1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <asm/atomic.h> 19 20 #define DM_MSG_PREFIX "table" 21 22 #define MAX_DEPTH 16 23 #define NODE_SIZE L1_CACHE_BYTES 24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 26 27 struct dm_table { 28 struct mapped_device *md; 29 atomic_t holders; 30 31 /* btree table */ 32 unsigned int depth; 33 unsigned int counts[MAX_DEPTH]; /* in nodes */ 34 sector_t *index[MAX_DEPTH]; 35 36 unsigned int num_targets; 37 unsigned int num_allocated; 38 sector_t *highs; 39 struct dm_target *targets; 40 41 /* 42 * Indicates the rw permissions for the new logical 43 * device. This should be a combination of FMODE_READ 44 * and FMODE_WRITE. 45 */ 46 int mode; 47 48 /* a list of devices used by this table */ 49 struct list_head devices; 50 51 /* 52 * These are optimistic limits taken from all the 53 * targets, some targets will need smaller limits. 54 */ 55 struct io_restrictions limits; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 }; 61 62 /* 63 * Similar to ceiling(log_size(n)) 64 */ 65 static unsigned int int_log(unsigned int n, unsigned int base) 66 { 67 int result = 0; 68 69 while (n > 1) { 70 n = dm_div_up(n, base); 71 result++; 72 } 73 74 return result; 75 } 76 77 /* 78 * Returns the minimum that is _not_ zero, unless both are zero. 79 */ 80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 81 82 /* 83 * Combine two io_restrictions, always taking the lower value. 84 */ 85 static void combine_restrictions_low(struct io_restrictions *lhs, 86 struct io_restrictions *rhs) 87 { 88 lhs->max_sectors = 89 min_not_zero(lhs->max_sectors, rhs->max_sectors); 90 91 lhs->max_phys_segments = 92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 93 94 lhs->max_hw_segments = 95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 96 97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 98 99 lhs->max_segment_size = 100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 101 102 lhs->max_hw_sectors = 103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); 104 105 lhs->seg_boundary_mask = 106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 107 108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); 109 110 lhs->no_cluster |= rhs->no_cluster; 111 } 112 113 /* 114 * Calculate the index of the child node of the n'th node k'th key. 115 */ 116 static inline unsigned int get_child(unsigned int n, unsigned int k) 117 { 118 return (n * CHILDREN_PER_NODE) + k; 119 } 120 121 /* 122 * Return the n'th node of level l from table t. 123 */ 124 static inline sector_t *get_node(struct dm_table *t, 125 unsigned int l, unsigned int n) 126 { 127 return t->index[l] + (n * KEYS_PER_NODE); 128 } 129 130 /* 131 * Return the highest key that you could lookup from the n'th 132 * node on level l of the btree. 133 */ 134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 135 { 136 for (; l < t->depth - 1; l++) 137 n = get_child(n, CHILDREN_PER_NODE - 1); 138 139 if (n >= t->counts[l]) 140 return (sector_t) - 1; 141 142 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 143 } 144 145 /* 146 * Fills in a level of the btree based on the highs of the level 147 * below it. 148 */ 149 static int setup_btree_index(unsigned int l, struct dm_table *t) 150 { 151 unsigned int n, k; 152 sector_t *node; 153 154 for (n = 0U; n < t->counts[l]; n++) { 155 node = get_node(t, l, n); 156 157 for (k = 0U; k < KEYS_PER_NODE; k++) 158 node[k] = high(t, l + 1, get_child(n, k)); 159 } 160 161 return 0; 162 } 163 164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 165 { 166 unsigned long size; 167 void *addr; 168 169 /* 170 * Check that we're not going to overflow. 