1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/namei.h> 15 #include <linux/ctype.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/interrupt.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/mount.h> 24 #include <linux/dax.h> 25 26 #define DM_MSG_PREFIX "table" 27 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 /* 33 * Similar to ceiling(log_size(n)) 34 */ 35 static unsigned int int_log(unsigned int n, unsigned int base) 36 { 37 int result = 0; 38 39 while (n > 1) { 40 n = dm_div_up(n, base); 41 result++; 42 } 43 44 return result; 45 } 46 47 /* 48 * Calculate the index of the child node of the n'th node k'th key. 49 */ 50 static inline unsigned int get_child(unsigned int n, unsigned int k) 51 { 52 return (n * CHILDREN_PER_NODE) + k; 53 } 54 55 /* 56 * Return the n'th node of level l from table t. 57 */ 58 static inline sector_t *get_node(struct dm_table *t, 59 unsigned int l, unsigned int n) 60 { 61 return t->index[l] + (n * KEYS_PER_NODE); 62 } 63 64 /* 65 * Return the highest key that you could lookup from the n'th 66 * node on level l of the btree. 67 */ 68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 69 { 70 for (; l < t->depth - 1; l++) 71 n = get_child(n, CHILDREN_PER_NODE - 1); 72 73 if (n >= t->counts[l]) 74 return (sector_t) - 1; 75 76 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 77 } 78 79 /* 80 * Fills in a level of the btree based on the highs of the level 81 * below it. 82 */ 83 static int setup_btree_index(unsigned int l, struct dm_table *t) 84 { 85 unsigned int n, k; 86 sector_t *node; 87 88 for (n = 0U; n < t->counts[l]; n++) { 89 node = get_node(t, l, n); 90 91 for (k = 0U; k < KEYS_PER_NODE; k++) 92 node[k] = high(t, l + 1, get_child(n, k)); 93 } 94 95 return 0; 96 } 97 98 /* 99 * highs, and targets are managed as dynamic arrays during a 100 * table load. 101 */ 102 static int alloc_targets(struct dm_table *t, unsigned int num) 103 { 104 sector_t *n_highs; 105 struct dm_target *n_targets; 106 107 /* 108 * Allocate both the target array and offset array at once. 109 */ 110 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 111 GFP_KERNEL); 112 if (!n_highs) 113 return -ENOMEM; 114 115 n_targets = (struct dm_target *) (n_highs + num); 116 117 memset(n_highs, -1, sizeof(*n_highs) * num); 118 kvfree(t->highs); 119 120 t->num_allocated = num; 121 t->highs = n_highs; 122 t->targets = n_targets; 123 124 return 0; 125 } 126 127 int dm_table_create(struct dm_table **result, fmode_t mode, 128 unsigned num_targets, struct mapped_device *md) 129 { 130 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 131 132 if (!t) 133 return -ENOMEM; 134 135 INIT_LIST_HEAD(&t->devices); 136 137 if (!num_targets) 138 num_targets = KEYS_PER_NODE; 139 140 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 141 142 if (!num_targets) { 143 kfree(t); 144 return -ENOMEM; 145 } 146 147 if (alloc_targets(t, num_targets)) { 148 kfree(t); 149 return -ENOMEM; 150 } 151 152 t->type = DM_TYPE_NONE; 153 t->mode = mode; 154 t->md = md; 155 *result = t; 156 return 0; 157 } 158 159 static void free_devices(struct list_head *devices, struct mapped_device *md) 160 { 161 struct list_head *tmp, *next; 162 163 list_for_each_safe(tmp, next, devices) { 164 struct dm_dev_internal *dd = 165 list_entry(tmp, struct dm_dev_internal, list); 166 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 167 dm_device_name(md), dd->dm_dev->name); 168 dm_put_table_device(md, dd->dm_dev); 169 kfree(dd); 170 } 171 } 172 173 static void dm_table_destroy_crypto_profile(struct dm_table *t); 174 175 void dm_table_destroy(struct dm_table *t) 176 { 177 unsigned int i; 178 179 if (!t) 180 return; 181 182 /* free the indexes */ 183 if (t->depth >= 2) 184 kvfree(t->index[t->depth - 2]); 185 186 /* free the targets */ 187 for (i = 0; i < t->num_targets; i++) { 188 struct dm_target *tgt = t->targets + i; 189 190 if (tgt->type->dtr) 191 tgt->type->dtr(tgt); 192 193 dm_put_target_type(tgt->type); 194 } 195 196 kvfree(t->highs); 197 198 /* free the device list */ 199 free_devices(&t->devices, t->md); 200 201 dm_free_md_mempools(t->mempools); 202 203 dm_table_destroy_crypto_profile(t); 204 205 kfree(t); 206 } 207 208 /* 209 * See if we've already got a device in the list. 210 */ 211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 212 { 213 struct dm_dev_internal *dd; 214 215 list_for_each_entry (dd, l, list) 216 if (dd->dm_dev->bdev->bd_dev == dev) 217 return dd; 218 219 return NULL; 220 } 221 222 /* 223 * If possible, this checks an area of a destination device is invalid. 224 */ 225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 226 sector_t start, sector_t len, void *data) 227 { 228 struct queue_limits *limits = data; 229 struct block_device *bdev = dev->bdev; 230 sector_t dev_size = bdev_nr_sectors(bdev); 231 unsigned short logical_block_size_sectors = 232 limits->logical_block_size >> SECTOR_SHIFT; 233 char b[BDEVNAME_SIZE]; 234 235 if (!dev_size) 236 return 0; 237 238 if ((start >= dev_size) || (start + len > dev_size)) { 239 DMWARN("%s: %s too small for target: " 240 "start=%llu, len=%llu, dev_size=%llu", 241 dm_device_name(ti->table->md), bdevname(bdev, b), 242 (unsigned long long)start, 243 (unsigned long long)len, 244 (unsigned long long)dev_size); 245 return 1; 246 } 247 248 /* 249 * If the target is mapped to zoned block device(s), check 250 * that the zones are not partially mapped. 251 */ 252 if (bdev_is_zoned(bdev)) { 253 unsigned int zone_sectors = bdev_zone_sectors(bdev); 254 255 if (start & (zone_sectors - 1)) { 256 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 257 dm_device_name(ti->table->md), 258 (unsigned long long)start, 259 zone_sectors, bdevname(bdev, b)); 260 return 1; 261 } 262 263 /* 264 * Note: The last zone of a zoned block device may be smaller 265 * than other zones. So for a target mapping the end of a 266 * zoned block device with such a zone, len would not be zone 267 * aligned. We do not allow such last smaller zone to be part 268 * of the mapping here to ensure that mappings with multiple 269 * devices do not end up with a smaller zone in the middle of 270 * the sector range. 271 */ 272 if (len & (zone_sectors - 1)) { 273 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 274 dm_device_name(ti->table->md), 275 (unsigned long long)len, 276 zone_sectors, bdevname(bdev, b)); 277 return 1; 278 } 279 } 280 281 if (logical_block_size_sectors <= 1) 282 return 0; 283 284 if (start & (logical_block_size_sectors - 1)) { 285 DMWARN("%s: start=%llu not aligned to h/w " 286 "logical block size %u of %s", 287 dm_device_name(ti->table->md), 288 (unsigned long long)start, 289 limits->logical_block_size, bdevname(bdev, b)); 290 return 1; 291 } 292 293 if (len & (logical_block_size_sectors - 1)) { 294 DMWARN("%s: len=%llu not aligned to h/w " 295 "logical block size %u of %s", 296 dm_device_name(ti->table->md), 297 (unsigned long long)len, 298 limits->logical_block_size, bdevname(bdev, b)); 299 return 1; 300 } 301 302 return 0; 303 } 304 305 /* 306 * This upgrades the mode on an already open dm_dev, being 307 * careful to leave things as they were if we fail to reopen the 308 * device and not to touch the existing bdev field in case 309 * it is accessed concurrently. 