xref: /openbmc/linux/drivers/md/dm-table.c (revision 9cfc5c90)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 
24 #define DM_MSG_PREFIX "table"
25 
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 struct dm_table {
32 	struct mapped_device *md;
33 	unsigned type;
34 
35 	/* btree table */
36 	unsigned int depth;
37 	unsigned int counts[MAX_DEPTH];	/* in nodes */
38 	sector_t *index[MAX_DEPTH];
39 
40 	unsigned int num_targets;
41 	unsigned int num_allocated;
42 	sector_t *highs;
43 	struct dm_target *targets;
44 
45 	struct target_type *immutable_target_type;
46 	unsigned integrity_supported:1;
47 	unsigned singleton:1;
48 
49 	/*
50 	 * Indicates the rw permissions for the new logical
51 	 * device.  This should be a combination of FMODE_READ
52 	 * and FMODE_WRITE.
53 	 */
54 	fmode_t mode;
55 
56 	/* a list of devices used by this table */
57 	struct list_head devices;
58 
59 	/* events get handed up using this callback */
60 	void (*event_fn)(void *);
61 	void *event_context;
62 
63 	struct dm_md_mempools *mempools;
64 
65 	struct list_head target_callbacks;
66 };
67 
68 /*
69  * Similar to ceiling(log_size(n))
70  */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73 	int result = 0;
74 
75 	while (n > 1) {
76 		n = dm_div_up(n, base);
77 		result++;
78 	}
79 
80 	return result;
81 }
82 
83 /*
84  * Calculate the index of the child node of the n'th node k'th key.
85  */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88 	return (n * CHILDREN_PER_NODE) + k;
89 }
90 
91 /*
92  * Return the n'th node of level l from table t.
93  */
94 static inline sector_t *get_node(struct dm_table *t,
95 				 unsigned int l, unsigned int n)
96 {
97 	return t->index[l] + (n * KEYS_PER_NODE);
98 }
99 
100 /*
101  * Return the highest key that you could lookup from the n'th
102  * node on level l of the btree.
103  */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106 	for (; l < t->depth - 1; l++)
107 		n = get_child(n, CHILDREN_PER_NODE - 1);
108 
109 	if (n >= t->counts[l])
110 		return (sector_t) - 1;
111 
112 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114 
115 /*
116  * Fills in a level of the btree based on the highs of the level
117  * below it.
118  */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121 	unsigned int n, k;
122 	sector_t *node;
123 
124 	for (n = 0U; n < t->counts[l]; n++) {
125 		node = get_node(t, l, n);
126 
127 		for (k = 0U; k < KEYS_PER_NODE; k++)
128 			node[k] = high(t, l + 1, get_child(n, k));
129 	}
130 
131 	return 0;
132 }
133 
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136 	unsigned long size;
137 	void *addr;
138 
139 	/*
140 	 * Check that we're not going to overflow.
141 	 */
142 	if (nmemb > (ULONG_MAX / elem_size))
143 		return NULL;
144 
145 	size = nmemb * elem_size;
146 	addr = vzalloc(size);
147 
148 	return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151 
152 /*
153  * highs, and targets are managed as dynamic arrays during a
154  * table load.
155  */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158 	sector_t *n_highs;
159 	struct dm_target *n_targets;
160 
161 	/*
162 	 * Allocate both the target array and offset array at once.
163 	 * Append an empty entry to catch sectors beyond the end of
164 	 * the device.
165 	 */
166 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167 					  sizeof(sector_t));
168 	if (!n_highs)
169 		return -ENOMEM;
170 
171 	n_targets = (struct dm_target *) (n_highs + num);
172 
173 	memset(n_highs, -1, sizeof(*n_highs) * num);
174 	vfree(t->highs);
175 
176 	t->num_allocated = num;
177 	t->highs = n_highs;
178 	t->targets = n_targets;
179 
180 	return 0;
181 }
182 
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184 		    unsigned num_targets, struct mapped_device *md)
185 {
186 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187 
188 	if (!t)
189 		return -ENOMEM;
190 
191 	INIT_LIST_HEAD(&t->devices);
192 	INIT_LIST_HEAD(&t->target_callbacks);
193 
194 	if (!num_targets)
195 		num_targets = KEYS_PER_NODE;
196 
197 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198 
199 	if (!num_targets) {
200 		kfree(t);
201 		return -ENOMEM;
202 	}
203 
204 	if (alloc_targets(t, num_targets)) {
205 		kfree(t);
206 		return -ENOMEM;
207 	}
208 
209 	t->mode = mode;
210 	t->md = md;
211 	*result = t;
212 	return 0;
213 }
214 
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217 	struct list_head *tmp, *next;
218 
219 	list_for_each_safe(tmp, next, devices) {
220 		struct dm_dev_internal *dd =
221 		    list_entry(tmp, struct dm_dev_internal, list);
222 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 		       dm_device_name(md), dd->dm_dev->name);
224 		dm_put_table_device(md, dd->dm_dev);
225 		kfree(dd);
226 	}
227 }
228 
229 void dm_table_destroy(struct dm_table *t)
230 {
231 	unsigned int i;
232 
233 	if (!t)
234 		return;
235 
236 	/* free the indexes */
237 	if (t->depth >= 2)
238 		vfree(t->index[t->depth - 2]);
239 
240 	/* free the targets */
241 	for (i = 0; i < t->num_targets; i++) {
242 		struct dm_target *tgt = t->targets + i;
243 
244 		if (tgt->type->dtr)
245 			tgt->type->dtr(tgt);
246 
247 		dm_put_target_type(tgt->type);
248 	}
249 
250 	vfree(t->highs);
251 
252 	/* free the device list */
253 	free_devices(&t->devices, t->md);
254 
255 	dm_free_md_mempools(t->mempools);
256 
257 	kfree(t);
258 }
259 
260 /*
261  * See if we've already got a device in the list.
262  */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265 	struct dm_dev_internal *dd;
266 
267 	list_for_each_entry (dd, l, list)
268 		if (dd->dm_dev->bdev->bd_dev == dev)
269 			return dd;
270 
271 	return NULL;
272 }
273 
274 /*
275  * If possible, this checks an area of a destination device is invalid.
