1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 24 #define DM_MSG_PREFIX "table" 25 26 #define MAX_DEPTH 16 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 struct dm_table { 32 struct mapped_device *md; 33 unsigned type; 34 35 /* btree table */ 36 unsigned int depth; 37 unsigned int counts[MAX_DEPTH]; /* in nodes */ 38 sector_t *index[MAX_DEPTH]; 39 40 unsigned int num_targets; 41 unsigned int num_allocated; 42 sector_t *highs; 43 struct dm_target *targets; 44 45 struct target_type *immutable_target_type; 46 unsigned integrity_supported:1; 47 unsigned singleton:1; 48 49 /* 50 * Indicates the rw permissions for the new logical 51 * device. This should be a combination of FMODE_READ 52 * and FMODE_WRITE. 53 */ 54 fmode_t mode; 55 56 /* a list of devices used by this table */ 57 struct list_head devices; 58 59 /* events get handed up using this callback */ 60 void (*event_fn)(void *); 61 void *event_context; 62 63 struct dm_md_mempools *mempools; 64 65 struct list_head target_callbacks; 66 }; 67 68 /* 69 * Similar to ceiling(log_size(n)) 70 */ 71 static unsigned int int_log(unsigned int n, unsigned int base) 72 { 73 int result = 0; 74 75 while (n > 1) { 76 n = dm_div_up(n, base); 77 result++; 78 } 79 80 return result; 81 } 82 83 /* 84 * Calculate the index of the child node of the n'th node k'th key. 85 */ 86 static inline unsigned int get_child(unsigned int n, unsigned int k) 87 { 88 return (n * CHILDREN_PER_NODE) + k; 89 } 90 91 /* 92 * Return the n'th node of level l from table t. 93 */ 94 static inline sector_t *get_node(struct dm_table *t, 95 unsigned int l, unsigned int n) 96 { 97 return t->index[l] + (n * KEYS_PER_NODE); 98 } 99 100 /* 101 * Return the highest key that you could lookup from the n'th 102 * node on level l of the btree. 103 */ 104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 105 { 106 for (; l < t->depth - 1; l++) 107 n = get_child(n, CHILDREN_PER_NODE - 1); 108 109 if (n >= t->counts[l]) 110 return (sector_t) - 1; 111 112 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 113 } 114 115 /* 116 * Fills in a level of the btree based on the highs of the level 117 * below it. 118 */ 119 static int setup_btree_index(unsigned int l, struct dm_table *t) 120 { 121 unsigned int n, k; 122 sector_t *node; 123 124 for (n = 0U; n < t->counts[l]; n++) { 125 node = get_node(t, l, n); 126 127 for (k = 0U; k < KEYS_PER_NODE; k++) 128 node[k] = high(t, l + 1, get_child(n, k)); 129 } 130 131 return 0; 132 } 133 134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 135 { 136 unsigned long size; 137 void *addr; 138 139 /* 140 * Check that we're not going to overflow. 141 */ 142 if (nmemb > (ULONG_MAX / elem_size)) 143 return NULL; 144 145 size = nmemb * elem_size; 146 addr = vzalloc(size); 147 148 return addr; 149 } 150 EXPORT_SYMBOL(dm_vcalloc); 151 152 /* 153 * highs, and targets are managed as dynamic arrays during a 154 * table load. 155 */ 156 static int alloc_targets(struct dm_table *t, unsigned int num) 157 { 158 sector_t *n_highs; 159 struct dm_target *n_targets; 160 161 /* 162 * Allocate both the target array and offset array at once. 163 * Append an empty entry to catch sectors beyond the end of 164 * the device. 165 */ 166 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 167 sizeof(sector_t)); 168 if (!n_highs) 169 return -ENOMEM; 170 171 n_targets = (struct dm_target *) (n_highs + num); 172 173 memset(n_highs, -1, sizeof(*n_highs) * num); 174 vfree(t->highs); 175 176 t->num_allocated = num; 177 t->highs = n_highs; 178 t->targets = n_targets; 179 180 return 0; 181 } 182 183 int dm_table_create(struct dm_table **result, fmode_t mode, 184 unsigned num_targets, struct mapped_device *md) 185 { 186 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 187 188 if (!t) 189 return -ENOMEM; 190 191 INIT_LIST_HEAD(&t->devices); 192 INIT_LIST_HEAD(&t->target_callbacks); 193 194 if (!num_targets) 195 num_targets = KEYS_PER_NODE; 196 197 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 198 199 if (!num_targets) { 200 kfree(t); 201 return -ENOMEM; 202 } 203 204 if (alloc_targets(t, num_targets)) { 205 kfree(t); 206 return -ENOMEM; 207 } 208 209 t->mode = mode; 210 t->md = md; 211 *result = t; 212 return 0; 213 } 214 215 static void free_devices(struct list_head *devices, struct mapped_device *md) 216 { 217 struct list_head *tmp, *next; 218 219 list_for_each_safe(tmp, next, devices) { 220 struct dm_dev_internal *dd = 221 list_entry(tmp, struct dm_dev_internal, list); 222 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 223 dm_device_name(md), dd->dm_dev->name); 224 dm_put_table_device(md, dd->dm_dev); 225 kfree(dd); 226 } 227 } 228 229 void dm_table_destroy(struct dm_table *t) 230 { 231 unsigned int i; 232 233 if (!t) 234 return; 235 236 /* free the indexes */ 237 if (t->depth >= 2) 238 vfree(t->index[t->depth - 2]); 239 240 /* free the targets */ 241 for (i = 0; i < t->num_targets; i++) { 242 struct dm_target *tgt = t->targets + i; 243 244 if (tgt->type->dtr) 245 tgt->type->dtr(tgt); 246 247 dm_put_target_type(tgt->type); 248 } 249 250 vfree(t->highs); 251 252 /* free the device list */ 253 free_devices(&t->devices, t->md); 254 255 dm_free_md_mempools(t->mempools); 256 257 kfree(t); 258 } 259 260 /* 261 * See if we've already got a device in the list. 262 */ 263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 264 { 265 struct dm_dev_internal *dd; 266 267 list_for_each_entry (dd, l, list) 268 if (dd->dm_dev->bdev->bd_dev == dev) 269 return dd; 270 271 return NULL; 272 } 273 274 /* 275 * If possible, this checks an area of a destination device is invalid. 