310 */ 311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 312 struct mapped_device *md) 313 { 314 int r; 315 struct dm_dev *old_dev, *new_dev; 316 317 old_dev = dd->dm_dev; 318 319 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 320 dd->dm_dev->mode | new_mode, &new_dev); 321 if (r) 322 return r; 323 324 dd->dm_dev = new_dev; 325 dm_put_table_device(md, old_dev); 326 327 return 0; 328 } 329 330 /* 331 * Convert the path to a device 332 */ 333 dev_t dm_get_dev_t(const char *path) 334 { 335 dev_t dev; 336 337 if (lookup_bdev(path, &dev)) 338 dev = name_to_dev_t(path); 339 return dev; 340 } 341 EXPORT_SYMBOL_GPL(dm_get_dev_t); 342 343 /* 344 * Add a device to the list, or just increment the usage count if 345 * it's already present. 346 */ 347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 348 struct dm_dev **result) 349 { 350 int r; 351 dev_t dev; 352 unsigned int major, minor; 353 char dummy; 354 struct dm_dev_internal *dd; 355 struct dm_table *t = ti->table; 356 357 BUG_ON(!t); 358 359 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 360 /* Extract the major/minor numbers */ 361 dev = MKDEV(major, minor); 362 if (MAJOR(dev) != major || MINOR(dev) != minor) 363 return -EOVERFLOW; 364 } else { 365 dev = dm_get_dev_t(path); 366 if (!dev) 367 return -ENODEV; 368 } 369 370 dd = find_device(&t->devices, dev); 371 if (!dd) { 372 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 373 if (!dd) 374 return -ENOMEM; 375 376 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 377 kfree(dd); 378 return r; 379 } 380 381 refcount_set(&dd->count, 1); 382 list_add(&dd->list, &t->devices); 383 goto out; 384 385 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 386 r = upgrade_mode(dd, mode, t->md); 387 if (r) 388 return r; 389 } 390 refcount_inc(&dd->count); 391 out: 392 *result = dd->dm_dev; 393 return 0; 394 } 395 EXPORT_SYMBOL(dm_get_device); 396 397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 398 sector_t start, sector_t len, void *data) 399 { 400 struct queue_limits *limits = data; 401 struct block_device *bdev = dev->bdev; 402 struct request_queue *q = bdev_get_queue(bdev); 403 char b[BDEVNAME_SIZE]; 404 405 if (unlikely(!q)) { 406 DMWARN("%s: Cannot set limits for nonexistent device %s", 407 dm_device_name(ti->table->md), bdevname(bdev, b)); 408 return 0; 409 } 410 411 if (blk_stack_limits(limits, &q->limits, 412 get_start_sect(bdev) + start) < 0) 413 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 414 "physical_block_size=%u, logical_block_size=%u, " 415 "alignment_offset=%u, start=%llu", 416 dm_device_name(ti->table->md), bdevname(bdev, b), 417 q->limits.physical_block_size, 418 q->limits.logical_block_size, 419 q->limits.alignment_offset, 420 (unsigned long long) start << SECTOR_SHIFT); 421 return 0; 422 } 423 424 /* 425 * Decrement a device's use count and remove it if necessary. 426 */ 427 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 428 { 429 int found = 0; 430 struct list_head *devices = &ti->table->devices; 431 struct dm_dev_internal *dd; 432 433 list_for_each_entry(dd, devices, list) { 434 if (dd->dm_dev == d) { 435 found = 1; 436 break; 437 } 438 } 439 if (!found) { 440 DMWARN("%s: device %s not in table devices list", 441 dm_device_name(ti->table->md), d->name); 442 return; 443 } 444 if (refcount_dec_and_test(&dd->count)) { 445 dm_put_table_device(ti->table->md, d); 446 list_del(&dd->list); 447 kfree(dd); 448 } 449 } 450 EXPORT_SYMBOL(dm_put_device); 451 452 /* 453 * Checks to see if the target joins onto the end of the table. 454 */ 455 static int adjoin(struct dm_table *table, struct dm_target *ti) 456 { 457 struct dm_target *prev; 458 459 if (!table->num_targets) 460 return !ti->begin; 461 462 prev = &table->targets[table->num_targets - 1]; 463 return (ti->begin == (prev->begin + prev->len)); 464 } 465 466 /* 467 * Used to dynamically allocate the arg array. 468 * 469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 470 * process messages even if some device is suspended. These messages have a 471 * small fixed number of arguments. 472 * 473 * On the other hand, dm-switch needs to process bulk data using messages and 474 * excessive use of GFP_NOIO could cause trouble. 475 */ 476 static char **realloc_argv(unsigned *size, char **old_argv) 477 { 478 char **argv; 479 unsigned new_size; 480 gfp_t gfp; 481 482 if (*size) { 483 new_size = *size * 2; 484 gfp = GFP_KERNEL; 485 } else { 486 new_size = 8; 487 gfp = GFP_NOIO; 488 } 489 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 490 if (argv && old_argv) { 491 memcpy(argv, old_argv, *size * sizeof(*argv)); 492 *size = new_size; 493 } 494 495 kfree(old_argv); 496 return argv; 497 } 498 499 /* 500 * Destructively splits up the argument list to pass to ctr. 501 */ 502 int dm_split_args(int *argc, char ***argvp, char *input) 503 { 504 char *start, *end = input, *out, **argv = NULL; 505 unsigned array_size = 0; 506 507 *argc = 0; 508 509 if (!input) { 510 *argvp = NULL; 511 return 0; 512 } 513 514 argv = realloc_argv(&array_size, argv); 515 if (!argv) 516 return -ENOMEM; 517 518 while (1) { 519 /* Skip whitespace */ 520 start = skip_spaces(end); 521 522 if (!*start) 523 break; /* success, we hit the end */ 524 525 /* 'out' is used to remove any back-quotes */ 526 end = out = start; 527 while (*end) { 528 /* Everything apart from '\0' can be quoted */ 529 if (*end == '\\' && *(end + 1)) { 530 *out++ = *(end + 1); 531 end += 2; 532 continue; 533 } 534 535 if (isspace(*end)) 536 break; /* end of token */ 537 538 *out++ = *end++; 539 } 540 541 /* have we already filled the array ? */ 542 if ((*argc + 1) > array_size) { 543 argv = realloc_argv(&array_size, argv); 544 if (!argv) 545 return -ENOMEM; 546 } 547 548 /* we know this is whitespace */ 549 if (*end) 550 end++; 551 552 /* terminate the string and put it in the array */ 553 *out = '\0'; 554 argv[*argc] = start; 555 (*argc)++; 556 } 557 558 *argvp = argv; 559 return 0; 560 } 561 562 /* 563 * Impose necessary and sufficient conditions on a devices's table such 564 * that any incoming bio which respects its logical_block_size can be 565 * processed successfully. If it falls across the boundary between 566 * two or more targets, the size of each piece it gets split into must 567 * be compatible with the logical_block_size of the target processing it. 568 */ 569 static int validate_hardware_logical_block_alignment(struct dm_table *table, 570 struct queue_limits *limits) 571 { 572 /* 573 * This function uses arithmetic modulo the logical_block_size 574 * (in units of 512-byte sectors). 575 */ 576 unsigned short device_logical_block_size_sects = 577 limits->logical_block_size >> SECTOR_SHIFT; 578 579 /* 580 * Offset of the start of the next table entry, mod logical_block_size. 581 */ 582 unsigned short next_target_start = 0; 583 584 /* 585 * Given an aligned bio that extends beyond the end of a 586 * target, how many sectors must the next target handle? 587 */ 588 unsigned short remaining = 0; 589 590 struct dm_target *ti; 591 struct queue_limits ti_limits; 592 unsigned i; 593 594 /* 595 * Check each entry in the table in turn. 596 */ 597 for (i = 0; i < dm_table_get_num_targets(table); i++) { 598 ti = dm_table_get_target(table, i); 599 600 blk_set_stacking_limits(&ti_limits); 601 602 /* combine all target devices' limits */ 603 if (ti->type->iterate_devices) 604 ti->type->iterate_devices(ti, dm_set_device_limits, 605 &ti_limits); 606 607 /* 608 * If the remaining sectors fall entirely within this 609 * table entry are they compatible with its logical_block_size? 610 */ 611 if (remaining < ti->len && 612 remaining & ((ti_limits.logical_block_size >> 613 SECTOR_SHIFT) - 1)) 614 break; /* Error */ 615 616 next_target_start = 617 (unsigned short) ((next_target_start + ti->len) & 618 (device_logical_block_size_sects - 1)); 619 remaining = next_target_start ? 