276  */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278 				  sector_t start, sector_t len, void *data)
279 {
280 	struct request_queue *q;
281 	struct queue_limits *limits = data;
282 	struct block_device *bdev = dev->bdev;
283 	sector_t dev_size =
284 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285 	unsigned short logical_block_size_sectors =
286 		limits->logical_block_size >> SECTOR_SHIFT;
287 	char b[BDEVNAME_SIZE];
288 
289 	/*
290 	 * Some devices exist without request functions,
291 	 * such as loop devices not yet bound to backing files.
292 	 * Forbid the use of such devices.
293 	 */
294 	q = bdev_get_queue(bdev);
295 	if (!q || !q->make_request_fn) {
296 		DMWARN("%s: %s is not yet initialised: "
297 		       "start=%llu, len=%llu, dev_size=%llu",
298 		       dm_device_name(ti->table->md), bdevname(bdev, b),
299 		       (unsigned long long)start,
300 		       (unsigned long long)len,
301 		       (unsigned long long)dev_size);
302 		return 1;
303 	}
304 
305 	if (!dev_size)
306 		return 0;
307 
308 	if ((start >= dev_size) || (start + len > dev_size)) {
309 		DMWARN("%s: %s too small for target: "
310 		       "start=%llu, len=%llu, dev_size=%llu",
311 		       dm_device_name(ti->table->md), bdevname(bdev, b),
312 		       (unsigned long long)start,
313 		       (unsigned long long)len,
314 		       (unsigned long long)dev_size);
315 		return 1;
316 	}
317 
318 	if (logical_block_size_sectors <= 1)
319 		return 0;
320 
321 	if (start & (logical_block_size_sectors - 1)) {
322 		DMWARN("%s: start=%llu not aligned to h/w "
323 		       "logical block size %u of %s",
324 		       dm_device_name(ti->table->md),
325 		       (unsigned long long)start,
326 		       limits->logical_block_size, bdevname(bdev, b));
327 		return 1;
328 	}
329 
330 	if (len & (logical_block_size_sectors - 1)) {
331 		DMWARN("%s: len=%llu not aligned to h/w "
332 		       "logical block size %u of %s",
333 		       dm_device_name(ti->table->md),
334 		       (unsigned long long)len,
335 		       limits->logical_block_size, bdevname(bdev, b));
336 		return 1;
337 	}
338 
339 	return 0;
340 }
341 
342 /*
343  * This upgrades the mode on an already open dm_dev, being
344  * careful to leave things as they were if we fail to reopen the
345  * device and not to touch the existing bdev field in case
346  * it is accessed concurrently inside dm_table_any_congested().
347  */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349 			struct mapped_device *md)
350 {
351 	int r;
352 	struct dm_dev *old_dev, *new_dev;
353 
354 	old_dev = dd->dm_dev;
355 
356 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357 				dd->dm_dev->mode | new_mode, &new_dev);
358 	if (r)
359 		return r;
360 
361 	dd->dm_dev = new_dev;
362 	dm_put_table_device(md, old_dev);
363 
364 	return 0;
365 }
366 
367 /*
368  * Add a device to the list, or just increment the usage count if
369  * it's already present.
370  */
371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
372 		  struct dm_dev **result)
373 {
374 	int r;
375 	dev_t uninitialized_var(dev);
376 	struct dm_dev_internal *dd;
377 	struct dm_table *t = ti->table;
378 	struct block_device *bdev;
379 
380 	BUG_ON(!t);
381 
382 	/* convert the path to a device */
383 	bdev = lookup_bdev(path);
384 	if (IS_ERR(bdev)) {
385 		dev = name_to_dev_t(path);
386 		if (!dev)
387 			return -ENODEV;
388 	} else {
389 		dev = bdev->bd_dev;
390 		bdput(bdev);
391 	}
392 
393 	dd = find_device(&t->devices, dev);
394 	if (!dd) {
395 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
396 		if (!dd)
397 			return -ENOMEM;
398 
399 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
400 			kfree(dd);
401 			return r;
402 		}
403 
404 		atomic_set(&dd->count, 0);
405 		list_add(&dd->list, &t->devices);
406 
407 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
408 		r = upgrade_mode(dd, mode, t->md);
409 		if (r)
410 			return r;
411 	}
412 	atomic_inc(&dd->count);
413 
414 	*result = dd->dm_dev;
415 	return 0;
416 }
417 EXPORT_SYMBOL(dm_get_device);
418 
419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
420 				sector_t start, sector_t len, void *data)
421 {
422 	struct queue_limits *limits = data;
423 	struct block_device *bdev = dev->bdev;
424 	struct request_queue *q = bdev_get_queue(bdev);
425 	char b[BDEVNAME_SIZE];
426 
427 	if (unlikely(!q)) {
428 		DMWARN("%s: Cannot set limits for nonexistent device %s",
429 		       dm_device_name(ti->table->md), bdevname(bdev, b));
430 		return 0;
431 	}
432 
433 	if (bdev_stack_limits(limits, bdev, start) < 0)
434 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435 		       "physical_block_size=%u, logical_block_size=%u, "
436 		       "alignment_offset=%u, start=%llu",
437 		       dm_device_name(ti->table->md), bdevname(bdev, b),
438 		       q->limits.physical_block_size,
439 		       q->limits.logical_block_size,
440 		       q->limits.alignment_offset,
441 		       (unsigned long long) start << SECTOR_SHIFT);
442 
443 	return 0;
444 }
445 
446 /*
447  * Decrement a device's use count and remove it if necessary.
448  */
449 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
450 {
451 	int found = 0;
452 	struct list_head *devices = &ti->table->devices;
453 	struct dm_dev_internal *dd;
454 
455 	list_for_each_entry(dd, devices, list) {
456 		if (dd->dm_dev == d) {
457 			found = 1;
458 			break;
459 		}
460 	}
461 	if (!found) {
462 		DMWARN("%s: device %s not in table devices list",
463 		       dm_device_name(ti->table->md), d->name);
464 		return;
465 	}
466 	if (atomic_dec_and_test(&dd->count)) {
467 		dm_put_table_device(ti->table->md, d);
468 		list_del(&dd->list);
469 		kfree(dd);
470 	}
471 }
472 EXPORT_SYMBOL(dm_put_device);
473 
474 /*
475  * Checks to see if the target joins onto the end of the table.