276 */ 277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 278 sector_t start, sector_t len, void *data) 279 { 280 struct request_queue *q; 281 struct queue_limits *limits = data; 282 struct block_device *bdev = dev->bdev; 283 sector_t dev_size = 284 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 285 unsigned short logical_block_size_sectors = 286 limits->logical_block_size >> SECTOR_SHIFT; 287 char b[BDEVNAME_SIZE]; 288 289 /* 290 * Some devices exist without request functions, 291 * such as loop devices not yet bound to backing files. 292 * Forbid the use of such devices. 293 */ 294 q = bdev_get_queue(bdev); 295 if (!q || !q->make_request_fn) { 296 DMWARN("%s: %s is not yet initialised: " 297 "start=%llu, len=%llu, dev_size=%llu", 298 dm_device_name(ti->table->md), bdevname(bdev, b), 299 (unsigned long long)start, 300 (unsigned long long)len, 301 (unsigned long long)dev_size); 302 return 1; 303 } 304 305 if (!dev_size) 306 return 0; 307 308 if ((start >= dev_size) || (start + len > dev_size)) { 309 DMWARN("%s: %s too small for target: " 310 "start=%llu, len=%llu, dev_size=%llu", 311 dm_device_name(ti->table->md), bdevname(bdev, b), 312 (unsigned long long)start, 313 (unsigned long long)len, 314 (unsigned long long)dev_size); 315 return 1; 316 } 317 318 if (logical_block_size_sectors <= 1) 319 return 0; 320 321 if (start & (logical_block_size_sectors - 1)) { 322 DMWARN("%s: start=%llu not aligned to h/w " 323 "logical block size %u of %s", 324 dm_device_name(ti->table->md), 325 (unsigned long long)start, 326 limits->logical_block_size, bdevname(bdev, b)); 327 return 1; 328 } 329 330 if (len & (logical_block_size_sectors - 1)) { 331 DMWARN("%s: len=%llu not aligned to h/w " 332 "logical block size %u of %s", 333 dm_device_name(ti->table->md), 334 (unsigned long long)len, 335 limits->logical_block_size, bdevname(bdev, b)); 336 return 1; 337 } 338 339 return 0; 340 } 341 342 /* 343 * This upgrades the mode on an already open dm_dev, being 344 * careful to leave things as they were if we fail to reopen the 345 * device and not to touch the existing bdev field in case 346 * it is accessed concurrently inside dm_table_any_congested(). 347 */ 348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 349 struct mapped_device *md) 350 { 351 int r; 352 struct dm_dev *old_dev, *new_dev; 353 354 old_dev = dd->dm_dev; 355 356 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 357 dd->dm_dev->mode | new_mode, &new_dev); 358 if (r) 359 return r; 360 361 dd->dm_dev = new_dev; 362 dm_put_table_device(md, old_dev); 363 364 return 0; 365 } 366 367 /* 368 * Add a device to the list, or just increment the usage count if 369 * it's already present. 370 */ 371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 372 struct dm_dev **result) 373 { 374 int r; 375 dev_t uninitialized_var(dev); 376 struct dm_dev_internal *dd; 377 struct dm_table *t = ti->table; 378 struct block_device *bdev; 379 380 BUG_ON(!t); 381 382 /* convert the path to a device */ 383 bdev = lookup_bdev(path); 384 if (IS_ERR(bdev)) { 385 dev = name_to_dev_t(path); 386 if (!dev) 387 return -ENODEV; 388 } else { 389 dev = bdev->bd_dev; 390 bdput(bdev); 391 } 392 393 dd = find_device(&t->devices, dev); 394 if (!dd) { 395 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 396 if (!dd) 397 return -ENOMEM; 398 399 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 400 kfree(dd); 401 return r; 402 } 403 404 atomic_set(&dd->count, 0); 405 list_add(&dd->list, &t->devices); 406 407 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 408 r = upgrade_mode(dd, mode, t->md); 409 if (r) 410 return r; 411 } 412 atomic_inc(&dd->count); 413 414 *result = dd->dm_dev; 415 return 0; 416 } 417 EXPORT_SYMBOL(dm_get_device); 418 419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 420 sector_t start, sector_t len, void *data) 421 { 422 struct queue_limits *limits = data; 423 struct block_device *bdev = dev->bdev; 424 struct request_queue *q = bdev_get_queue(bdev); 425 char b[BDEVNAME_SIZE]; 426 427 if (unlikely(!q)) { 428 DMWARN("%s: Cannot set limits for nonexistent device %s", 429 dm_device_name(ti->table->md), bdevname(bdev, b)); 430 return 0; 431 } 432 433 if (bdev_stack_limits(limits, bdev, start) < 0) 434 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 435 "physical_block_size=%u, logical_block_size=%u, " 436 "alignment_offset=%u, start=%llu", 437 dm_device_name(ti->table->md), bdevname(bdev, b), 438 q->limits.physical_block_size, 439 q->limits.logical_block_size, 440 q->limits.alignment_offset, 441 (unsigned long long) start << SECTOR_SHIFT); 442 443 return 0; 444 } 445 446 /* 447 * Decrement a device's use count and remove it if necessary. 448 */ 449 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 450 { 451 int found = 0; 452 struct list_head *devices = &ti->table->devices; 453 struct dm_dev_internal *dd; 454 455 list_for_each_entry(dd, devices, list) { 456 if (dd->dm_dev == d) { 457 found = 1; 458 break; 459 } 460 } 461 if (!found) { 462 DMWARN("%s: device %s not in table devices list", 463 dm_device_name(ti->table->md), d->name); 464 return; 465 } 466 if (atomic_dec_and_test(&dd->count)) { 467 dm_put_table_device(ti->table->md, d); 468 list_del(&dd->list); 469 kfree(dd); 470 } 471 } 472 EXPORT_SYMBOL(dm_put_device); 473 474 /* 475 * Checks to see if the target joins onto the end of the table. 