620 device_logical_block_size_sects - next_target_start : 0; 621 } 622 623 if (remaining) { 624 DMWARN("%s: table line %u (start sect %llu len %llu) " 625 "not aligned to h/w logical block size %u", 626 dm_device_name(table->md), i, 627 (unsigned long long) ti->begin, 628 (unsigned long long) ti->len, 629 limits->logical_block_size); 630 return -EINVAL; 631 } 632 633 return 0; 634 } 635 636 int dm_table_add_target(struct dm_table *t, const char *type, 637 sector_t start, sector_t len, char *params) 638 { 639 int r = -EINVAL, argc; 640 char **argv; 641 struct dm_target *tgt; 642 643 if (t->singleton) { 644 DMERR("%s: target type %s must appear alone in table", 645 dm_device_name(t->md), t->targets->type->name); 646 return -EINVAL; 647 } 648 649 BUG_ON(t->num_targets >= t->num_allocated); 650 651 tgt = t->targets + t->num_targets; 652 memset(tgt, 0, sizeof(*tgt)); 653 654 if (!len) { 655 DMERR("%s: zero-length target", dm_device_name(t->md)); 656 return -EINVAL; 657 } 658 659 tgt->type = dm_get_target_type(type); 660 if (!tgt->type) { 661 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 662 return -EINVAL; 663 } 664 665 if (dm_target_needs_singleton(tgt->type)) { 666 if (t->num_targets) { 667 tgt->error = "singleton target type must appear alone in table"; 668 goto bad; 669 } 670 t->singleton = true; 671 } 672 673 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 674 tgt->error = "target type may not be included in a read-only table"; 675 goto bad; 676 } 677 678 if (t->immutable_target_type) { 679 if (t->immutable_target_type != tgt->type) { 680 tgt->error = "immutable target type cannot be mixed with other target types"; 681 goto bad; 682 } 683 } else if (dm_target_is_immutable(tgt->type)) { 684 if (t->num_targets) { 685 tgt->error = "immutable target type cannot be mixed with other target types"; 686 goto bad; 687 } 688 t->immutable_target_type = tgt->type; 689 } 690 691 if (dm_target_has_integrity(tgt->type)) 692 t->integrity_added = 1; 693 694 tgt->table = t; 695 tgt->begin = start; 696 tgt->len = len; 697 tgt->error = "Unknown error"; 698 699 /* 700 * Does this target adjoin the previous one ? 701 */ 702 if (!adjoin(t, tgt)) { 703 tgt->error = "Gap in table"; 704 goto bad; 705 } 706 707 r = dm_split_args(&argc, &argv, params); 708 if (r) { 709 tgt->error = "couldn't split parameters"; 710 goto bad; 711 } 712 713 r = tgt->type->ctr(tgt, argc, argv); 714 kfree(argv); 715 if (r) 716 goto bad; 717 718 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 719 720 if (!tgt->num_discard_bios && tgt->discards_supported) 721 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 722 dm_device_name(t->md), type); 723 724 return 0; 725 726 bad: 727 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r)); 728 dm_put_target_type(tgt->type); 729 return r; 730 } 731 732 /* 733 * Target argument parsing helpers. 734 */ 735 static int validate_next_arg(const struct dm_arg *arg, 736 struct dm_arg_set *arg_set, 737 unsigned *value, char **error, unsigned grouped) 738 { 739 const char *arg_str = dm_shift_arg(arg_set); 740 char dummy; 741 742 if (!arg_str || 743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 744 (*value < arg->min) || 745 (*value > arg->max) || 746 (grouped && arg_set->argc < *value)) { 747 *error = arg->error; 748 return -EINVAL; 749 } 750 751 return 0; 752 } 753 754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 755 unsigned *value, char **error) 756 { 757 return validate_next_arg(arg, arg_set, value, error, 0); 758 } 759 EXPORT_SYMBOL(dm_read_arg); 760 761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 762 unsigned *value, char **error) 763 { 764 return validate_next_arg(arg, arg_set, value, error, 1); 765 } 766 EXPORT_SYMBOL(dm_read_arg_group); 767 768 const char *dm_shift_arg(struct dm_arg_set *as) 769 { 770 char *r; 771 772 if (as->argc) { 773 as->argc--; 774 r = *as->argv; 775 as->argv++; 776 return r; 777 } 778 779 return NULL; 780 } 781 EXPORT_SYMBOL(dm_shift_arg); 782 783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 784 { 785 BUG_ON(as->argc < num_args); 786 as->argc -= num_args; 787 as->argv += num_args; 788 } 789 EXPORT_SYMBOL(dm_consume_args); 790 791 static bool __table_type_bio_based(enum dm_queue_mode table_type) 792 { 793 return (table_type == DM_TYPE_BIO_BASED || 794 table_type == DM_TYPE_DAX_BIO_BASED); 795 } 796 797 static bool __table_type_request_based(enum dm_queue_mode table_type) 798 { 799 return table_type == DM_TYPE_REQUEST_BASED; 800 } 801 802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 803 { 804 t->type = type; 805 } 806 EXPORT_SYMBOL_GPL(dm_table_set_type); 807 808 /* validate the dax capability of the target device span */ 809 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 810 sector_t start, sector_t len, void *data) 811 { 812 int blocksize = *(int *) data; 813 814 return !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len); 815 } 816 817 /* Check devices support synchronous DAX */ 818 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 819 sector_t start, sector_t len, void *data) 820 { 821 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 822 } 823 824 bool dm_table_supports_dax(struct dm_table *t, 825 iterate_devices_callout_fn iterate_fn, int *blocksize) 826 { 827 struct dm_target *ti; 828 unsigned i; 829 830 /* Ensure that all targets support DAX. */ 831 for (i = 0; i < dm_table_get_num_targets(t); i++) { 832 ti = dm_table_get_target(t, i); 833 834 if (!ti->type->direct_access) 835 return false; 836 837 if (!ti->type->iterate_devices || 838 ti->type->iterate_devices(ti, iterate_fn, blocksize)) 839 return false; 840 } 841 842 return true; 843 } 844 845 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 846 sector_t start, sector_t len, void *data) 847 { 848 struct block_device *bdev = dev->bdev; 849 struct request_queue *q = bdev_get_queue(bdev); 850 851 /* request-based cannot stack on partitions! */ 852 if (bdev_is_partition(bdev)) 853 return false; 854 855 return queue_is_mq(q); 856 } 857 858 static int dm_table_determine_type(struct dm_table *t) 859 { 860 unsigned i; 861 unsigned bio_based = 0, request_based = 0, hybrid = 0; 862 struct dm_target *tgt; 863 struct list_head *devices = dm_table_get_devices(t); 864 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 865 int page_size = PAGE_SIZE; 866 867 if (t->type != DM_TYPE_NONE) { 868 /* target already set the table's type */ 869 if (t->type == DM_TYPE_BIO_BASED) { 870 /* possibly upgrade to a variant of bio-based */ 871 goto verify_bio_based; 872 } 873 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 874 goto verify_rq_based; 875 } 876 877 for (i = 0; i < t->num_targets; i++) { 878 tgt = t->targets + i; 879 if (dm_target_hybrid(tgt)) 880 hybrid = 1; 881 else if (dm_target_request_based(tgt)) 882 request_based = 1; 883 else 884 bio_based = 1; 885 886 if (bio_based && request_based) { 887 DMERR("Inconsistent table: different target types" 888 " can't be mixed up"); 889 return -EINVAL; 890 } 891 } 892 893 if (hybrid && !bio_based && !request_based) { 894 /* 895 * The targets can work either way. 896 * Determine the type from the live device. 