171 */ 172 if (nmemb > (ULONG_MAX / elem_size)) 173 return NULL; 174 175 size = nmemb * elem_size; 176 addr = vmalloc(size); 177 if (addr) 178 memset(addr, 0, size); 179 180 return addr; 181 } 182 183 /* 184 * highs, and targets are managed as dynamic arrays during a 185 * table load. 186 */ 187 static int alloc_targets(struct dm_table *t, unsigned int num) 188 { 189 sector_t *n_highs; 190 struct dm_target *n_targets; 191 int n = t->num_targets; 192 193 /* 194 * Allocate both the target array and offset array at once. 195 * Append an empty entry to catch sectors beyond the end of 196 * the device. 197 */ 198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 199 sizeof(sector_t)); 200 if (!n_highs) 201 return -ENOMEM; 202 203 n_targets = (struct dm_target *) (n_highs + num); 204 205 if (n) { 206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 208 } 209 210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 211 vfree(t->highs); 212 213 t->num_allocated = num; 214 t->highs = n_highs; 215 t->targets = n_targets; 216 217 return 0; 218 } 219 220 int dm_table_create(struct dm_table **result, int mode, 221 unsigned num_targets, struct mapped_device *md) 222 { 223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 224 225 if (!t) 226 return -ENOMEM; 227 228 INIT_LIST_HEAD(&t->devices); 229 atomic_set(&t->holders, 1); 230 231 if (!num_targets) 232 num_targets = KEYS_PER_NODE; 233 234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 235 236 if (alloc_targets(t, num_targets)) { 237 kfree(t); 238 t = NULL; 239 return -ENOMEM; 240 } 241 242 t->mode = mode; 243 t->md = md; 244 *result = t; 245 return 0; 246 } 247 248 int dm_create_error_table(struct dm_table **result, struct mapped_device *md) 249 { 250 struct dm_table *t; 251 sector_t dev_size = 1; 252 int r; 253 254 /* 255 * Find current size of device. 256 * Default to 1 sector if inactive. 257 */ 258 t = dm_get_table(md); 259 if (t) { 260 dev_size = dm_table_get_size(t); 261 dm_table_put(t); 262 } 263 264 r = dm_table_create(&t, FMODE_READ, 1, md); 265 if (r) 266 return r; 267 268 r = dm_table_add_target(t, "error", 0, dev_size, NULL); 269 if (r) 270 goto out; 271 272 r = dm_table_complete(t); 273 if (r) 274 goto out; 275 276 *result = t; 277 278 out: 279 if (r) 280 dm_table_put(t); 281 282 return r; 283 } 284 EXPORT_SYMBOL_GPL(dm_create_error_table); 285 286 static void free_devices(struct list_head *devices) 287 { 288 struct list_head *tmp, *next; 289 290 list_for_each_safe(tmp, next, devices) { 291 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); 292 kfree(dd); 293 } 294 } 295 296 static void table_destroy(struct dm_table *t) 297 { 298 unsigned int i; 299 300 /* free the indexes (see dm_table_complete) */ 301 if (t->depth >= 2) 302 vfree(t->index[t->depth - 2]); 303 304 /* free the targets */ 305 for (i = 0; i < t->num_targets; i++) { 306 struct dm_target *tgt = t->targets + i; 307 308 if (tgt->type->dtr) 309 tgt->type->dtr(tgt); 310 311 dm_put_target_type(tgt->type); 312 } 313 314 vfree(t->highs); 315 316 /* free the device list */ 317 if (t->devices.next != &t->devices) { 318 DMWARN("devices still present during destroy: " 319 "dm_table_remove_device calls missing"); 320 321 free_devices(&t->devices); 322 } 323 324 kfree(t); 325 } 326 327 void dm_table_get(struct dm_table *t) 328 { 329 atomic_inc(&t->holders); 330 } 331 332 void dm_table_put(struct dm_table *t) 333 { 334 if (!t) 335 return; 336 337 if (atomic_dec_and_test(&t->holders)) 338 table_destroy(t); 339 } 340 341 /* 342 * Checks to see if we need to extend highs or targets. 343 */ 344 static inline int check_space(struct dm_table *t) 345 { 346 if (t->num_targets >= t->num_allocated) 347 return alloc_targets(t, t->num_allocated * 2); 348 349 return 0; 350 } 351 352 /* 353 * Convert a device path to a dev_t. 354 */ 355 static int lookup_device(const char *path, dev_t *dev) 356 { 357 int r; 358 struct nameidata nd; 359 struct inode *inode; 360 361 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) 362 return r; 363 364 inode = nd.path.dentry->d_inode; 365 if (!inode) { 366 r = -ENOENT; 367 goto out; 368 } 369 370 if (!S_ISBLK(inode->i_mode)) { 371 r = -ENOTBLK; 372 goto out; 373 } 374 375 *dev = inode->i_rdev; 376 377 out: 378 path_put(&nd.path); 379 return r; 380 } 381 382 /* 383 * See if we've already got a device in the list. 384 */ 385 static struct dm_dev *find_device(struct list_head *l, dev_t dev) 386 { 387 struct dm_dev *dd; 388 389 list_for_each_entry (dd, l, list) 390 if (dd->bdev->bd_dev == dev) 391 return dd; 392 393 return NULL; 394 } 395 396 /* 397 * Open a device so we can use it as a map destination. 