1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 133 134 if (!t) 135 return -ENOMEM; 136 137 INIT_LIST_HEAD(&t->devices); 138 139 if (!num_targets) 140 num_targets = KEYS_PER_NODE; 141 142 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 143 144 if (!num_targets) { 145 kfree(t); 146 return -ENOMEM; 147 } 148 149 if (alloc_targets(t, num_targets)) { 150 kfree(t); 151 return -ENOMEM; 152 } 153 154 t->type = DM_TYPE_NONE; 155 t->mode = mode; 156 t->md = md; 157 *result = t; 158 return 0; 159 } 160 161 static void free_devices(struct list_head *devices, struct mapped_device *md) 162 { 163 struct list_head *tmp, *next; 164 165 list_for_each_safe(tmp, next, devices) { 166 struct dm_dev_internal *dd = 167 list_entry(tmp, struct dm_dev_internal, list); 168 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 169 dm_device_name(md), dd->dm_dev->name); 170 dm_put_table_device(md, dd->dm_dev); 171 kfree(dd); 172 } 173 } 174 175 static void dm_table_destroy_crypto_profile(struct dm_table *t); 176 177 void dm_table_destroy(struct dm_table *t) 178 { 179 if (!t) 180 return; 181 182 /* free the indexes */ 183 if (t->depth >= 2) 184 kvfree(t->index[t->depth - 2]); 185 186 /* free the targets */ 187 for (unsigned int i = 0; i < t->num_targets; i++) { 188 struct dm_target *ti = dm_table_get_target(t, i); 189 190 if (ti->type->dtr) 191 ti->type->dtr(ti); 192 193 dm_put_target_type(ti->type); 194 } 195 196 kvfree(t->highs); 197 198 /* free the device list */ 199 free_devices(&t->devices, t->md); 200 201 dm_free_md_mempools(t->mempools); 202 203 dm_table_destroy_crypto_profile(t); 204 205 kfree(t); 206 } 207 208 /* 209 * See if we've already got a device in the list. 210 */ 211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 212 { 213 struct dm_dev_internal *dd; 214 215 list_for_each_entry(dd, l, list) 216 if (dd->dm_dev->bdev->bd_dev == dev) 217 return dd; 218 219 return NULL; 220 } 221 222 /* 223 * If possible, this checks an area of a destination device is invalid. 224 */ 225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 226 sector_t start, sector_t len, void *data) 227 { 228 struct queue_limits *limits = data; 229 struct block_device *bdev = dev->bdev; 230 sector_t dev_size = bdev_nr_sectors(bdev); 231 unsigned short logical_block_size_sectors = 232 limits->logical_block_size >> SECTOR_SHIFT; 233 234 if (!dev_size) 235 return 0; 236 237 if ((start >= dev_size) || (start + len > dev_size)) { 238 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 239 dm_device_name(ti->table->md), bdev, 240 (unsigned long long)start, 241 (unsigned long long)len, 242 (unsigned long long)dev_size); 243 return 1; 244 } 245 246 /* 247 * If the target is mapped to zoned block device(s), check 248 * that the zones are not partially mapped. 249 */ 250 if (bdev_is_zoned(bdev)) { 251 unsigned int zone_sectors = bdev_zone_sectors(bdev); 252 253 if (start & (zone_sectors - 1)) { 254 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 255 dm_device_name(ti->table->md), 256 (unsigned long long)start, 257 zone_sectors, bdev); 258 return 1; 259 } 260 261 /* 262 * Note: The last zone of a zoned block device may be smaller 263 * than other zones. So for a target mapping the end of a 264 * zoned block device with such a zone, len would not be zone 265 * aligned. We do not allow such last smaller zone to be part 266 * of the mapping here to ensure that mappings with multiple 267 * devices do not end up with a smaller zone in the middle of 268 * the sector range. 269 */ 270 if (len & (zone_sectors - 1)) { 271 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 272 dm_device_name(ti->table->md), 273 (unsigned long long)len, 274 zone_sectors, bdev); 275 return 1; 276 } 277 } 278 279 if (logical_block_size_sectors <= 1) 280 return 0; 281 282 if (start & (logical_block_size_sectors - 1)) { 283 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 284 dm_device_name(ti->table->md), 285 (unsigned long long)start, 286 limits->logical_block_size, bdev); 287 return 1; 288 } 289 290 if (len & (logical_block_size_sectors - 1)) { 291 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 292 dm_device_name(ti->table->md), 293 (unsigned long long)len, 294 limits->logical_block_size, bdev); 295 return 1; 296 } 297 298 return 0; 299 } 300 301 /* 302 * This upgrades the mode on an already open dm_dev, being 303 * careful to leave things as they were if we fail to reopen the 304 * device and not to touch the existing bdev field in case 305 * it is accessed concurrently. 