476  */
477 static int adjoin(struct dm_table *table, struct dm_target *ti)
478 {
479 	struct dm_target *prev;
480 
481 	if (!table->num_targets)
482 		return !ti->begin;
483 
484 	prev = &table->targets[table->num_targets - 1];
485 	return (ti->begin == (prev->begin + prev->len));
486 }
487 
488 /*
489  * Used to dynamically allocate the arg array.
490  *
491  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
492  * process messages even if some device is suspended. These messages have a
493  * small fixed number of arguments.
494  *
495  * On the other hand, dm-switch needs to process bulk data using messages and
496  * excessive use of GFP_NOIO could cause trouble.
497  */
498 static char **realloc_argv(unsigned *array_size, char **old_argv)
499 {
500 	char **argv;
501 	unsigned new_size;
502 	gfp_t gfp;
503 
504 	if (*array_size) {
505 		new_size = *array_size * 2;
506 		gfp = GFP_KERNEL;
507 	} else {
508 		new_size = 8;
509 		gfp = GFP_NOIO;
510 	}
511 	argv = kmalloc(new_size * sizeof(*argv), gfp);
512 	if (argv) {
513 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
514 		*array_size = new_size;
515 	}
516 
517 	kfree(old_argv);
518 	return argv;
519 }
520 
521 /*
522  * Destructively splits up the argument list to pass to ctr.
523  */
524 int dm_split_args(int *argc, char ***argvp, char *input)
525 {
526 	char *start, *end = input, *out, **argv = NULL;
527 	unsigned array_size = 0;
528 
529 	*argc = 0;
530 
531 	if (!input) {
532 		*argvp = NULL;
533 		return 0;
534 	}
535 
536 	argv = realloc_argv(&array_size, argv);
537 	if (!argv)
538 		return -ENOMEM;
539 
540 	while (1) {
541 		/* Skip whitespace */
542 		start = skip_spaces(end);
543 
544 		if (!*start)
545 			break;	/* success, we hit the end */
546 
547 		/* 'out' is used to remove any back-quotes */
548 		end = out = start;
549 		while (*end) {
550 			/* Everything apart from '\0' can be quoted */
551 			if (*end == '\\' && *(end + 1)) {
552 				*out++ = *(end + 1);
553 				end += 2;
554 				continue;
555 			}
556 
557 			if (isspace(*end))
558 				break;	/* end of token */
559 
560 			*out++ = *end++;
561 		}
562 
563 		/* have we already filled the array ? */
564 		if ((*argc + 1) > array_size) {
565 			argv = realloc_argv(&array_size, argv);
566 			if (!argv)
567 				return -ENOMEM;
568 		}
569 
570 		/* we know this is whitespace */
571 		if (*end)
572 			end++;
573 
574 		/* terminate the string and put it in the array */
575 		*out = '\0';
576 		argv[*argc] = start;
577 		(*argc)++;
578 	}
579 
580 	*argvp = argv;
581 	return 0;
582 }
583 
584 /*
585  * Impose necessary and sufficient conditions on a devices's table such
586  * that any incoming bio which respects its logical_block_size can be
587  * processed successfully.  If it falls across the boundary between
588  * two or more targets, the size of each piece it gets split into must
589  * be compatible with the logical_block_size of the target processing it.
590  */
591 static int validate_hardware_logical_block_alignment(struct dm_table *table,
592 						 struct queue_limits *limits)
593 {
594 	/*
595 	 * This function uses arithmetic modulo the logical_block_size
596 	 * (in units of 512-byte sectors).
597 	 */
598 	unsigned short device_logical_block_size_sects =
599 		limits->logical_block_size >> SECTOR_SHIFT;
600 
601 	/*
602 	 * Offset of the start of the next table entry, mod logical_block_size.
603 	 */
604 	unsigned short next_target_start = 0;
605 
606 	/*
607 	 * Given an aligned bio that extends beyond the end of a
608 	 * target, how many sectors must the next target handle?
609 	 */
610 	unsigned short remaining = 0;
611 
612 	struct dm_target *uninitialized_var(ti);
613 	struct queue_limits ti_limits;
614 	unsigned i = 0;
615 
616 	/*
617 	 * Check each entry in the table in turn.
618 	 */
619 	while (i < dm_table_get_num_targets(table)) {
620 		ti = dm_table_get_target(table, i++);
621 
622 		blk_set_stacking_limits(&ti_limits);
623 
624 		/* combine all target devices' limits */
625 		if (ti->type->iterate_devices)
626 			ti->type->iterate_devices(ti, dm_set_device_limits,
627 						  &ti_limits);
628 
629 		/*
630 		 * If the remaining sectors fall entirely within this
631 		 * table entry are they compatible with its logical_block_size?
632 		 */
633 		if (remaining < ti->len &&
634 		    remaining & ((ti_limits.logical_block_size >>
635 				  SECTOR_SHIFT) - 1))
636 			break;	/* Error */
637 
638 		next_target_start =
639 		    (unsigned short) ((next_target_start + ti->len) &
640 				      (device_logical_block_size_sects - 1));
641 		remaining = next_target_start ?
