xref: /openbmc/linux/drivers/md/dm-table.c (revision a5b2c10c)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	unsigned integrity_added:1;
51 
52 	/*
53 	 * Indicates the rw permissions for the new logical
54 	 * device.  This should be a combination of FMODE_READ
55 	 * and FMODE_WRITE.
56 	 */
57 	fmode_t mode;
58 
59 	/* a list of devices used by this table */
60 	struct list_head devices;
61 
62 	/* events get handed up using this callback */
63 	void (*event_fn)(void *);
64 	void *event_context;
65 
66 	struct dm_md_mempools *mempools;
67 };
68 
69 /*
70  * Similar to ceiling(log_size(n))
71  */
72 static unsigned int int_log(unsigned int n, unsigned int base)
73 {
74 	int result = 0;
75 
76 	while (n > 1) {
77 		n = dm_div_up(n, base);
78 		result++;
79 	}
80 
81 	return result;
82 }
83 
84 /*
85  * Calculate the index of the child node of the n'th node k'th key.
86  */
87 static inline unsigned int get_child(unsigned int n, unsigned int k)
88 {
89 	return (n * CHILDREN_PER_NODE) + k;
90 }
91 
92 /*
93  * Return the n'th node of level l from table t.
94  */
95 static inline sector_t *get_node(struct dm_table *t,
96 				 unsigned int l, unsigned int n)
97 {
98 	return t->index[l] + (n * KEYS_PER_NODE);
99 }
100 
101 /*
102  * Return the highest key that you could lookup from the n'th
103  * node on level l of the btree.
104  */
105 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
106 {
107 	for (; l < t->depth - 1; l++)
108 		n = get_child(n, CHILDREN_PER_NODE - 1);
109 
110 	if (n >= t->counts[l])
111 		return (sector_t) - 1;
112 
113 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
114 }
115 
116 /*
117  * Fills in a level of the btree based on the highs of the level
118  * below it.
119  */
120 static int setup_btree_index(unsigned int l, struct dm_table *t)
121 {
122 	unsigned int n, k;
123 	sector_t *node;
124 
125 	for (n = 0U; n < t->counts[l]; n++) {
126 		node = get_node(t, l, n);
127 
128 		for (k = 0U; k < KEYS_PER_NODE; k++)
129 			node[k] = high(t, l + 1, get_child(n, k));
130 	}
131 
132 	return 0;
133 }
134 
135 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
136 {
137 	unsigned long size;
138 	void *addr;
139 
140 	/*
141 	 * Check that we're not going to overflow.
142 	 */
143 	if (nmemb > (ULONG_MAX / elem_size))
144 		return NULL;
145 
146 	size = nmemb * elem_size;
147 	addr = vzalloc(size);
148 
149 	return addr;
150 }
151 EXPORT_SYMBOL(dm_vcalloc);
152 
153 /*
154  * highs, and targets are managed as dynamic arrays during a
155  * table load.
156  */
157 static int alloc_targets(struct dm_table *t, unsigned int num)
158 {
159 	sector_t *n_highs;
160 	struct dm_target *n_targets;
161 
162 	/*
163 	 * Allocate both the target array and offset array at once.
164 	 */
165 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
166 					  sizeof(sector_t));
167 	if (!n_highs)
168 		return -ENOMEM;
169 
170 	n_targets = (struct dm_target *) (n_highs + num);
171 
172 	memset(n_highs, -1, sizeof(*n_highs) * num);
173 	vfree(t->highs);
174 
175 	t->num_allocated = num;
176 	t->highs = n_highs;
177 	t->targets = n_targets;
178 
179 	return 0;
180 }
181 
182 int dm_table_create(struct dm_table **result, fmode_t mode,
183 		    unsigned num_targets, struct mapped_device *md)
184 {
185 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
186 
187 	if (!t)
188 		return -ENOMEM;
189 
190 	INIT_LIST_HEAD(&t->devices);
191 
192 	if (!num_targets)
193 		num_targets = KEYS_PER_NODE;
194 
195 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196 
197 	if (!num_targets) {
198 		kfree(t);
199 		return -ENOMEM;
200 	}
201 
202 	if (alloc_targets(t, num_targets)) {
203 		kfree(t);
204 		return -ENOMEM;
205 	}
206 
207 	t->type = DM_TYPE_NONE;
208 	t->mode = mode;
209 	t->md = md;
210 	*result = t;
211 	return 0;
212 }
213 
214 static void free_devices(struct list_head *devices, struct mapped_device *md)
215 {
216 	struct list_head *tmp, *next;
217 
218 	list_for_each_safe(tmp, next, devices) {
219 		struct dm_dev_internal *dd =
220 		    list_entry(tmp, struct dm_dev_internal, list);
221 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
222 		       dm_device_name(md), dd->dm_dev->name);
223 		dm_put_table_device(md, dd->dm_dev);
224 		kfree(dd);
225 	}
226 }
227 
228 void dm_table_destroy(struct dm_table *t)
229 {
230 	unsigned int i;
231 
232 	if (!t)
233 		return;
234 
235 	/* free the indexes */
236 	if (t->depth >= 2)
237 		vfree(t->index[t->depth - 2]);
238 
239 	/* free the targets */
240 	for (i = 0; i < t->num_targets; i++) {
241 		struct dm_target *tgt = t->targets + i;
242 
243 		if (tgt->type->dtr)
244 			tgt->type->dtr(tgt);
245 
246 		dm_put_target_type(tgt->type);
247 	}
248 
249 	vfree(t->highs);
250 
251 	/* free the device list */
252 	free_devices(&t->devices, t->md);
253 
254 	dm_free_md_mempools(t->mempools);
255 
256 	kfree(t);
257 }
258 
259 /*
260  * See if we've already got a device in the list.
261  */
262 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
263 {
264 	struct dm_dev_internal *dd;
265 
266 	list_for_each_entry (dd, l, list)
267 		if (dd->dm_dev->bdev->bd_dev == dev)
268 			return dd;
269 
270 	return NULL;
271 }
272 
273 /*
274  * If possible, this checks an area of a destination device is invalid.
275  */
276 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
277 				  sector_t start, sector_t len, void *data)
278 {
279 	struct queue_limits *limits = data;
280 	struct block_device *bdev = dev->bdev;
281 	sector_t dev_size =
282 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
283 	unsigned short logical_block_size_sectors =
284 		limits->logical_block_size >> SECTOR_SHIFT;
285 	char b[BDEVNAME_SIZE];
286 
287 	if (!dev_size)
288 		return 0;
289 
290 	if ((start >= dev_size) || (start + len > dev_size)) {
291 		DMWARN("%s: %s too small for target: "
292 		       "start=%llu, len=%llu, dev_size=%llu",
293 		       dm_device_name(ti->table->md), bdevname(bdev, b),
294 		       (unsigned long long)start,
295 		       (unsigned long long)len,
296 		       (unsigned long long)dev_size);
297 		return 1;
298 	}
299 
300 	/*
301 	 * If the target is mapped to zoned block device(s), check
302 	 * that the zones are not partially mapped.
