1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/namei.h> 15 #include <linux/ctype.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/interrupt.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/mount.h> 24 #include <linux/dax.h> 25 26 #define DM_MSG_PREFIX "table" 27 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 /* 33 * Similar to ceiling(log_size(n)) 34 */ 35 static unsigned int int_log(unsigned int n, unsigned int base) 36 { 37 int result = 0; 38 39 while (n > 1) { 40 n = dm_div_up(n, base); 41 result++; 42 } 43 44 return result; 45 } 46 47 /* 48 * Calculate the index of the child node of the n'th node k'th key. 49 */ 50 static inline unsigned int get_child(unsigned int n, unsigned int k) 51 { 52 return (n * CHILDREN_PER_NODE) + k; 53 } 54 55 /* 56 * Return the n'th node of level l from table t. 57 */ 58 static inline sector_t *get_node(struct dm_table *t, 59 unsigned int l, unsigned int n) 60 { 61 return t->index[l] + (n * KEYS_PER_NODE); 62 } 63 64 /* 65 * Return the highest key that you could lookup from the n'th 66 * node on level l of the btree. 67 */ 68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 69 { 70 for (; l < t->depth - 1; l++) 71 n = get_child(n, CHILDREN_PER_NODE - 1); 72 73 if (n >= t->counts[l]) 74 return (sector_t) - 1; 75 76 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 77 } 78 79 /* 80 * Fills in a level of the btree based on the highs of the level 81 * below it. 82 */ 83 static int setup_btree_index(unsigned int l, struct dm_table *t) 84 { 85 unsigned int n, k; 86 sector_t *node; 87 88 for (n = 0U; n < t->counts[l]; n++) { 89 node = get_node(t, l, n); 90 91 for (k = 0U; k < KEYS_PER_NODE; k++) 92 node[k] = high(t, l + 1, get_child(n, k)); 93 } 94 95 return 0; 96 } 97 98 /* 99 * highs, and targets are managed as dynamic arrays during a 100 * table load. 101 */ 102 static int alloc_targets(struct dm_table *t, unsigned int num) 103 { 104 sector_t *n_highs; 105 struct dm_target *n_targets; 106 107 /* 108 * Allocate both the target array and offset array at once. 109 */ 110 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 111 GFP_KERNEL); 112 if (!n_highs) 113 return -ENOMEM; 114 115 n_targets = (struct dm_target *) (n_highs + num); 116 117 memset(n_highs, -1, sizeof(*n_highs) * num); 118 kvfree(t->highs); 119 120 t->num_allocated = num; 121 t->highs = n_highs; 122 t->targets = n_targets; 123 124 return 0; 125 } 126 127 int dm_table_create(struct dm_table **result, fmode_t mode, 128 unsigned num_targets, struct mapped_device *md) 129 { 130 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 131 132 if (!t) 133 return -ENOMEM; 134 135 INIT_LIST_HEAD(&t->devices); 136 137 if (!num_targets) 138 num_targets = KEYS_PER_NODE; 139 140 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 141 142 if (!num_targets) { 143 kfree(t); 144 return -ENOMEM; 145 } 146 147 if (alloc_targets(t, num_targets)) { 148 kfree(t); 149 return -ENOMEM; 150 } 151 152 t->type = DM_TYPE_NONE; 153 t->mode = mode; 154 t->md = md; 155 *result = t; 156 return 0; 157 } 158 159 static void free_devices(struct list_head *devices, struct mapped_device *md) 160 { 161 struct list_head *tmp, *next; 162 163 list_for_each_safe(tmp, next, devices) { 164 struct dm_dev_internal *dd = 165 list_entry(tmp, struct dm_dev_internal, list); 166 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 167 dm_device_name(md), dd->dm_dev->name); 168 dm_put_table_device(md, dd->dm_dev); 169 kfree(dd); 170 } 171 } 172 173 static void dm_table_destroy_crypto_profile(struct dm_table *t); 174 175 void dm_table_destroy(struct dm_table *t) 176 { 177 unsigned int i; 178 179 if (!t) 180 return; 181 182 /* free the indexes */ 183 if (t->depth >= 2) 184 kvfree(t->index[t->depth - 2]); 185 186 /* free the targets */ 187 for (i = 0; i < t->num_targets; i++) { 188 struct dm_target *tgt = t->targets + i; 189 190 if (tgt->type->dtr) 191 tgt->type->dtr(tgt); 192 193 dm_put_target_type(tgt->type); 194 } 195 196 kvfree(t->highs); 197 198 /* free the device list */ 199 free_devices(&t->devices, t->md); 200 201 dm_free_md_mempools(t->mempools); 202 203 dm_table_destroy_crypto_profile(t); 204 205 kfree(t); 206 } 207 208 /* 209 * See if we've already got a device in the list. 210 */ 211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 212 { 213 struct dm_dev_internal *dd; 214 215 list_for_each_entry (dd, l, list) 216 if (dd->dm_dev->bdev->bd_dev == dev) 217 return dd; 218 219 return NULL; 220 } 221 222 /* 223 * If possible, this checks an area of a destination device is invalid. 224 */ 225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 226 sector_t start, sector_t len, void *data) 227 { 228 struct queue_limits *limits = data; 229 struct block_device *bdev = dev->bdev; 230 sector_t dev_size = bdev_nr_sectors(bdev); 231 unsigned short logical_block_size_sectors = 232 limits->logical_block_size >> SECTOR_SHIFT; 233 234 if (!dev_size) 235 return 0; 236 237 if ((start >= dev_size) || (start + len > dev_size)) { 238 DMWARN("%s: %pg too small for target: " 239 "start=%llu, len=%llu, dev_size=%llu", 240 dm_device_name(ti->table->md), bdev, 241 (unsigned long long)start, 242 (unsigned long long)len, 243 (unsigned long long)dev_size); 244 return 1; 245 } 246 247 /* 248 * If the target is mapped to zoned block device(s), check 249 * that the zones are not partially mapped. 250 */ 251 if (bdev_is_zoned(bdev)) { 252 unsigned int zone_sectors = bdev_zone_sectors(bdev); 253 254 if (start & (zone_sectors - 1)) { 255 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %pg", 256 dm_device_name(ti->table->md), 257 (unsigned long long)start, 258 zone_sectors, bdev); 259 return 1; 260 } 261 262 /* 263 * Note: The last zone of a zoned block device may be smaller 264 * than other zones. So for a target mapping the end of a 265 * zoned block device with such a zone, len would not be zone 266 * aligned. We do not allow such last smaller zone to be part 267 * of the mapping here to ensure that mappings with multiple 268 * devices do not end up with a smaller zone in the middle of 269 * the sector range. 270 */ 271 if (len & (zone_sectors - 1)) { 272 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %pg", 273 dm_device_name(ti->table->md), 274 (unsigned long long)len, 275 zone_sectors, bdev); 276 return 1; 277 } 278 } 279 280 if (logical_block_size_sectors <= 1) 281 return 0; 282 283 if (start & (logical_block_size_sectors - 1)) { 284 DMWARN("%s: start=%llu not aligned to h/w " 285 "logical block size %u of %pg", 286 dm_device_name(ti->table->md), 287 (unsigned long long)start, 288 limits->logical_block_size, bdev); 289 return 1; 290 } 291 292 if (len & (logical_block_size_sectors - 1)) { 293 DMWARN("%s: len=%llu not aligned to h/w " 294 "logical block size %u of %pg", 295 dm_device_name(ti->table->md), 296 (unsigned long long)len, 297 limits->logical_block_size, bdev); 298 return 1; 299 } 300 301 return 0; 302 } 303 304 /* 305 * This upgrades the mode on an already open dm_dev, being 306 * careful to leave things as they were if we fail to reopen the 307 * device and not to touch the existing bdev field in case 308 * it is accessed concurrently. 