897 * Default to bio-based if device is new. 898 */ 899 if (__table_type_request_based(live_md_type)) 900 request_based = 1; 901 else 902 bio_based = 1; 903 } 904 905 if (bio_based) { 906 verify_bio_based: 907 /* We must use this table as bio-based */ 908 t->type = DM_TYPE_BIO_BASED; 909 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) || 910 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 911 t->type = DM_TYPE_DAX_BIO_BASED; 912 } 913 return 0; 914 } 915 916 BUG_ON(!request_based); /* No targets in this table */ 917 918 t->type = DM_TYPE_REQUEST_BASED; 919 920 verify_rq_based: 921 /* 922 * Request-based dm supports only tables that have a single target now. 923 * To support multiple targets, request splitting support is needed, 924 * and that needs lots of changes in the block-layer. 925 * (e.g. request completion process for partial completion.) 926 */ 927 if (t->num_targets > 1) { 928 DMERR("request-based DM doesn't support multiple targets"); 929 return -EINVAL; 930 } 931 932 if (list_empty(devices)) { 933 int srcu_idx; 934 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 935 936 /* inherit live table's type */ 937 if (live_table) 938 t->type = live_table->type; 939 dm_put_live_table(t->md, srcu_idx); 940 return 0; 941 } 942 943 tgt = dm_table_get_immutable_target(t); 944 if (!tgt) { 945 DMERR("table load rejected: immutable target is required"); 946 return -EINVAL; 947 } else if (tgt->max_io_len) { 948 DMERR("table load rejected: immutable target that splits IO is not supported"); 949 return -EINVAL; 950 } 951 952 /* Non-request-stackable devices can't be used for request-based dm */ 953 if (!tgt->type->iterate_devices || 954 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 955 DMERR("table load rejected: including non-request-stackable devices"); 956 return -EINVAL; 957 } 958 959 return 0; 960 } 961 962 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 963 { 964 return t->type; 965 } 966 967 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 968 { 969 return t->immutable_target_type; 970 } 971 972 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 973 { 974 /* Immutable target is implicitly a singleton */ 975 if (t->num_targets > 1 || 976 !dm_target_is_immutable(t->targets[0].type)) 977 return NULL; 978 979 return t->targets; 980 } 981 982 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 983 { 984 struct dm_target *ti; 985 unsigned i; 986 987 for (i = 0; i < dm_table_get_num_targets(t); i++) { 988 ti = dm_table_get_target(t, i); 989 if (dm_target_is_wildcard(ti->type)) 990 return ti; 991 } 992 993 return NULL; 994 } 995 996 bool dm_table_bio_based(struct dm_table *t) 997 { 998 return __table_type_bio_based(dm_table_get_type(t)); 999 } 1000 1001 bool dm_table_request_based(struct dm_table *t) 1002 { 1003 return __table_type_request_based(dm_table_get_type(t)); 1004 } 1005 1006 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1007 { 1008 enum dm_queue_mode type = dm_table_get_type(t); 1009 unsigned per_io_data_size = 0; 1010 unsigned min_pool_size = 0; 1011 struct dm_target *ti; 1012 unsigned i; 1013 1014 if (unlikely(type == DM_TYPE_NONE)) { 1015 DMWARN("no table type is set, can't allocate mempools"); 1016 return -EINVAL; 1017 } 1018 1019 if (__table_type_bio_based(type)) 1020 for (i = 0; i < t->num_targets; i++) { 1021 ti = t->targets + i; 1022 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1023 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1024 } 1025 1026 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1027 per_io_data_size, min_pool_size); 1028 if (!t->mempools) 1029 return -ENOMEM; 1030 1031 return 0; 1032 } 1033 1034 void dm_table_free_md_mempools(struct dm_table *t) 1035 { 1036 dm_free_md_mempools(t->mempools); 1037 t->mempools = NULL; 1038 } 1039 1040 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1041 { 1042 return t->mempools; 1043 } 1044 1045 static int setup_indexes(struct dm_table *t) 1046 { 1047 int i; 1048 unsigned int total = 0; 1049 sector_t *indexes; 1050 1051 /* allocate the space for *all* the indexes */ 1052 for (i = t->depth - 2; i >= 0; i--) { 1053 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1054 total += t->counts[i]; 1055 } 1056 1057 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1058 if (!indexes) 1059 return -ENOMEM; 1060 1061 /* set up internal nodes, bottom-up */ 1062 for (i = t->depth - 2; i >= 0; i--) { 1063 t->index[i] = indexes; 1064 indexes += (KEYS_PER_NODE * t->counts[i]); 1065 setup_btree_index(i, t); 1066 } 1067 1068 return 0; 1069 } 1070 1071 /* 1072 * Builds the btree to index the map. 1073 */ 1074 static int dm_table_build_index(struct dm_table *t) 1075 { 1076 int r = 0; 1077 unsigned int leaf_nodes; 1078 1079 /* how many indexes will the btree have ? */ 1080 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1081 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1082 1083 /* leaf layer has already been set up */ 1084 t->counts[t->depth - 1] = leaf_nodes; 1085 t->index[t->depth - 1] = t->highs; 1086 1087 if (t->depth >= 2) 1088 r = setup_indexes(t); 1089 1090 return r; 1091 } 1092 1093 static bool integrity_profile_exists(struct gendisk *disk) 1094 { 1095 return !!blk_get_integrity(disk); 1096 } 1097 1098 /* 1099 * Get a disk whose integrity profile reflects the table's profile. 1100 * Returns NULL if integrity support was inconsistent or unavailable. 1101 */ 1102 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1103 { 1104 struct list_head *devices = dm_table_get_devices(t); 1105 struct dm_dev_internal *dd = NULL; 1106 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1107 unsigned i; 1108 1109 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1110 struct dm_target *ti = dm_table_get_target(t, i); 1111 if (!dm_target_passes_integrity(ti->type)) 1112 goto no_integrity; 1113 } 1114 1115 list_for_each_entry(dd, devices, list) { 1116 template_disk = dd->dm_dev->bdev->bd_disk; 1117 if (!integrity_profile_exists(template_disk)) 1118 goto no_integrity; 1119 else if (prev_disk && 1120 blk_integrity_compare(prev_disk, template_disk) < 0) 1121 goto no_integrity; 1122 prev_disk = template_disk; 1123 } 1124 1125 return template_disk; 1126 1127 no_integrity: 1128 if (prev_disk) 1129 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1130 dm_device_name(t->md), 1131 prev_disk->disk_name, 1132 template_disk->disk_name); 1133 return NULL; 1134 } 1135 1136 /* 1137 * Register the mapped device for blk_integrity support if the 1138 * underlying devices have an integrity profile. But all devices may 1139 * not have matching profiles (checking all devices isn't reliable 1140 * during table load because this table may use other DM device(s) which 1141 * must be resumed before they will have an initialized integity 1142 * profile). Consequently, stacked DM devices force a 2 stage integrity 1143 * profile validation: First pass during table load, final pass during 1144 * resume. 