476 */ 477 static int adjoin(struct dm_table *table, struct dm_target *ti) 478 { 479 struct dm_target *prev; 480 481 if (!table->num_targets) 482 return !ti->begin; 483 484 prev = &table->targets[table->num_targets - 1]; 485 return (ti->begin == (prev->begin + prev->len)); 486 } 487 488 /* 489 * Used to dynamically allocate the arg array. 490 * 491 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 492 * process messages even if some device is suspended. These messages have a 493 * small fixed number of arguments. 494 * 495 * On the other hand, dm-switch needs to process bulk data using messages and 496 * excessive use of GFP_NOIO could cause trouble. 497 */ 498 static char **realloc_argv(unsigned *array_size, char **old_argv) 499 { 500 char **argv; 501 unsigned new_size; 502 gfp_t gfp; 503 504 if (*array_size) { 505 new_size = *array_size * 2; 506 gfp = GFP_KERNEL; 507 } else { 508 new_size = 8; 509 gfp = GFP_NOIO; 510 } 511 argv = kmalloc(new_size * sizeof(*argv), gfp); 512 if (argv) { 513 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 514 *array_size = new_size; 515 } 516 517 kfree(old_argv); 518 return argv; 519 } 520 521 /* 522 * Destructively splits up the argument list to pass to ctr. 523 */ 524 int dm_split_args(int *argc, char ***argvp, char *input) 525 { 526 char *start, *end = input, *out, **argv = NULL; 527 unsigned array_size = 0; 528 529 *argc = 0; 530 531 if (!input) { 532 *argvp = NULL; 533 return 0; 534 } 535 536 argv = realloc_argv(&array_size, argv); 537 if (!argv) 538 return -ENOMEM; 539 540 while (1) { 541 /* Skip whitespace */ 542 start = skip_spaces(end); 543 544 if (!*start) 545 break; /* success, we hit the end */ 546 547 /* 'out' is used to remove any back-quotes */ 548 end = out = start; 549 while (*end) { 550 /* Everything apart from '\0' can be quoted */ 551 if (*end == '\\' && *(end + 1)) { 552 *out++ = *(end + 1); 553 end += 2; 554 continue; 555 } 556 557 if (isspace(*end)) 558 break; /* end of token */ 559 560 *out++ = *end++; 561 } 562 563 /* have we already filled the array ? */ 564 if ((*argc + 1) > array_size) { 565 argv = realloc_argv(&array_size, argv); 566 if (!argv) 567 return -ENOMEM; 568 } 569 570 /* we know this is whitespace */ 571 if (*end) 572 end++; 573 574 /* terminate the string and put it in the array */ 575 *out = '\0'; 576 argv[*argc] = start; 577 (*argc)++; 578 } 579 580 *argvp = argv; 581 return 0; 582 } 583 584 /* 585 * Impose necessary and sufficient conditions on a devices's table such 586 * that any incoming bio which respects its logical_block_size can be 587 * processed successfully. If it falls across the boundary between 588 * two or more targets, the size of each piece it gets split into must 589 * be compatible with the logical_block_size of the target processing it. 590 */ 591 static int validate_hardware_logical_block_alignment(struct dm_table *table, 592 struct queue_limits *limits) 593 { 594 /* 595 * This function uses arithmetic modulo the logical_block_size 596 * (in units of 512-byte sectors). 597 */ 598 unsigned short device_logical_block_size_sects = 599 limits->logical_block_size >> SECTOR_SHIFT; 600 601 /* 602 * Offset of the start of the next table entry, mod logical_block_size. 603 */ 604 unsigned short next_target_start = 0; 605 606 /* 607 * Given an aligned bio that extends beyond the end of a 608 * target, how many sectors must the next target handle? 609 */ 610 unsigned short remaining = 0; 611 612 struct dm_target *uninitialized_var(ti); 613 struct queue_limits ti_limits; 614 unsigned i = 0; 615 616 /* 617 * Check each entry in the table in turn. 618 */ 619 while (i < dm_table_get_num_targets(table)) { 620 ti = dm_table_get_target(table, i++); 621 622 blk_set_stacking_limits(&ti_limits); 623 624 /* combine all target devices' limits */ 625 if (ti->type->iterate_devices) 626 ti->type->iterate_devices(ti, dm_set_device_limits, 627 &ti_limits); 628 629 /* 630 * If the remaining sectors fall entirely within this 631 * table entry are they compatible with its logical_block_size? 632 */ 633 if (remaining < ti->len && 634 remaining & ((ti_limits.logical_block_size >> 635 SECTOR_SHIFT) - 1)) 636 break; /* Error */ 637 638 next_target_start = 639 (unsigned short) ((next_target_start + ti->len) & 640 (device_logical_block_size_sects - 1)); 641 remaining = next_target_start ? 642 device_logical_block_size_sects - next_target_start : 0; 643 } 644 645 if (remaining) { 646 DMWARN("%s: table line %u (start sect %llu len %llu) " 647 "not aligned to h/w logical block size %u", 648 dm_device_name(table->md), i, 649 (unsigned long long) ti->begin, 650 (unsigned long long) ti->len, 651 limits->logical_block_size); 652 return -EINVAL; 653 } 654 655 return 0; 656 } 657 658 int dm_table_add_target(struct dm_table *t, const char *type, 659 sector_t start, sector_t len, char *params) 660 { 661 int r = -EINVAL, argc; 662 char **argv; 663 struct dm_target *tgt; 664 665 if (t->singleton) { 666 DMERR("%s: target type %s must appear alone in table", 667 dm_device_name(t->md), t->targets->type->name); 668 return -EINVAL; 669 } 670 671 BUG_ON(t->num_targets >= t->num_allocated); 672 673 tgt = t->targets + t->num_targets; 674 memset(tgt, 