306 */ 307 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 308 struct mapped_device *md) 309 { 310 int r; 311 struct dm_dev *old_dev, *new_dev; 312 313 old_dev = dd->dm_dev; 314 315 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 316 dd->dm_dev->mode | new_mode, &new_dev); 317 if (r) 318 return r; 319 320 dd->dm_dev = new_dev; 321 dm_put_table_device(md, old_dev); 322 323 return 0; 324 } 325 326 /* 327 * Add a device to the list, or just increment the usage count if 328 * it's already present. 329 * 330 * Note: the __ref annotation is because this function can call the __init 331 * marked early_lookup_bdev when called during early boot code from dm-init.c. 332 */ 333 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 334 struct dm_dev **result) 335 { 336 int r; 337 dev_t dev; 338 unsigned int major, minor; 339 char dummy; 340 struct dm_dev_internal *dd; 341 struct dm_table *t = ti->table; 342 343 BUG_ON(!t); 344 345 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 346 /* Extract the major/minor numbers */ 347 dev = MKDEV(major, minor); 348 if (MAJOR(dev) != major || MINOR(dev) != minor) 349 return -EOVERFLOW; 350 } else { 351 r = lookup_bdev(path, &dev); 352 #ifndef MODULE 353 if (r && system_state < SYSTEM_RUNNING) 354 r = early_lookup_bdev(path, &dev); 355 #endif 356 if (r) 357 return r; 358 } 359 if (dev == disk_devt(t->md->disk)) 360 return -EINVAL; 361 362 dd = find_device(&t->devices, dev); 363 if (!dd) { 364 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 365 if (!dd) 366 return -ENOMEM; 367 368 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 369 if (r) { 370 kfree(dd); 371 return r; 372 } 373 374 refcount_set(&dd->count, 1); 375 list_add(&dd->list, &t->devices); 376 goto out; 377 378 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 379 r = upgrade_mode(dd, mode, t->md); 380 if (r) 381 return r; 382 } 383 refcount_inc(&dd->count); 384 out: 385 *result = dd->dm_dev; 386 return 0; 387 } 388 EXPORT_SYMBOL(dm_get_device); 389 390 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 391 sector_t start, sector_t len, void *data) 392 { 393 struct queue_limits *limits = data; 394 struct block_device *bdev = dev->bdev; 395 struct request_queue *q = bdev_get_queue(bdev); 396 397 if (unlikely(!q)) { 398 DMWARN("%s: Cannot set limits for nonexistent device %pg", 399 dm_device_name(ti->table->md), bdev); 400 return 0; 401 } 402 403 if (blk_stack_limits(limits, &q->limits, 404 get_start_sect(bdev) + start) < 0) 405 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 406 "physical_block_size=%u, logical_block_size=%u, " 407 "alignment_offset=%u, start=%llu", 408 dm_device_name(ti->table->md), bdev, 409 q->limits.physical_block_size, 410 q->limits.logical_block_size, 411 q->limits.alignment_offset, 412 (unsigned long long) start << SECTOR_SHIFT); 413 return 0; 414 } 415 416 /* 417 * Decrement a device's use count and remove it if necessary. 418 */ 419 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 420 { 421 int found = 0; 422 struct list_head *devices = &ti->table->devices; 423 struct dm_dev_internal *dd; 424 425 list_for_each_entry(dd, devices, list) { 426 if (dd->dm_dev == d) { 427 found = 1; 428 break; 429 } 430 } 431 if (!found) { 432 DMERR("%s: device %s not in table devices list", 433 dm_device_name(ti->table->md), d->name); 434 return; 435 } 436 if (refcount_dec_and_test(&dd->count)) { 437 dm_put_table_device(ti->table->md, d); 438 list_del(&dd->list); 439 kfree(dd); 440 } 441 } 442 EXPORT_SYMBOL(dm_put_device); 443 444 /* 445 * Checks to see if the target joins onto the end of the table. 446 */ 447 static int adjoin(struct dm_table *t, struct dm_target *ti) 448 { 449 struct dm_target *prev; 450 451 if (!t->num_targets) 452 return !ti->begin; 453 454 prev = &t->targets[t->num_targets - 1]; 455 return (ti->begin == (prev->begin + prev->len)); 456 } 457 458 /* 459 * Used to dynamically allocate the arg array. 460 * 461 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 462 * process messages even if some device is suspended. These messages have a 463 * small fixed number of arguments. 464 * 465 * On the other hand, dm-switch needs to process bulk data using messages and 466 * excessive use of GFP_NOIO could cause trouble. 