1145 */ 1146 static int dm_table_register_integrity(struct dm_table *t) 1147 { 1148 struct mapped_device *md = t->md; 1149 struct gendisk *template_disk = NULL; 1150 1151 /* If target handles integrity itself do not register it here. */ 1152 if (t->integrity_added) 1153 return 0; 1154 1155 template_disk = dm_table_get_integrity_disk(t); 1156 if (!template_disk) 1157 return 0; 1158 1159 if (!integrity_profile_exists(dm_disk(md))) { 1160 t->integrity_supported = true; 1161 /* 1162 * Register integrity profile during table load; we can do 1163 * this because the final profile must match during resume. 1164 */ 1165 blk_integrity_register(dm_disk(md), 1166 blk_get_integrity(template_disk)); 1167 return 0; 1168 } 1169 1170 /* 1171 * If DM device already has an initialized integrity 1172 * profile the new profile should not conflict. 1173 */ 1174 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1175 DMWARN("%s: conflict with existing integrity profile: " 1176 "%s profile mismatch", 1177 dm_device_name(t->md), 1178 template_disk->disk_name); 1179 return 1; 1180 } 1181 1182 /* Preserve existing integrity profile */ 1183 t->integrity_supported = true; 1184 return 0; 1185 } 1186 1187 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1188 1189 struct dm_crypto_profile { 1190 struct blk_crypto_profile profile; 1191 struct mapped_device *md; 1192 }; 1193 1194 struct dm_keyslot_evict_args { 1195 const struct blk_crypto_key *key; 1196 int err; 1197 }; 1198 1199 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1200 sector_t start, sector_t len, void *data) 1201 { 1202 struct dm_keyslot_evict_args *args = data; 1203 int err; 1204 1205 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key); 1206 if (!args->err) 1207 args->err = err; 1208 /* Always try to evict the key from all devices. */ 1209 return 0; 1210 } 1211 1212 /* 1213 * When an inline encryption key is evicted from a device-mapper device, evict 1214 * it from all the underlying devices. 1215 */ 1216 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1217 const struct blk_crypto_key *key, unsigned int slot) 1218 { 1219 struct mapped_device *md = 1220 container_of(profile, struct dm_crypto_profile, profile)->md; 1221 struct dm_keyslot_evict_args args = { key }; 1222 struct dm_table *t; 1223 int srcu_idx; 1224 int i; 1225 struct dm_target *ti; 1226 1227 t = dm_get_live_table(md, &srcu_idx); 1228 if (!t) 1229 return 0; 1230 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1231 ti = dm_table_get_target(t, i); 1232 if (!ti->type->iterate_devices) 1233 continue; 1234 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args); 1235 } 1236 dm_put_live_table(md, srcu_idx); 1237 return args.err; 1238 } 1239 1240 static int 1241 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1242 sector_t start, sector_t len, void *data) 1243 { 1244 struct blk_crypto_profile *parent = data; 1245 struct blk_crypto_profile *child = 1246 bdev_get_queue(dev->bdev)->crypto_profile; 1247 1248 blk_crypto_intersect_capabilities(parent, child); 1249 return 0; 1250 } 1251 1252 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1253 { 1254 struct dm_crypto_profile *dmcp = container_of(profile, 1255 struct dm_crypto_profile, 1256 profile); 1257 1258 if (!profile) 1259 return; 1260 1261 blk_crypto_profile_destroy(profile); 1262 kfree(dmcp); 1263 } 1264 1265 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1266 { 1267 dm_destroy_crypto_profile(t->crypto_profile); 1268 t->crypto_profile = NULL; 1269 } 1270 1271 /* 1272 * Constructs and initializes t->crypto_profile with a crypto profile that 1273 * represents the common set of crypto capabilities of the devices described by 1274 * the dm_table. However, if the constructed crypto profile doesn't support all 1275 * crypto capabilities that are supported by the current mapped_device, it 1276 * returns an error instead, since we don't support removing crypto capabilities 1277 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1278 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1279 */ 1280 static int dm_table_construct_crypto_profile(struct dm_table *t) 1281 { 1282 struct dm_crypto_profile *dmcp; 1283 struct blk_crypto_profile *profile; 1284 struct dm_target *ti; 1285 unsigned int i; 1286 bool empty_profile = true; 1287 1288 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1289 if (!dmcp) 1290 return -ENOMEM; 1291 dmcp->md = t->md; 1292 1293 profile = &dmcp->profile; 1294 blk_crypto_profile_init(profile, 0); 1295 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1296 profile->max_dun_bytes_supported = UINT_MAX; 1297 memset(profile->modes_supported, 0xFF, 1298 sizeof(profile->modes_supported)); 1299 1300 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1301 ti = dm_table_get_target(t, i); 1302 1303 if (!dm_target_passes_crypto(ti->type)) { 1304 blk_crypto_intersect_capabilities(profile, NULL); 1305 break; 1306 } 1307 if (!ti->type->iterate_devices) 1308 continue; 1309 ti->type->iterate_devices(ti, 1310 device_intersect_crypto_capabilities, 1311 profile); 1312 } 1313 1314 if (t->md->queue && 1315 !blk_crypto_has_capabilities(profile, 1316 t->md->queue->crypto_profile)) { 1317 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1318 dm_destroy_crypto_profile(profile); 1319 return -EINVAL; 1320 } 1321 1322 /* 1323 * If the new profile doesn't actually support any crypto capabilities, 1324 * we may as well represent it with a NULL profile. 1325 */ 1326 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1327 if (profile->modes_supported[i]) { 1328 empty_profile = false; 1329 break; 1330 } 1331 } 1332 1333 if (empty_profile) { 1334 dm_destroy_crypto_profile(profile); 1335 profile = NULL; 1336 } 1337 1338 /* 1339 * t->crypto_profile is only set temporarily while the table is being 1340 * set up, and it gets set to NULL after the profile has been 1341 * transferred to the request_queue. 1342 */ 1343 t->crypto_profile = profile; 1344 1345 return 0; 1346 } 1347 1348 static void dm_update_crypto_profile(struct request_queue *q, 1349 struct dm_table *t) 1350 { 1351 if (!t->crypto_profile) 1352 return; 1353 1354 /* Make the crypto profile less restrictive. */ 1355 if (!q->crypto_profile) { 1356 blk_crypto_register(t->crypto_profile, q); 1357 } else { 1358 blk_crypto_update_capabilities(q->crypto_profile, 1359 t->crypto_profile); 1360 dm_destroy_crypto_profile(t->crypto_profile); 1361 } 1362 t->crypto_profile = NULL; 1363 } 1364 1365 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1366 1367 static int dm_table_construct_crypto_profile(struct dm_table *t) 1368 { 1369 return 0; 1370 } 1371 1372 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1373 { 1374 } 1375 1376 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1377 { 1378 } 1379 1380 static void dm_update_crypto_profile(struct request_queue *q, 1381 struct dm_table *t) 1382 { 1383 } 1384 1385 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1386 1387 /* 1388 * Prepares the table for use by building the indices, 1389 * setting the type, and allocating mempools. 