303 	 */
304 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
305 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
306 
307 		if (start & (zone_sectors - 1)) {
308 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
309 			       dm_device_name(ti->table->md),
310 			       (unsigned long long)start,
311 			       zone_sectors, bdevname(bdev, b));
312 			return 1;
313 		}
314 
315 		/*
316 		 * Note: The last zone of a zoned block device may be smaller
317 		 * than other zones. So for a target mapping the end of a
318 		 * zoned block device with such a zone, len would not be zone
319 		 * aligned. We do not allow such last smaller zone to be part
320 		 * of the mapping here to ensure that mappings with multiple
321 		 * devices do not end up with a smaller zone in the middle of
322 		 * the sector range.
323 		 */
324 		if (len & (zone_sectors - 1)) {
325 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
326 			       dm_device_name(ti->table->md),
327 			       (unsigned long long)len,
328 			       zone_sectors, bdevname(bdev, b));
329 			return 1;
330 		}
331 	}
332 
333 	if (logical_block_size_sectors <= 1)
334 		return 0;
335 
336 	if (start & (logical_block_size_sectors - 1)) {
337 		DMWARN("%s: start=%llu not aligned to h/w "
338 		       "logical block size %u of %s",
339 		       dm_device_name(ti->table->md),
340 		       (unsigned long long)start,
341 		       limits->logical_block_size, bdevname(bdev, b));
342 		return 1;
343 	}
344 
345 	if (len & (logical_block_size_sectors - 1)) {
346 		DMWARN("%s: len=%llu not aligned to h/w "
347 		       "logical block size %u of %s",
348 		       dm_device_name(ti->table->md),
349 		       (unsigned long long)len,
350 		       limits->logical_block_size, bdevname(bdev, b));
351 		return 1;
352 	}
353 
354 	return 0;
355 }
356 
357 /*
358  * This upgrades the mode on an already open dm_dev, being
359  * careful to leave things as they were if we fail to reopen the
360  * device and not to touch the existing bdev field in case
361  * it is accessed concurrently.
362  */
363 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
364 			struct mapped_device *md)
365 {
366 	int r;
367 	struct dm_dev *old_dev, *new_dev;
368 
369 	old_dev = dd->dm_dev;
370 
371 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
372 				dd->dm_dev->mode | new_mode, &new_dev);
373 	if (r)
374 		return r;
375 
376 	dd->dm_dev = new_dev;
377 	dm_put_table_device(md, old_dev);
378 
379 	return 0;
380 }
381 
382 /*
383  * Convert the path to a device
384  */
385 dev_t dm_get_dev_t(const char *path)
386 {
387 	dev_t dev;
388 	struct block_device *bdev;
389 
390 	bdev = lookup_bdev(path);
391 	if (IS_ERR(bdev))
392 		dev = name_to_dev_t(path);
393 	else {
394 		dev = bdev->bd_dev;
395 		bdput(bdev);
396 	}
397 
398 	return dev;
399 }
400 EXPORT_SYMBOL_GPL(dm_get_dev_t);
401 
402 /*
403  * Add a device to the list, or just increment the usage count if
404  * it's already present.
405  */
406 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
407 		  struct dm_dev **result)
408 {
409 	int r;
410 	dev_t dev;
411 	struct dm_dev_internal *dd;
412 	struct dm_table *t = ti->table;
413 
414 	BUG_ON(!t);
415 
416 	dev = dm_get_dev_t(path);
417 	if (!dev)
418 		return -ENODEV;
419 
420 	dd = find_device(&t->devices, dev);
421 	if (!dd) {
422 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
423 		if (!dd)
424 			return -ENOMEM;
425 
426 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
427 			kfree(dd);
428 			return r;
429 		}
430 
431 		refcount_set(&dd->count, 1);
432 		list_add(&dd->list, &t->devices);
433 		goto out;
434 
435 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
436 		r = upgrade_mode(dd, mode, t->md);
437 		if (r)
438 			return r;
439 	}
440 	refcount_inc(&dd->count);
441 out:
442 	*result = dd->dm_dev;
443 	return 0;
444 }
445 EXPORT_SYMBOL(dm_get_device);
446 
447 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
448 				sector_t start, sector_t len, void *data)
449 {
450 	struct queue_limits *limits = data;
451 	struct block_device *bdev = dev->bdev;
452 	struct request_queue *q = bdev_get_queue(bdev);
453 	char b[BDEVNAME_SIZE];
454 
455 	if (unlikely(!q)) {
456 		DMWARN("%s: Cannot set limits for nonexistent device %s",
457 		       dm_device_name(ti->table->md), bdevname(bdev, b));
458 		return 0;
459 	}
460 
461 	if (blk_stack_limits(limits, &q->limits,
462 			get_start_sect(bdev) + start) < 0)
463 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
464 		       "physical_block_size=%u, logical_block_size=%u, "
465 		       "alignment_offset=%u, start=%llu",
466 		       dm_device_name(ti->table->md), bdevname(bdev, b),
467 		       q->limits.physical_block_size,
468 		       q->limits.logical_block_size,
469 		       q->limits.alignment_offset,
470 		       (unsigned long long) start << SECTOR_SHIFT);
471 	return 0;
472 }
473 
474 /*
475  * Decrement a device's use count and remove it if necessary.
476  */
477 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
478 {
479 	int found = 0;
480 	struct list_head *devices = &ti->table->devices;
481 	struct dm_dev_internal *dd;
482 
483 	list_for_each_entry(dd, devices, list) {
484 		if (dd->dm_dev == d) {
485 			found = 1;
486 			break;
487 		}
488 	}
489 	if (!found) {
490 		DMWARN("%s: device %s not in table devices list",
491 		       dm_device_name(ti->table->md), d->name);
492 		return;
493 	}
494 	if (refcount_dec_and_test(&dd->count)) {
495 		dm_put_table_device(ti->table->md, d);
496 		list_del(&dd->list);
497 		kfree(dd);
498 	}
499 }
500 EXPORT_SYMBOL(dm_put_device);
501 
502 /*
503  * Checks to see if the target joins onto the end of the table.
504  */
505 static int adjoin(struct dm_table *table, struct dm_target *ti)
506 {
507 	struct dm_target *prev;
508 
509 	if (!table->num_targets)
510 		return !ti->begin;
511 
512 	prev = &table->targets[table->num_targets - 1];
513 	return (ti->begin == (prev->begin + prev->len));
514 }
515 
516 /*
517  * Used to dynamically allocate the arg array.
518  *
519  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
520  * process messages even if some device is suspended. These messages have a
521  * small fixed number of arguments.
522  *
523  * On the other hand, dm-switch needs to process bulk data using messages and
524  * excessive use of GFP_NOIO could cause trouble.
525  */
526 static char **realloc_argv(unsigned *size, char **old_argv)
527 {
528 	char **argv;
529 	unsigned new_size;
530 	gfp_t gfp;
531 
532 	if (*size) {
533 		new_size = *size * 2;
534 		gfp = GFP_KERNEL;
535 	} else {
536 		new_size = 8;
537 		gfp = GFP_NOIO;
538 	}
539 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
540 	if (argv && old_argv) {
541 		memcpy(argv, old_argv, *size * sizeof(*argv));
542 		*size = new_size;
543 	}
544 
545 	kfree(old_argv);
546 	return argv;
547 }
548 
549 /*
550  * Destructively splits up the argument list to pass to ctr.