467 */ 468 static char **realloc_argv(unsigned int *size, char **old_argv) 469 { 470 char **argv; 471 unsigned int new_size; 472 gfp_t gfp; 473 474 if (*size) { 475 new_size = *size * 2; 476 gfp = GFP_KERNEL; 477 } else { 478 new_size = 8; 479 gfp = GFP_NOIO; 480 } 481 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 482 if (argv && old_argv) { 483 memcpy(argv, old_argv, *size * sizeof(*argv)); 484 *size = new_size; 485 } 486 487 kfree(old_argv); 488 return argv; 489 } 490 491 /* 492 * Destructively splits up the argument list to pass to ctr. 493 */ 494 int dm_split_args(int *argc, char ***argvp, char *input) 495 { 496 char *start, *end = input, *out, **argv = NULL; 497 unsigned int array_size = 0; 498 499 *argc = 0; 500 501 if (!input) { 502 *argvp = NULL; 503 return 0; 504 } 505 506 argv = realloc_argv(&array_size, argv); 507 if (!argv) 508 return -ENOMEM; 509 510 while (1) { 511 /* Skip whitespace */ 512 start = skip_spaces(end); 513 514 if (!*start) 515 break; /* success, we hit the end */ 516 517 /* 'out' is used to remove any back-quotes */ 518 end = out = start; 519 while (*end) { 520 /* Everything apart from '\0' can be quoted */ 521 if (*end == '\\' && *(end + 1)) { 522 *out++ = *(end + 1); 523 end += 2; 524 continue; 525 } 526 527 if (isspace(*end)) 528 break; /* end of token */ 529 530 *out++ = *end++; 531 } 532 533 /* have we already filled the array ? */ 534 if ((*argc + 1) > array_size) { 535 argv = realloc_argv(&array_size, argv); 536 if (!argv) 537 return -ENOMEM; 538 } 539 540 /* we know this is whitespace */ 541 if (*end) 542 end++; 543 544 /* terminate the string and put it in the array */ 545 *out = '\0'; 546 argv[*argc] = start; 547 (*argc)++; 548 } 549 550 *argvp = argv; 551 return 0; 552 } 553 554 /* 555 * Impose necessary and sufficient conditions on a devices's table such 556 * that any incoming bio which respects its logical_block_size can be 557 * processed successfully. If it falls across the boundary between 558 * two or more targets, the size of each piece it gets split into must 559 * be compatible with the logical_block_size of the target processing it. 560 */ 561 static int validate_hardware_logical_block_alignment(struct dm_table *t, 562 struct queue_limits *limits) 563 { 564 /* 565 * This function uses arithmetic modulo the logical_block_size 566 * (in units of 512-byte sectors). 567 */ 568 unsigned short device_logical_block_size_sects = 569 limits->logical_block_size >> SECTOR_SHIFT; 570 571 /* 572 * Offset of the start of the next table entry, mod logical_block_size. 573 */ 574 unsigned short next_target_start = 0; 575 576 /* 577 * Given an aligned bio that extends beyond the end of a 578 * target, how many sectors must the next target handle? 579 */ 580 unsigned short remaining = 0; 581 582 struct dm_target *ti; 583 struct queue_limits ti_limits; 584 unsigned int i; 585 586 /* 587 * Check each entry in the table in turn. 588 */ 589 for (i = 0; i < t->num_targets; i++) { 590 ti = dm_table_get_target(t, i); 591 592 blk_set_stacking_limits(&ti_limits); 593 594 /* combine all target devices' limits */ 595 if (ti->type->iterate_devices) 596 ti->type->iterate_devices(ti, dm_set_device_limits, 597 &ti_limits); 598 599 /* 600 * If the remaining sectors fall entirely within this 601 * table entry are they compatible with its logical_block_size? 602 */ 603 if (remaining < ti->len && 604 remaining & ((ti_limits.logical_block_size >> 605 SECTOR_SHIFT) - 1)) 606 break; /* Error */ 607 608 next_target_start = 609 (unsigned short) ((next_target_start + ti->len) & 610 (device_logical_block_size_sects - 1)); 611 remaining = next_target_start ? 612 device_logical_block_size_sects - next_target_start : 0; 613 } 614 615 if (remaining) { 616 DMERR("%s: table line %u (start sect %llu len %llu) " 617 "not aligned to h/w logical block size %u", 618 dm_device_name(t->md), i, 619 (unsigned long long) ti->begin, 620 (unsigned long long) ti->len, 621 limits->logical_block_size); 622 return -EINVAL; 623 } 624 625 return 0; 626 } 627 628 int dm_table_add_target(struct dm_table *t, const char *type, 629 sector_t start, sector_t len, char *params) 630 { 631 int r = -EINVAL, argc; 632 char **argv; 633 struct dm_target *ti; 634 635 if (t->singleton) { 636 DMERR("%s: target type %s must appear alone in table", 637 dm_device_name(t->md), t->targets->type->name); 638 return -EINVAL; 639 } 640 641 BUG_ON(t->num_targets >= t->num_allocated); 642 643 ti = t->targets + t->num_targets; 644 memset(ti, 0, sizeof(*ti)); 645 646 if (!len) { 647 DMERR("%s: zero-length target", dm_device_name(t->md)); 648 return -EINVAL; 649 } 650 651 ti->type = dm_get_target_type(type); 652 if (!ti->type) { 653 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 654 return -EINVAL; 655 } 656 657 if (dm_target_needs_singleton(ti->type)) { 658 if (t->num_targets) { 659 ti->error = "singleton target type must appear alone in table"; 660 goto bad; 661 } 662 t->singleton = true; 663 } 664 665 if (dm_target_always_writeable(ti->type) && 666 !