1390 */ 1391 int dm_table_complete(struct dm_table *t) 1392 { 1393 int r; 1394 1395 r = dm_table_determine_type(t); 1396 if (r) { 1397 DMERR("unable to determine table type"); 1398 return r; 1399 } 1400 1401 r = dm_table_build_index(t); 1402 if (r) { 1403 DMERR("unable to build btrees"); 1404 return r; 1405 } 1406 1407 r = dm_table_register_integrity(t); 1408 if (r) { 1409 DMERR("could not register integrity profile."); 1410 return r; 1411 } 1412 1413 r = dm_table_construct_crypto_profile(t); 1414 if (r) { 1415 DMERR("could not construct crypto profile."); 1416 return r; 1417 } 1418 1419 r = dm_table_alloc_md_mempools(t, t->md); 1420 if (r) 1421 DMERR("unable to allocate mempools"); 1422 1423 return r; 1424 } 1425 1426 static DEFINE_MUTEX(_event_lock); 1427 void dm_table_event_callback(struct dm_table *t, 1428 void (*fn)(void *), void *context) 1429 { 1430 mutex_lock(&_event_lock); 1431 t->event_fn = fn; 1432 t->event_context = context; 1433 mutex_unlock(&_event_lock); 1434 } 1435 1436 void dm_table_event(struct dm_table *t) 1437 { 1438 mutex_lock(&_event_lock); 1439 if (t->event_fn) 1440 t->event_fn(t->event_context); 1441 mutex_unlock(&_event_lock); 1442 } 1443 EXPORT_SYMBOL(dm_table_event); 1444 1445 inline sector_t dm_table_get_size(struct dm_table *t) 1446 { 1447 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1448 } 1449 EXPORT_SYMBOL(dm_table_get_size); 1450 1451 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1452 { 1453 if (index >= t->num_targets) 1454 return NULL; 1455 1456 return t->targets + index; 1457 } 1458 1459 /* 1460 * Search the btree for the correct target. 1461 * 1462 * Caller should check returned pointer for NULL 1463 * to trap I/O beyond end of device. 1464 */ 1465 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1466 { 1467 unsigned int l, n = 0, k = 0; 1468 sector_t *node; 1469 1470 if (unlikely(sector >= dm_table_get_size(t))) 1471 return NULL; 1472 1473 for (l = 0; l < t->depth; l++) { 1474 n = get_child(n, k); 1475 node = get_node(t, l, n); 1476 1477 for (k = 0; k < KEYS_PER_NODE; k++) 1478 if (node[k] >= sector) 1479 break; 1480 } 1481 1482 return &t->targets[(KEYS_PER_NODE * n) + k]; 1483 } 1484 1485 /* 1486 * type->iterate_devices() should be called when the sanity check needs to 1487 * iterate and check all underlying data devices. iterate_devices() will 1488 * iterate all underlying data devices until it encounters a non-zero return 1489 * code, returned by whether the input iterate_devices_callout_fn, or 1490 * iterate_devices() itself internally. 1491 * 1492 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1493 * iterate multiple underlying devices internally, in which case a non-zero 1494 * return code returned by iterate_devices_callout_fn will stop the iteration 1495 * in advance. 1496 * 1497 * Cases requiring _any_ underlying device supporting some kind of attribute, 1498 * should use the iteration structure like dm_table_any_dev_attr(), or call 1499 * it directly. @func should handle semantics of positive examples, e.g. 1500 * capable of something. 1501 * 1502 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1503 * should use the iteration structure like dm_table_supports_nowait() or 1504 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1505 * uses an @anti_func that handle semantics of counter examples, e.g. not 1506 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1507 */ 1508 static bool dm_table_any_dev_attr(struct dm_table *t, 1509 iterate_devices_callout_fn func, void *data) 1510 { 1511 struct dm_target *ti; 1512 unsigned int i; 1513 1514 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1515 ti = dm_table_get_target(t, i); 1516 1517 if (ti->type->iterate_devices && 1518 ti->type->iterate_devices(ti, func, data)) 1519 return true; 1520 } 1521 1522 return false; 1523 } 1524 1525 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1526 sector_t start, sector_t len, void *data) 1527 { 1528 unsigned *num_devices = data; 1529 1530 (*num_devices)++; 1531 1532 return 0; 1533 } 1534 1535 /* 1536 * Check whether a table has no data devices attached using each 1537 * target's iterate_devices method. 1538 * Returns false if the result is unknown because a target doesn't 1539 * support iterate_devices. 1540 */ 1541 bool dm_table_has_no_data_devices(struct dm_table *table) 1542 { 1543 struct dm_target *ti; 1544 unsigned i, num_devices; 1545 1546 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1547 ti = dm_table_get_target(table, i); 1548 1549 if (!ti->type->iterate_devices) 1550 return false; 1551 1552 num_devices = 0; 1553 ti->type->iterate_devices(ti, count_device, &num_devices); 1554 if (num_devices) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1562 sector_t start, sector_t len, void *data) 1563 { 1564 struct request_queue *q = bdev_get_queue(dev->bdev); 1565 enum blk_zoned_model *zoned_model = data; 1566 1567 return blk_queue_zoned_model(q) != *zoned_model; 1568 } 1569 1570 /* 1571 * Check the device zoned model based on the target feature flag. If the target 1572 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1573 * also accepted but all devices must have the same zoned model. If the target 1574 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1575 * zoned model with all zoned devices having the same zone size. 1576 */ 1577 static bool dm_table_supports_zoned_model(struct dm_table *t, 1578 enum blk_zoned_model zoned_model) 1579 { 1580 struct dm_target *ti; 1581 unsigned i; 1582 1583 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1584 ti = dm_table_get_target(t, i); 1585 1586 if (dm_target_supports_zoned_hm(ti->type)) { 1587 if (!ti->type->iterate_devices || 1588 ti->type->iterate_devices(ti, device_not_zoned_model, 1589 &zoned_model)) 1590 return false; 1591 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1592 if (zoned_model == BLK_ZONED_HM) 1593 return false; 1594 } 1595 } 1596 1597 return true; 1598 } 1599 1600 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1601 sector_t start, sector_t len, void *data) 1602 { 1603 struct request_queue *q = bdev_get_queue(dev->bdev); 1604 unsigned int *zone_sectors = data; 1605 1606 if (!blk_queue_is_zoned(q)) 1607 return 0; 1608 1609 return blk_queue_zone_sectors(q) != *zone_sectors; 1610 } 1611 1612 /* 1613 * Check consistency of zoned model and zone sectors across all targets. For 1614 * zone sectors, if the destination device is a zoned block device, it shall 1615 * have the specified zone_sectors. 1616 */ 1617 static int validate_hardware_zoned_model(struct dm_table *table, 1618 enum blk_zoned_model zoned_model, 1619 unsigned int zone_sectors) 1620 { 1621 if (zoned_model == BLK_ZONED_NONE) 1622 return 0; 1623 1624 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1625 DMERR("%s: zoned model is not consistent across all devices", 1626 dm_device_name(table->md)); 1627 return -EINVAL; 1628 } 1629 1630 /* Check zone size validity and compatibility */ 1631 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1632 return -EINVAL; 1633 1634 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { 1635 DMERR("%s: zone sectors is not consistent across all zoned devices", 1636 dm_device_name(table->md)); 1637 return -EINVAL; 1638 } 1639 1640 return 0; 1641 } 1642 1643 /* 1644 * Establish the new table's queue_limits and validate them. 1645 */ 1646 int dm_calculate_queue_limits(struct dm_table *table, 1647 struct queue_limits *limits) 1648 { 1649 struct dm_target *ti; 1650 struct queue_limits ti_limits; 1651 unsigned i; 1652 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1653 unsigned int zone_sectors = 0; 1654 1655 blk_set_stacking_limits(limits); 1656 1657 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1658 blk_set_stacking_limits(&ti_limits); 1659 1660 ti = dm_table_get_target(table, i); 1661 1662 if (!ti->type->iterate_devices) 1663 goto combine_limits; 1664 1665 /* 1666 * Combine queue limits of all the devices this target uses. 1667 */ 1668 ti->type->iterate_devices(ti, dm_set_device_limits, 1669 &ti_limits); 1670 1671 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1672 /* 1673 * After stacking all limits, validate all devices 1674 * in table support this zoned model and zone sectors. 