551  */
552 int dm_split_args(int *argc, char ***argvp, char *input)
553 {
554 	char *start, *end = input, *out, **argv = NULL;
555 	unsigned array_size = 0;
556 
557 	*argc = 0;
558 
559 	if (!input) {
560 		*argvp = NULL;
561 		return 0;
562 	}
563 
564 	argv = realloc_argv(&array_size, argv);
565 	if (!argv)
566 		return -ENOMEM;
567 
568 	while (1) {
569 		/* Skip whitespace */
570 		start = skip_spaces(end);
571 
572 		if (!*start)
573 			break;	/* success, we hit the end */
574 
575 		/* 'out' is used to remove any back-quotes */
576 		end = out = start;
577 		while (*end) {
578 			/* Everything apart from '\0' can be quoted */
579 			if (*end == '\\' && *(end + 1)) {
580 				*out++ = *(end + 1);
581 				end += 2;
582 				continue;
583 			}
584 
585 			if (isspace(*end))
586 				break;	/* end of token */
587 
588 			*out++ = *end++;
589 		}
590 
591 		/* have we already filled the array ? */
592 		if ((*argc + 1) > array_size) {
593 			argv = realloc_argv(&array_size, argv);
594 			if (!argv)
595 				return -ENOMEM;
596 		}
597 
598 		/* we know this is whitespace */
599 		if (*end)
600 			end++;
601 
602 		/* terminate the string and put it in the array */
603 		*out = '\0';
604 		argv[*argc] = start;
605 		(*argc)++;
606 	}
607 
608 	*argvp = argv;
609 	return 0;
610 }
611 
612 /*
613  * Impose necessary and sufficient conditions on a devices's table such
614  * that any incoming bio which respects its logical_block_size can be
615  * processed successfully.  If it falls across the boundary between
616  * two or more targets, the size of each piece it gets split into must
617  * be compatible with the logical_block_size of the target processing it.
618  */
619 static int validate_hardware_logical_block_alignment(struct dm_table *table,
620 						 struct queue_limits *limits)
621 {
622 	/*
623 	 * This function uses arithmetic modulo the logical_block_size
624 	 * (in units of 512-byte sectors).
625 	 */
626 	unsigned short device_logical_block_size_sects =
627 		limits->logical_block_size >> SECTOR_SHIFT;
628 
629 	/*
630 	 * Offset of the start of the next table entry, mod logical_block_size.
631 	 */
632 	unsigned short next_target_start = 0;
633 
634 	/*
635 	 * Given an aligned bio that extends beyond the end of a
636 	 * target, how many sectors must the next target handle?
637 	 */
638 	unsigned short remaining = 0;
639 
640 	struct dm_target *ti;
641 	struct queue_limits ti_limits;
642 	unsigned i;
643 
644 	/*
645 	 * Check each entry in the table in turn.
646 	 */
647 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
648 		ti = dm_table_get_target(table, i);
649 
650 		blk_set_stacking_limits(&ti_limits);
651 
652 		/* combine all target devices' limits */
653 		if (ti->type->iterate_devices)
654 			ti->type->iterate_devices(ti, dm_set_device_limits,
655 						  &ti_limits);
656 
657 		/*
658 		 * If the remaining sectors fall entirely within this
659 		 * table entry are they compatible with its logical_block_size?
660 		 */
661 		if (remaining < ti->len &&
662 		    remaining & ((ti_limits.logical_block_size >>
663 				  SECTOR_SHIFT) - 1))
664 			break;	/* Error */
665 
666 		next_target_start =
667 		    (unsigned short) ((next_target_start + ti->len) &
668 				      (device_logical_block_size_sects - 1));
669 		remaining = next_target_start ?
670 		    device_logical_block_size_sects - next_target_start : 0;
671 	}
672 
673 	if (remaining) {
674 		DMWARN("%s: table line %u (start sect %llu len %llu) "
675 		       "not aligned to h/w logical block size %u",
676 		       dm_device_name(table->md), i,
677 		       (unsigned long long) ti->begin,
678 		       (unsigned long long) ti->len,
679 		       limits->logical_block_size);
680 		return -EINVAL;
681 	}
682 
683 	return 0;
684 }
685 
686 int dm_table_add_target(struct dm_table *t, const char *type,
687 			sector_t start, sector_t len, char *params)
688 {
689 	int r = -EINVAL, argc;
690 	char **argv;
691 	struct dm_target *tgt;
692 
693 	if (t->singleton) {
694 		DMERR("%s: target type %s must appear alone in table",
695 		      dm_device_name(t->md), t->targets->type->name);
696 		return -EINVAL;
697 	}
698 
699 	BUG_ON(t->num_targets >= t->num_allocated);
700 
701 	tgt = t->targets + t->num_targets;
702 	memset(tgt, 0, sizeof(*tgt));
703 
704 	if (!len) {
705 		DMERR("%s: zero-length target", dm_device_name(t->md));
706 		return -EINVAL;
707 	}
708 
709 	tgt->type = dm_get_target_type(type);
710 	if (!tgt->type) {
711 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
712 		return -EINVAL;
713 	}
714 
715 	if (dm_target_needs_singleton(tgt->type)) {
716 		if (t->num_targets) {
717 			tgt->error = "singleton target type must appear alone in table";
718 			goto bad;
719 		}
720 		t->singleton = true;
721 	}
722 
723 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
724 		tgt->error = "target type may not be included in a read-only table";
725 		goto bad;
726 	}
727 
728 	if (t->immutable_target_type) {
729 		if (t->immutable_target_type != tgt->type) {
730 			tgt->error = "immutable target type cannot be mixed with other target types";
731 			goto bad;
732 		}
733 	} else if (dm_target_is_immutable(tgt->type)) {
734 		if (t->num_targets) {
735 			tgt->error = "immutable target type cannot be mixed with other target types";
736 			goto bad;
737 		}
738 		t->immutable_target_type = tgt->type;
739 	}
740 
741 	if (dm_target_has_integrity(tgt->type))
742 		t->integrity_added = 1;
743 
744 	tgt->table = t;
745 	tgt->begin = start;
746 	tgt->len = len;
747 	tgt->error = "Unknown error";
748 
749 	/*
750 	 * Does this target adjoin the previous one ?
751 	 */
752 	if (!adjoin(t, tgt)) {
753 		tgt->error = "Gap in table";
754 		goto bad;
755 	}
756 
757 	r = dm_split_args(&argc, &argv, params);
758 	if (r) {
759 		tgt->error = "couldn't split parameters (insufficient memory)";
760 		goto bad;
761 	}
762 
763 	r = tgt->type->ctr(tgt, argc, argv);
764 	kfree(argv);
765 	if (r)
766 		goto bad;
767 
768 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
769 
770 	if (!tgt->num_discard_bios && tgt->discards_supported)
771 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
772 		       dm_device_name(t->md), type);
773 
774 	return 0;
775 
776  bad:
777 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
778 	dm_put_target_type(tgt->type);
779 	return r;
780 }
781 
782 /*
783  * Target argument parsing helpers.