642 		    device_logical_block_size_sects - next_target_start : 0;
643 	}
644 
645 	if (remaining) {
646 		DMWARN("%s: table line %u (start sect %llu len %llu) "
647 		       "not aligned to h/w logical block size %u",
648 		       dm_device_name(table->md), i,
649 		       (unsigned long long) ti->begin,
650 		       (unsigned long long) ti->len,
651 		       limits->logical_block_size);
652 		return -EINVAL;
653 	}
654 
655 	return 0;
656 }
657 
658 int dm_table_add_target(struct dm_table *t, const char *type,
659 			sector_t start, sector_t len, char *params)
660 {
661 	int r = -EINVAL, argc;
662 	char **argv;
663 	struct dm_target *tgt;
664 
665 	if (t->singleton) {
666 		DMERR("%s: target type %s must appear alone in table",
667 		      dm_device_name(t->md), t->targets->type->name);
668 		return -EINVAL;
669 	}
670 
671 	BUG_ON(t->num_targets >= t->num_allocated);
672 
673 	tgt = t->targets + t->num_targets;
674 	memset(tgt, 0, sizeof(*tgt));
675 
676 	if (!len) {
677 		DMERR("%s: zero-length target", dm_device_name(t->md));
678 		return -EINVAL;
679 	}
680 
681 	tgt->type = dm_get_target_type(type);
682 	if (!tgt->type) {
683 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
684 		      type);
685 		return -EINVAL;
686 	}
687 
688 	if (dm_target_needs_singleton(tgt->type)) {
689 		if (t->num_targets) {
690 			DMERR("%s: target type %s must appear alone in table",
691 			      dm_device_name(t->md), type);
692 			return -EINVAL;
693 		}
694 		t->singleton = 1;
695 	}
696 
697 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
698 		DMERR("%s: target type %s may not be included in read-only tables",
699 		      dm_device_name(t->md), type);
700 		return -EINVAL;
701 	}
702 
703 	if (t->immutable_target_type) {
704 		if (t->immutable_target_type != tgt->type) {
705 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
706 			      dm_device_name(t->md), t->immutable_target_type->name);
707 			return -EINVAL;
708 		}
709 	} else if (dm_target_is_immutable(tgt->type)) {
710 		if (t->num_targets) {
711 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
712 			      dm_device_name(t->md), tgt->type->name);
713 			return -EINVAL;
714 		}
715 		t->immutable_target_type = tgt->type;
716 	}
717 
718 	tgt->table = t;
719 	tgt->begin = start;
720 	tgt->len = len;
721 	tgt->error = "Unknown error";
722 
723 	/*
724 	 * Does this target adjoin the previous one ?
725 	 */
726 	if (!adjoin(t, tgt)) {
727 		tgt->error = "Gap in table";
728 		r = -EINVAL;
729 		goto bad;
730 	}
731 
732 	r = dm_split_args(&argc, &argv, params);
733 	if (r) {
734 		tgt->error = "couldn't split parameters (insufficient memory)";
735 		goto bad;
736 	}
737 
738 	r = tgt->type->ctr(tgt, argc, argv);
739 	kfree(argv);
740 	if (r)
741 		goto bad;
742 
743 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
744 
745 	if (!tgt->num_discard_bios && tgt->discards_supported)
746 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
747 		       dm_device_name(t->md), type);
748 
749 	return 0;
750 
751  bad:
752 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
753 	dm_put_target_type(tgt->type);
754 	return r;
755 }
756 
757 /*
758  * Target argument parsing helpers.
759  */
760 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
761 			     unsigned *value, char **error, unsigned grouped)
762 {
763 	const char *arg_str = dm_shift_arg(arg_set);
764 	char dummy;
765 
766 	if (!arg_str ||
767 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
768 	    (*value < arg->min) ||
769 	    (*value > arg->max) ||
770 	    (grouped && arg_set->argc < *value)) {
771 		*error = arg->error;
772 		return -EINVAL;
773 	}
774 
775 	return 0;
776 }
777 
778 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
779 		unsigned *value, char **error)
780 {
781 	return validate_next_arg(arg, arg_set, value, error, 0);
782 }
783 EXPORT_SYMBOL(dm_read_arg);
784 
785 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
786 		      unsigned *value, char **error)
787 {
788 	return validate_next_arg(arg, arg_set, value, error, 1);
789 }
790 EXPORT_SYMBOL(dm_read_arg_group);
791 
792 const char *dm_shift_arg(struct dm_arg_set *as)
793 {
794 	char *r;
795 
796 	if (as->argc) {
797 		as->argc--;
798 		r = *as->argv;
799 		as->argv++;
800 		return r;
801 	}
802 
803 	return NULL;
804 }
805 EXPORT_SYMBOL(dm_shift_arg);
806 
807 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
808 {
809 	BUG_ON(as->argc < num_args);
810 	as->argc -= num_args;
811 	as->argv += num_args;
812 }
813 EXPORT_SYMBOL(dm_consume_args);
814 
815 static bool __table_type_request_based(unsigned table_type)
816 {
817 	return (table_type == DM_TYPE_REQUEST_BASED ||
818 		table_type == DM_TYPE_MQ_REQUEST_BASED);
819 }
820 
821 static int dm_table_set_type(struct dm_table *t)
822 {
823 	unsigned i;
824 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
825 	bool use_blk_mq = false;
826 	struct dm_target *tgt;
827 	struct dm_dev_internal *dd;
828 	struct list_head *devices;
829 	unsigned live_md_type = dm_get_md_type(t->md);
830 
831 	for (i = 0; i < t->num_targets; i++) {
832 		tgt = t->targets + i;
833 		if (dm_target_hybrid(tgt))
834 			hybrid = 1;
835 		else if (dm_target_request_based(tgt))
836 			request_based = 1;
837 		else
838 			bio_based = 1;
839 
840 		if (bio_based && request_based) {
841 			DMWARN("Inconsistent table: different target types"
842 			       " can't be mixed up");
843 			return -EINVAL;
844 		}
845 	}
846 
847 	if (hybrid && !bio_based && !request_based) {
848 		/*
849 		 * The targets can work either way.
850 		 * Determine the type from the live device.
851 		 * Default to bio-based if device is new.
852 		 */
853 		if (__table_type_request_based(live_md_type))
854 			request_based = 1;
855 		else
856 			bio_based = 1;
857 	}
858 
859 	if (bio_based) {
860 		/* We must use this table as bio-based */
861 		t->type = DM_TYPE_BIO_BASED;
862 		return 0;
863 	}
864 
865 	BUG_ON(!request_based); /* No targets in this table */
866 
867 	/*
868 	 * Request-based dm supports only tables that have a single target now.
869 	 * To support multiple targets, request splitting support is needed,
870 	 * and that needs lots of changes in the block-layer.