398 */ 399 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md) 400 { 401 static char *_claim_ptr = "I belong to device-mapper"; 402 struct block_device *bdev; 403 404 int r; 405 406 BUG_ON(d->bdev); 407 408 bdev = open_by_devnum(dev, d->mode); 409 if (IS_ERR(bdev)) 410 return PTR_ERR(bdev); 411 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 412 if (r) 413 blkdev_put(bdev); 414 else 415 d->bdev = bdev; 416 return r; 417 } 418 419 /* 420 * Close a device that we've been using. 421 */ 422 static void close_dev(struct dm_dev *d, struct mapped_device *md) 423 { 424 if (!d->bdev) 425 return; 426 427 bd_release_from_disk(d->bdev, dm_disk(md)); 428 blkdev_put(d->bdev); 429 d->bdev = NULL; 430 } 431 432 /* 433 * If possible, this checks an area of a destination device is valid. 434 */ 435 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) 436 { 437 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; 438 439 if (!dev_size) 440 return 1; 441 442 return ((start < dev_size) && (len <= (dev_size - start))); 443 } 444 445 /* 446 * This upgrades the mode on an already open dm_dev. Being 447 * careful to leave things as they were if we fail to reopen the 448 * device. 449 */ 450 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md) 451 { 452 int r; 453 struct dm_dev dd_copy; 454 dev_t dev = dd->bdev->bd_dev; 455 456 dd_copy = *dd; 457 458 dd->mode |= new_mode; 459 dd->bdev = NULL; 460 r = open_dev(dd, dev, md); 461 if (!r) 462 close_dev(&dd_copy, md); 463 else 464 *dd = dd_copy; 465 466 return r; 467 } 468 469 /* 470 * Add a device to the list, or just increment the usage count if 471 * it's already present. 472 */ 473 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 474 const char *path, sector_t start, sector_t len, 475 int mode, struct dm_dev **result) 476 { 477 int r; 478 dev_t uninitialized_var(dev); 479 struct dm_dev *dd; 480 unsigned int major, minor; 481 482 BUG_ON(!t); 483 484 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 485 /* Extract the major/minor numbers */ 486 dev = MKDEV(major, minor); 487 if (MAJOR(dev) != major || MINOR(dev) != minor) 488 return -EOVERFLOW; 489 } else { 490 /* convert the path to a device */ 491 if ((r = lookup_device(path, &dev))) 492 return r; 493 } 494 495 dd = find_device(&t->devices, dev); 496 if (!dd) { 497 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 498 if (!dd) 499 return -ENOMEM; 500 501 dd->mode = mode; 502 dd->bdev = NULL; 503 504 if ((r = open_dev(dd, dev, t->md))) { 505 kfree(dd); 506 return r; 507 } 508 509 format_dev_t(dd->name, dev); 510 511 atomic_set(&dd->count, 0); 512 list_add(&dd->list, &t->devices); 513 514 } else if (dd->mode != (mode | dd->mode)) { 515 r = upgrade_mode(dd, mode, t->md); 516 if (r) 517 return r; 518 } 519 atomic_inc(&dd->count); 520 521 if (!check_device_area(dd, start, len)) { 522 DMWARN("device %s too small for target", path); 523 dm_put_device(ti, dd); 524 return -EINVAL; 525 } 526 527 *result = dd; 528 529 return 0; 530 } 531 532 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) 533 { 534 struct request_queue *q = bdev_get_queue(bdev); 535 struct io_restrictions *rs = &ti->limits; 536 537 /* 538 * Combine the device limits low. 539 * 540 * FIXME: if we move an io_restriction struct 541 * into q this would just be a call to 542 * combine_restrictions_low() 543 */ 544 rs->max_sectors = 545 min_not_zero(rs->max_sectors, q->max_sectors); 546 547 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM 548 * currently doesn't honor MD's merge_bvec_fn routine. 