0, sizeof(*tgt)); 675 676 if (!len) { 677 DMERR("%s: zero-length target", dm_device_name(t->md)); 678 return -EINVAL; 679 } 680 681 tgt->type = dm_get_target_type(type); 682 if (!tgt->type) { 683 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 684 type); 685 return -EINVAL; 686 } 687 688 if (dm_target_needs_singleton(tgt->type)) { 689 if (t->num_targets) { 690 DMERR("%s: target type %s must appear alone in table", 691 dm_device_name(t->md), type); 692 return -EINVAL; 693 } 694 t->singleton = 1; 695 } 696 697 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 698 DMERR("%s: target type %s may not be included in read-only tables", 699 dm_device_name(t->md), type); 700 return -EINVAL; 701 } 702 703 if (t->immutable_target_type) { 704 if (t->immutable_target_type != tgt->type) { 705 DMERR("%s: immutable target type %s cannot be mixed with other target types", 706 dm_device_name(t->md), t->immutable_target_type->name); 707 return -EINVAL; 708 } 709 } else if (dm_target_is_immutable(tgt->type)) { 710 if (t->num_targets) { 711 DMERR("%s: immutable target type %s cannot be mixed with other target types", 712 dm_device_name(t->md), tgt->type->name); 713 return -EINVAL; 714 } 715 t->immutable_target_type = tgt->type; 716 } 717 718 tgt->table = t; 719 tgt->begin = start; 720 tgt->len = len; 721 tgt->error = "Unknown error"; 722 723 /* 724 * Does this target adjoin the previous one ? 725 */ 726 if (!adjoin(t, tgt)) { 727 tgt->error = "Gap in table"; 728 r = -EINVAL; 729 goto bad; 730 } 731 732 r = dm_split_args(&argc, &argv, params); 733 if (r) { 734 tgt->error = "couldn't split parameters (insufficient memory)"; 735 goto bad; 736 } 737 738 r = tgt->type->ctr(tgt, argc, argv); 739 kfree(argv); 740 if (r) 741 goto bad; 742 743 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 744 745 if (!tgt->num_discard_bios && tgt->discards_supported) 746 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 747 dm_device_name(t->md), type); 748 749 return 0; 750 751 bad: 752 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 753 dm_put_target_type(tgt->type); 754 return r; 755 } 756 757 /* 758 * Target argument parsing helpers. 759 */ 760 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 761 unsigned *value, char **error, unsigned grouped) 762 { 763 const char *arg_str = dm_shift_arg(arg_set); 764 char dummy; 765 766 if (!arg_str || 767 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 768 (*value < arg->min) || 769 (*value > arg->max) || 770 (grouped && arg_set->argc < *value)) { 771 *error = arg->error; 772 return -EINVAL; 773 } 774 775 return 0; 776 } 777 778 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 779 unsigned *value, char **error) 780 { 781 return validate_next_arg(arg, arg_set, value, error, 0); 782 } 783 EXPORT_SYMBOL(dm_read_arg); 784 785 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 786 unsigned *value, char **error) 787 { 788 return validate_next_arg(arg, arg_set, value, error, 1); 789 } 790 EXPORT_SYMBOL(dm_read_arg_group); 791 792 const char *dm_shift_arg(struct dm_arg_set *as) 793 { 794 char *r; 795 796 if (as->argc) { 797 as->argc--; 798 r = *as->argv; 799 as->argv++; 800 return r; 801 } 802 803 return NULL; 804 } 805 EXPORT_SYMBOL(dm_shift_arg); 806 807 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 808 { 809 BUG_ON(as->argc < num_args); 810 as->argc -= num_args; 811 as->argv += num_args; 812 } 813 EXPORT_SYMBOL(dm_consume_args); 814 815 static bool __table_type_request_based(unsigned table_type) 816 { 817 return (table_type == DM_TYPE_REQUEST_BASED || 818 table_type == DM_TYPE_MQ_REQUEST_BASED); 819 } 820 821 static int dm_table_set_type(struct dm_table *t) 822 { 823 unsigned i; 824 unsigned bio_based = 0, request_based = 0, hybrid = 0; 825 bool use_blk_mq = false; 826 struct dm_target *tgt; 827 struct dm_dev_internal *dd; 828 struct list_head *devices; 829 unsigned live_md_type = dm_get_md_type(t->md); 830 831 for (i = 0; i < t->num_targets; i++) { 832 tgt = t->targets + i; 833 if (dm_target_hybrid(tgt)) 834 hybrid = 1; 835 else if (dm_target_request_based(tgt)) 836 request_based = 1; 837 else 838 bio_based = 1; 839 840 if (bio_based && request_based) { 841 DMWARN("Inconsistent table: different target types" 842 " can't be mixed up"); 843 return -EINVAL; 844 } 845 } 846 847 if (hybrid && !bio_based && !request_based) { 848 /* 849 * The targets can work either way. 850 * Determine the type from the live device. 851 * Default to bio-based if device is new. 852 */ 853 if (__table_type_request_based(live_md_type)) 854 request_based = 1; 855 else 856 bio_based = 1; 857 } 858 859 if (bio_based) { 860 /* We must use this table as bio-based */ 861 t->type = DM_TYPE_BIO_BASED; 862 return 0; 863 } 864 865 BUG_ON(!request_based); /* No targets in this table */ 866 867 /* 868 * Request-based dm supports only tables that have a single target now. 869 * To support multiple targets, request splitting support is needed, 870 * and that needs lots of changes in the block-layer. 871 * (e.g. request completion process for partial completion.) 