871 	 * (e.g. request completion process for partial completion.)
872 	 */
873 	if (t->num_targets > 1) {
874 		DMWARN("Request-based dm doesn't support multiple targets yet");
875 		return -EINVAL;
876 	}
877 
878 	/* Non-request-stackable devices can't be used for request-based dm */
879 	devices = dm_table_get_devices(t);
880 	list_for_each_entry(dd, devices, list) {
881 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
882 
883 		if (!blk_queue_stackable(q)) {
884 			DMERR("table load rejected: including"
885 			      " non-request-stackable devices");
886 			return -EINVAL;
887 		}
888 
889 		if (q->mq_ops)
890 			use_blk_mq = true;
891 	}
892 
893 	if (use_blk_mq) {
894 		/* verify _all_ devices in the table are blk-mq devices */
895 		list_for_each_entry(dd, devices, list)
896 			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
897 				DMERR("table load rejected: not all devices"
898 				      " are blk-mq request-stackable");
899 				return -EINVAL;
900 			}
901 		t->type = DM_TYPE_MQ_REQUEST_BASED;
902 
903 	} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
904 		/* inherit live MD type */
905 		t->type = live_md_type;
906 
907 	} else
908 		t->type = DM_TYPE_REQUEST_BASED;
909 
910 	return 0;
911 }
912 
913 unsigned dm_table_get_type(struct dm_table *t)
914 {
915 	return t->type;
916 }
917 
918 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
919 {
920 	return t->immutable_target_type;
921 }
922 
923 bool dm_table_request_based(struct dm_table *t)
924 {
925 	return __table_type_request_based(dm_table_get_type(t));
926 }
927 
928 bool dm_table_mq_request_based(struct dm_table *t)
929 {
930 	return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
931 }
932 
933 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
934 {
935 	unsigned type = dm_table_get_type(t);
936 	unsigned per_bio_data_size = 0;
937 	struct dm_target *tgt;
938 	unsigned i;
939 
940 	if (unlikely(type == DM_TYPE_NONE)) {
941 		DMWARN("no table type is set, can't allocate mempools");
942 		return -EINVAL;
943 	}
944 
945 	if (type == DM_TYPE_BIO_BASED)
946 		for (i = 0; i < t->num_targets; i++) {
947 			tgt = t->targets + i;
948 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
949 		}
950 
951 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
952 	if (!t->mempools)
953 		return -ENOMEM;
954 
955 	return 0;
956 }
957 
958 void dm_table_free_md_mempools(struct dm_table *t)
959 {
960 	dm_free_md_mempools(t->mempools);
961 	t->mempools = NULL;
962 }
963 
964 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
965 {
966 	return t->mempools;
967 }
968 
969 static int setup_indexes(struct dm_table *t)
970 {
971 	int i;
972 	unsigned int total = 0;
973 	sector_t *indexes;
974 
975 	/* allocate the space for *all* the indexes */
976 	for (i = t->depth - 2; i >= 0; i--) {
977 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
978 		total += t->counts[i];
979 	}
980 
981 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
982 	if (!indexes)
983 		return -ENOMEM;
984 
985 	/* set up internal nodes, bottom-up */
986 	for (i = t->depth - 2; i >= 0; i--) {
987 		t->index[i] = indexes;
988 		indexes += (KEYS_PER_NODE * t->counts[i]);
989 		setup_btree_index(i, t);
990 	}
991 
992 	return 0;
993 }
994 
995 /*
996  * Builds the btree to index the map.
997  */
998 static int dm_table_build_index(struct dm_table *t)
999 {
1000 	int r = 0;
1001 	unsigned int leaf_nodes;
1002 
1003 	/* how many indexes will the btree have ? */
1004 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1005 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1006 
1007 	/* leaf layer has already been set up */
1008 	t->counts[t->depth - 1] = leaf_nodes;
1009 	t->index[t->depth - 1] = t->highs;
1010 
1011 	if (t->depth >= 2)
1012 		r = setup_indexes(t);
1013 
1014 	return r;
1015 }
1016 
1017 static bool integrity_profile_exists(struct gendisk *disk)
1018 {
1019 	return !!blk_get_integrity(disk);
1020 }
1021 
1022 /*
1023  * Get a disk whose integrity profile reflects the table's profile.
1024  * Returns NULL if integrity support was inconsistent or unavailable.
1025  */
1026 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1027 {
1028 	struct list_head *devices = dm_table_get_devices(t);
1029 	struct dm_dev_internal *dd = NULL;
1030 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1031 
1032 	list_for_each_entry(dd, devices, list) {
1033 		template_disk = dd->dm_dev->bdev->bd_disk;
1034 		if (!integrity_profile_exists(template_disk))
1035 			goto no_integrity;
1036 		else if (prev_disk &&
1037 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1038 			goto no_integrity;
1039 		prev_disk = template_disk;
1040 	}
1041 
1042 	return template_disk;
1043 
1044 no_integrity:
1045 	if (prev_disk)
1046 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1047 		       dm_device_name(t->md),
1048 		       prev_disk->disk_name,
1049 		       template_disk->disk_name);
1050 	return NULL;
1051 }
1052 
1053 /*
1054  * Register the mapped device for blk_integrity support if the
1055  * underlying devices have an integrity profile.  But all devices may
1056  * not have matching profiles (checking all devices isn't reliable
1057  * during table load because this table may use other DM device(s) which
1058  * must be resumed before they will have an initialized integity
1059  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1060  * profile validation: First pass during table load, final pass during
1061  * resume.
1062  */
1063 static int dm_table_register_integrity(struct dm_table *t)
1064 {
1065 	struct mapped_device *md = t->md;
1066 	struct gendisk *template_disk = NULL;
1067 
1068 	template_disk = dm_table_get_integrity_disk(t);
1069 	if (!template_disk)
1070 		return 0;
1071 
1072 	if (!integrity_profile_exists(dm_disk(md))) {
1073 		t->integrity_supported = 1;
1074 		/*
1075 		 * Register integrity profile during table load; we can do
1076 		 * this because the final profile must match during resume.