309 */ 310 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 311 struct mapped_device *md) 312 { 313 int r; 314 struct dm_dev *old_dev, *new_dev; 315 316 old_dev = dd->dm_dev; 317 318 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 319 dd->dm_dev->mode | new_mode, &new_dev); 320 if (r) 321 return r; 322 323 dd->dm_dev = new_dev; 324 dm_put_table_device(md, old_dev); 325 326 return 0; 327 } 328 329 /* 330 * Convert the path to a device 331 */ 332 dev_t dm_get_dev_t(const char *path) 333 { 334 dev_t dev; 335 336 if (lookup_bdev(path, &dev)) 337 dev = name_to_dev_t(path); 338 return dev; 339 } 340 EXPORT_SYMBOL_GPL(dm_get_dev_t); 341 342 /* 343 * Add a device to the list, or just increment the usage count if 344 * it's already present. 345 */ 346 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 347 struct dm_dev **result) 348 { 349 int r; 350 dev_t dev; 351 unsigned int major, minor; 352 char dummy; 353 struct dm_dev_internal *dd; 354 struct dm_table *t = ti->table; 355 356 BUG_ON(!t); 357 358 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 359 /* Extract the major/minor numbers */ 360 dev = MKDEV(major, minor); 361 if (MAJOR(dev) != major || MINOR(dev) != minor) 362 return -EOVERFLOW; 363 } else { 364 dev = dm_get_dev_t(path); 365 if (!dev) 366 return -ENODEV; 367 } 368 369 dd = find_device(&t->devices, dev); 370 if (!dd) { 371 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 372 if (!dd) 373 return -ENOMEM; 374 375 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 376 kfree(dd); 377 return r; 378 } 379 380 refcount_set(&dd->count, 1); 381 list_add(&dd->list, &t->devices); 382 goto out; 383 384 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 385 r = upgrade_mode(dd, mode, t->md); 386 if (r) 387 return r; 388 } 389 refcount_inc(&dd->count); 390 out: 391 *result = dd->dm_dev; 392 return 0; 393 } 394 EXPORT_SYMBOL(dm_get_device); 395 396 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 397 sector_t start, sector_t len, void *data) 398 { 399 struct queue_limits *limits = data; 400 struct block_device *bdev = dev->bdev; 401 struct request_queue *q = bdev_get_queue(bdev); 402 403 if (unlikely(!q)) { 404 DMWARN("%s: Cannot set limits for nonexistent device %pg", 405 dm_device_name(ti->table->md), bdev); 406 return 0; 407 } 408 409 if (blk_stack_limits(limits, &q->limits, 410 get_start_sect(bdev) + start) < 0) 411 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 412 "physical_block_size=%u, logical_block_size=%u, " 413 "alignment_offset=%u, start=%llu", 414 dm_device_name(ti->table->md), bdev, 415 q->limits.physical_block_size, 416 q->limits.logical_block_size, 417 q->limits.alignment_offset, 418 (unsigned long long) start << SECTOR_SHIFT); 419 return 0; 420 } 421 422 /* 423 * Decrement a device's use count and remove it if necessary. 424 */ 425 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 426 { 427 int found = 0; 428 struct list_head *devices = &ti->table->devices; 429 struct dm_dev_internal *dd; 430 431 list_for_each_entry(dd, devices, list) { 432 if (dd->dm_dev == d) { 433 found = 1; 434 break; 435 } 436 } 437 if (!found) { 438 DMWARN("%s: device %s not in table devices list", 439 dm_device_name(ti->table->md), d->name); 440 return; 441 } 442 if (refcount_dec_and_test(&dd->count)) { 443 dm_put_table_device(ti->table->md, d); 444 list_del(&dd->list); 445 kfree(dd); 446 } 447 } 448 EXPORT_SYMBOL(dm_put_device); 449 450 /* 451 * Checks to see if the target joins onto the end of the table. 452 */ 453 static int adjoin(struct dm_table *table, struct dm_target *ti) 454 { 455 struct dm_target *prev; 456 457 if (!table->num_targets) 458 return !ti->begin; 459 460 prev = &table->targets[table->num_targets - 1]; 461 return (ti->begin == (prev->begin + prev->len)); 462 } 463 464 /* 465 * Used to dynamically allocate the arg array. 466 * 467 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 468 * process messages even if some device is suspended. These messages have a 469 * small fixed number of arguments. 470 * 471 * On the other hand, dm-switch needs to process bulk data using messages and 472 * excessive use of GFP_NOIO could cause trouble. 473 */ 474 static char **realloc_argv(unsigned *size, char **old_argv) 475 { 476 char **argv; 477 unsigned new_size; 478 gfp_t gfp; 479 480 if (*size) { 481 new_size = *size * 2; 482 gfp = GFP_KERNEL; 483 } else { 484 new_size = 8; 485 gfp = GFP_NOIO; 486 } 487 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 488 if (argv && old_argv) { 489 memcpy(argv, old_argv, *size * sizeof(*argv)); 490 *size = new_size; 491 } 492 493 kfree(old_argv); 494 return argv; 495 } 496 497 /* 498 * Destructively splits up the argument list to pass to ctr. 499 */ 500 int dm_split_args(int *argc, char ***argvp, char *input) 501 { 502 char *start, *end = input, *out, **argv = NULL; 503 unsigned array_size = 0; 504 505 *argc = 0; 506 507 if (!input) { 508 *argvp = NULL; 509 return 0; 510 } 511 512 argv = realloc_argv(&array_size, argv); 513 if (!argv) 514 return -ENOMEM; 515 516 while (1) { 517 /* Skip whitespace */ 518 start = skip_spaces(end); 519 520 if (!*start) 521 break; /* success, we hit the end */ 522 523 /* 'out' is used to remove any back-quotes */ 524 end = out = start; 525 while (*end) { 526 /* Everything apart from '\0' can be quoted */ 527 if (*end == '\\' && *(end + 1)) { 528 *out++ = *(end + 1); 529 end += 2; 530 continue; 531 } 532 533 if (isspace(*end)) 534 break; /* end of token */ 535 536 *out++ = *end++; 537 } 538 539 /* have we already filled the array ? */ 540 if ((*argc + 1) > array_size) { 541 argv = realloc_argv(&array_size, argv); 542 if (!argv) 543 return -ENOMEM; 544 } 545 546 /* we know this is whitespace */ 547 if (*end) 548 end++; 549 550 /* terminate the string and put it in the array */ 551 *out = '\0'; 552 argv[*argc] = start; 553 (*argc)++; 554 } 555 556 *argvp = argv; 557 return 0; 558 } 559 560 /* 561 * Impose necessary and sufficient conditions on a devices's table such 562 * that any incoming bio which respects its logical_block_size can be 563 * processed successfully. If it falls across the boundary between 564 * two or more targets, the size of each piece it gets split into must 565 * be compatible with the logical_block_size of the target processing it. 566 */ 567 static int validate_hardware_logical_block_alignment(struct dm_table *table, 568 struct queue_limits *limits) 569 { 570 /* 571 * This function uses arithmetic modulo the logical_block_size 572 * (in units of 512-byte sectors). 573 */ 574 unsigned short device_logical_block_size_sects = 575 limits->logical_block_size >> SECTOR_SHIFT; 576 577 /* 578 * Offset of the start of the next table entry, mod logical_block_size. 579 */ 580 unsigned short next_target_start = 0; 581 582 /* 583 * Given an aligned bio that extends beyond the end of a 584 * target, how many sectors must the next target handle? 585 */ 586 unsigned short remaining = 0; 587 588 struct dm_target *ti; 589 struct queue_limits ti_limits; 590 unsigned i; 591 592 /* 593 * Check each entry in the table in turn. 594 */ 595 for (i = 0; i < dm_table_get_num_targets(table); i++) { 596 ti = dm_table_get_target(table, i); 597 598 blk_set_stacking_limits(&ti_limits); 599 600 /* combine all target devices' limits */ 601 if (ti->type->iterate_devices) 602 ti->type->iterate_devices(ti, dm_set_device_limits, 603 &ti_limits); 604 605 /* 606 * If the remaining sectors fall entirely within this 607 * table entry are they compatible with its logical_block_size? 608 */ 609 if (remaining < ti->len && 610 remaining & ((ti_limits.logical_block_size >> 611 SECTOR_SHIFT) - 1)) 612 break; /* Error */ 613 614 next_target_start = 615 (unsigned short) ((next_target_start + ti->len) & 616 (device_logical_block_size_sects - 1)); 617 remaining = next_target_start ? 