549 * In this case, we'll force DM to use PAGE_SIZE or 550 * smaller I/O, just to be safe. A better fix is in the 551 * works, but add this for the time being so it will at 552 * least operate correctly. 553 */ 554 if (q->merge_bvec_fn) 555 rs->max_sectors = 556 min_not_zero(rs->max_sectors, 557 (unsigned int) (PAGE_SIZE >> 9)); 558 559 rs->max_phys_segments = 560 min_not_zero(rs->max_phys_segments, 561 q->max_phys_segments); 562 563 rs->max_hw_segments = 564 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 565 566 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 567 568 rs->max_segment_size = 569 min_not_zero(rs->max_segment_size, q->max_segment_size); 570 571 rs->max_hw_sectors = 572 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); 573 574 rs->seg_boundary_mask = 575 min_not_zero(rs->seg_boundary_mask, 576 q->seg_boundary_mask); 577 578 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); 579 580 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 581 } 582 EXPORT_SYMBOL_GPL(dm_set_device_limits); 583 584 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 585 sector_t len, int mode, struct dm_dev **result) 586 { 587 int r = __table_get_device(ti->table, ti, path, 588 start, len, mode, result); 589 590 if (!r) 591 dm_set_device_limits(ti, (*result)->bdev); 592 593 return r; 594 } 595 596 /* 597 * Decrement a devices use count and remove it if necessary. 598 */ 599 void dm_put_device(struct dm_target *ti, struct dm_dev *dd) 600 { 601 if (atomic_dec_and_test(&dd->count)) { 602 close_dev(dd, ti->table->md); 603 list_del(&dd->list); 604 kfree(dd); 605 } 606 } 607 608 /* 609 * Checks to see if the target joins onto the end of the table. 610 */ 611 static int adjoin(struct dm_table *table, struct dm_target *ti) 612 { 613 struct dm_target *prev; 614 615 if (!table->num_targets) 616 return !ti->begin; 617 618 prev = &table->targets[table->num_targets - 1]; 619 return (ti->begin == (prev->begin + prev->len)); 620 } 621 622 /* 623 * Used to dynamically allocate the arg array. 624 */ 625 static char **realloc_argv(unsigned *array_size, char **old_argv) 626 { 627 char **argv; 628 unsigned new_size; 629 630 new_size = *array_size ? *array_size * 2 : 64; 631 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 632 if (argv) { 633 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 634 *array_size = new_size; 635 } 636 637 kfree(old_argv); 638 return argv; 639 } 640 641 /* 642 * Destructively splits up the argument list to pass to ctr. 643 */ 644 int dm_split_args(int *argc, char ***argvp, char *input) 645 { 646 char *start, *end = input, *out, **argv = NULL; 647 unsigned array_size = 0; 648 649 *argc = 0; 650 651 if (!input) { 652 *argvp = NULL; 653 return 0; 654 } 655 656 argv = realloc_argv(&array_size, argv); 657 if (!argv) 658 return -ENOMEM; 659 660 while (1) { 661 start = end; 662 663 /* Skip whitespace */ 664 while (*start && isspace(*start)) 665 start++; 666 667 if (!*start) 668 break; /* success, we hit the end */ 669 670 /* 'out' is used to remove any back-quotes */ 671 end = out = start; 672 while (*end) { 673 /* Everything apart from '\0' can be quoted */ 674 if (*end == '\\' && *(end + 1)) { 675 *out++ = *(end + 1); 676 end += 2; 677 continue; 678 } 679 680 if (isspace(*end)) 681 break; /* end of token */ 682 683 *out++ = *end++; 684 } 685 686 /* have we already filled the array ? */ 687 if ((*argc + 1) > array_size) { 688 argv = realloc_argv(&array_size, argv); 689 if (!argv) 690 return -ENOMEM; 691 } 692 693 /* we know this is whitespace */ 694 if (*end) 695 end++; 696 697 /* terminate the string and put it in the array */ 698 *out = '\0'; 699 argv[*argc] = start; 700 (*argc)++; 701 } 702 703 *argvp = argv; 704 return 0; 705 } 706 707 static void check_for_valid_limits(struct io_restrictions *rs) 708 { 709 if (!rs->max_sectors) 710 rs->max_sectors = SAFE_MAX_SECTORS; 711 if (!rs->max_hw_sectors) 712 rs->max_hw_sectors = SAFE_MAX_SECTORS; 713 if (!rs->max_phys_segments) 714 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 715 if (!rs->max_hw_segments) 716 rs->max_hw_segments = MAX_HW_SEGMENTS; 717 if (!rs->hardsect_size) 718 rs->hardsect_size = 1 << SECTOR_SHIFT; 719 if (!rs->max_segment_size) 720 rs->max_segment_size = MAX_SEGMENT_SIZE; 721 if (!rs->seg_boundary_mask) 722 rs->seg_boundary_mask = -1; 723 if (!rs->bounce_pfn) 724 rs->bounce_pfn = -1; 725 } 726 727 int dm_table_add_target(struct dm_table *t, const char *type, 728 sector_t start, sector_t len, char *params) 729 { 730 int r = -EINVAL, argc; 731 char **argv; 732 struct dm_target *tgt; 733 734 if ((r = check_space(t))) 735 return r; 736 737 tgt = t->targets + t->num_targets; 738 memset(tgt, 0, sizeof(*tgt)); 739 740 if (!len) { 741 DMERR("%s: zero-length target", dm_device_name(t->md)); 742 return -EINVAL; 743 } 744 745 tgt->type = dm_get_target_type(type); 746 if (!tgt->type) { 747 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 748 type); 749 return -EINVAL; 750 } 751 752 tgt->table = t; 753 tgt->begin = start; 754 tgt->len = len; 755 tgt->error = "Unknown error"; 756 757 /* 758 * Does this target adjoin the previous one ? 759 */ 760 if (!adjoin(t, tgt)) { 761 tgt->error = "Gap in table"; 762 r = -EINVAL; 763 goto bad; 764 } 765 766 r = dm_split_args(&argc, &argv, params); 767 if (r) { 768 tgt->error = "couldn't split parameters (insufficient memory)"; 769 goto bad; 770 } 771 772 r = tgt->type->ctr(tgt, argc, argv); 773 kfree(argv); 774 if (r) 775 goto bad; 776 777 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 778 779 /* FIXME: the plan is to combine high here and then have 780 * the merge fn apply the target level restrictions. */ 781 combine_restrictions_low(&t->limits, &tgt->limits); 782 return 0; 783 784 bad: 785 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 786 dm_put_target_type(tgt->type); 787 return r; 788 } 789 790 static int setup_indexes(struct dm_table *t) 791 { 792 int i; 793 unsigned int total = 0; 794 sector_t *indexes; 795 796 /* allocate the space for *all* the indexes */ 797 for (i = t->depth - 2; i >= 0; i--) { 798 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 799 total += t->counts[i]; 800 } 801 802 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 803 if (!indexes) 804 return -ENOMEM; 805 806 /* set up internal nodes, bottom-up */ 807 for (i = t->depth - 2; i >= 0; i--) { 808 t->index[i] = indexes; 809 indexes += (KEYS_PER_NODE * t->counts[i]); 810 setup_btree_index(i, t); 811 } 812 813 return 0; 814 } 815 816 /* 817 * Builds the btree to index the map. 818 */ 819 int dm_table_complete(struct dm_table *t) 820 { 821 int r = 0; 822 unsigned int leaf_nodes; 823 824 check_for_valid_limits(&t->limits); 825 826 /* how many indexes will the btree have ? */ 827 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 828 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 829 830 /* leaf layer has already been set up */ 831 t->counts[t->depth - 1] = leaf_nodes; 832 t->index[t->depth - 1] = t->highs; 833 834 if (t->depth >= 2) 835 r = setup_indexes(t); 836 837 return r; 838 } 839 840 static DEFINE_MUTEX(_event_lock); 841 void dm_table_event_callback(struct dm_table *t, 842 void (*fn)(void *), void *context) 843 { 844 mutex_lock(&_event_lock); 845 t->event_fn = fn; 846 t->event_context = context; 847 mutex_unlock(&_event_lock); 848 } 849 850 void dm_table_event(struct dm_table *t) 851 { 852 /* 853 * You can no longer call dm_table_event() from interrupt 854 * context, use a bottom half instead. 855 */ 856 BUG_ON(in_interrupt()); 857 858 mutex_lock(&_event_lock); 859 if (t->event_fn) 860 t->event_fn(t->event_context); 861 mutex_unlock(&_event_lock); 862 } 863 864 sector_t dm_table_get_size(struct dm_table *t) 865 { 866 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 867 } 868 869 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 870 { 871 if (index >= t->num_targets) 872 return NULL; 873 874 return t->targets + index; 875 } 876 877 /* 878 * Search the btree for the correct target. 