1077 		 */
1078 		blk_integrity_register(dm_disk(md),
1079 				       blk_get_integrity(template_disk));
1080 		return 0;
1081 	}
1082 
1083 	/*
1084 	 * If DM device already has an initialized integrity
1085 	 * profile the new profile should not conflict.
1086 	 */
1087 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1088 		DMWARN("%s: conflict with existing integrity profile: "
1089 		       "%s profile mismatch",
1090 		       dm_device_name(t->md),
1091 		       template_disk->disk_name);
1092 		return 1;
1093 	}
1094 
1095 	/* Preserve existing integrity profile */
1096 	t->integrity_supported = 1;
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Prepares the table for use by building the indices,
1102  * setting the type, and allocating mempools.
1103  */
1104 int dm_table_complete(struct dm_table *t)
1105 {
1106 	int r;
1107 
1108 	r = dm_table_set_type(t);
1109 	if (r) {
1110 		DMERR("unable to set table type");
1111 		return r;
1112 	}
1113 
1114 	r = dm_table_build_index(t);
1115 	if (r) {
1116 		DMERR("unable to build btrees");
1117 		return r;
1118 	}
1119 
1120 	r = dm_table_register_integrity(t);
1121 	if (r) {
1122 		DMERR("could not register integrity profile.");
1123 		return r;
1124 	}
1125 
1126 	r = dm_table_alloc_md_mempools(t, t->md);
1127 	if (r)
1128 		DMERR("unable to allocate mempools");
1129 
1130 	return r;
1131 }
1132 
1133 static DEFINE_MUTEX(_event_lock);
1134 void dm_table_event_callback(struct dm_table *t,
1135 			     void (*fn)(void *), void *context)
1136 {
1137 	mutex_lock(&_event_lock);
1138 	t->event_fn = fn;
1139 	t->event_context = context;
1140 	mutex_unlock(&_event_lock);
1141 }
1142 
1143 void dm_table_event(struct dm_table *t)
1144 {
1145 	/*
1146 	 * You can no longer call dm_table_event() from interrupt
1147 	 * context, use a bottom half instead.
1148 	 */
1149 	BUG_ON(in_interrupt());
1150 
1151 	mutex_lock(&_event_lock);
1152 	if (t->event_fn)
1153 		t->event_fn(t->event_context);
1154 	mutex_unlock(&_event_lock);
1155 }
1156 EXPORT_SYMBOL(dm_table_event);
1157 
1158 sector_t dm_table_get_size(struct dm_table *t)
1159 {
1160 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1161 }
1162 EXPORT_SYMBOL(dm_table_get_size);
1163 
1164 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1165 {
1166 	if (index >= t->num_targets)
1167 		return NULL;
1168 
1169 	return t->targets + index;
1170 }
1171 
1172 /*
1173  * Search the btree for the correct target.
1174  *
1175  * Caller should check returned pointer with dm_target_is_valid()
1176  * to trap I/O beyond end of device.
1177  */
1178 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1179 {
1180 	unsigned int l, n = 0, k = 0;
1181 	sector_t *node;
1182 
1183 	for (l = 0; l < t->depth; l++) {
1184 		n = get_child(n, k);
1185 		node = get_node(t, l, n);
1186 
1187 		for (k = 0; k < KEYS_PER_NODE; k++)
1188 			if (node[k] >= sector)
1189 				break;
1190 	}
1191 
1192 	return &t->targets[(KEYS_PER_NODE * n) + k];
1193 }
1194 
1195 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1196 			sector_t start, sector_t len, void *data)
1197 {
1198 	unsigned *num_devices = data;
1199 
1200 	(*num_devices)++;
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Check whether a table has no data devices attached using each
1207  * target's iterate_devices method.
1208  * Returns false if the result is unknown because a target doesn't
1209  * support iterate_devices.
1210  */
1211 bool dm_table_has_no_data_devices(struct dm_table *table)
1212 {
1213 	struct dm_target *uninitialized_var(ti);
1214 	unsigned i = 0, num_devices = 0;
1215 
1216 	while (i < dm_table_get_num_targets(table)) {
1217 		ti = dm_table_get_target(table, i++);
1218 
1219 		if (!ti->type->iterate_devices)
1220 			return false;
1221 
1222 		ti->type->iterate_devices(ti, count_device, &num_devices);
1223 		if (num_devices)
1224 			return false;
1225 	}
1226 
1227 	return true;
1228 }
1229 
1230 /*
1231  * Establish the new table's queue_limits and validate them.
1232  */
1233 int dm_calculate_queue_limits(struct dm_table *table,
1234 			      struct queue_limits *limits)
1235 {
1236 	struct dm_target *uninitialized_var(ti);
1237 	struct queue_limits ti_limits;
1238 	unsigned i = 0;
1239 
1240 	blk_set_stacking_limits(limits);
1241 
1242 	while (i < dm_table_get_num_targets(table)) {
1243 		blk_set_stacking_limits(&ti_limits);
1244 
1245 		ti = dm_table_get_target(table, i++);
1246 
1247 		if (!ti->type->iterate_devices)
1248 			goto combine_limits;
1249 
1250 		/*
1251 		 * Combine queue limits of all the devices this target uses.
1252 		 */
1253 		ti->type->iterate_devices(ti, dm_set_device_limits,
1254 					  &ti_limits);
1255 
1256 		/* Set I/O hints portion of queue limits */
1257 		if (ti->type->io_hints)
1258 			ti->type->io_hints(ti, &ti_limits);
1259 
1260 		/*
1261 		 * Check each device area is consistent with the target's
1262 		 * overall queue limits.
1263 		 */
1264 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1265 					      &ti_limits))
1266 			return -EINVAL;
1267 
1268 combine_limits:
1269 		/*
1270 		 * Merge this target's queue limits into the overall limits
1271 		 * for the table.
1272 		 */
1273 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1274 			DMWARN("%s: adding target device "
1275 			       "(start sect %llu len %llu) "
1276 			       "caused an alignment inconsistency",
1277 			       dm_device_name(table->md),
1278 			       (unsigned long long) ti->begin,
1279 			       (unsigned long long) ti->len);
1280 	}
1281 
1282 	return validate_hardware_logical_block_alignment(table, limits);
1283 }
1284 
1285 /*
1286  * Verify that all devices have an integrity profile that matches the
1287  * DM device's registered integrity profile.  If the profiles don't
1288  * match then unregister the DM device's integrity profile.