618 device_logical_block_size_sects - next_target_start : 0; 619 } 620 621 if (remaining) { 622 DMWARN("%s: table line %u (start sect %llu len %llu) " 623 "not aligned to h/w logical block size %u", 624 dm_device_name(table->md), i, 625 (unsigned long long) ti->begin, 626 (unsigned long long) ti->len, 627 limits->logical_block_size); 628 return -EINVAL; 629 } 630 631 return 0; 632 } 633 634 int dm_table_add_target(struct dm_table *t, const char *type, 635 sector_t start, sector_t len, char *params) 636 { 637 int r = -EINVAL, argc; 638 char **argv; 639 struct dm_target *tgt; 640 641 if (t->singleton) { 642 DMERR("%s: target type %s must appear alone in table", 643 dm_device_name(t->md), t->targets->type->name); 644 return -EINVAL; 645 } 646 647 BUG_ON(t->num_targets >= t->num_allocated); 648 649 tgt = t->targets + t->num_targets; 650 memset(tgt, 0, sizeof(*tgt)); 651 652 if (!len) { 653 DMERR("%s: zero-length target", dm_device_name(t->md)); 654 return -EINVAL; 655 } 656 657 tgt->type = dm_get_target_type(type); 658 if (!tgt->type) { 659 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 660 return -EINVAL; 661 } 662 663 if (dm_target_needs_singleton(tgt->type)) { 664 if (t->num_targets) { 665 tgt->error = "singleton target type must appear alone in table"; 666 goto bad; 667 } 668 t->singleton = true; 669 } 670 671 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 672 tgt->error = "target type may not be included in a read-only table"; 673 goto bad; 674 } 675 676 if (t->immutable_target_type) { 677 if (t->immutable_target_type != tgt->type) { 678 tgt->error = "immutable target type cannot be mixed with other target types"; 679 goto bad; 680 } 681 } else if (dm_target_is_immutable(tgt->type)) { 682 if (t->num_targets) { 683 tgt->error = "immutable target type cannot be mixed with other target types"; 684 goto bad; 685 } 686 t->immutable_target_type = tgt->type; 687 } 688 689 if (dm_target_has_integrity(tgt->type)) 690 t->integrity_added = 1; 691 692 tgt->table = t; 693 tgt->begin = start; 694 tgt->len = len; 695 tgt->error = "Unknown error"; 696 697 /* 698 * Does this target adjoin the previous one ? 699 */ 700 if (!adjoin(t, tgt)) { 701 tgt->error = "Gap in table"; 702 goto bad; 703 } 704 705 r = dm_split_args(&argc, &argv, params); 706 if (r) { 707 tgt->error = "couldn't split parameters"; 708 goto bad; 709 } 710 711 r = tgt->type->ctr(tgt, argc, argv); 712 kfree(argv); 713 if (r) 714 goto bad; 715 716 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 717 718 if (!tgt->num_discard_bios && tgt->discards_supported) 719 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 720 dm_device_name(t->md), type); 721 722 return 0; 723 724 bad: 725 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r)); 726 dm_put_target_type(tgt->type); 727 return r; 728 } 729 730 /* 731 * Target argument parsing helpers. 732 */ 733 static int validate_next_arg(const struct dm_arg *arg, 734 struct dm_arg_set *arg_set, 735 unsigned *value, char **error, unsigned grouped) 736 { 737 const char *arg_str = dm_shift_arg(arg_set); 738 char dummy; 739 740 if (!arg_str || 741 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 742 (*value < arg->min) || 743 (*value > arg->max) || 744 (grouped && arg_set->argc < *value)) { 745 *error = arg->error; 746 return -EINVAL; 747 } 748 749 return 0; 750 } 751 752 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 753 unsigned *value, char **error) 754 { 755 return validate_next_arg(arg, arg_set, value, error, 0); 756 } 757 EXPORT_SYMBOL(dm_read_arg); 758 759 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 760 unsigned *value, char **error) 761 { 762 return validate_next_arg(arg, arg_set, value, error, 1); 763 } 764 EXPORT_SYMBOL(dm_read_arg_group); 765 766 const char *dm_shift_arg(struct dm_arg_set *as) 767 { 768 char *r; 769 770 if (as->argc) { 771 as->argc--; 772 r = *as->argv; 773 as->argv++; 774 return r; 775 } 776 777 return NULL; 778 } 779 EXPORT_SYMBOL(dm_shift_arg); 780 781 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 782 { 783 BUG_ON(as->argc < num_args); 784 as->argc -= num_args; 785 as->argv += num_args; 786 } 787 EXPORT_SYMBOL(dm_consume_args); 788 789 static bool __table_type_bio_based(enum dm_queue_mode table_type) 790 { 791 return (table_type == DM_TYPE_BIO_BASED || 792 table_type == DM_TYPE_DAX_BIO_BASED); 793 } 794 795 static bool __table_type_request_based(enum dm_queue_mode table_type) 796 { 797 return table_type == DM_TYPE_REQUEST_BASED; 798 } 799 800 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 801 { 802 t->type = type; 803 } 804 EXPORT_SYMBOL_GPL(dm_table_set_type); 805 806 /* validate the dax capability of the target device span */ 807 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 808 sector_t start, sector_t len, void *data) 809 { 810 if (dev->dax_dev) 811 return false; 812 813 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 814 return true; 815 } 816 817 /* Check devices support synchronous DAX */ 818 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 819 sector_t start, sector_t len, void *data) 820 { 821 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 822 } 823 824 static bool dm_table_supports_dax(struct dm_table *t, 825 iterate_devices_callout_fn iterate_fn) 826 { 827 struct dm_target *ti; 828 unsigned i; 829 830 /* Ensure that all targets support DAX. */ 831 for (i = 0; i < dm_table_get_num_targets(t); i++) { 832 ti = dm_table_get_target(t, i); 833 834 if (!ti->type->direct_access) 835 return false; 836 837 if (!ti->type->iterate_devices || 838 ti->type->iterate_devices(ti, iterate_fn, NULL)) 839 return false; 840 } 841 842 return true; 843 } 844 845 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 846 sector_t start, sector_t len, void *data) 847 { 848 struct block_device *bdev = dev->bdev; 849 struct request_queue *q = bdev_get_queue(bdev); 850 851 /* request-based cannot stack on partitions! */ 852 if (bdev_is_partition(bdev)) 853 return false; 854 855 return queue_is_mq(q); 856 } 857 858 static int dm_table_determine_type(struct dm_table *t) 859 { 860 unsigned i; 861 unsigned bio_based = 0, request_based = 0, hybrid = 0; 862 struct dm_target *tgt; 863 struct list_head *devices = dm_table_get_devices(t); 864 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 865 866 if (t->type != DM_TYPE_NONE) { 867 /* target already set the table's type */ 868 if (t->type == DM_TYPE_BIO_BASED) { 869 /* possibly upgrade to a variant of bio-based */ 870 goto verify_bio_based; 871 } 872 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 873 goto verify_rq_based; 874 } 875 876 for (i = 0; i < t->num_targets; i++) { 877 tgt = t->targets + i; 878 if (dm_target_hybrid(tgt)) 879 hybrid = 1; 880 else if (dm_target_request_based(tgt)) 881 request_based = 1; 882 else 883 bio_based = 1; 884 885 if (bio_based && request_based) { 886 DMERR("Inconsistent table: different target types" 887 " can't be mixed up"); 888 return -EINVAL; 889 } 890 } 891 892 if (hybrid && !bio_based && !request_based) { 893 /* 894 * The targets can work either way. 895 * Determine the type from the live device. 