1675 */ 1676 zoned_model = ti_limits.zoned; 1677 zone_sectors = ti_limits.chunk_sectors; 1678 } 1679 1680 /* Set I/O hints portion of queue limits */ 1681 if (ti->type->io_hints) 1682 ti->type->io_hints(ti, &ti_limits); 1683 1684 /* 1685 * Check each device area is consistent with the target's 1686 * overall queue limits. 1687 */ 1688 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1689 &ti_limits)) 1690 return -EINVAL; 1691 1692 combine_limits: 1693 /* 1694 * Merge this target's queue limits into the overall limits 1695 * for the table. 1696 */ 1697 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1698 DMWARN("%s: adding target device " 1699 "(start sect %llu len %llu) " 1700 "caused an alignment inconsistency", 1701 dm_device_name(table->md), 1702 (unsigned long long) ti->begin, 1703 (unsigned long long) ti->len); 1704 } 1705 1706 /* 1707 * Verify that the zoned model and zone sectors, as determined before 1708 * any .io_hints override, are the same across all devices in the table. 1709 * - this is especially relevant if .io_hints is emulating a disk-managed 1710 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1711 * BUT... 1712 */ 1713 if (limits->zoned != BLK_ZONED_NONE) { 1714 /* 1715 * ...IF the above limits stacking determined a zoned model 1716 * validate that all of the table's devices conform to it. 1717 */ 1718 zoned_model = limits->zoned; 1719 zone_sectors = limits->chunk_sectors; 1720 } 1721 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1722 return -EINVAL; 1723 1724 return validate_hardware_logical_block_alignment(table, limits); 1725 } 1726 1727 /* 1728 * Verify that all devices have an integrity profile that matches the 1729 * DM device's registered integrity profile. If the profiles don't 1730 * match then unregister the DM device's integrity profile. 1731 */ 1732 static void dm_table_verify_integrity(struct dm_table *t) 1733 { 1734 struct gendisk *template_disk = NULL; 1735 1736 if (t->integrity_added) 1737 return; 1738 1739 if (t->integrity_supported) { 1740 /* 1741 * Verify that the original integrity profile 1742 * matches all the devices in this table. 1743 */ 1744 template_disk = dm_table_get_integrity_disk(t); 1745 if (template_disk && 1746 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1747 return; 1748 } 1749 1750 if (integrity_profile_exists(dm_disk(t->md))) { 1751 DMWARN("%s: unable to establish an integrity profile", 1752 dm_device_name(t->md)); 1753 blk_integrity_unregister(dm_disk(t->md)); 1754 } 1755 } 1756 1757 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1758 sector_t start, sector_t len, void *data) 1759 { 1760 unsigned long flush = (unsigned long) data; 1761 struct request_queue *q = bdev_get_queue(dev->bdev); 1762 1763 return (q->queue_flags & flush); 1764 } 1765 1766 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1767 { 1768 struct dm_target *ti; 1769 unsigned i; 1770 1771 /* 1772 * Require at least one underlying device to support flushes. 1773 * t->devices includes internal dm devices such as mirror logs 1774 * so we need to use iterate_devices here, which targets 1775 * supporting flushes must provide. 1776 */ 1777 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1778 ti = dm_table_get_target(t, i); 1779 1780 if (!ti->num_flush_bios) 1781 continue; 1782 1783 if (ti->flush_supported) 1784 return true; 1785 1786 if (ti->type->iterate_devices && 1787 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1788 return true; 1789 } 1790 1791 return false; 1792 } 1793 1794 static int device_dax_write_cache_enabled(struct dm_target *ti, 1795 struct dm_dev *dev, sector_t start, 1796 sector_t len, void *data) 1797 { 1798 struct dax_device *dax_dev = dev->dax_dev; 1799 1800 if (!dax_dev) 1801 return false; 1802 1803 if (dax_write_cache_enabled(dax_dev)) 1804 return true; 1805 return false; 1806 } 1807 1808 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1809 sector_t start, sector_t len, void *data) 1810 { 1811 struct request_queue *q = bdev_get_queue(dev->bdev); 1812 1813 return !blk_queue_nonrot(q); 1814 } 1815 1816 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1817 sector_t start, sector_t len, void *data) 1818 { 1819 struct request_queue *q = bdev_get_queue(dev->bdev); 1820 1821 return !blk_queue_add_random(q); 1822 } 1823 1824 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1825 sector_t start, sector_t len, void *data) 1826 { 1827 struct request_queue *q = bdev_get_queue(dev->bdev); 1828 1829 return !q->limits.max_write_same_sectors; 1830 } 1831 1832 static bool dm_table_supports_write_same(struct dm_table *t) 1833 { 1834 struct dm_target *ti; 1835 unsigned i; 1836 1837 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1838 ti = dm_table_get_target(t, i); 1839 1840 if (!ti->num_write_same_bios) 1841 return false; 1842 1843 if (!ti->type->iterate_devices || 1844 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1845 return false; 1846 } 1847 1848 return true; 1849 } 1850 1851 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1852 sector_t start, sector_t len, void *data) 1853 { 1854 struct request_queue *q = bdev_get_queue(dev->bdev); 1855 1856 return !q->limits.max_write_zeroes_sectors; 1857 } 1858 1859 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1860 { 1861 struct dm_target *ti; 1862 unsigned i = 0; 1863 1864 while (i < dm_table_get_num_targets(t)) { 1865 ti = dm_table_get_target(t, i++); 1866 1867 if (!ti->num_write_zeroes_bios) 1868 return false; 1869 1870 if (!ti->type->iterate_devices || 1871 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1872 return false; 1873 } 1874 1875 return true; 1876 } 1877 1878 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1879 sector_t start, sector_t len, void *data) 1880 { 1881 struct request_queue *q = bdev_get_queue(dev->bdev); 1882 1883 return !blk_queue_nowait(q); 1884 } 1885 1886 static bool dm_table_supports_nowait(struct dm_table *t) 1887 { 1888 struct dm_target *ti; 1889 unsigned i = 0; 1890 1891 while (i < dm_table_get_num_targets(t)) { 1892 ti = dm_table_get_target(t, i++); 1893 1894 if (!dm_target_supports_nowait(ti->type)) 1895 return false; 1896 1897 if (!ti->type->iterate_devices || 1898 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1899 return false; 1900 } 1901 1902 return true; 1903 } 1904 1905 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1906 sector_t start, sector_t len, void *data) 1907 { 1908 struct request_queue *q = bdev_get_queue(dev->bdev); 1909 1910 return !blk_queue_discard(q); 1911 } 1912 1913 static bool dm_table_supports_discards(struct dm_table *t) 1914 { 1915 struct dm_target *ti; 1916 unsigned i; 1917 1918 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1919 ti = dm_table_get_target(t, i); 1920 1921 if (!ti->num_discard_bios) 1922 return false; 1923 1924 /* 1925 * Either the target provides discard support (as implied by setting 1926 * 'discards_supported') or it relies on _all_ data devices having 1927 * discard support. 