784  */
785 static int validate_next_arg(const struct dm_arg *arg,
786 			     struct dm_arg_set *arg_set,
787 			     unsigned *value, char **error, unsigned grouped)
788 {
789 	const char *arg_str = dm_shift_arg(arg_set);
790 	char dummy;
791 
792 	if (!arg_str ||
793 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
794 	    (*value < arg->min) ||
795 	    (*value > arg->max) ||
796 	    (grouped && arg_set->argc < *value)) {
797 		*error = arg->error;
798 		return -EINVAL;
799 	}
800 
801 	return 0;
802 }
803 
804 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
805 		unsigned *value, char **error)
806 {
807 	return validate_next_arg(arg, arg_set, value, error, 0);
808 }
809 EXPORT_SYMBOL(dm_read_arg);
810 
811 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
812 		      unsigned *value, char **error)
813 {
814 	return validate_next_arg(arg, arg_set, value, error, 1);
815 }
816 EXPORT_SYMBOL(dm_read_arg_group);
817 
818 const char *dm_shift_arg(struct dm_arg_set *as)
819 {
820 	char *r;
821 
822 	if (as->argc) {
823 		as->argc--;
824 		r = *as->argv;
825 		as->argv++;
826 		return r;
827 	}
828 
829 	return NULL;
830 }
831 EXPORT_SYMBOL(dm_shift_arg);
832 
833 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
834 {
835 	BUG_ON(as->argc < num_args);
836 	as->argc -= num_args;
837 	as->argv += num_args;
838 }
839 EXPORT_SYMBOL(dm_consume_args);
840 
841 static bool __table_type_bio_based(enum dm_queue_mode table_type)
842 {
843 	return (table_type == DM_TYPE_BIO_BASED ||
844 		table_type == DM_TYPE_DAX_BIO_BASED ||
845 		table_type == DM_TYPE_NVME_BIO_BASED);
846 }
847 
848 static bool __table_type_request_based(enum dm_queue_mode table_type)
849 {
850 	return table_type == DM_TYPE_REQUEST_BASED;
851 }
852 
853 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
854 {
855 	t->type = type;
856 }
857 EXPORT_SYMBOL_GPL(dm_table_set_type);
858 
859 /* validate the dax capability of the target device span */
860 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
861 			sector_t start, sector_t len, void *data)
862 {
863 	int blocksize = *(int *) data;
864 
865 	return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
866 				       start, len);
867 }
868 
869 /* Check devices support synchronous DAX */
870 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
871 				  sector_t start, sector_t len, void *data)
872 {
873 	return dev->dax_dev && dax_synchronous(dev->dax_dev);
874 }
875 
876 bool dm_table_supports_dax(struct dm_table *t,
877 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
878 {
879 	struct dm_target *ti;
880 	unsigned i;
881 
882 	/* Ensure that all targets support DAX. */
883 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
884 		ti = dm_table_get_target(t, i);
885 
886 		if (!ti->type->direct_access)
887 			return false;
888 
889 		if (!ti->type->iterate_devices ||
890 		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
891 			return false;
892 	}
893 
894 	return true;
895 }
896 
897 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
898 
899 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
900 				  sector_t start, sector_t len, void *data)
901 {
902 	struct block_device *bdev = dev->bdev;
903 	struct request_queue *q = bdev_get_queue(bdev);
904 
905 	/* request-based cannot stack on partitions! */
906 	if (bdev != bdev->bd_contains)
907 		return false;
908 
909 	return queue_is_mq(q);
910 }
911 
912 static int dm_table_determine_type(struct dm_table *t)
913 {
914 	unsigned i;
915 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
916 	struct dm_target *tgt;
917 	struct list_head *devices = dm_table_get_devices(t);
918 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
919 	int page_size = PAGE_SIZE;
920 
921 	if (t->type != DM_TYPE_NONE) {
922 		/* target already set the table's type */
923 		if (t->type == DM_TYPE_BIO_BASED) {
924 			/* possibly upgrade to a variant of bio-based */
925 			goto verify_bio_based;
926 		}
927 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
928 		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
929 		goto verify_rq_based;
930 	}
931 
932 	for (i = 0; i < t->num_targets; i++) {
933 		tgt = t->targets + i;
934 		if (dm_target_hybrid(tgt))
935 			hybrid = 1;
936 		else if (dm_target_request_based(tgt))
937 			request_based = 1;
938 		else
939 			bio_based = 1;
940 
941 		if (bio_based && request_based) {
942 			DMERR("Inconsistent table: different target types"
943 			      " can't be mixed up");
944 			return -EINVAL;
945 		}
946 	}
947 
948 	if (hybrid && !bio_based && !request_based) {
949 		/*
950 		 * The targets can work either way.
951 		 * Determine the type from the live device.
952 		 * Default to bio-based if device is new.
953 		 */
954 		if (__table_type_request_based(live_md_type))
955 			request_based = 1;
956 		else
957 			bio_based = 1;
958 	}
959 
960 	if (bio_based) {
961 verify_bio_based:
962 		/* We must use this table as bio-based */
963 		t->type = DM_TYPE_BIO_BASED;
964 		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
965 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
966 			t->type = DM_TYPE_DAX_BIO_BASED;
967 		} else {
968 			/* Check if upgrading to NVMe bio-based is valid or required */
969 			tgt = dm_table_get_immutable_target(t);
970 			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
971 				t->type = DM_TYPE_NVME_BIO_BASED;
972 				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
973 			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
974 				t->type = DM_TYPE_NVME_BIO_BASED;
975 			}
976 		}
977 		return 0;
978 	}
979 
980 	BUG_ON(!request_based); /* No targets in this table */
981 
982 	t->type = DM_TYPE_REQUEST_BASED;
983 
984 verify_rq_based:
985 	/*
986 	 * Request-based dm supports only tables that have a single target now.
987 	 * To support multiple targets, request splitting support is needed,
988 	 * and that needs lots of changes in the block-layer.
989 	 * (e.g. request completion process for partial completion.)