896 * Default to bio-based if device is new. 897 */ 898 if (__table_type_request_based(live_md_type)) 899 request_based = 1; 900 else 901 bio_based = 1; 902 } 903 904 if (bio_based) { 905 verify_bio_based: 906 /* We must use this table as bio-based */ 907 t->type = DM_TYPE_BIO_BASED; 908 if (dm_table_supports_dax(t, device_not_dax_capable) || 909 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 910 t->type = DM_TYPE_DAX_BIO_BASED; 911 } 912 return 0; 913 } 914 915 BUG_ON(!request_based); /* No targets in this table */ 916 917 t->type = DM_TYPE_REQUEST_BASED; 918 919 verify_rq_based: 920 /* 921 * Request-based dm supports only tables that have a single target now. 922 * To support multiple targets, request splitting support is needed, 923 * and that needs lots of changes in the block-layer. 924 * (e.g. request completion process for partial completion.) 925 */ 926 if (t->num_targets > 1) { 927 DMERR("request-based DM doesn't support multiple targets"); 928 return -EINVAL; 929 } 930 931 if (list_empty(devices)) { 932 int srcu_idx; 933 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 934 935 /* inherit live table's type */ 936 if (live_table) 937 t->type = live_table->type; 938 dm_put_live_table(t->md, srcu_idx); 939 return 0; 940 } 941 942 tgt = dm_table_get_immutable_target(t); 943 if (!tgt) { 944 DMERR("table load rejected: immutable target is required"); 945 return -EINVAL; 946 } else if (tgt->max_io_len) { 947 DMERR("table load rejected: immutable target that splits IO is not supported"); 948 return -EINVAL; 949 } 950 951 /* Non-request-stackable devices can't be used for request-based dm */ 952 if (!tgt->type->iterate_devices || 953 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 954 DMERR("table load rejected: including non-request-stackable devices"); 955 return -EINVAL; 956 } 957 958 return 0; 959 } 960 961 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 962 { 963 return t->type; 964 } 965 966 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 967 { 968 return t->immutable_target_type; 969 } 970 971 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 972 { 973 /* Immutable target is implicitly a singleton */ 974 if (t->num_targets > 1 || 975 !dm_target_is_immutable(t->targets[0].type)) 976 return NULL; 977 978 return t->targets; 979 } 980 981 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 982 { 983 struct dm_target *ti; 984 unsigned i; 985 986 for (i = 0; i < dm_table_get_num_targets(t); i++) { 987 ti = dm_table_get_target(t, i); 988 if (dm_target_is_wildcard(ti->type)) 989 return ti; 990 } 991 992 return NULL; 993 } 994 995 bool dm_table_bio_based(struct dm_table *t) 996 { 997 return __table_type_bio_based(dm_table_get_type(t)); 998 } 999 1000 bool dm_table_request_based(struct dm_table *t) 1001 { 1002 return __table_type_request_based(dm_table_get_type(t)); 1003 } 1004 1005 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1006 { 1007 enum dm_queue_mode type = dm_table_get_type(t); 1008 unsigned per_io_data_size = 0; 1009 unsigned min_pool_size = 0; 1010 struct dm_target *ti; 1011 unsigned i; 1012 1013 if (unlikely(type == DM_TYPE_NONE)) { 1014 DMWARN("no table type is set, can't allocate mempools"); 1015 return -EINVAL; 1016 } 1017 1018 if (__table_type_bio_based(type)) 1019 for (i = 0; i < t->num_targets; i++) { 1020 ti = t->targets + i; 1021 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1022 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1023 } 1024 1025 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1026 per_io_data_size, min_pool_size); 1027 if (!t->mempools) 1028 return -ENOMEM; 1029 1030 return 0; 1031 } 1032 1033 void dm_table_free_md_mempools(struct dm_table *t) 1034 { 1035 dm_free_md_mempools(t->mempools); 1036 t->mempools = NULL; 1037 } 1038 1039 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1040 { 1041 return t->mempools; 1042 } 1043 1044 static int setup_indexes(struct dm_table *t) 1045 { 1046 int i; 1047 unsigned int total = 0; 1048 sector_t *indexes; 1049 1050 /* allocate the space for *all* the indexes */ 1051 for (i = t->depth - 2; i >= 0; i--) { 1052 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1053 total += t->counts[i]; 1054 } 1055 1056 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1057 if (!indexes) 1058 return -ENOMEM; 1059 1060 /* set up internal nodes, bottom-up */ 1061 for (i = t->depth - 2; i >= 0; i--) { 1062 t->index[i] = indexes; 1063 indexes += (KEYS_PER_NODE * t->counts[i]); 1064 setup_btree_index(i, t); 1065 } 1066 1067 return 0; 1068 } 1069 1070 /* 1071 * Builds the btree to index the map. 1072 */ 1073 static int dm_table_build_index(struct dm_table *t) 1074 { 1075 int r = 0; 1076 unsigned int leaf_nodes; 1077 1078 /* how many indexes will the btree have ? */ 1079 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1080 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1081 1082 /* leaf layer has already been set up */ 1083 t->counts[t->depth - 1] = leaf_nodes; 1084 t->index[t->depth - 1] = t->highs; 1085 1086 if (t->depth >= 2) 1087 r = setup_indexes(t); 1088 1089 return r; 1090 } 1091 1092 static bool integrity_profile_exists(struct gendisk *disk) 1093 { 1094 return !!blk_get_integrity(disk); 1095 } 1096 1097 /* 1098 * Get a disk whose integrity profile reflects the table's profile. 1099 * Returns NULL if integrity support was inconsistent or unavailable. 1100 */ 1101 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1102 { 1103 struct list_head *devices = dm_table_get_devices(t); 1104 struct dm_dev_internal *dd = NULL; 1105 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1106 unsigned i; 1107 1108 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1109 struct dm_target *ti = dm_table_get_target(t, i); 1110 if (!dm_target_passes_integrity(ti->type)) 1111 goto no_integrity; 1112 } 1113 1114 list_for_each_entry(dd, devices, list) { 1115 template_disk = dd->dm_dev->bdev->bd_disk; 1116 if (!integrity_profile_exists(template_disk)) 1117 goto no_integrity; 1118 else if (prev_disk && 1119 blk_integrity_compare(prev_disk, template_disk) < 0) 1120 goto no_integrity; 1121 prev_disk = template_disk; 1122 } 1123 1124 return template_disk; 1125 1126 no_integrity: 1127 if (prev_disk) 1128 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1129 dm_device_name(t->md), 1130 prev_disk->disk_name, 1131 template_disk->disk_name); 1132 return NULL; 1133 } 1134 1135 /* 1136 * Register the mapped device for blk_integrity support if the 1137 * underlying devices have an integrity profile. But all devices may 1138 * not have matching profiles (checking all devices isn't reliable 1139 * during table load because this table may use other DM device(s) which 1140 * must be resumed before they will have an initialized integity 1141 * profile). Consequently, stacked DM devices force a 2 stage integrity 1142 * profile validation: First pass during table load, final pass during 1143 * resume. 