1928 */ 1929 if (!ti->discards_supported && 1930 (!ti->type->iterate_devices || 1931 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1932 return false; 1933 } 1934 1935 return true; 1936 } 1937 1938 static int device_not_secure_erase_capable(struct dm_target *ti, 1939 struct dm_dev *dev, sector_t start, 1940 sector_t len, void *data) 1941 { 1942 struct request_queue *q = bdev_get_queue(dev->bdev); 1943 1944 return !blk_queue_secure_erase(q); 1945 } 1946 1947 static bool dm_table_supports_secure_erase(struct dm_table *t) 1948 { 1949 struct dm_target *ti; 1950 unsigned int i; 1951 1952 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1953 ti = dm_table_get_target(t, i); 1954 1955 if (!ti->num_secure_erase_bios) 1956 return false; 1957 1958 if (!ti->type->iterate_devices || 1959 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1960 return false; 1961 } 1962 1963 return true; 1964 } 1965 1966 static int device_requires_stable_pages(struct dm_target *ti, 1967 struct dm_dev *dev, sector_t start, 1968 sector_t len, void *data) 1969 { 1970 struct request_queue *q = bdev_get_queue(dev->bdev); 1971 1972 return blk_queue_stable_writes(q); 1973 } 1974 1975 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1976 struct queue_limits *limits) 1977 { 1978 bool wc = false, fua = false; 1979 int page_size = PAGE_SIZE; 1980 int r; 1981 1982 /* 1983 * Copy table's limits to the DM device's request_queue 1984 */ 1985 q->limits = *limits; 1986 1987 if (dm_table_supports_nowait(t)) 1988 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1989 else 1990 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1991 1992 if (!dm_table_supports_discards(t)) { 1993 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1994 /* Must also clear discard limits... */ 1995 q->limits.max_discard_sectors = 0; 1996 q->limits.max_hw_discard_sectors = 0; 1997 q->limits.discard_granularity = 0; 1998 q->limits.discard_alignment = 0; 1999 q->limits.discard_misaligned = 0; 2000 } else 2001 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 2002 2003 if (dm_table_supports_secure_erase(t)) 2004 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 2005 2006 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 2007 wc = true; 2008 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 2009 fua = true; 2010 } 2011 blk_queue_write_cache(q, wc, fua); 2012 2013 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) { 2014 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 2015 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL)) 2016 set_dax_synchronous(t->md->dax_dev); 2017 } 2018 else 2019 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 2020 2021 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2022 dax_write_cache(t->md->dax_dev, true); 2023 2024 /* Ensure that all underlying devices are non-rotational. */ 2025 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 2026 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2027 else 2028 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2029 2030 if (!dm_table_supports_write_same(t)) 2031 q->limits.max_write_same_sectors = 0; 2032 if (!dm_table_supports_write_zeroes(t)) 2033 q->limits.max_write_zeroes_sectors = 0; 2034 2035 dm_table_verify_integrity(t); 2036 2037 /* 2038 * Some devices don't use blk_integrity but still want stable pages 2039 * because they do their own checksumming. 2040 * If any underlying device requires stable pages, a table must require 2041 * them as well. Only targets that support iterate_devices are considered: 2042 * don't want error, zero, etc to require stable pages. 2043 */ 2044 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2045 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2046 else 2047 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2048 2049 /* 2050 * Determine whether or not this queue's I/O timings contribute 2051 * to the entropy pool, Only request-based targets use this. 2052 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2053 * have it set. 2054 */ 2055 if (blk_queue_add_random(q) && 2056 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2057 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2058 2059 /* 2060 * For a zoned target, setup the zones related queue attributes 2061 * and resources necessary for zone append emulation if necessary. 2062 */ 2063 if (blk_queue_is_zoned(q)) { 2064 r = dm_set_zones_restrictions(t, q); 2065 if (r) 2066 return r; 2067 } 2068 2069 dm_update_crypto_profile(q, t); 2070 disk_update_readahead(t->md->disk); 2071 2072 return 0; 2073 } 2074 2075 unsigned int dm_table_get_num_targets(struct dm_table *t) 2076 { 2077 return t->num_targets; 2078 } 2079 2080 struct list_head *dm_table_get_devices(struct dm_table *t) 2081 { 2082 return &t->devices; 2083 } 2084 2085 fmode_t dm_table_get_mode(struct dm_table *t) 2086 { 2087 return t->mode; 2088 } 2089 EXPORT_SYMBOL(dm_table_get_mode); 2090 2091 enum suspend_mode { 2092 PRESUSPEND, 2093 PRESUSPEND_UNDO, 2094 POSTSUSPEND, 2095 }; 2096 2097 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2098 { 2099 int i = t->num_targets; 2100 struct dm_target *ti = t->targets; 2101 2102 lockdep_assert_held(&t->md->suspend_lock); 2103 2104 while (i--) { 2105 switch (mode) { 2106 case PRESUSPEND: 2107 if (ti->type->presuspend) 2108 ti->type->presuspend(ti); 2109 break; 2110 case PRESUSPEND_UNDO: 2111 if (ti->type->presuspend_undo) 2112 ti->type->presuspend_undo(ti); 2113 break; 2114 case POSTSUSPEND: 2115 if (ti->type->postsuspend) 2116 ti->type->postsuspend(ti); 2117 break; 2118 } 2119 ti++; 2120 } 2121 } 2122 2123 void dm_table_presuspend_targets(struct dm_table *t) 2124 { 2125 if (!t) 2126 return; 2127 2128 suspend_targets(t, PRESUSPEND); 2129 } 2130 2131 void dm_table_presuspend_undo_targets(struct dm_table *t) 2132 { 2133 if (!t) 2134 return; 2135 2136 suspend_targets(t, PRESUSPEND_UNDO); 2137 } 2138 2139 void dm_table_postsuspend_targets(struct dm_table *t) 2140 { 2141 if (!t) 2142 return; 2143 2144 suspend_targets(t, POSTSUSPEND); 2145 } 2146 2147 int dm_table_resume_targets(struct dm_table *t) 2148 { 2149 int i, r = 0; 2150 2151 lockdep_assert_held(&t->md->suspend_lock); 2152 2153 for (i = 0; i < t->num_targets; i++) { 2154 struct dm_target *ti = t->targets + i; 2155 2156 if (!ti->type->preresume) 2157 continue; 2158 2159 r = ti->type->preresume(ti); 2160 if (r) { 2161 DMERR("%s: %s: preresume failed, error = %d", 2162 dm_device_name(t->md), ti->type->name, r); 2163 return r; 2164 } 2165 } 2166 2167 for (i = 0; i < t->num_targets; i++) { 2168 struct dm_target *ti = t->targets + i; 2169 2170 if (ti->type->resume) 2171 ti->type->resume(ti); 2172 } 2173 2174 return 0; 2175 } 2176 2177 struct mapped_device *dm_table_get_md(struct dm_table *t) 2178 { 2179 return t->md; 2180 } 2181 EXPORT_SYMBOL(dm_table_get_md); 2182 2183 const char *dm_table_device_name(struct dm_table *t) 2184 { 2185 return dm_device_name(t->md); 2186 } 2187 EXPORT_SYMBOL_GPL(dm_table_device_name); 2188 2189 void dm_table_run_md_queue_async(struct dm_table *t) 2190 { 2191 if (!dm_table_request_based(t)) 2192 return; 2193 2194 if (t->md->queue) 2195 blk_mq_run_hw_queues(t->md->queue, true); 2196 } 2197 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2198 2199