872 */ 873 if (t->num_targets > 1) { 874 DMWARN("Request-based dm doesn't support multiple targets yet"); 875 return -EINVAL; 876 } 877 878 /* Non-request-stackable devices can't be used for request-based dm */ 879 devices = dm_table_get_devices(t); 880 list_for_each_entry(dd, devices, list) { 881 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 882 883 if (!blk_queue_stackable(q)) { 884 DMERR("table load rejected: including" 885 " non-request-stackable devices"); 886 return -EINVAL; 887 } 888 889 if (q->mq_ops) 890 use_blk_mq = true; 891 } 892 893 if (use_blk_mq) { 894 /* verify _all_ devices in the table are blk-mq devices */ 895 list_for_each_entry(dd, devices, list) 896 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) { 897 DMERR("table load rejected: not all devices" 898 " are blk-mq request-stackable"); 899 return -EINVAL; 900 } 901 t->type = DM_TYPE_MQ_REQUEST_BASED; 902 903 } else if (list_empty(devices) && __table_type_request_based(live_md_type)) { 904 /* inherit live MD type */ 905 t->type = live_md_type; 906 907 } else 908 t->type = DM_TYPE_REQUEST_BASED; 909 910 return 0; 911 } 912 913 unsigned dm_table_get_type(struct dm_table *t) 914 { 915 return t->type; 916 } 917 918 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 919 { 920 return t->immutable_target_type; 921 } 922 923 bool dm_table_request_based(struct dm_table *t) 924 { 925 return __table_type_request_based(dm_table_get_type(t)); 926 } 927 928 bool dm_table_mq_request_based(struct dm_table *t) 929 { 930 return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED; 931 } 932 933 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 934 { 935 unsigned type = dm_table_get_type(t); 936 unsigned per_bio_data_size = 0; 937 struct dm_target *tgt; 938 unsigned i; 939 940 if (unlikely(type == DM_TYPE_NONE)) { 941 DMWARN("no table type is set, can't allocate mempools"); 942 return -EINVAL; 943 } 944 945 if (type == DM_TYPE_BIO_BASED) 946 for (i = 0; i < t->num_targets; i++) { 947 tgt = t->targets + i; 948 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size); 949 } 950 951 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size); 952 if (!t->mempools) 953 return -ENOMEM; 954 955 return 0; 956 } 957 958 void dm_table_free_md_mempools(struct dm_table *t) 959 { 960 dm_free_md_mempools(t->mempools); 961 t->mempools = NULL; 962 } 963 964 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 965 { 966 return t->mempools; 967 } 968 969 static int setup_indexes(struct dm_table *t) 970 { 971 int i; 972 unsigned int total = 0; 973 sector_t *indexes; 974 975 /* allocate the space for *all* the indexes */ 976 for (i = t->depth - 2; i >= 0; i--) { 977 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 978 total += t->counts[i]; 979 } 980 981 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 982 if (!indexes) 983 return -ENOMEM; 984 985 /* set up internal nodes, bottom-up */ 986 for (i = t->depth - 2; i >= 0; i--) { 987 t->index[i] = indexes; 988 indexes += (KEYS_PER_NODE * t->counts[i]); 989 setup_btree_index(i, t); 990 } 991 992 return 0; 993 } 994 995 /* 996 * Builds the btree to index the map. 997 */ 998 static int dm_table_build_index(struct dm_table *t) 999 { 1000 int r = 0; 1001 unsigned int leaf_nodes; 1002 1003 /* how many indexes will the btree have ? */ 1004 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1005 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1006 1007 /* leaf layer has already been set up */ 1008 t->counts[t->depth - 1] = leaf_nodes; 1009 t->index[t->depth - 1] = t->highs; 1010 1011 if (t->depth >= 2) 1012 r = setup_indexes(t); 1013 1014 return r; 1015 } 1016 1017 static bool integrity_profile_exists(struct gendisk *disk) 1018 { 1019 return !!blk_get_integrity(disk); 1020 } 1021 1022 /* 1023 * Get a disk whose integrity profile reflects the table's profile. 1024 * Returns NULL if integrity support was inconsistent or unavailable. 1025 */ 1026 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1027 { 1028 struct list_head *devices = dm_table_get_devices(t); 1029 struct dm_dev_internal *dd = NULL; 1030 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1031 1032 list_for_each_entry(dd, devices, list) { 1033 template_disk = dd->dm_dev->bdev->bd_disk; 1034 if (!integrity_profile_exists(template_disk)) 1035 goto no_integrity; 1036 else if (prev_disk && 1037 blk_integrity_compare(prev_disk, template_disk) < 0) 1038 goto no_integrity; 1039 prev_disk = template_disk; 1040 } 1041 1042 return template_disk; 1043 1044 no_integrity: 1045 if (prev_disk) 1046 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1047 dm_device_name(t->md), 1048 prev_disk->disk_name, 1049 template_disk->disk_name); 1050 return NULL; 1051 } 1052 1053 /* 1054 * Register the mapped device for blk_integrity support if the 1055 * underlying devices have an integrity profile. But all devices may 1056 * not have matching profiles (checking all devices isn't reliable 1057 * during table load because this table may use other DM device(s) which 1058 * must be resumed before they will have an initialized integity 1059 * profile). Consequently, stacked DM devices force a 2 stage integrity 1060 * profile validation: First pass during table load, final pass during 1061 * resume. 1062 */ 1063 static int dm_table_register_integrity(struct dm_table *t) 1064 { 1065 struct mapped_device *md = t->md; 1066 struct gendisk *template_disk = NULL; 1067 1068 template_disk = dm_table_get_integrity_disk(t); 1069 if (!template_disk) 1070 return 0; 1071 1072 if (!integrity_profile_exists(dm_disk(md))) { 1073 t->integrity_supported = 1; 1074 /* 1075 * Register integrity profile during table load; we can do 1076 * this because the final profile must match during resume. 