1144 */ 1145 static int dm_table_register_integrity(struct dm_table *t) 1146 { 1147 struct mapped_device *md = t->md; 1148 struct gendisk *template_disk = NULL; 1149 1150 /* If target handles integrity itself do not register it here. */ 1151 if (t->integrity_added) 1152 return 0; 1153 1154 template_disk = dm_table_get_integrity_disk(t); 1155 if (!template_disk) 1156 return 0; 1157 1158 if (!integrity_profile_exists(dm_disk(md))) { 1159 t->integrity_supported = true; 1160 /* 1161 * Register integrity profile during table load; we can do 1162 * this because the final profile must match during resume. 1163 */ 1164 blk_integrity_register(dm_disk(md), 1165 blk_get_integrity(template_disk)); 1166 return 0; 1167 } 1168 1169 /* 1170 * If DM device already has an initialized integrity 1171 * profile the new profile should not conflict. 1172 */ 1173 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1174 DMWARN("%s: conflict with existing integrity profile: " 1175 "%s profile mismatch", 1176 dm_device_name(t->md), 1177 template_disk->disk_name); 1178 return 1; 1179 } 1180 1181 /* Preserve existing integrity profile */ 1182 t->integrity_supported = true; 1183 return 0; 1184 } 1185 1186 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1187 1188 struct dm_crypto_profile { 1189 struct blk_crypto_profile profile; 1190 struct mapped_device *md; 1191 }; 1192 1193 struct dm_keyslot_evict_args { 1194 const struct blk_crypto_key *key; 1195 int err; 1196 }; 1197 1198 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1199 sector_t start, sector_t len, void *data) 1200 { 1201 struct dm_keyslot_evict_args *args = data; 1202 int err; 1203 1204 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key); 1205 if (!args->err) 1206 args->err = err; 1207 /* Always try to evict the key from all devices. */ 1208 return 0; 1209 } 1210 1211 /* 1212 * When an inline encryption key is evicted from a device-mapper device, evict 1213 * it from all the underlying devices. 1214 */ 1215 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1216 const struct blk_crypto_key *key, unsigned int slot) 1217 { 1218 struct mapped_device *md = 1219 container_of(profile, struct dm_crypto_profile, profile)->md; 1220 struct dm_keyslot_evict_args args = { key }; 1221 struct dm_table *t; 1222 int srcu_idx; 1223 int i; 1224 struct dm_target *ti; 1225 1226 t = dm_get_live_table(md, &srcu_idx); 1227 if (!t) 1228 return 0; 1229 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1230 ti = dm_table_get_target(t, i); 1231 if (!ti->type->iterate_devices) 1232 continue; 1233 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args); 1234 } 1235 dm_put_live_table(md, srcu_idx); 1236 return args.err; 1237 } 1238 1239 static int 1240 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1241 sector_t start, sector_t len, void *data) 1242 { 1243 struct blk_crypto_profile *parent = data; 1244 struct blk_crypto_profile *child = 1245 bdev_get_queue(dev->bdev)->crypto_profile; 1246 1247 blk_crypto_intersect_capabilities(parent, child); 1248 return 0; 1249 } 1250 1251 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1252 { 1253 struct dm_crypto_profile *dmcp = container_of(profile, 1254 struct dm_crypto_profile, 1255 profile); 1256 1257 if (!profile) 1258 return; 1259 1260 blk_crypto_profile_destroy(profile); 1261 kfree(dmcp); 1262 } 1263 1264 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1265 { 1266 dm_destroy_crypto_profile(t->crypto_profile); 1267 t->crypto_profile = NULL; 1268 } 1269 1270 /* 1271 * Constructs and initializes t->crypto_profile with a crypto profile that 1272 * represents the common set of crypto capabilities of the devices described by 1273 * the dm_table. However, if the constructed crypto profile doesn't support all 1274 * crypto capabilities that are supported by the current mapped_device, it 1275 * returns an error instead, since we don't support removing crypto capabilities 1276 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1277 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1278 */ 1279 static int dm_table_construct_crypto_profile(struct dm_table *t) 1280 { 1281 struct dm_crypto_profile *dmcp; 1282 struct blk_crypto_profile *profile; 1283 struct dm_target *ti; 1284 unsigned int i; 1285 bool empty_profile = true; 1286 1287 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1288 if (!dmcp) 1289 return -ENOMEM; 1290 dmcp->md = t->md; 1291 1292 profile = &dmcp->profile; 1293 blk_crypto_profile_init(profile, 0); 1294 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1295 profile->max_dun_bytes_supported = UINT_MAX; 1296 memset(profile->modes_supported, 0xFF, 1297 sizeof(profile->modes_supported)); 1298 1299 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1300 ti = dm_table_get_target(t, i); 1301 1302 if (!dm_target_passes_crypto(ti->type)) { 1303 blk_crypto_intersect_capabilities(profile, NULL); 1304 break; 1305 } 1306 if (!ti->type->iterate_devices) 1307 continue; 1308 ti->type->iterate_devices(ti, 1309 device_intersect_crypto_capabilities, 1310 profile); 1311 } 1312 1313 if (t->md->queue && 1314 !blk_crypto_has_capabilities(profile, 1315 t->md->queue->crypto_profile)) { 1316 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1317 dm_destroy_crypto_profile(profile); 1318 return -EINVAL; 1319 } 1320 1321 /* 1322 * If the new profile doesn't actually support any crypto capabilities, 1323 * we may as well represent it with a NULL profile. 1324 */ 1325 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1326 if (profile->modes_supported[i]) { 1327 empty_profile = false; 1328 break; 1329 } 1330 } 1331 1332 if (empty_profile) { 1333 dm_destroy_crypto_profile(profile); 1334 profile = NULL; 1335 } 1336 1337 /* 1338 * t->crypto_profile is only set temporarily while the table is being 1339 * set up, and it gets set to NULL after the profile has been 1340 * transferred to the request_queue. 1341 */ 1342 t->crypto_profile = profile; 1343 1344 return 0; 1345 } 1346 1347 static void dm_update_crypto_profile(struct request_queue *q, 1348 struct dm_table *t) 1349 { 1350 if (!t->crypto_profile) 1351 return; 1352 1353 /* Make the crypto profile less restrictive. */ 1354 if (!q->crypto_profile) { 1355 blk_crypto_register(t->crypto_profile, q); 1356 } else { 1357 blk_crypto_update_capabilities(q->crypto_profile, 1358 t->crypto_profile); 1359 dm_destroy_crypto_profile(t->crypto_profile); 1360 } 1361 t->crypto_profile = NULL; 1362 } 1363 1364 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1365 1366 static int dm_table_construct_crypto_profile(struct dm_table *t) 1367 { 1368 return 0; 1369 } 1370 1371 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1372 { 1373 } 1374 1375 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1376 { 1377 } 1378 1379 static void dm_update_crypto_profile(struct request_queue *q, 1380 struct dm_table *t) 1381 { 1382 } 1383 1384 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1385 1386 /* 1387 * Prepares the table for use by building the indices, 1388 * setting the type, and allocating mempools. 