(t->mode & BLK_OPEN_WRITE)) { 667 ti->error = "target type may not be included in a read-only table"; 668 goto bad; 669 } 670 671 if (t->immutable_target_type) { 672 if (t->immutable_target_type != ti->type) { 673 ti->error = "immutable target type cannot be mixed with other target types"; 674 goto bad; 675 } 676 } else if (dm_target_is_immutable(ti->type)) { 677 if (t->num_targets) { 678 ti->error = "immutable target type cannot be mixed with other target types"; 679 goto bad; 680 } 681 t->immutable_target_type = ti->type; 682 } 683 684 if (dm_target_has_integrity(ti->type)) 685 t->integrity_added = 1; 686 687 ti->table = t; 688 ti->begin = start; 689 ti->len = len; 690 ti->error = "Unknown error"; 691 692 /* 693 * Does this target adjoin the previous one ? 694 */ 695 if (!adjoin(t, ti)) { 696 ti->error = "Gap in table"; 697 goto bad; 698 } 699 700 r = dm_split_args(&argc, &argv, params); 701 if (r) { 702 ti->error = "couldn't split parameters"; 703 goto bad; 704 } 705 706 r = ti->type->ctr(ti, argc, argv); 707 kfree(argv); 708 if (r) 709 goto bad; 710 711 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 712 713 if (!ti->num_discard_bios && ti->discards_supported) 714 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 715 dm_device_name(t->md), type); 716 717 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 718 static_branch_enable(&swap_bios_enabled); 719 720 return 0; 721 722 bad: 723 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 724 dm_put_target_type(ti->type); 725 return r; 726 } 727 728 /* 729 * Target argument parsing helpers. 730 */ 731 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 732 unsigned int *value, char **error, unsigned int grouped) 733 { 734 const char *arg_str = dm_shift_arg(arg_set); 735 char dummy; 736 737 if (!arg_str || 738 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 739 (*value < arg->min) || 740 (*value > arg->max) || 741 (grouped && arg_set->argc < *value)) { 742 *error = arg->error; 743 return -EINVAL; 744 } 745 746 return 0; 747 } 748 749 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 750 unsigned int *value, char **error) 751 { 752 return validate_next_arg(arg, arg_set, value, error, 0); 753 } 754 EXPORT_SYMBOL(dm_read_arg); 755 756 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 757 unsigned int *value, char **error) 758 { 759 return validate_next_arg(arg, arg_set, value, error, 1); 760 } 761 EXPORT_SYMBOL(dm_read_arg_group); 762 763 const char *dm_shift_arg(struct dm_arg_set *as) 764 { 765 char *r; 766 767 if (as->argc) { 768 as->argc--; 769 r = *as->argv; 770 as->argv++; 771 return r; 772 } 773 774 return NULL; 775 } 776 EXPORT_SYMBOL(dm_shift_arg); 777 778 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 779 { 780 BUG_ON(as->argc < num_args); 781 as->argc -= num_args; 782 as->argv += num_args; 783 } 784 EXPORT_SYMBOL(dm_consume_args); 785 786 static bool __table_type_bio_based(enum dm_queue_mode table_type) 787 { 788 return (table_type == DM_TYPE_BIO_BASED || 789 table_type == DM_TYPE_DAX_BIO_BASED); 790 } 791 792 static bool __table_type_request_based(enum dm_queue_mode table_type) 793 { 794 return table_type == DM_TYPE_REQUEST_BASED; 795 } 796 797 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 798 { 799 t->type = type; 800 } 801 EXPORT_SYMBOL_GPL(dm_table_set_type); 802 803 /* validate the dax capability of the target device span */ 804 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 805 sector_t start, sector_t len, void *data) 806 { 807 if (dev->dax_dev) 808 return false; 809 810 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 811 return true; 812 } 813 814 /* Check devices support synchronous DAX */ 815 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 816 sector_t start, sector_t len, void *data) 817 { 818 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 819 } 820 821 static bool dm_table_supports_dax(struct dm_table *t, 822 iterate_devices_callout_fn iterate_fn) 823 { 824 /* Ensure that all targets support DAX. */ 825 for (unsigned int i = 