990 	 */
991 	if (t->num_targets > 1) {
992 		DMERR("%s DM doesn't support multiple targets",
993 		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
994 		return -EINVAL;
995 	}
996 
997 	if (list_empty(devices)) {
998 		int srcu_idx;
999 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1000 
1001 		/* inherit live table's type */
1002 		if (live_table)
1003 			t->type = live_table->type;
1004 		dm_put_live_table(t->md, srcu_idx);
1005 		return 0;
1006 	}
1007 
1008 	tgt = dm_table_get_immutable_target(t);
1009 	if (!tgt) {
1010 		DMERR("table load rejected: immutable target is required");
1011 		return -EINVAL;
1012 	} else if (tgt->max_io_len) {
1013 		DMERR("table load rejected: immutable target that splits IO is not supported");
1014 		return -EINVAL;
1015 	}
1016 
1017 	/* Non-request-stackable devices can't be used for request-based dm */
1018 	if (!tgt->type->iterate_devices ||
1019 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
1020 		DMERR("table load rejected: including non-request-stackable devices");
1021 		return -EINVAL;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1028 {
1029 	return t->type;
1030 }
1031 
1032 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1033 {
1034 	return t->immutable_target_type;
1035 }
1036 
1037 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1038 {
1039 	/* Immutable target is implicitly a singleton */
1040 	if (t->num_targets > 1 ||
1041 	    !dm_target_is_immutable(t->targets[0].type))
1042 		return NULL;
1043 
1044 	return t->targets;
1045 }
1046 
1047 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1048 {
1049 	struct dm_target *ti;
1050 	unsigned i;
1051 
1052 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1053 		ti = dm_table_get_target(t, i);
1054 		if (dm_target_is_wildcard(ti->type))
1055 			return ti;
1056 	}
1057 
1058 	return NULL;
1059 }
1060 
1061 bool dm_table_bio_based(struct dm_table *t)
1062 {
1063 	return __table_type_bio_based(dm_table_get_type(t));
1064 }
1065 
1066 bool dm_table_request_based(struct dm_table *t)
1067 {
1068 	return __table_type_request_based(dm_table_get_type(t));
1069 }
1070 
1071 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1072 {
1073 	enum dm_queue_mode type = dm_table_get_type(t);
1074 	unsigned per_io_data_size = 0;
1075 	unsigned min_pool_size = 0;
1076 	struct dm_target *ti;
1077 	unsigned i;
1078 
1079 	if (unlikely(type == DM_TYPE_NONE)) {
1080 		DMWARN("no table type is set, can't allocate mempools");
1081 		return -EINVAL;
1082 	}
1083 
1084 	if (__table_type_bio_based(type))
1085 		for (i = 0; i < t->num_targets; i++) {
1086 			ti = t->targets + i;
1087 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1088 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1089 		}
1090 
1091 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1092 					   per_io_data_size, min_pool_size);
1093 	if (!t->mempools)
1094 		return -ENOMEM;
1095 
1096 	return 0;
1097 }
1098 
1099 void dm_table_free_md_mempools(struct dm_table *t)
1100 {
1101 	dm_free_md_mempools(t->mempools);
1102 	t->mempools = NULL;
1103 }
1104 
1105 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1106 {
1107 	return t->mempools;
1108 }
1109 
1110 static int setup_indexes(struct dm_table *t)
1111 {
1112 	int i;
1113 	unsigned int total = 0;
1114 	sector_t *indexes;
1115 
1116 	/* allocate the space for *all* the indexes */
1117 	for (i = t->depth - 2; i >= 0; i--) {
1118 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1119 		total += t->counts[i];
1120 	}
1121 
1122 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1123 	if (!indexes)
1124 		return -ENOMEM;
1125 
1126 	/* set up internal nodes, bottom-up */
1127 	for (i = t->depth - 2; i >= 0; i--) {
1128 		t->index[i] = indexes;
1129 		indexes += (KEYS_PER_NODE * t->counts[i]);
1130 		setup_btree_index(i, t);
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 /*
1137  * Builds the btree to index the map.
1138  */
1139 static int dm_table_build_index(struct dm_table *t)
1140 {
1141 	int r = 0;
1142 	unsigned int leaf_nodes;
1143 
1144 	/* how many indexes will the btree have ? */
1145 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1146 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1147 
1148 	/* leaf layer has already been set up */
1149 	t->counts[t->depth - 1] = leaf_nodes;
1150 	t->index[t->depth - 1] = t->highs;
1151 
1152 	if (t->depth >= 2)
1153 		r = setup_indexes(t);
1154 
1155 	return r;
1156 }
1157 
1158 static bool integrity_profile_exists(struct gendisk *disk)
1159 {
1160 	return !!blk_get_integrity(disk);
1161 }
1162 
1163 /*
1164  * Get a disk whose integrity profile reflects the table's profile.
1165  * Returns NULL if integrity support was inconsistent or unavailable.
1166  */
1167 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1168 {
1169 	struct list_head *devices = dm_table_get_devices(t);
1170 	struct dm_dev_internal *dd = NULL;
1171 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1172 	unsigned i;
1173 
1174 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1175 		struct dm_target *ti = dm_table_get_target(t, i);
1176 		if (!dm_target_passes_integrity(ti->type))
1177 			goto no_integrity;
1178 	}
1179 
1180 	list_for_each_entry(dd, devices, list) {
1181 		template_disk = dd->dm_dev->bdev->bd_disk;
1182 		if (!integrity_profile_exists(template_disk))
1183 			goto no_integrity;
1184 		else if (prev_disk &&
1185 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1186 			goto no_integrity;
1187 		prev_disk = template_disk;
1188 	}
1189 
1190 	return template_disk;
1191 
1192 no_integrity:
1193 	if (prev_disk)
1194 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1195 		       dm_device_name(t->md),
1196 		       prev_disk->disk_name,
1197 		       template_disk->disk_name);
1198 	return NULL;
1199 }
1200 
1201 /*
1202  * Register the mapped device for blk_integrity support if the
1203  * underlying devices have an integrity profile.  But all devices may
1204  * not have matching profiles (checking all devices isn't reliable
1205  * during table load because this table may use other DM device(s) which
1206  * must be resumed before they will have an initialized integity
1207  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1208  * profile validation: First pass during table load, final pass during
1209  * resume.
1210  */
1211 static int dm_table_register_integrity(struct dm_table *t)
1212 {
1213 	struct mapped_device *md = t->md;
1214 	struct gendisk *template_disk = NULL;
1215 
1216 	/* If target handles integrity itself do not register it here. */
1217 	if (t->integrity_added)
1218 		return 0;
1219 
1220 	template_disk = dm_table_get_integrity_disk(t);
1221 	if (!template_disk)
1222 		return 0;
1223 
1224 	if (!integrity_profile_exists(dm_disk(md))) {
1225 		t->integrity_supported = true;
1226 		/*
1227 		 * Register integrity profile during table load; we can do
1228 		 * this because the final profile must match during resume.
1229 		 */
1230 		blk_integrity_register(dm_disk(md),
1231 				       blk_get_integrity(template_disk));
1232 		return 0;
1233 	}
1234 
1235 	/*
1236 	 * If DM device already has an initialized integrity
1237 	 * profile the new profile should not conflict.
1238 	 */
1239 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1240 		DMWARN("%s: conflict with existing integrity profile: "
1241 		       "%s profile mismatch",
1242 		       dm_device_name(t->md),
1243 		       template_disk->disk_name);
1244 		return 1;
1245 	}
1246 
1247 	/* Preserve existing integrity profile */
1248 	t->integrity_supported = true;
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Prepares the table for use by building the indices,
1254  * setting the type, and allocating mempools.
1255  */
1256 int dm_table_complete(struct dm_table *t)
1257 {
1258 	int r;
1259 
1260 	r = dm_table_determine_type(t);
1261 	if (r) {
1262 		DMERR("unable to determine table type");
1263 		return r;
1264 	}
1265 
1266 	r = dm_table_build_index(t);
1267 	if (r) {
1268 		DMERR("unable to build btrees");
1269 		return r;
1270 	}
1271 
1272 	r = dm_table_register_integrity(t);
1273 	if (r) {
1274 		DMERR("could not register integrity profile.");
1275 		return r;
1276 	}
1277 
1278 	r = dm_table_alloc_md_mempools(t, t->md);
1279 	if (r)
1280 		DMERR("unable to allocate mempools");
1281 
1282 	return r;
1283 }
1284 
1285 static DEFINE_MUTEX(_event_lock);
1286 void dm_table_event_callback(struct dm_table *t,
1287 			     void (*fn)(void *), void *context)
1288 {
1289 	mutex_lock(&_event_lock);
1290 	t->event_fn = fn;
1291 	t->event_context = context;
1292 	mutex_unlock(&_event_lock);
1293 }
1294 
1295 void dm_table_event(struct dm_table *t)
1296 {
1297 	/*
1298 	 * You can no longer call dm_table_event() from interrupt
1299 	 * context, use a bottom half instead.