1389 */ 1390 int dm_table_complete(struct dm_table *t) 1391 { 1392 int r; 1393 1394 r = dm_table_determine_type(t); 1395 if (r) { 1396 DMERR("unable to determine table type"); 1397 return r; 1398 } 1399 1400 r = dm_table_build_index(t); 1401 if (r) { 1402 DMERR("unable to build btrees"); 1403 return r; 1404 } 1405 1406 r = dm_table_register_integrity(t); 1407 if (r) { 1408 DMERR("could not register integrity profile."); 1409 return r; 1410 } 1411 1412 r = dm_table_construct_crypto_profile(t); 1413 if (r) { 1414 DMERR("could not construct crypto profile."); 1415 return r; 1416 } 1417 1418 r = dm_table_alloc_md_mempools(t, t->md); 1419 if (r) 1420 DMERR("unable to allocate mempools"); 1421 1422 return r; 1423 } 1424 1425 static DEFINE_MUTEX(_event_lock); 1426 void dm_table_event_callback(struct dm_table *t, 1427 void (*fn)(void *), void *context) 1428 { 1429 mutex_lock(&_event_lock); 1430 t->event_fn = fn; 1431 t->event_context = context; 1432 mutex_unlock(&_event_lock); 1433 } 1434 1435 void dm_table_event(struct dm_table *t) 1436 { 1437 mutex_lock(&_event_lock); 1438 if (t->event_fn) 1439 t->event_fn(t->event_context); 1440 mutex_unlock(&_event_lock); 1441 } 1442 EXPORT_SYMBOL(dm_table_event); 1443 1444 inline sector_t dm_table_get_size(struct dm_table *t) 1445 { 1446 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1447 } 1448 EXPORT_SYMBOL(dm_table_get_size); 1449 1450 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1451 { 1452 if (index >= t->num_targets) 1453 return NULL; 1454 1455 return t->targets + index; 1456 } 1457 1458 /* 1459 * Search the btree for the correct target. 1460 * 1461 * Caller should check returned pointer for NULL 1462 * to trap I/O beyond end of device. 1463 */ 1464 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1465 { 1466 unsigned int l, n = 0, k = 0; 1467 sector_t *node; 1468 1469 if (unlikely(sector >= dm_table_get_size(t))) 1470 return NULL; 1471 1472 for (l = 0; l < t->depth; l++) { 1473 n = get_child(n, k); 1474 node = get_node(t, l, n); 1475 1476 for (k = 0; k < KEYS_PER_NODE; k++) 1477 if (node[k] >= sector) 1478 break; 1479 } 1480 1481 return &t->targets[(KEYS_PER_NODE * n) + k]; 1482 } 1483 1484 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, 1485 sector_t start, sector_t len, void *data) 1486 { 1487 struct request_queue *q = bdev_get_queue(dev->bdev); 1488 1489 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); 1490 } 1491 1492 /* 1493 * type->iterate_devices() should be called when the sanity check needs to 1494 * iterate and check all underlying data devices. iterate_devices() will 1495 * iterate all underlying data devices until it encounters a non-zero return 1496 * code, returned by whether the input iterate_devices_callout_fn, or 1497 * iterate_devices() itself internally. 1498 * 1499 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1500 * iterate multiple underlying devices internally, in which case a non-zero 1501 * return code returned by iterate_devices_callout_fn will stop the iteration 1502 * in advance. 1503 * 1504 * Cases requiring _any_ underlying device supporting some kind of attribute, 1505 * should use the iteration structure like dm_table_any_dev_attr(), or call 1506 * it directly. @func should handle semantics of positive examples, e.g. 1507 * capable of something. 1508 * 1509 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1510 * should use the iteration structure like dm_table_supports_nowait() or 1511 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1512 * uses an @anti_func that handle semantics of counter examples, e.g. not 1513 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1514 */ 1515 static bool dm_table_any_dev_attr(struct dm_table *t, 1516 iterate_devices_callout_fn func, void *data) 1517 { 1518 struct dm_target *ti; 1519 unsigned int i; 1520 1521 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1522 ti = dm_table_get_target(t, i); 1523 1524 if (ti->type->iterate_devices && 1525 ti->type->iterate_devices(ti, func, data)) 1526 return true; 1527 } 1528 1529 return false; 1530 } 1531 1532 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1533 sector_t start, sector_t len, void *data) 1534 { 1535 unsigned *num_devices = data; 1536 1537 (*num_devices)++; 1538 1539 return 0; 1540 } 1541 1542 static int dm_table_supports_poll(struct dm_table *t) 1543 { 1544 return !dm_table_any_dev_attr(t, device_not_poll_capable, NULL); 1545 } 1546 1547 /* 1548 * Check whether a table has no data devices attached using each 1549 * target's iterate_devices method. 1550 * Returns false if the result is unknown because a target doesn't 1551 * support iterate_devices. 1552 */ 1553 bool dm_table_has_no_data_devices(struct dm_table *table) 1554 { 1555 struct dm_target *ti; 1556 unsigned i, num_devices; 1557 1558 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1559 ti = dm_table_get_target(table, i); 1560 1561 if (!ti->type->iterate_devices) 1562 return false; 1563 1564 num_devices = 0; 1565 ti->type->iterate_devices(ti, count_device, &num_devices); 1566 if (num_devices) 1567 return false; 1568 } 1569 1570 return true; 1571 } 1572 1573 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1574 sector_t start, sector_t len, void *data) 1575 { 1576 struct request_queue *q = bdev_get_queue(dev->bdev); 1577 enum blk_zoned_model *zoned_model = data; 1578 1579 return blk_queue_zoned_model(q) != *zoned_model; 1580 } 1581 1582 /* 1583 * Check the device zoned model based on the target feature flag. If the target 1584 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1585 * also accepted but all devices must have the same zoned model. If the target 1586 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1587 * zoned model with all zoned devices having the same zone size. 1588 */ 1589 static bool dm_table_supports_zoned_model(struct dm_table *t, 1590 enum blk_zoned_model zoned_model) 1591 { 1592 struct dm_target *ti; 1593 unsigned i; 1594 1595 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1596 ti = dm_table_get_target(t, i); 1597 1598 if (dm_target_supports_zoned_hm(ti->type)) { 1599 if (!ti->type->iterate_devices || 1600 ti->type->iterate_devices(ti, device_not_zoned_model, 1601 &zoned_model)) 1602 return false; 1603 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1604 if (zoned_model == BLK_ZONED_HM) 1605 return false; 1606 } 1607 } 1608 1609 return true; 1610 } 1611 1612 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1613 sector_t start, sector_t len, void *data) 1614 { 1615 struct request_queue *q = bdev_get_queue(dev->bdev); 1616 unsigned int *zone_sectors = data; 1617 1618 if (!blk_queue_is_zoned(q)) 1619 return 0; 1620 1621 return blk_queue_zone_sectors(q) != *zone_sectors; 1622 } 1623 1624 /* 1625 * Check consistency of zoned model and zone sectors across all targets. For 1626 * zone sectors, if the destination device is a zoned block device, it shall 1627 * have the specified zone_sectors. 1628 */ 1629 static int validate_hardware_zoned_model(struct dm_table *table, 1630 enum blk_zoned_model zoned_model, 1631 unsigned int zone_sectors) 1632 { 1633 if (zoned_model == BLK_ZONED_NONE) 1634 return 0; 1635 1636 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1637 DMERR("%s: zoned model is not consistent across all devices", 1638 dm_device_name(table->md)); 1639 return -EINVAL; 1640 } 1641 1642 /* Check zone size validity and compatibility */ 1643 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1644 return -EINVAL; 1645 1646 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { 1647 DMERR("%s: zone sectors is not consistent across all zoned devices", 1648 dm_device_name(table->md)); 1649 return -EINVAL; 1650 } 1651 1652 return 0; 1653 } 1654 1655 /* 1656 * Establish the new table's queue_limits and validate them. 1657 */ 1658 int dm_calculate_queue_limits(struct dm_table *table, 1659 struct queue_limits *limits) 1660 { 1661 struct dm_target *ti; 1662 struct queue_limits ti_limits; 1663 unsigned i; 1664 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1665 unsigned int zone_sectors = 0; 1666 1667 blk_set_stacking_limits(limits); 1668 1669 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1670 blk_set_stacking_limits(&ti_limits); 1671 1672 ti = dm_table_get_target(table, i); 1673 1674 if (!ti->type->iterate_devices) 1675 goto combine_limits; 1676 1677 /* 1678 * Combine queue limits of all the devices this target uses. 1679 */ 1680 ti->type->iterate_devices(ti, dm_set_device_limits, 1681 &ti_limits); 1682 1683 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1684 /* 1685 * After stacking all limits, validate all devices 1686 * in table support this zoned model and zone sectors. 