0; i < t->num_targets; i++) { 826 struct dm_target *ti = dm_table_get_target(t, i); 827 828 if (!ti->type->direct_access) 829 return false; 830 831 if (!ti->type->iterate_devices || 832 ti->type->iterate_devices(ti, iterate_fn, NULL)) 833 return false; 834 } 835 836 return true; 837 } 838 839 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 840 sector_t start, sector_t len, void *data) 841 { 842 struct block_device *bdev = dev->bdev; 843 struct request_queue *q = bdev_get_queue(bdev); 844 845 /* request-based cannot stack on partitions! */ 846 if (bdev_is_partition(bdev)) 847 return false; 848 849 return queue_is_mq(q); 850 } 851 852 static int dm_table_determine_type(struct dm_table *t) 853 { 854 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 855 struct dm_target *ti; 856 struct list_head *devices = dm_table_get_devices(t); 857 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 858 859 if (t->type != DM_TYPE_NONE) { 860 /* target already set the table's type */ 861 if (t->type == DM_TYPE_BIO_BASED) { 862 /* possibly upgrade to a variant of bio-based */ 863 goto verify_bio_based; 864 } 865 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 866 goto verify_rq_based; 867 } 868 869 for (unsigned int i = 0; i < t->num_targets; i++) { 870 ti = dm_table_get_target(t, i); 871 if (dm_target_hybrid(ti)) 872 hybrid = 1; 873 else if (dm_target_request_based(ti)) 874 request_based = 1; 875 else 876 bio_based = 1; 877 878 if (bio_based && request_based) { 879 DMERR("Inconsistent table: different target types can't be mixed up"); 880 return -EINVAL; 881 } 882 } 883 884 if (hybrid && !bio_based && !request_based) { 885 /* 886 * The targets can work either way. 887 * Determine the type from the live device. 888 * Default to bio-based if device is new. 889 */ 890 if (__table_type_request_based(live_md_type)) 891 request_based = 1; 892 else 893 bio_based = 1; 894 } 895 896 if (bio_based) { 897 verify_bio_based: 898 /* We must use this table as bio-based */ 899 t->type = DM_TYPE_BIO_BASED; 900 if (dm_table_supports_dax(t, device_not_dax_capable) || 901 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 902 t->type = DM_TYPE_DAX_BIO_BASED; 903 } 904 return 0; 905 } 906 907 BUG_ON(!request_based); /* No targets in this table */ 908 909 t->type = DM_TYPE_REQUEST_BASED; 910 911 verify_rq_based: 912 /* 913 * Request-based dm supports only tables that have a single target now. 914 * To support multiple targets, request splitting support is needed, 915 * and that needs lots of changes in the block-layer. 916 * (e.g. request completion process for partial completion.) 917 */ 918 if (t->num_targets > 1) { 919 DMERR("request-based DM doesn't support multiple targets"); 920 return -EINVAL; 921 } 922 923 if (list_empty(devices)) { 924 int srcu_idx; 925 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 926 927 /* inherit live table's type */ 928 if (live_table) 929 t->type = live_table->type; 930 dm_put_live_table(t->md, srcu_idx); 931 return 0; 932 } 933 934 ti = dm_table_get_immutable_target(t); 935 if (!ti) { 936 DMERR("table load rejected: immutable target is required"); 937 return -EINVAL; 938 } else if (ti->max_io_len) { 939 DMERR("table load rejected: immutable target that splits IO is not supported"); 940 return -EINVAL; 941 } 942 943 /* Non-request-stackable devices can't be used for request-based dm */ 944 if (!ti->type->iterate_devices || 945 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 946 DMERR("table load rejected: including non-request-stackable devices"); 947 return -EINVAL; 948 } 949 950 return 0; 951 } 952 953 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 954 { 955 return t->type; 956 } 957 958 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 959 { 960 return t->immutable_target_type; 961 } 962 963 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 964 { 965 /* Immutable target is implicitly a singleton */ 966 if (t->num_targets > 1 || 967 !dm_target_is_immutable(t->targets[0].type)) 968 return NULL; 969 970 return t->targets; 971 } 972 973 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 974 { 975 for (unsigned int i = 0; i < t->num_targets; i++) { 976 struct dm_target *ti = dm_table_get_target(t, i); 977 978 if (dm_target_is_wildcard(ti->type)) 979 return ti; 980 } 981 982 return NULL; 983 } 984 985 bool dm_table_bio_based(struct dm_table *t) 986 { 987 return __table_type_bio_based(dm_table_get_type(t)); 988 } 989 990 bool