879 * 880 * Caller should check returned pointer with dm_target_is_valid() 881 * to trap I/O beyond end of device. 882 */ 883 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 884 { 885 unsigned int l, n = 0, k = 0; 886 sector_t *node; 887 888 for (l = 0; l < t->depth; l++) { 889 n = get_child(n, k); 890 node = get_node(t, l, n); 891 892 for (k = 0; k < KEYS_PER_NODE; k++) 893 if (node[k] >= sector) 894 break; 895 } 896 897 return &t->targets[(KEYS_PER_NODE * n) + k]; 898 } 899 900 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 901 { 902 /* 903 * Make sure we obey the optimistic sub devices 904 * restrictions. 905 */ 906 blk_queue_max_sectors(q, t->limits.max_sectors); 907 q->max_phys_segments = t->limits.max_phys_segments; 908 q->max_hw_segments = t->limits.max_hw_segments; 909 q->hardsect_size = t->limits.hardsect_size; 910 q->max_segment_size = t->limits.max_segment_size; 911 q->max_hw_sectors = t->limits.max_hw_sectors; 912 q->seg_boundary_mask = t->limits.seg_boundary_mask; 913 q->bounce_pfn = t->limits.bounce_pfn; 914 if (t->limits.no_cluster) 915 q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER); 916 else 917 q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER); 918 919 } 920 921 unsigned int dm_table_get_num_targets(struct dm_table *t) 922 { 923 return t->num_targets; 924 } 925 926 struct list_head *dm_table_get_devices(struct dm_table *t) 927 { 928 return &t->devices; 929 } 930 931 int dm_table_get_mode(struct dm_table *t) 932 { 933 return t->mode; 934 } 935 936 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 937 { 938 int i = t->num_targets; 939 struct dm_target *ti = t->targets; 940 941 while (i--) { 942 if (postsuspend) { 943 if (ti->type->postsuspend) 944 ti->type->postsuspend(ti); 945 } else if (ti->type->presuspend) 946 ti->type->presuspend(ti); 947 948 ti++; 949 } 950 } 951 952 void dm_table_presuspend_targets(struct dm_table *t) 953 { 954 if (!t) 955 return; 956 957 return suspend_targets(t, 0); 958 } 959 960 void dm_table_postsuspend_targets(struct dm_table *t) 961 { 962 if (!t) 963 return; 964 965 return suspend_targets(t, 1); 966 } 967 968 int dm_table_resume_targets(struct dm_table *t) 969 { 970 int i, r = 0; 971 972 for (i = 0; i < t->num_targets; i++) { 973 struct dm_target *ti = t->targets + i; 974 975 if (!ti->type->preresume) 976 continue; 977 978 r = ti->type->preresume(ti); 979 if (r) 980 return r; 981 } 982 983 for (i = 0; i < t->num_targets; i++) { 984 struct dm_target *ti = t->targets + i; 985 986 if (ti->type->resume) 987 ti->type->resume(ti); 988 } 989 990 return 0; 991 } 992 993 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 994 { 995 struct dm_dev *dd; 996 struct list_head *devices = dm_table_get_devices(t); 997 int r = 0; 998 999 list_for_each_entry(dd, devices, list) { 1000 struct request_queue *q = bdev_get_queue(dd->bdev); 1001 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1002 } 1003 1004 return r; 1005 } 1006 1007 void dm_table_unplug_all(struct dm_table *t) 1008 { 1009 struct dm_dev *dd; 1010 struct list_head *devices = dm_table_get_devices(t); 1011 1012 list_for_each_entry(dd, devices, list) { 1013 struct request_queue *q = bdev_get_queue(dd->bdev); 1014 1015 blk_unplug(q); 1016 } 1017 } 1018 1019 struct mapped_device *dm_table_get_md(struct dm_table *t) 1020 { 1021 dm_get(t->md); 1022 1023 return t->md; 1024 } 1025 1026 EXPORT_SYMBOL(dm_vcalloc); 1027 EXPORT_SYMBOL(dm_get_device); 1028 EXPORT_SYMBOL(dm_put_device); 1029 EXPORT_SYMBOL(dm_table_event); 1030 EXPORT_SYMBOL(dm_table_get_size); 1031 EXPORT_SYMBOL(dm_table_get_mode); 1032 EXPORT_SYMBOL(dm_table_get_md); 1033 EXPORT_SYMBOL(dm_table_put); 1034 EXPORT_SYMBOL(dm_table_get); 1035 EXPORT_SYMBOL(dm_table_unplug_all); 1036