 1747 1748 return true; 1749 } 1750 1751 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1752 sector_t start, sector_t len, void *data) 1753 { 1754 struct request_queue *q = bdev_get_queue(dev->bdev); 1755 1756 return q && !blk_queue_discard(q); 1757 } 1758 1759 static bool dm_table_supports_discards(struct dm_table *t) 1760 { 1761 struct dm_target *ti; 1762 unsigned i; 1763 1764 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1765 ti = dm_table_get_target(t, i); 1766 1767 if (!ti->num_discard_bios) 1768 return false; 1769 1770 /* 1771 * Either the target provides discard support (as implied by setting 1772 * 'discards_supported') or it relies on _all_ data devices having 1773 * discard support. 1774 */ 1775 if (!ti->discards_supported && 1776 (!ti->type->iterate_devices || 1777 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1778 return false; 1779 } 1780 1781 return true; 1782 } 1783 1784 static int device_not_secure_erase_capable(struct dm_target *ti, 1785 struct dm_dev *dev, sector_t start, 1786 sector_t len, void *data) 1787 { 1788 struct request_queue *q = bdev_get_queue(dev->bdev); 1789 1790 return q && !blk_queue_secure_erase(q); 1791 } 1792 1793 static bool dm_table_supports_secure_erase(struct dm_table *t) 1794 { 1795 struct dm_target *ti; 1796 unsigned int i; 1797 1798 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1799 ti = dm_table_get_target(t, i); 1800 1801 if (!ti->num_secure_erase_bios) 1802 return false; 1803 1804 if (!ti->type->iterate_devices || 1805 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1806 return false; 1807 } 1808 1809 return true; 1810 } 1811 1812 static int device_requires_stable_pages(struct dm_target *ti, 1813 struct dm_dev *dev, sector_t start, 1814 sector_t len, void *data) 1815 { 1816 struct request_queue *q = bdev_get_queue(dev->bdev); 1817 1818 return q && bdi_cap_stable_pages_required(q->backing_dev_info); 1819 } 1820 1821 /* 1822 * If any underlying device requires stable pages, a table must require 1823 * them as well. Only targets that support iterate_devices are considered: 1824 * don't want error, zero, etc to require stable pages. 1825 */ 1826 static bool dm_table_requires_stable_pages(struct dm_table *t) 1827 { 1828 struct dm_target *ti; 1829 unsigned i; 1830 1831 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1832 ti = dm_table_get_target(t, i); 1833 1834 if (ti->type->iterate_devices && 1835 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL)) 1836 return true; 1837 } 1838 1839 return false; 1840 } 1841 1842 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1843 struct queue_limits *limits) 1844 { 1845 bool wc = false, fua = false; 1846 int page_size = PAGE_SIZE; 1847 1848 /* 1849 * Copy table's limits to the DM device's request_queue 1850 */ 1851 q->limits = *limits; 1852 1853 if (!dm_table_supports_discards(t)) { 1854 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1855 /* Must also clear discard limits... */ 1856 q->limits.max_discard_sectors = 0; 1857 q->limits.max_hw_discard_sectors = 0; 1858 q->limits.discard_granularity = 0; 1859 q->limits.discard_alignment = 0; 1860 q->limits.discard_misaligned = 0; 1861 } else 1862 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1863 1864 if (dm_table_supports_secure_erase(t)) 1865 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1866 1867 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1868 wc = true; 1869 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1870 fua = true; 1871 } 1872 blk_queue_write_cache(q, wc, fua); 1873 1874 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) { 1875 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1876 if (dm_table_supports_dax(t, device_dax_synchronous, NULL)) 1877 set_dax_synchronous(t->md->dax_dev); 1878 } 1879 else 1880 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1881 1882 if (dm_table_supports_dax_write_cache(t)) 1883 dax_write_cache(t->md->dax_dev, true); 1884 1885 /* Ensure that all underlying devices are non-rotational. */ 1886 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1887 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1888 else 1889 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1890 1891 if (!dm_table_supports_write_same(t)) 1892 q->limits.max_write_same_sectors = 0; 1893 if (!dm_table_supports_write_zeroes(t)) 1894 q->limits.max_write_zeroes_sectors = 0; 1895 1896 dm_table_verify_integrity(t); 1897 1898 /* 1899 * Some devices don't use blk_integrity but still want stable pages 1900 * because they do their own checksumming. 