dm_table_request_based(struct dm_table *t) 991 { 992 return __table_type_request_based(dm_table_get_type(t)); 993 } 994 995 static bool dm_table_supports_poll(struct dm_table *t); 996 997 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 998 { 999 enum dm_queue_mode type = dm_table_get_type(t); 1000 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1001 unsigned int min_pool_size = 0, pool_size; 1002 struct dm_md_mempools *pools; 1003 1004 if (unlikely(type == DM_TYPE_NONE)) { 1005 DMERR("no table type is set, can't allocate mempools"); 1006 return -EINVAL; 1007 } 1008 1009 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1010 if (!pools) 1011 return -ENOMEM; 1012 1013 if (type == DM_TYPE_REQUEST_BASED) { 1014 pool_size = dm_get_reserved_rq_based_ios(); 1015 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1016 goto init_bs; 1017 } 1018 1019 for (unsigned int i = 0; i < t->num_targets; i++) { 1020 struct dm_target *ti = dm_table_get_target(t, i); 1021 1022 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1023 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1024 } 1025 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1026 front_pad = roundup(per_io_data_size, 1027 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1028 1029 io_front_pad = roundup(per_io_data_size, 1030 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1031 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, 1032 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0)) 1033 goto out_free_pools; 1034 if (t->integrity_supported && 1035 bioset_integrity_create(&pools->io_bs, pool_size)) 1036 goto out_free_pools; 1037 init_bs: 1038 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1039 goto out_free_pools; 1040 if (t->integrity_supported && 1041 bioset_integrity_create(&pools->bs, pool_size)) 1042 goto out_free_pools; 1043 1044 t->mempools = pools; 1045 return 0; 1046 1047 out_free_pools: 1048 dm_free_md_mempools(pools); 1049 return -ENOMEM; 1050 } 1051 1052 static int setup_indexes(struct dm_table *t) 1053 { 1054 int i; 1055 unsigned int total = 0; 1056 sector_t *indexes; 1057 1058 /* allocate the space for *all* the indexes */ 1059 for (i = t->depth - 2; i >= 0; i--) { 1060 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1061 total += t->counts[i]; 1062 } 1063 1064 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1065 if (!indexes) 1066 return -ENOMEM; 1067 1068 /* set up internal nodes, bottom-up */ 1069 for (i = t->depth - 2; i >= 0; i--) { 1070 t->index[i] = indexes; 1071 indexes += (KEYS_PER_NODE * t->counts[i]); 1072 setup_btree_index(i, t); 1073 } 1074 1075 return 0; 1076 } 1077 1078 /* 1079 * Builds the btree to index the map. 1080 */ 1081 static int dm_table_build_index(struct dm_table *t) 1082 { 1083 int r = 0; 1084 unsigned int leaf_nodes; 1085 1086 /* how many indexes will the btree have ? */ 1087 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1088 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1089 1090 /* leaf layer has already been set up */ 1091 t->counts[t->depth - 1] = leaf_nodes; 1092 t->index[t->depth - 1] = t->highs; 1093 1094 if (t->depth >= 2) 1095 r = setup_indexes(t); 1096 1097 return r; 1098 } 1099 1100 static bool integrity_profile_exists(struct gendisk *disk) 1101 { 1102 return !!blk_get_integrity(disk); 1103 } 1104 1105 /* 1106 * Get a disk whose integrity profile reflects the table's profile. 1107 * Returns NULL if integrity support was inconsistent or unavailable. 1108 */ 1109 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t) 1110 { 1111 struct list_head *devices = dm_table_get_devices(t); 1112 struct dm_dev_internal *dd = NULL; 1113 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1114 1115 for (unsigned int i = 0; i < t->num_targets; i++) { 1116 struct dm_target *ti = dm_table_get_target(t, i); 1117 1118 if (!dm_target_passes_integrity(ti->type)) 1119 goto no_integrity; 1120 } 1121 1122 list_for_each_entry(dd, devices, list) { 1123 template_disk = dd->dm_dev->bdev->bd_disk; 1124 if (!integrity_profile_exists(template_disk)) 1125 goto no_integrity; 1126 else if (prev_disk && 1127 blk_integrity_compare(prev_disk, template_disk) < 0) 1128 goto no_integrity; 1129 prev_disk = template_disk; 1130 } 1131 1132 return template_disk; 1133 1134 no_integrity: 1135 if (prev_disk) 1136 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1137 dm_device_name(t->md), 1138 prev_disk->disk_name, 1139 template_disk->disk_name); 1140 return NULL; 1141 } 1142 1143 /* 1144 * Register the mapped device for blk_integrity support if the 1145 * underlying devices have an integrity profile. But all devices may 1146 * not have matching profiles (checking all devices isn't reliable 1147 * during table load because this table may use other DM device(s) which 1148 * must be resumed before they will have an initialized integity 1149 * profile). Consequently, stacked DM devices force a 2 stage integrity 1150 * profile validation: First pass during table load, final pass during 1151 * resume. 