1077 */ 1078 blk_integrity_register(dm_disk(md), 1079 blk_get_integrity(template_disk)); 1080 return 0; 1081 } 1082 1083 /* 1084 * If DM device already has an initialized integrity 1085 * profile the new profile should not conflict. 1086 */ 1087 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1088 DMWARN("%s: conflict with existing integrity profile: " 1089 "%s profile mismatch", 1090 dm_device_name(t->md), 1091 template_disk->disk_name); 1092 return 1; 1093 } 1094 1095 /* Preserve existing integrity profile */ 1096 t->integrity_supported = 1; 1097 return 0; 1098 } 1099 1100 /* 1101 * Prepares the table for use by building the indices, 1102 * setting the type, and allocating mempools. 1103 */ 1104 int dm_table_complete(struct dm_table *t) 1105 { 1106 int r; 1107 1108 r = dm_table_set_type(t); 1109 if (r) { 1110 DMERR("unable to set table type"); 1111 return r; 1112 } 1113 1114 r = dm_table_build_index(t); 1115 if (r) { 1116 DMERR("unable to build btrees"); 1117 return r; 1118 } 1119 1120 r = dm_table_register_integrity(t); 1121 if (r) { 1122 DMERR("could not register integrity profile."); 1123 return r; 1124 } 1125 1126 r = dm_table_alloc_md_mempools(t, t->md); 1127 if (r) 1128 DMERR("unable to allocate mempools"); 1129 1130 return r; 1131 } 1132 1133 static DEFINE_MUTEX(_event_lock); 1134 void dm_table_event_callback(struct dm_table *t, 1135 void (*fn)(void *), void *context) 1136 { 1137 mutex_lock(&_event_lock); 1138 t->event_fn = fn; 1139 t->event_context = context; 1140 mutex_unlock(&_event_lock); 1141 } 1142 1143 void dm_table_event(struct dm_table *t) 1144 { 1145 /* 1146 * You can no longer call dm_table_event() from interrupt 1147 * context, use a bottom half instead. 1148 */ 1149 BUG_ON(in_interrupt()); 1150 1151 mutex_lock(&_event_lock); 1152 if (t->event_fn) 1153 t->event_fn(t->event_context); 1154 mutex_unlock(&_event_lock); 1155 } 1156 EXPORT_SYMBOL(dm_table_event); 1157 1158 sector_t dm_table_get_size(struct dm_table *t) 1159 { 1160 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1161 } 1162 EXPORT_SYMBOL(dm_table_get_size); 1163 1164 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1165 { 1166 if (index >= t->num_targets) 1167 return NULL; 1168 1169 return t->targets + index; 1170 } 1171 1172 /* 1173 * Search the btree for the correct target. 1174 * 1175 * Caller should check returned pointer with dm_target_is_valid() 1176 * to trap I/O beyond end of device. 1177 */ 1178 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1179 { 1180 unsigned int l, n = 0, k = 0; 1181 sector_t *node; 1182 1183 for (l = 0; l < t->depth; l++) { 1184 n = get_child(n, k); 1185 node = get_node(t, l, n); 1186 1187 for (k = 0; k < KEYS_PER_NODE; k++) 1188 if (node[k] >= sector) 1189 break; 1190 } 1191 1192 return &t->targets[(KEYS_PER_NODE * n) + k]; 1193 } 1194 1195 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1196 sector_t start, sector_t len, void *data) 1197 { 1198 unsigned *num_devices = data; 1199 1200 (*num_devices)++; 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * Check whether a table has no data devices attached using each 1207 * target's iterate_devices method. 1208 * Returns false if the result is unknown because a target doesn't 1209 * support iterate_devices. 1210 */ 1211 bool dm_table_has_no_data_devices(struct dm_table *table) 1212 { 1213 struct dm_target *uninitialized_var(ti); 1214 unsigned i = 0, num_devices = 0; 1215 1216 while (i < dm_table_get_num_targets(table)) { 1217 ti = dm_table_get_target(table, i++); 1218 1219 if (!ti->type->iterate_devices) 1220 return false; 1221 1222 ti->type->iterate_devices(ti, count_device, &num_devices); 1223 if (num_devices) 1224 return false; 1225 } 1226 1227 return true; 1228 } 1229 1230 /* 1231 * Establish the new table's queue_limits and validate them. 1232 */ 1233 int dm_calculate_queue_limits(struct dm_table *table, 1234 struct queue_limits *limits) 1235 { 1236 struct dm_target *uninitialized_var(ti); 1237 struct queue_limits ti_limits; 1238 unsigned i = 0; 1239 1240 blk_set_stacking_limits(limits); 1241 1242 while (i < dm_table_get_num_targets(table)) { 1243 blk_set_stacking_limits(&ti_limits); 1244 1245 ti = dm_table_get_target(table, i++); 1246 1247 if (!ti->type->iterate_devices) 1248 goto combine_limits; 1249 1250 /* 1251 * Combine queue limits of all the devices this target uses. 1252 */ 1253 ti->type->iterate_devices(ti, dm_set_device_limits, 1254 &ti_limits); 1255 1256 /* Set I/O hints portion of queue limits */ 1257 if (ti->type->io_hints) 1258 ti->type->io_hints(ti, &ti_limits); 1259 1260 /* 1261 * Check each device area is consistent with the target's 1262 * overall queue limits. 1263 */ 1264 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1265 &ti_limits)) 1266 return -EINVAL; 1267 1268 combine_limits: 1269 /* 1270 * Merge this target's queue limits into the overall limits 1271 * for the table. 1272 */ 1273 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1274 DMWARN("%s: adding target device " 1275 "(start sect %llu len %llu) " 1276 "caused an alignment inconsistency", 1277 dm_device_name(table->md), 1278 (unsigned long long) ti->begin, 1279 (unsigned long long) ti->len); 1280 } 1281 1282 return validate_hardware_logical_block_alignment(table, limits); 1283 } 1284 1285 /* 1286 * Verify that all devices have an integrity profile that matches the 1287 * DM device's registered integrity profile. If the profiles don't 1288 * match then unregister the DM device's integrity profile. 