1289  */
1290 static void dm_table_verify_integrity(struct dm_table *t)
1291 {
1292 	struct gendisk *template_disk = NULL;
1293 
1294 	if (t->integrity_supported) {
1295 		/*
1296 		 * Verify that the original integrity profile
1297 		 * matches all the devices in this table.
1298 		 */
1299 		template_disk = dm_table_get_integrity_disk(t);
1300 		if (template_disk &&
1301 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1302 			return;
1303 	}
1304 
1305 	if (integrity_profile_exists(dm_disk(t->md))) {
1306 		DMWARN("%s: unable to establish an integrity profile",
1307 		       dm_device_name(t->md));
1308 		blk_integrity_unregister(dm_disk(t->md));
1309 	}
1310 }
1311 
1312 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1313 				sector_t start, sector_t len, void *data)
1314 {
1315 	unsigned flush = (*(unsigned *)data);
1316 	struct request_queue *q = bdev_get_queue(dev->bdev);
1317 
1318 	return q && (q->flush_flags & flush);
1319 }
1320 
1321 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1322 {
1323 	struct dm_target *ti;
1324 	unsigned i = 0;
1325 
1326 	/*
1327 	 * Require at least one underlying device to support flushes.
1328 	 * t->devices includes internal dm devices such as mirror logs
1329 	 * so we need to use iterate_devices here, which targets
1330 	 * supporting flushes must provide.
1331 	 */
1332 	while (i < dm_table_get_num_targets(t)) {
1333 		ti = dm_table_get_target(t, i++);
1334 
1335 		if (!ti->num_flush_bios)
1336 			continue;
1337 
1338 		if (ti->flush_supported)
1339 			return true;
1340 
1341 		if (ti->type->iterate_devices &&
1342 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1343 			return true;
1344 	}
1345 
1346 	return false;
1347 }
1348 
1349 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1350 {
1351 	struct dm_target *ti;
1352 	unsigned i = 0;
1353 
1354 	/* Ensure that all targets supports discard_zeroes_data. */
1355 	while (i < dm_table_get_num_targets(t)) {
1356 		ti = dm_table_get_target(t, i++);
1357 
1358 		if (ti->discard_zeroes_data_unsupported)
1359 			return false;
1360 	}
1361 
1362 	return true;
1363 }
1364 
1365 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1366 			    sector_t start, sector_t len, void *data)
1367 {
1368 	struct request_queue *q = bdev_get_queue(dev->bdev);
1369 
1370 	return q && blk_queue_nonrot(q);
1371 }
1372 
1373 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1374 			     sector_t start, sector_t len, void *data)
1375 {
1376 	struct request_queue *q = bdev_get_queue(dev->bdev);
1377 
1378 	return q && !blk_queue_add_random(q);
1379 }
1380 
1381 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1382 				   sector_t start, sector_t len, void *data)
1383 {
1384 	struct request_queue *q = bdev_get_queue(dev->bdev);
1385 
1386 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1387 }
1388 
1389 static bool dm_table_all_devices_attribute(struct dm_table *t,
1390 					   iterate_devices_callout_fn func)
1391 {
1392 	struct dm_target *ti;
1393 	unsigned i = 0;
1394 
1395 	while (i < dm_table_get_num_targets(t)) {
1396 		ti = dm_table_get_target(t, i++);
1397 
1398 		if (!ti->type->iterate_devices ||
1399 		    !ti->type->iterate_devices(ti, func, NULL))
1400 			return false;
1401 	}
1402 
1403 	return true;
1404 }
1405 
1406 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1407 					 sector_t start, sector_t len, void *data)
1408 {
1409 	struct request_queue *q = bdev_get_queue(dev->bdev);
1410 
1411 	return q && !q->limits.max_write_same_sectors;
1412 }
1413 
1414 static bool dm_table_supports_write_same(struct dm_table *t)
1415 {
1416 	struct dm_target *ti;
1417 	unsigned i = 0;
1418 
1419 	while (i < dm_table_get_num_targets(t)) {
1420 		ti = dm_table_get_target(t, i++);
1421 
1422 		if (!ti->num_write_same_bios)
1423 			return false;
1424 
1425 		if (!ti->type->iterate_devices ||
1426 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1427 			return false;
1428 	}
1429 
1430 	return true;
1431 }
1432 
1433 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1434 				  sector_t start, sector_t len, void *data)
1435 {
1436 	struct request_queue *q = bdev_get_queue(dev->bdev);
1437 
1438 	return q && blk_queue_discard(q);
1439 }
1440 
1441 static bool dm_table_supports_discards(struct dm_table *t)
1442 {
1443 	struct dm_target *ti;
1444 	unsigned i = 0;
1445 
1446 	/*
1447 	 * Unless any target used by the table set discards_supported,
1448 	 * require at least one underlying device to support discards.
1449 	 * t->devices includes internal dm devices such as mirror logs
1450 	 * so we need to use iterate_devices here, which targets
1451 	 * supporting discard selectively must provide.
1452 	 */
1453 	while (i < dm_table_get_num_targets(t)) {
1454 		ti = dm_table_get_target(t, i++);
1455 
1456 		if (!ti->num_discard_bios)
1457 			continue;
1458 
1459 		if (ti->discards_supported)
1460 			return true;
1461 
1462 		if (ti->type->iterate_devices &&
1463 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1464 			return true;
1465 	}
1466 
1467 	return false;
1468 }
1469 
1470 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1471 			       struct queue_limits *limits)
1472 {
1473 	unsigned flush = 0;
1474 
1475 	/*
1476 	 * Copy table's limits to the DM device's request_queue
1477 	 */
1478 	q->limits = *limits;
1479 
1480 	if (!dm_table_supports_discards(t))
1481 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1482 	else
1483 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1484 
1485 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1486 		flush |= REQ_FLUSH;
1487 		if (dm_table_supports_flush(t, REQ_FUA))
1488 			flush |= REQ_FUA;
1489 	}
1490 	blk_queue_flush(q, flush);
1491 
1492 	if (!dm_table_discard_zeroes_data(t))
1493 		q->limits.discard_zeroes_data = 0;
1494 
1495 	/* Ensure that all underlying devices are non-rotational. */
1496 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1497 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1498 	else
1499 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1500 
1501 	if (!dm_table_supports_write_same(t))
1502 		q->limits.max_write_same_sectors = 0;
1503 
1504 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1505 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1506 	else
1507 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1508 
1509 	dm_table_verify_integrity(t);
1510 
1511 	/*
1512 	 * Determine whether or not this queue's I/O timings contribute
1513 	 * to the entropy pool, Only request-based targets use this.