1901 */ 1902 if (dm_table_requires_stable_pages(t)) 1903 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 1904 else 1905 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES; 1906 1907 /* 1908 * Determine whether or not this queue's I/O timings contribute 1909 * to the entropy pool, Only request-based targets use this. 1910 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1911 * have it set. 1912 */ 1913 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1914 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1915 1916 /* 1917 * For a zoned target, the number of zones should be updated for the 1918 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 1919 * target, this is all that is needed. 1920 */ 1921 #ifdef CONFIG_BLK_DEV_ZONED 1922 if (blk_queue_is_zoned(q)) { 1923 WARN_ON_ONCE(queue_is_mq(q)); 1924 q->nr_zones = blkdev_nr_zones(t->md->disk); 1925 } 1926 #endif 1927 1928 /* Allow reads to exceed readahead limits */ 1929 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9); 1930 } 1931 1932 unsigned int dm_table_get_num_targets(struct dm_table *t) 1933 { 1934 return t->num_targets; 1935 } 1936 1937 struct list_head *dm_table_get_devices(struct dm_table *t) 1938 { 1939 return &t->devices; 1940 } 1941 1942 fmode_t dm_table_get_mode(struct dm_table *t) 1943 { 1944 return t->mode; 1945 } 1946 EXPORT_SYMBOL(dm_table_get_mode); 1947 1948 enum suspend_mode { 1949 PRESUSPEND, 1950 PRESUSPEND_UNDO, 1951 POSTSUSPEND, 1952 }; 1953 1954 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1955 { 1956 int i = t->num_targets; 1957 struct dm_target *ti = t->targets; 1958 1959 lockdep_assert_held(&t->md->suspend_lock); 1960 1961 while (i--) { 1962 switch (mode) { 1963 case PRESUSPEND: 1964 if (ti->type->presuspend) 1965 ti->type->presuspend(ti); 1966 break; 1967 case PRESUSPEND_UNDO: 1968 if (ti->type->presuspend_undo) 1969 ti->type->presuspend_undo(ti); 1970 break; 1971 case POSTSUSPEND: 1972 if (ti->type->postsuspend) 1973 ti->type->postsuspend(ti); 1974 break; 1975 } 1976 ti++; 1977 } 1978 } 1979 1980 void dm_table_presuspend_targets(struct dm_table *t) 1981 { 1982 if (!t) 1983 return; 1984 1985 suspend_targets(t, PRESUSPEND); 1986 } 1987 1988 void dm_table_presuspend_undo_targets(struct dm_table *t) 1989 { 1990 if (!t) 1991 return; 1992 1993 suspend_targets(t, PRESUSPEND_UNDO); 1994 } 1995 1996 void dm_table_postsuspend_targets(struct dm_table *t) 1997 { 1998 if (!t) 1999 return; 2000 2001 suspend_targets(t, POSTSUSPEND); 2002 } 2003 2004 int dm_table_resume_targets(struct dm_table *t) 2005 { 2006 int i, r = 0; 2007 2008 lockdep_assert_held(&t->md->suspend_lock); 2009 2010 for (i = 0; i < t->num_targets; i++) { 2011 struct dm_target *ti = t->targets + i; 2012 2013 if (!ti->type->preresume) 2014 continue; 2015 2016 r = ti->type->preresume(ti); 2017 if (r) { 2018 DMERR("%s: %s: preresume failed, error = %d", 2019 dm_device_name(t->md), ti->type->name, r); 2020 return r; 2021 } 2022 } 2023 2024 for (i = 0; i < t->num_targets; i++) { 2025 struct dm_target *ti = t->targets + i; 2026 2027 if (ti->type->resume) 2028 ti->type->resume(ti); 2029 } 2030 2031 return 0; 2032 } 2033 2034 struct mapped_device *dm_table_get_md(struct dm_table *t) 2035 { 2036 return t->md; 2037 } 2038 EXPORT_SYMBOL(dm_table_get_md); 2039 2040 const char *dm_table_device_name(struct dm_table *t) 2041 { 2042 return dm_device_name(t->md); 2043 } 2044 EXPORT_SYMBOL_GPL(dm_table_device_name); 2045 2046 void dm_table_run_md_queue_async(struct dm_table *t) 2047 { 2048 struct mapped_device *md; 2049 struct request_queue *queue; 2050 2051 if (!dm_table_request_based(t)) 2052 return; 2053 2054 md = dm_table_get_md(t); 2055 queue = dm_get_md_queue(md); 2056 if (queue) 2057 blk_mq_run_hw_queues(queue, true); 2058 } 2059 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2060 2061