1300 	 */
1301 	BUG_ON(in_interrupt());
1302 
1303 	mutex_lock(&_event_lock);
1304 	if (t->event_fn)
1305 		t->event_fn(t->event_context);
1306 	mutex_unlock(&_event_lock);
1307 }
1308 EXPORT_SYMBOL(dm_table_event);
1309 
1310 inline sector_t dm_table_get_size(struct dm_table *t)
1311 {
1312 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1313 }
1314 EXPORT_SYMBOL(dm_table_get_size);
1315 
1316 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1317 {
1318 	if (index >= t->num_targets)
1319 		return NULL;
1320 
1321 	return t->targets + index;
1322 }
1323 
1324 /*
1325  * Search the btree for the correct target.
1326  *
1327  * Caller should check returned pointer for NULL
1328  * to trap I/O beyond end of device.
1329  */
1330 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1331 {
1332 	unsigned int l, n = 0, k = 0;
1333 	sector_t *node;
1334 
1335 	if (unlikely(sector >= dm_table_get_size(t)))
1336 		return NULL;
1337 
1338 	for (l = 0; l < t->depth; l++) {
1339 		n = get_child(n, k);
1340 		node = get_node(t, l, n);
1341 
1342 		for (k = 0; k < KEYS_PER_NODE; k++)
1343 			if (node[k] >= sector)
1344 				break;
1345 	}
1346 
1347 	return &t->targets[(KEYS_PER_NODE * n) + k];
1348 }
1349 
1350 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1351 			sector_t start, sector_t len, void *data)
1352 {
1353 	unsigned *num_devices = data;
1354 
1355 	(*num_devices)++;
1356 
1357 	return 0;
1358 }
1359 
1360 /*
1361  * Check whether a table has no data devices attached using each
1362  * target's iterate_devices method.
1363  * Returns false if the result is unknown because a target doesn't
1364  * support iterate_devices.
1365  */
1366 bool dm_table_has_no_data_devices(struct dm_table *table)
1367 {
1368 	struct dm_target *ti;
1369 	unsigned i, num_devices;
1370 
1371 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1372 		ti = dm_table_get_target(table, i);
1373 
1374 		if (!ti->type->iterate_devices)
1375 			return false;
1376 
1377 		num_devices = 0;
1378 		ti->type->iterate_devices(ti, count_device, &num_devices);
1379 		if (num_devices)
1380 			return false;
1381 	}
1382 
1383 	return true;
1384 }
1385 
1386 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1387 				 sector_t start, sector_t len, void *data)
1388 {
1389 	struct request_queue *q = bdev_get_queue(dev->bdev);
1390 	enum blk_zoned_model *zoned_model = data;
1391 
1392 	return q && blk_queue_zoned_model(q) == *zoned_model;
1393 }
1394 
1395 static bool dm_table_supports_zoned_model(struct dm_table *t,
1396 					  enum blk_zoned_model zoned_model)
1397 {
1398 	struct dm_target *ti;
1399 	unsigned i;
1400 
1401 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1402 		ti = dm_table_get_target(t, i);
1403 
1404 		if (zoned_model == BLK_ZONED_HM &&
1405 		    !dm_target_supports_zoned_hm(ti->type))
1406 			return false;
1407 
1408 		if (!ti->type->iterate_devices ||
1409 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1410 			return false;
1411 	}
1412 
1413 	return true;
1414 }
1415 
1416 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1417 				       sector_t start, sector_t len, void *data)
1418 {
1419 	struct request_queue *q = bdev_get_queue(dev->bdev);
1420 	unsigned int *zone_sectors = data;
1421 
1422 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1423 }
1424 
1425 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1426 					  unsigned int zone_sectors)
1427 {
1428 	struct dm_target *ti;
1429 	unsigned i;
1430 
1431 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1432 		ti = dm_table_get_target(t, i);
1433 
1434 		if (!ti->type->iterate_devices ||
1435 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1436 			return false;
1437 	}
1438 
1439 	return true;
1440 }
1441 
1442 static int validate_hardware_zoned_model(struct dm_table *table,
1443 					 enum blk_zoned_model zoned_model,
1444 					 unsigned int zone_sectors)
1445 {
1446 	if (zoned_model == BLK_ZONED_NONE)
1447 		return 0;
1448 
1449 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1450 		DMERR("%s: zoned model is not consistent across all devices",
1451 		      dm_device_name(table->md));
1452 		return -EINVAL;
1453 	}
1454 
1455 	/* Check zone size validity and compatibility */
1456 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1457 		return -EINVAL;
1458 
1459 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1460 		DMERR("%s: zone sectors is not consistent across all devices",
1461 		      dm_device_name(table->md));
1462 		return -EINVAL;
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Establish the new table's queue_limits and validate them.
1470  */
1471 int dm_calculate_queue_limits(struct dm_table *table,
1472 			      struct queue_limits *limits)
1473 {
1474 	struct dm_target *ti;
1475 	struct queue_limits ti_limits;
1476 	unsigned i;
1477 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1478 	unsigned int zone_sectors = 0;
1479 
1480 	blk_set_stacking_limits(limits);
1481 
1482 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1483 		blk_set_stacking_limits(&ti_limits);
1484 
1485 		ti = dm_table_get_target(table, i);
1486 
1487 		if (!ti->type->iterate_devices)
1488 			goto combine_limits;
1489 
1490 		/*
1491 		 * Combine queue limits of all the devices this target uses.
1492 		 */
1493 		ti->type->iterate_devices(ti, dm_set_device_limits,
1494 					  &ti_limits);
1495 
1496 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1497 			/*
1498 			 * After stacking all limits, validate all devices
1499 			 * in table support this zoned model and zone sectors.
1500 			 */
1501 			zoned_model = ti_limits.zoned;
1502 			zone_sectors = ti_limits.chunk_sectors;
1503 		}
1504 
1505 		/* Set I/O hints portion of queue limits */
1506 		if (ti->type->io_hints)
1507 			ti->type->io_hints(ti, &ti_limits);
1508 
1509 		/*
1510 		 * Check each device area is consistent with the target's
1511 		 * overall queue limits.
1512 		 */
1513 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1514 					      &ti_limits))
1515 			return -EINVAL;
1516 
1517 combine_limits:
1518 		/*
1519 		 * Merge this target's queue limits into the overall limits
1520 		 * for the table.
1521 		 */
1522 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1523 			DMWARN("%s: adding target device "
1524 			       "(start sect %llu len %llu) "
1525 			       "caused an alignment inconsistency",
1526 			       dm_device_name(table->md),
1527 			       (unsigned long long) ti->begin,
1528 			       (unsigned long long) ti->len);
1529 	}
1530 
1531 	/*
1532 	 * Verify that the zoned model and zone sectors, as determined before
1533 	 * any .io_hints override, are the same across all devices in the table.
1534 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1535 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1536 	 * BUT...
1537 	 */
1538 	if (limits->zoned != BLK_ZONED_NONE) {
1539 		/*
1540 		 * ...IF the above limits stacking determined a zoned model
1541 		 * validate that all of the table's devices conform to it.
1542 		 */
1543 		zoned_model = limits->zoned;
1544 		zone_sectors = limits->chunk_sectors;
1545 	}
1546 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1547 		return -EINVAL;
1548 
1549 	return validate_hardware_logical_block_alignment(table, limits);
1550 }
1551 
1552 /*
1553  * Verify that all devices have an integrity profile that matches the
1554  * DM device's registered integrity profile.  If the profiles don't
1555  * match then unregister the DM device's integrity profile.