1687 */ 1688 zoned_model = ti_limits.zoned; 1689 zone_sectors = ti_limits.chunk_sectors; 1690 } 1691 1692 /* Set I/O hints portion of queue limits */ 1693 if (ti->type->io_hints) 1694 ti->type->io_hints(ti, &ti_limits); 1695 1696 /* 1697 * Check each device area is consistent with the target's 1698 * overall queue limits. 1699 */ 1700 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1701 &ti_limits)) 1702 return -EINVAL; 1703 1704 combine_limits: 1705 /* 1706 * Merge this target's queue limits into the overall limits 1707 * for the table. 1708 */ 1709 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1710 DMWARN("%s: adding target device " 1711 "(start sect %llu len %llu) " 1712 "caused an alignment inconsistency", 1713 dm_device_name(table->md), 1714 (unsigned long long) ti->begin, 1715 (unsigned long long) ti->len); 1716 } 1717 1718 /* 1719 * Verify that the zoned model and zone sectors, as determined before 1720 * any .io_hints override, are the same across all devices in the table. 1721 * - this is especially relevant if .io_hints is emulating a disk-managed 1722 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1723 * BUT... 1724 */ 1725 if (limits->zoned != BLK_ZONED_NONE) { 1726 /* 1727 * ...IF the above limits stacking determined a zoned model 1728 * validate that all of the table's devices conform to it. 1729 */ 1730 zoned_model = limits->zoned; 1731 zone_sectors = limits->chunk_sectors; 1732 } 1733 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1734 return -EINVAL; 1735 1736 return validate_hardware_logical_block_alignment(table, limits); 1737 } 1738 1739 /* 1740 * Verify that all devices have an integrity profile that matches the 1741 * DM device's registered integrity profile. If the profiles don't 1742 * match then unregister the DM device's integrity profile. 1743 */ 1744 static void dm_table_verify_integrity(struct dm_table *t) 1745 { 1746 struct gendisk *template_disk = NULL; 1747 1748 if (t->integrity_added) 1749 return; 1750 1751 if (t->integrity_supported) { 1752 /* 1753 * Verify that the original integrity profile 1754 * matches all the devices in this table. 1755 */ 1756 template_disk = dm_table_get_integrity_disk(t); 1757 if (template_disk && 1758 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1759 return; 1760 } 1761 1762 if (integrity_profile_exists(dm_disk(t->md))) { 1763 DMWARN("%s: unable to establish an integrity profile", 1764 dm_device_name(t->md)); 1765 blk_integrity_unregister(dm_disk(t->md)); 1766 } 1767 } 1768 1769 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1770 sector_t start, sector_t len, void *data) 1771 { 1772 unsigned long flush = (unsigned long) data; 1773 struct request_queue *q = bdev_get_queue(dev->bdev); 1774 1775 return (q->queue_flags & flush); 1776 } 1777 1778 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1779 { 1780 struct dm_target *ti; 1781 unsigned i; 1782 1783 /* 1784 * Require at least one underlying device to support flushes. 1785 * t->devices includes internal dm devices such as mirror logs 1786 * so we need to use iterate_devices here, which targets 1787 * supporting flushes must provide. 1788 */ 1789 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1790 ti = dm_table_get_target(t, i); 1791 1792 if (!ti->num_flush_bios) 1793 continue; 1794 1795 if (ti->flush_supported) 1796 return true; 1797 1798 if (ti->type->iterate_devices && 1799 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1800 return true; 1801 } 1802 1803 return false; 1804 } 1805 1806 static int device_dax_write_cache_enabled(struct dm_target *ti, 1807 struct dm_dev *dev, sector_t start, 1808 sector_t len, void *data) 1809 { 1810 struct dax_device *dax_dev = dev->dax_dev; 1811 1812 if (!dax_dev) 1813 return false; 1814 1815 if (dax_write_cache_enabled(dax_dev)) 1816 return true; 1817 return false; 1818 } 1819 1820 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1821 sector_t start, sector_t len, void *data) 1822 { 1823 struct request_queue *q = bdev_get_queue(dev->bdev); 1824 1825 return !blk_queue_nonrot(q); 1826 } 1827 1828 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1829 sector_t start, sector_t len, void *data) 1830 { 1831 struct request_queue *q = bdev_get_queue(dev->bdev); 1832 1833 return !blk_queue_add_random(q); 1834 } 1835 1836 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1837 sector_t start, sector_t len, void *data) 1838 { 1839 struct request_queue *q = bdev_get_queue(dev->bdev); 1840 1841 return !q->limits.max_write_zeroes_sectors; 1842 } 1843 1844 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1845 { 1846 struct dm_target *ti; 1847 unsigned i = 0; 1848 1849 while (i < dm_table_get_num_targets(t)) { 1850 ti = dm_table_get_target(t, i++); 1851 1852 if (!ti->num_write_zeroes_bios) 1853 return false; 1854 1855 if (!ti->type->iterate_devices || 1856 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1857 return false; 1858 } 1859 1860 return true; 1861 } 1862 1863 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1864 sector_t start, sector_t len, void *data) 1865 { 1866 struct request_queue *q = bdev_get_queue(dev->bdev); 1867 1868 return !blk_queue_nowait(q); 1869 } 1870 1871 static bool dm_table_supports_nowait(struct dm_table *t) 1872 { 1873 struct dm_target *ti; 1874 unsigned i = 0; 1875 1876 while (i < dm_table_get_num_targets(t)) { 1877 ti = dm_table_get_target(t, i++); 1878 1879 if (!dm_target_supports_nowait(ti->type)) 1880 return false; 1881 1882 if (!ti->type->iterate_devices || 1883 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1884 return false; 1885 } 1886 1887 return true; 1888 } 1889 1890 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1891 sector_t start, sector_t len, void *data) 1892 { 1893 struct request_queue *q = bdev_get_queue(dev->bdev); 1894 1895 return !blk_queue_discard(q); 1896 } 1897 1898 static bool dm_table_supports_discards(struct dm_table *t) 1899 { 1900 struct dm_target *ti; 1901 unsigned i; 1902 1903 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1904 ti = dm_table_get_target(t, i); 1905 1906 if (!ti->num_discard_bios) 1907 return false; 1908 1909 /* 1910 * Either the target provides discard support (as implied by setting 1911 * 'discards_supported') or it relies on _all_ data devices having 1912 * discard support. 