1514 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1515 	 * have it set.
1516 	 */
1517 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1518 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1519 
1520 	/*
1521 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1522 	 * visible to other CPUs because, once the flag is set, incoming bios
1523 	 * are processed by request-based dm, which refers to the queue
1524 	 * settings.
1525 	 * Until the flag set, bios are passed to bio-based dm and queued to
1526 	 * md->deferred where queue settings are not needed yet.
1527 	 * Those bios are passed to request-based dm at the resume time.
1528 	 */
1529 	smp_mb();
1530 	if (dm_table_request_based(t))
1531 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1532 }
1533 
1534 unsigned int dm_table_get_num_targets(struct dm_table *t)
1535 {
1536 	return t->num_targets;
1537 }
1538 
1539 struct list_head *dm_table_get_devices(struct dm_table *t)
1540 {
1541 	return &t->devices;
1542 }
1543 
1544 fmode_t dm_table_get_mode(struct dm_table *t)
1545 {
1546 	return t->mode;
1547 }
1548 EXPORT_SYMBOL(dm_table_get_mode);
1549 
1550 enum suspend_mode {
1551 	PRESUSPEND,
1552 	PRESUSPEND_UNDO,
1553 	POSTSUSPEND,
1554 };
1555 
1556 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1557 {
1558 	int i = t->num_targets;
1559 	struct dm_target *ti = t->targets;
1560 
1561 	while (i--) {
1562 		switch (mode) {
1563 		case PRESUSPEND:
1564 			if (ti->type->presuspend)
1565 				ti->type->presuspend(ti);
1566 			break;
1567 		case PRESUSPEND_UNDO:
1568 			if (ti->type->presuspend_undo)
1569 				ti->type->presuspend_undo(ti);
1570 			break;
1571 		case POSTSUSPEND:
1572 			if (ti->type->postsuspend)
1573 				ti->type->postsuspend(ti);
1574 			break;
1575 		}
1576 		ti++;
1577 	}
1578 }
1579 
1580 void dm_table_presuspend_targets(struct dm_table *t)
1581 {
1582 	if (!t)
1583 		return;
1584 
1585 	suspend_targets(t, PRESUSPEND);
1586 }
1587 
1588 void dm_table_presuspend_undo_targets(struct dm_table *t)
1589 {
1590 	if (!t)
1591 		return;
1592 
1593 	suspend_targets(t, PRESUSPEND_UNDO);
1594 }
1595 
1596 void dm_table_postsuspend_targets(struct dm_table *t)
1597 {
1598 	if (!t)
1599 		return;
1600 
1601 	suspend_targets(t, POSTSUSPEND);
1602 }
1603 
1604 int dm_table_resume_targets(struct dm_table *t)
1605 {
1606 	int i, r = 0;
1607 
1608 	for (i = 0; i < t->num_targets; i++) {
1609 		struct dm_target *ti = t->targets + i;
1610 
1611 		if (!ti->type->preresume)
1612 			continue;
1613 
1614 		r = ti->type->preresume(ti);
1615 		if (r) {
1616 			DMERR("%s: %s: preresume failed, error = %d",
1617 			      dm_device_name(t->md), ti->type->name, r);
1618 			return r;
1619 		}
1620 	}
1621 
1622 	for (i = 0; i < t->num_targets; i++) {
1623 		struct dm_target *ti = t->targets + i;
1624 
1625 		if (ti->type->resume)
1626 			ti->type->resume(ti);
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1633 {
1634 	list_add(&cb->list, &t->target_callbacks);
1635 }
1636 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1637 
1638 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1639 {
1640 	struct dm_dev_internal *dd;
1641 	struct list_head *devices = dm_table_get_devices(t);
1642 	struct dm_target_callbacks *cb;
1643 	int r = 0;
1644 
1645 	list_for_each_entry(dd, devices, list) {
1646 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1647 		char b[BDEVNAME_SIZE];
1648 
1649 		if (likely(q))
1650 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1651 		else
1652 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1653 				     dm_device_name(t->md),
1654 				     bdevname(dd->dm_dev->bdev, b));
1655 	}
1656 
1657 	list_for_each_entry(cb, &t->target_callbacks, list)
1658 		if (cb->congested_fn)
1659 			r |= cb->congested_fn(cb, bdi_bits);
1660 
1661 	return r;
1662 }
1663 
1664 struct mapped_device *dm_table_get_md(struct dm_table *t)
1665 {
1666 	return t->md;
1667 }
1668 EXPORT_SYMBOL(dm_table_get_md);
1669 
1670 void dm_table_run_md_queue_async(struct dm_table *t)
1671 {
1672 	struct mapped_device *md;
1673 	struct request_queue *queue;
1674 	unsigned long flags;
1675 
1676 	if (!dm_table_request_based(t))
1677 		return;
1678 
1679 	md = dm_table_get_md(t);
1680 	queue = dm_get_md_queue(md);
1681 	if (queue) {
1682 		if (queue->mq_ops)
1683 			blk_mq_run_hw_queues(queue, true);
1684 		else {
1685 			spin_lock_irqsave(queue->queue_lock, flags);
1686 			blk_run_queue_async(queue);
1687 			spin_unlock_irqrestore(queue->queue_lock, flags);
1688 		}
1689 	}
1690 }
1691 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1692 
1693