1556  */
1557 static void dm_table_verify_integrity(struct dm_table *t)
1558 {
1559 	struct gendisk *template_disk = NULL;
1560 
1561 	if (t->integrity_added)
1562 		return;
1563 
1564 	if (t->integrity_supported) {
1565 		/*
1566 		 * Verify that the original integrity profile
1567 		 * matches all the devices in this table.
1568 		 */
1569 		template_disk = dm_table_get_integrity_disk(t);
1570 		if (template_disk &&
1571 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1572 			return;
1573 	}
1574 
1575 	if (integrity_profile_exists(dm_disk(t->md))) {
1576 		DMWARN("%s: unable to establish an integrity profile",
1577 		       dm_device_name(t->md));
1578 		blk_integrity_unregister(dm_disk(t->md));
1579 	}
1580 }
1581 
1582 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1583 				sector_t start, sector_t len, void *data)
1584 {
1585 	unsigned long flush = (unsigned long) data;
1586 	struct request_queue *q = bdev_get_queue(dev->bdev);
1587 
1588 	return q && (q->queue_flags & flush);
1589 }
1590 
1591 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1592 {
1593 	struct dm_target *ti;
1594 	unsigned i;
1595 
1596 	/*
1597 	 * Require at least one underlying device to support flushes.
1598 	 * t->devices includes internal dm devices such as mirror logs
1599 	 * so we need to use iterate_devices here, which targets
1600 	 * supporting flushes must provide.
1601 	 */
1602 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1603 		ti = dm_table_get_target(t, i);
1604 
1605 		if (!ti->num_flush_bios)
1606 			continue;
1607 
1608 		if (ti->flush_supported)
1609 			return true;
1610 
1611 		if (ti->type->iterate_devices &&
1612 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1613 			return true;
1614 	}
1615 
1616 	return false;
1617 }
1618 
1619 static int device_dax_write_cache_enabled(struct dm_target *ti,
1620 					  struct dm_dev *dev, sector_t start,
1621 					  sector_t len, void *data)
1622 {
1623 	struct dax_device *dax_dev = dev->dax_dev;
1624 
1625 	if (!dax_dev)
1626 		return false;
1627 
1628 	if (dax_write_cache_enabled(dax_dev))
1629 		return true;
1630 	return false;
1631 }
1632 
1633 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1634 {
1635 	struct dm_target *ti;
1636 	unsigned i;
1637 
1638 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1639 		ti = dm_table_get_target(t, i);
1640 
1641 		if (ti->type->iterate_devices &&
1642 		    ti->type->iterate_devices(ti,
1643 				device_dax_write_cache_enabled, NULL))
1644 			return true;
1645 	}
1646 
1647 	return false;
1648 }
1649 
1650 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1651 			    sector_t start, sector_t len, void *data)
1652 {
1653 	struct request_queue *q = bdev_get_queue(dev->bdev);
1654 
1655 	return q && blk_queue_nonrot(q);
1656 }
1657 
1658 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1659 			     sector_t start, sector_t len, void *data)
1660 {
1661 	struct request_queue *q = bdev_get_queue(dev->bdev);
1662 
1663 	return q && !blk_queue_add_random(q);
1664 }
1665 
1666 static bool dm_table_all_devices_attribute(struct dm_table *t,
1667 					   iterate_devices_callout_fn func)
1668 {
1669 	struct dm_target *ti;
1670 	unsigned i;
1671 
1672 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1673 		ti = dm_table_get_target(t, i);
1674 
1675 		if (!ti->type->iterate_devices ||
1676 		    !ti->type->iterate_devices(ti, func, NULL))
1677 			return false;
1678 	}
1679 
1680 	return true;
1681 }
1682 
1683 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1684 					sector_t start, sector_t len, void *data)
1685 {
1686 	char b[BDEVNAME_SIZE];
1687 
1688 	/* For now, NVMe devices are the only devices of this class */
1689 	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1690 }
1691 
1692 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1693 {
1694 	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1695 }
1696 
1697 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1698 					 sector_t start, sector_t len, void *data)
1699 {
1700 	struct request_queue *q = bdev_get_queue(dev->bdev);
1701 
1702 	return q && !q->limits.max_write_same_sectors;
1703 }
1704 
1705 static bool dm_table_supports_write_same(struct dm_table *t)
1706 {
1707 	struct dm_target *ti;
1708 	unsigned i;
1709 
1710 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1711 		ti = dm_table_get_target(t, i);
1712 
1713 		if (!ti->num_write_same_bios)
1714 			return false;
1715 
1716 		if (!ti->type->iterate_devices ||
1717 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1718 			return false;
1719 	}
1720 
1721 	return true;
1722 }
1723 
1724 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1725 					   sector_t start, sector_t len, void *data)
1726 {
1727 	struct request_queue *q = bdev_get_queue(dev->bdev);
1728 
1729 	return q && !q->limits.max_write_zeroes_sectors;
1730 }
1731 
1732 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1733 {
1734 	struct dm_target *ti;
1735 	unsigned i = 0;
1736 
1737 	while (i < dm_table_get_num_targets(t)) {
1738 		ti = dm_table_get_target(t, i++);
1739 
1740 		if (!ti->num_write_zeroes_bios)
1741 			return false;
1742 
1743 		if (!ti->type->iterate_devices ||
1744 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1745 			return false;
1746 	}
1747 
1748 	return true;
1749 }
1750 
1751 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1752 				      sector_t start, sector_t len, void *data)
1753 {
1754 	struct request_queue *q = bdev_get_queue(dev->bdev);
1755 
1756 	return q && !blk_queue_discard(q);
1757 }
1758 
1759 static bool dm_table_supports_discards(struct dm_table *t)
1760 {
1761 	struct dm_target *ti;
1762 	unsigned i;
1763 
1764 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1765 		ti = dm_table_get_target(t, i);
1766 
1767 		if (!ti->num_discard_bios)
1768 			return false;
1769 
1770 		/*
1771 		 * Either the target provides discard support (as implied by setting
1772 		 * 'discards_supported') or it relies on _all_ data devices having
1773 		 * discard support.
1774 		 */
1775 		if (!ti->discards_supported &&
1776 		    (!ti->type->iterate_devices ||
1777 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1778 			return false;
1779 	}
1780 
1781 	return true;
1782 }
1783 
1784 static int device_not_secure_erase_capable(struct dm_target *ti,
1785 					   struct dm_dev *dev, sector_t start,
1786 					   sector_t len, void *data)
1787 {
1788 	struct request_queue *q = bdev_get_queue(dev->bdev);
1789 
1790 	return q && !blk_queue_secure_erase(q);
1791 }
1792 
1793 static bool dm_table_supports_secure_erase(struct dm_table *t)
1794 {
1795 	struct dm_target *ti;
1796 	unsigned int i;
1797 
1798 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1799 		ti = dm_table_get_target(t, i);
1800 
1801 		if (!ti->num_secure_erase_bios)
1802 			return false;
1803 
1804 		if (!ti->type->iterate_devices ||
1805 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1806 			return false;
1807 	}
1808 
1809 	return true;
1810 }
1811 
1812 static int device_requires_stable_pages(struct dm_target *ti,
1813 					struct dm_dev *dev, sector_t start,
1814 					sector_t len, void *data)
1815 {
1816 	struct request_queue *q = bdev_get_queue(dev->bdev);
1817 
1818 	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1819 }
1820 
1821 /*
1822  * If any underlying device requires stable pages, a table must require
1823  * them as well.  Only targets that support iterate_devices are considered:
1824  * don't want error, zero, etc to require stable pages.