1289 */ 1290 static void dm_table_verify_integrity(struct dm_table *t) 1291 { 1292 struct gendisk *template_disk = NULL; 1293 1294 if (t->integrity_supported) { 1295 /* 1296 * Verify that the original integrity profile 1297 * matches all the devices in this table. 1298 */ 1299 template_disk = dm_table_get_integrity_disk(t); 1300 if (template_disk && 1301 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1302 return; 1303 } 1304 1305 if (integrity_profile_exists(dm_disk(t->md))) { 1306 DMWARN("%s: unable to establish an integrity profile", 1307 dm_device_name(t->md)); 1308 blk_integrity_unregister(dm_disk(t->md)); 1309 } 1310 } 1311 1312 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1313 sector_t start, sector_t len, void *data) 1314 { 1315 unsigned flush = (*(unsigned *)data); 1316 struct request_queue *q = bdev_get_queue(dev->bdev); 1317 1318 return q && (q->flush_flags & flush); 1319 } 1320 1321 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1322 { 1323 struct dm_target *ti; 1324 unsigned i = 0; 1325 1326 /* 1327 * Require at least one underlying device to support flushes. 1328 * t->devices includes internal dm devices such as mirror logs 1329 * so we need to use iterate_devices here, which targets 1330 * supporting flushes must provide. 1331 */ 1332 while (i < dm_table_get_num_targets(t)) { 1333 ti = dm_table_get_target(t, i++); 1334 1335 if (!ti->num_flush_bios) 1336 continue; 1337 1338 if (ti->flush_supported) 1339 return true; 1340 1341 if (ti->type->iterate_devices && 1342 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1343 return true; 1344 } 1345 1346 return false; 1347 } 1348 1349 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1350 { 1351 struct dm_target *ti; 1352 unsigned i = 0; 1353 1354 /* Ensure that all targets supports discard_zeroes_data. */ 1355 while (i < dm_table_get_num_targets(t)) { 1356 ti = dm_table_get_target(t, i++); 1357 1358 if (ti->discard_zeroes_data_unsupported) 1359 return false; 1360 } 1361 1362 return true; 1363 } 1364 1365 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1366 sector_t start, sector_t len, void *data) 1367 { 1368 struct request_queue *q = bdev_get_queue(dev->bdev); 1369 1370 return q && blk_queue_nonrot(q); 1371 } 1372 1373 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1374 sector_t start, sector_t len, void *data) 1375 { 1376 struct request_queue *q = bdev_get_queue(dev->bdev); 1377 1378 return q && !blk_queue_add_random(q); 1379 } 1380 1381 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1382 sector_t start, sector_t len, void *data) 1383 { 1384 struct request_queue *q = bdev_get_queue(dev->bdev); 1385 1386 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1387 } 1388 1389 static bool dm_table_all_devices_attribute(struct dm_table *t, 1390 iterate_devices_callout_fn func) 1391 { 1392 struct dm_target *ti; 1393 unsigned i = 0; 1394 1395 while (i < dm_table_get_num_targets(t)) { 1396 ti = dm_table_get_target(t, i++); 1397 1398 if (!ti->type->iterate_devices || 1399 !ti->type->iterate_devices(ti, func, NULL)) 1400 return false; 1401 } 1402 1403 return true; 1404 } 1405 1406 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1407 sector_t start, sector_t len, void *data) 1408 { 1409 struct request_queue *q = bdev_get_queue(dev->bdev); 1410 1411 return q && !q->limits.max_write_same_sectors; 1412 } 1413 1414 static bool dm_table_supports_write_same(struct dm_table *t) 1415 { 1416 struct dm_target *ti; 1417 unsigned i = 0; 1418 1419 while (i < dm_table_get_num_targets(t)) { 1420 ti = dm_table_get_target(t, i++); 1421 1422 if (!ti->num_write_same_bios) 1423 return false; 1424 1425 if (!ti->type->iterate_devices || 1426 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1427 return false; 1428 } 1429 1430 return true; 1431 } 1432 1433 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1434 sector_t start, sector_t len, void *data) 1435 { 1436 struct request_queue *q = bdev_get_queue(dev->bdev); 1437 1438 return q && blk_queue_discard(q); 1439 } 1440 1441 static bool dm_table_supports_discards(struct dm_table *t) 1442 { 1443 struct dm_target *ti; 1444 unsigned i = 0; 1445 1446 /* 1447 * Unless any target used by the table set discards_supported, 1448 * require at least one underlying device to support discards. 1449 * t->devices includes internal dm devices such as mirror logs 1450 * so we need to use iterate_devices here, which targets 1451 * supporting discard selectively must provide. 1452 */ 1453 while (i < dm_table_get_num_targets(t)) { 1454 ti = dm_table_get_target(t, i++); 1455 1456 if (!ti->num_discard_bios) 1457 continue; 1458 1459 if (ti->discards_supported) 1460 return true; 1461 1462 if (ti->type->iterate_devices && 1463 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1464 return true; 1465 } 1466 1467 return false; 1468 } 1469 1470 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1471 struct queue_limits *limits) 1472 { 1473 unsigned flush = 0; 1474 1475 /* 1476 * Copy table's limits to the DM device's request_queue 1477 */ 1478 q->limits = *limits; 1479 1480 if (!dm_table_supports_discards(t)) 1481 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1482 else 1483 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1484 1485 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1486 