1913 */ 1914 if (!ti->discards_supported && 1915 (!ti->type->iterate_devices || 1916 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1917 return false; 1918 } 1919 1920 return true; 1921 } 1922 1923 static int device_not_secure_erase_capable(struct dm_target *ti, 1924 struct dm_dev *dev, sector_t start, 1925 sector_t len, void *data) 1926 { 1927 struct request_queue *q = bdev_get_queue(dev->bdev); 1928 1929 return !blk_queue_secure_erase(q); 1930 } 1931 1932 static bool dm_table_supports_secure_erase(struct dm_table *t) 1933 { 1934 struct dm_target *ti; 1935 unsigned int i; 1936 1937 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1938 ti = dm_table_get_target(t, i); 1939 1940 if (!ti->num_secure_erase_bios) 1941 return false; 1942 1943 if (!ti->type->iterate_devices || 1944 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1945 return false; 1946 } 1947 1948 return true; 1949 } 1950 1951 static int device_requires_stable_pages(struct dm_target *ti, 1952 struct dm_dev *dev, sector_t start, 1953 sector_t len, void *data) 1954 { 1955 struct request_queue *q = bdev_get_queue(dev->bdev); 1956 1957 return blk_queue_stable_writes(q); 1958 } 1959 1960 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1961 struct queue_limits *limits) 1962 { 1963 bool wc = false, fua = false; 1964 int r; 1965 1966 /* 1967 * Copy table's limits to the DM device's request_queue 1968 */ 1969 q->limits = *limits; 1970 1971 if (dm_table_supports_nowait(t)) 1972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1973 else 1974 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1975 1976 if (!dm_table_supports_discards(t)) { 1977 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1978 /* Must also clear discard limits... */ 1979 q->limits.max_discard_sectors = 0; 1980 q->limits.max_hw_discard_sectors = 0; 1981 q->limits.discard_granularity = 0; 1982 q->limits.discard_alignment = 0; 1983 q->limits.discard_misaligned = 0; 1984 } else 1985 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1986 1987 if (dm_table_supports_secure_erase(t)) 1988 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1989 1990 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1991 wc = true; 1992 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1993 fua = true; 1994 } 1995 blk_queue_write_cache(q, wc, fua); 1996 1997 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1998 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1999 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 2000 set_dax_synchronous(t->md->dax_dev); 2001 } 2002 else 2003 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 2004 2005 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2006 dax_write_cache(t->md->dax_dev, true); 2007 2008 /* Ensure that all underlying devices are non-rotational. */ 2009 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 2010 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2011 else 2012 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2013 2014 if (!dm_table_supports_write_zeroes(t)) 2015 q->limits.max_write_zeroes_sectors = 0; 2016 2017 dm_table_verify_integrity(t); 2018 2019 /* 2020 * Some devices don't use blk_integrity but still want stable pages 2021 * because they do their own checksumming. 2022 * If any underlying device requires stable pages, a table must require 2023 * them as well. Only targets that support iterate_devices are considered: 2024 * don't want error, zero, etc to require stable pages. 2025 */ 2026 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2027 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2028 else 2029 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2030 2031 /* 2032 * Determine whether or not this queue's I/O timings contribute 2033 * to the entropy pool, Only request-based targets use this. 2034 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2035 * have it set. 2036 */ 2037 if (blk_queue_add_random(q) && 2038 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2039 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2040 2041 /* 2042 * For a zoned target, setup the zones related queue attributes 2043 * and resources necessary for zone append emulation if necessary. 2044 */ 2045 if (blk_queue_is_zoned(q)) { 2046 r = dm_set_zones_restrictions(t, q); 2047 if (r) 2048 return r; 2049 } 2050 2051 dm_update_crypto_profile(q, t); 2052 disk_update_readahead(t->md->disk); 2053 2054 /* 2055 * Check for request-based device is left to 2056 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). 2057 * 2058 * For bio-based device, only set QUEUE_FLAG_POLL when all 2059 * underlying devices supporting polling. 2060 */ 2061 if (__table_type_bio_based(t->type)) { 2062 if (dm_table_supports_poll(t)) 2063 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2064 else 2065 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 2066 } 2067 2068 return 0; 2069 } 2070 2071 unsigned int dm_table_get_num_targets(struct dm_table *t) 2072 { 2073 return t->num_targets; 2074 } 2075 2076 struct list_head *dm_table_get_devices(struct dm_table *t) 2077 { 2078 return &t->devices; 2079 } 2080 2081 fmode_t dm_table_get_mode(struct dm_table *t) 2082 { 2083 return t->mode; 2084 } 2085 EXPORT_SYMBOL(dm_table_get_mode); 2086 2087 enum suspend_mode { 2088 PRESUSPEND, 2089 PRESUSPEND_UNDO, 2090 POSTSUSPEND, 2091 }; 2092 2093 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2094 { 2095 int i = t->num_targets; 2096 struct dm_target *ti = t->targets; 2097 2098 lockdep_assert_held(&t->md->suspend_lock); 2099 2100 while (i--) { 2101 switch (mode) { 2102 case PRESUSPEND: 2103 if (ti->type->presuspend) 2104 ti->type->presuspend(ti); 2105 break; 2106 case PRESUSPEND_UNDO: 2107 if (ti->type->presuspend_undo) 2108 ti->type->presuspend_undo(ti); 2109 break; 2110 case POSTSUSPEND: 2111 if (ti->type->postsuspend) 2112 ti->type->postsuspend(ti); 2113 break; 2114 } 2115 ti++; 2116 } 2117 } 2118 2119 void dm_table_presuspend_targets(struct dm_table *t) 2120 { 2121 if (!t) 2122 return; 2123 2124 suspend_targets(t, PRESUSPEND); 2125 } 2126 2127 void dm_table_presuspend_undo_targets(struct dm_table *t) 2128 { 2129 if (!t) 2130 return; 2131 2132 suspend_targets(t, PRESUSPEND_UNDO); 2133 } 2134 2135 void dm_table_postsuspend_targets(struct dm_table *t) 2136 { 2137 if (!t) 2138 return; 2139 2140 suspend_targets(t, POSTSUSPEND); 2141 } 2142 2143 int dm_table_resume_targets(struct dm_table *t) 2144 { 2145 int i, r = 0; 2146 2147 lockdep_assert_held(&t->md->suspend_lock); 2148 2149 for (i = 0; i < t->num_targets; i++) { 2150 struct dm_target *ti = t->targets + i; 2151 2152 if (!ti->type->preresume) 2153 continue; 2154 2155 r = ti->type->preresume(ti); 2156 if (r) { 2157 DMERR("%s: %s: preresume failed, error = %d", 2158 dm_device_name(t->md), ti->type->name, r); 2159 return r; 2160 } 2161 } 2162 2163 for (i = 0; i < t->num_targets; i++) { 2164 struct dm_target *ti = t->targets + i; 2165 2166 if (ti->type->resume) 2167 ti->type->resume(ti); 2168 } 2169 2170 return 0; 2171 } 2172 2173 struct mapped_device *dm_table_get_md(struct dm_table *t) 2174 { 2175 return t->md; 2176 } 2177 EXPORT_SYMBOL(dm_table_get_md); 2178 2179 const char *dm_table_device_name(struct dm_table *t) 2180 { 2181 return dm_device_name(t->md); 2182 } 2183 EXPORT_SYMBOL_GPL(dm_table_device_name); 2184 2185 void dm_table_run_md_queue_async(struct dm_table *t) 2186 { 2187 if (!dm_table_request_based(t)) 2188 return; 2189 2190 if (t->md->queue) 2191 blk_mq_run_hw_queues(t->md->queue, true); 2192 } 2193 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2194 2195