1825  */
1826 static bool dm_table_requires_stable_pages(struct dm_table *t)
1827 {
1828 	struct dm_target *ti;
1829 	unsigned i;
1830 
1831 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1832 		ti = dm_table_get_target(t, i);
1833 
1834 		if (ti->type->iterate_devices &&
1835 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1836 			return true;
1837 	}
1838 
1839 	return false;
1840 }
1841 
1842 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1843 			       struct queue_limits *limits)
1844 {
1845 	bool wc = false, fua = false;
1846 	int page_size = PAGE_SIZE;
1847 
1848 	/*
1849 	 * Copy table's limits to the DM device's request_queue
1850 	 */
1851 	q->limits = *limits;
1852 
1853 	if (!dm_table_supports_discards(t)) {
1854 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1855 		/* Must also clear discard limits... */
1856 		q->limits.max_discard_sectors = 0;
1857 		q->limits.max_hw_discard_sectors = 0;
1858 		q->limits.discard_granularity = 0;
1859 		q->limits.discard_alignment = 0;
1860 		q->limits.discard_misaligned = 0;
1861 	} else
1862 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1863 
1864 	if (dm_table_supports_secure_erase(t))
1865 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1866 
1867 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1868 		wc = true;
1869 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1870 			fua = true;
1871 	}
1872 	blk_queue_write_cache(q, wc, fua);
1873 
1874 	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1875 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1876 		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1877 			set_dax_synchronous(t->md->dax_dev);
1878 	}
1879 	else
1880 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1881 
1882 	if (dm_table_supports_dax_write_cache(t))
1883 		dax_write_cache(t->md->dax_dev, true);
1884 
1885 	/* Ensure that all underlying devices are non-rotational. */
1886 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1887 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1888 	else
1889 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1890 
1891 	if (!dm_table_supports_write_same(t))
1892 		q->limits.max_write_same_sectors = 0;
1893 	if (!dm_table_supports_write_zeroes(t))
1894 		q->limits.max_write_zeroes_sectors = 0;
1895 
1896 	dm_table_verify_integrity(t);
1897 
1898 	/*
1899 	 * Some devices don't use blk_integrity but still want stable pages
1900 	 * because they do their own checksumming.
1901 	 */
1902 	if (dm_table_requires_stable_pages(t))
1903 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1904 	else
1905 		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1906 
1907 	/*
1908 	 * Determine whether or not this queue's I/O timings contribute
1909 	 * to the entropy pool, Only request-based targets use this.
1910 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1911 	 * have it set.
1912 	 */
1913 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1914 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1915 
1916 	/*
1917 	 * For a zoned target, the number of zones should be updated for the
1918 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1919 	 * target, this is all that is needed.
1920 	 */
1921 #ifdef CONFIG_BLK_DEV_ZONED
1922 	if (blk_queue_is_zoned(q)) {
1923 		WARN_ON_ONCE(queue_is_mq(q));
1924 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1925 	}
1926 #endif
1927 
1928 	/* Allow reads to exceed readahead limits */
1929 	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1930 }
1931 
1932 unsigned int dm_table_get_num_targets(struct dm_table *t)
1933 {
1934 	return t->num_targets;
1935 }
1936 
1937 struct list_head *dm_table_get_devices(struct dm_table *t)
1938 {
1939 	return &t->devices;
1940 }
1941 
1942 fmode_t dm_table_get_mode(struct dm_table *t)
1943 {
1944 	return t->mode;
1945 }
1946 EXPORT_SYMBOL(dm_table_get_mode);
1947 
1948 enum suspend_mode {
1949 	PRESUSPEND,
1950 	PRESUSPEND_UNDO,
1951 	POSTSUSPEND,
1952 };
1953 
1954 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1955 {
1956 	int i = t->num_targets;
1957 	struct dm_target *ti = t->targets;
1958 
1959 	lockdep_assert_held(&t->md->suspend_lock);
1960 
1961 	while (i--) {
1962 		switch (mode) {
1963 		case PRESUSPEND:
1964 			if (ti->type->presuspend)
1965 				ti->type->presuspend(ti);
1966 			break;
1967 		case PRESUSPEND_UNDO:
1968 			if (ti->type->presuspend_undo)
1969 				ti->type->presuspend_undo(ti);
1970 			break;
1971 		case POSTSUSPEND:
1972 			if (ti->type->postsuspend)
1973 				ti->type->postsuspend(ti);
1974 			break;
1975 		}
1976 		ti++;
1977 	}
1978 }
1979 
1980 void dm_table_presuspend_targets(struct dm_table *t)
1981 {
1982 	if (!t)
1983 		return;
1984 
1985 	suspend_targets(t, PRESUSPEND);
1986 }
1987 
1988 void dm_table_presuspend_undo_targets(struct dm_table *t)
1989 {
1990 	if (!t)
1991 		return;
1992 
1993 	suspend_targets(t, PRESUSPEND_UNDO);
1994 }
1995 
1996 void dm_table_postsuspend_targets(struct dm_table *t)
1997 {
1998 	if (!t)
1999 		return;
2000 
2001 	suspend_targets(t, POSTSUSPEND);
2002 }
2003 
2004 int dm_table_resume_targets(struct dm_table *t)
2005 {
2006 	int i, r = 0;
2007 
2008 	lockdep_assert_held(&t->md->suspend_lock);
2009 
2010 	for (i = 0; i < t->num_targets; i++) {
2011 		struct dm_target *ti = t->targets + i;
2012 
2013 		if (!ti->type->preresume)
2014 			continue;
2015 
2016 		r = ti->type->preresume(ti);
2017 		if (r) {
2018 			DMERR("%s: %s: preresume failed, error = %d",
2019 			      dm_device_name(t->md), ti->type->name, r);
2020 			return r;
2021 		}
2022 	}
2023 
2024 	for (i = 0; i < t->num_targets; i++) {
2025 		struct dm_target *ti = t->targets + i;
2026 
2027 		if (ti->type->resume)
2028 			ti->type->resume(ti);
2029 	}
2030 
2031 	return 0;
2032 }
2033 
2034 struct mapped_device *dm_table_get_md(struct dm_table *t)
2035 {
2036 	return t->md;
2037 }
2038 EXPORT_SYMBOL(dm_table_get_md);
2039 
2040 const char *dm_table_device_name(struct dm_table *t)
2041 {
2042 	return dm_device_name(t->md);
2043 }
2044 EXPORT_SYMBOL_GPL(dm_table_device_name);
2045 
2046 void dm_table_run_md_queue_async(struct dm_table *t)
2047 {
2048 	struct mapped_device *md;
2049 	struct request_queue *queue;
2050 
2051 	if (!dm_table_request_based(t))
2052 		return;
2053 
2054 	md = dm_table_get_md(t);
2055 	queue = dm_get_md_queue(md);
2056 	if (queue)
2057 		blk_mq_run_hw_queues(queue, true);
2058 }
2059 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2060 
2061