flush |= REQ_FLUSH; 1487 if (dm_table_supports_flush(t, REQ_FUA)) 1488 flush |= REQ_FUA; 1489 } 1490 blk_queue_flush(q, flush); 1491 1492 if (!dm_table_discard_zeroes_data(t)) 1493 q->limits.discard_zeroes_data = 0; 1494 1495 /* Ensure that all underlying devices are non-rotational. */ 1496 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1497 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1498 else 1499 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1500 1501 if (!dm_table_supports_write_same(t)) 1502 q->limits.max_write_same_sectors = 0; 1503 1504 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1505 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1506 else 1507 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1508 1509 dm_table_verify_integrity(t); 1510 1511 /* 1512 * Determine whether or not this queue's I/O timings contribute 1513 * to the entropy pool, Only request-based targets use this. 1514 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1515 * have it set. 1516 */ 1517 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1518 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1519 1520 /* 1521 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1522 * visible to other CPUs because, once the flag is set, incoming bios 1523 * are processed by request-based dm, which refers to the queue 1524 * settings. 1525 * Until the flag set, bios are passed to bio-based dm and queued to 1526 * md->deferred where queue settings are not needed yet. 1527 * Those bios are passed to request-based dm at the resume time. 1528 */ 1529 smp_mb(); 1530 if (dm_table_request_based(t)) 1531 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1532 } 1533 1534 unsigned int dm_table_get_num_targets(struct dm_table *t) 1535 { 1536 return t->num_targets; 1537 } 1538 1539 struct list_head *dm_table_get_devices(struct dm_table *t) 1540 { 1541 return &t->devices; 1542 } 1543 1544 fmode_t dm_table_get_mode(struct dm_table *t) 1545 { 1546 return t->mode; 1547 } 1548 EXPORT_SYMBOL(dm_table_get_mode); 1549 1550 enum suspend_mode { 1551 PRESUSPEND, 1552 PRESUSPEND_UNDO, 1553 POSTSUSPEND, 1554 }; 1555 1556 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1557 { 1558 int i = t->num_targets; 1559 struct dm_target *ti = t->targets; 1560 1561 while (i--) { 1562 switch (mode) { 1563 case PRESUSPEND: 1564 if (ti->type->presuspend) 1565 ti->type->presuspend(ti); 1566 break; 1567 case PRESUSPEND_UNDO: 1568 if (ti->type->presuspend_undo) 1569 ti->type->presuspend_undo(ti); 1570 break; 1571 case POSTSUSPEND: 1572 if (ti->type->postsuspend) 1573 ti->type->postsuspend(ti); 1574 break; 1575 } 1576 ti++; 1577 } 1578 } 1579 1580 void dm_table_presuspend_targets(struct dm_table *t) 1581 { 1582 if (!t) 1583 return; 1584 1585 suspend_targets(t, PRESUSPEND); 1586 } 1587 1588 void dm_table_presuspend_undo_targets(struct dm_table *t) 1589 { 1590 if (!t) 1591 return; 1592 1593 suspend_targets(t, PRESUSPEND_UNDO); 1594 } 1595 1596 void dm_table_postsuspend_targets(struct dm_table *t) 1597 { 1598 if (!t) 1599 return; 1600 1601 suspend_targets(t, POSTSUSPEND); 1602 } 1603 1604 int dm_table_resume_targets(struct dm_table *t) 1605 { 1606 int i, r = 0; 1607 1608 for (i = 0; i < t->num_targets; i++) { 1609 struct dm_target *ti = t->targets + i; 1610 1611 if (!ti->type->preresume) 1612 continue; 1613 1614 r = ti->type->preresume(ti); 1615 if (r) { 1616 DMERR("%s: %s: preresume failed, error = %d", 1617 dm_device_name(t->md), ti->type->name, r); 1618 return r; 1619 } 1620 } 1621 1622 for (i = 0; i < t->num_targets; i++) { 1623 struct dm_target *ti = t->targets + i; 1624 1625 if (ti->type->resume) 1626 ti->type->resume(ti); 1627 } 1628 1629 return 0; 1630 } 1631 1632 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1633 { 1634 list_add(&cb->list, &t->target_callbacks); 1635 } 1636 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1637 1638 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1639 { 1640 struct dm_dev_internal *dd; 1641 struct list_head *devices = dm_table_get_devices(t); 1642 struct dm_target_callbacks *cb; 1643 int r = 0; 1644 1645 list_for_each_entry(dd, devices, list) { 1646 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1647 char b[BDEVNAME_SIZE]; 1648 1649 if (likely(q)) 1650 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1651 else 1652 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1653 dm_device_name(t->md), 1654 bdevname(dd->dm_dev->bdev, b)); 1655 } 1656 1657 list_for_each_entry(cb, &t->target_callbacks, list) 1658 if (cb->congested_fn) 1659 r |= cb->congested_fn(cb, bdi_bits); 1660 1661 return r; 1662 } 1663 1664 struct mapped_device *dm_table_get_md(struct dm_table *t) 1665 { 1666 return t->md; 1667 } 1668 EXPORT_SYMBOL(dm_table_get_md); 1669 1670 void dm_table_run_md_queue_async(struct dm_table *t) 1671 { 1672 struct mapped_device *md; 1673 struct request_queue *queue; 1674 unsigned long flags; 1675 1676 if (!dm_table_request_based(t)) 1677 return; 1678 1679 md = dm_table_get_md(t); 1680 queue = dm_get_md_queue(md); 1681 if (queue) { 1682 if (queue->mq_ops) 1683 blk_mq_run_hw_queues(queue, true); 1684 else { 1685 spin_lock_irqsave(queue->queue_lock, flags); 1686 blk_run_queue_async(queue); 1687 spin_unlock_irqrestore(queue->queue_lock, flags); 1688 } 1689 } 1690 } 1691 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1692 1693