1152 */ 1153 static int dm_table_register_integrity(struct dm_table *t) 1154 { 1155 struct mapped_device *md = t->md; 1156 struct gendisk *template_disk = NULL; 1157 1158 /* If target handles integrity itself do not register it here. */ 1159 if (t->integrity_added) 1160 return 0; 1161 1162 template_disk = dm_table_get_integrity_disk(t); 1163 if (!template_disk) 1164 return 0; 1165 1166 if (!integrity_profile_exists(dm_disk(md))) { 1167 t->integrity_supported = true; 1168 /* 1169 * Register integrity profile during table load; we can do 1170 * this because the final profile must match during resume. 1171 */ 1172 blk_integrity_register(dm_disk(md), 1173 blk_get_integrity(template_disk)); 1174 return 0; 1175 } 1176 1177 /* 1178 * If DM device already has an initialized integrity 1179 * profile the new profile should not conflict. 1180 */ 1181 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1182 DMERR("%s: conflict with existing integrity profile: %s profile mismatch", 1183 dm_device_name(t->md), 1184 template_disk->disk_name); 1185 return 1; 1186 } 1187 1188 /* Preserve existing integrity profile */ 1189 t->integrity_supported = true; 1190 return 0; 1191 } 1192 1193 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1194 1195 struct dm_crypto_profile { 1196 struct blk_crypto_profile profile; 1197 struct mapped_device *md; 1198 }; 1199 1200 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1201 sector_t start, sector_t len, void *data) 1202 { 1203 const struct blk_crypto_key *key = data; 1204 1205 blk_crypto_evict_key(dev->bdev, key); 1206 return 0; 1207 } 1208 1209 /* 1210 * When an inline encryption key is evicted from a device-mapper device, evict 1211 * it from all the underlying devices. 1212 */ 1213 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1214 const struct blk_crypto_key *key, unsigned int slot) 1215 { 1216 struct mapped_device *md = 1217 container_of(profile, struct dm_crypto_profile, profile)->md; 1218 struct dm_table *t; 1219 int srcu_idx; 1220 1221 t = dm_get_live_table(md, &srcu_idx); 1222 if (!t) 1223 return 0; 1224 1225 for (unsigned int i = 0; i < t->num_targets; i++) { 1226 struct dm_target *ti = dm_table_get_target(t, i); 1227 1228 if (!ti->type->iterate_devices) 1229 continue; 1230 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1231 (void *)key); 1232 } 1233 1234 dm_put_live_table(md, srcu_idx); 1235 return 0; 1236 } 1237 1238 static int 1239 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1240 sector_t start, sector_t len, void *data) 1241 { 1242 struct blk_crypto_profile *parent = data; 1243 struct blk_crypto_profile *child = 1244 bdev_get_queue(dev->bdev)->crypto_profile; 1245 1246 blk_crypto_intersect_capabilities(parent, child); 1247 return 0; 1248 } 1249 1250 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1251 { 1252 struct dm_crypto_profile *dmcp = container_of(profile, 1253 struct dm_crypto_profile, 1254 profile); 1255 1256 if (!profile) 1257 return; 1258 1259 blk_crypto_profile_destroy(profile); 1260 kfree(dmcp); 1261 } 1262 1263 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1264 { 1265 dm_destroy_crypto_profile(t->crypto_profile); 1266 t->crypto_profile = NULL; 1267 } 1268 1269 /* 1270 * Constructs and initializes t->crypto_profile with a crypto profile that 1271 * represents the common set of crypto capabilities of the devices described by 1272 * the dm_table. However, if the constructed crypto profile doesn't support all 1273 * crypto capabilities that are supported by the current mapped_device, it 1274 * returns an error instead, since we don't support removing crypto capabilities 1275 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1276 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1277 */ 1278 static int dm_table_construct_crypto_profile(struct dm_table *t) 1279 { 1280 struct dm_crypto_profile *dmcp; 1281 struct blk_crypto_profile *profile; 1282 unsigned int i; 1283 bool empty_profile = true; 1284 1285 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1286 if (!dmcp) 1287 return -ENOMEM; 1288 dmcp->md = t->md; 1289 1290 profile = &dmcp->profile; 1291 blk_crypto_profile_init(profile, 0); 1292 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1293 profile->max_dun_bytes_supported = UINT_MAX; 1294 memset(profile->modes_supported, 0xFF, 1295 sizeof(profile->modes_supported)); 1296 1297 for (i = 0; i < t->num_targets; i++) { 1298 struct dm_target *ti = dm_table_get_target(t, i); 1299 1300 if (!dm_target_passes_crypto(ti->type)) { 1301 blk_crypto_intersect_capabilities(profile, NULL); 1302 break; 1303 } 1304 if (!ti->type->iterate_devices) 1305 continue; 1306 ti->type->iterate_devices(ti, 1307 device_intersect_crypto_capabilities, 1308 profile); 1309 } 1310 1311 if (t->md->queue && 1312 !blk_crypto_has_capabilities(profile, 1313 t->md->queue->crypto_profile)) { 1314 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1315 dm_destroy_crypto_profile(profile); 1316 return -EINVAL; 1317 } 1318 1319 /* 1320 * If the new profile doesn't actually support any crypto capabilities, 1321 * we may as well represent it with a NULL profile. 1322 */ 1323 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1324 if (profile->modes_supported[i]) { 1325 empty_profile = false; 1326 break; 1327 } 1328 } 1329 1330 if (empty_profile) { 1331 dm_destroy_crypto_profile(profile); 1332 profile = NULL; 1333 } 1334 1335 /* 1336 * t->crypto_profile is only set temporarily while the table is being 1337 * set up, and it gets set to NULL after the profile has been 1338 * transferred to the request_queue. 1339 */ 1340 t->crypto_profile = profile; 1341 1342 return 0; 1343 } 1344 1345 static void dm_update_crypto_profile(struct request_queue *q, 1346 struct dm_table *t) 1347 { 1348 if (!t->crypto_profile) 1349 return; 1350 1351 /* Make the crypto profile less restrictive. */ 1352 if (!q->crypto_profile) { 1353 blk_crypto_register(t->crypto_profile, q); 1354 } else { 1355 blk_crypto_update_capabilities(q->crypto_profile, 1356 t->crypto_profile); 1357 dm_destroy_crypto_profile(t->crypto_profile); 1358 } 1359 t->crypto_profile = NULL; 1360 } 1361 1362 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1363 1364 static int dm_table_construct_crypto_profile(struct dm_table *t) 1365 { 1366 return 0; 1367 } 1368 1369 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1370 { 1371 } 1372 1373 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1374 { 1375 } 1376 1377 static void dm_update_crypto_profile(struct request_queue *q, 1378 struct dm_table *t) 1379 { 1380 } 1381 1382 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1383 1384 /* 1385 * Prepares the table for use by building the indices, 1386 * setting the type, and allocating mempools. 1387 */ 1388 int dm_table_complete(struct dm_table *t) 1389 { 1390 int r; 1391 1392 r = dm_table_determine_type(t); 1393 if (r) { 1394 DMERR("unable to determine table type"); 1395 return r; 1396 } 1397 1398 r = dm_table_build_index(t); 1399 if (r) { 1400 DMERR("unable to build btrees"); 1401 return r; 1402 } 1403 1404 r = dm_table_register_integrity(t); 1405 if (r) { 1406 DMERR("could not register integrity profile."); 1407 return r; 1408 } 1409 1410 r = dm_table_construct_crypto_profile(t); 1411 if (r) { 1412 DMERR("could not construct crypto profile."); 1413 return r; 1414 } 1415 1416 r = dm_table_alloc_md_mempools(t, t->md); 1417 if (r) 1418 DMERR("unable to allocate mempools"); 1419 1420 return r; 1421 } 1422 1423 static DEFINE_MUTEX(_event_lock); 1424 void dm_table_event_callback(struct dm_table *t, 1425 void (*fn)(void *), void *context) 1426 { 1427 mutex_lock(&_event_lock); 1428 t->event_fn = fn; 1429 t->event_context = context; 1430 mutex_unlock(&_event_lock); 1431 } 1432 1433 void dm_table_event(struct dm_table *t) 1434 { 1435 mutex_lock(&_event_lock); 1436 if (t->event_fn) 1437 t->event_fn(t->event_context); 1438 mutex_unlock(&_event_lock); 1439 } 1440 EXPORT_SYMBOL(dm_table_event); 1441 1442 inline sector_t dm_table_get_size(struct dm_table *t) 1443 { 1444 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1445 } 1446 EXPORT_SYMBOL(dm_table_get_size); 1447 1448 /* 1449 * Search the btree for the correct target. 1450 * 1451 * Caller should check returned pointer for NULL 1452 * to trap I/O beyond end of device. 1453 */ 1454 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1455 { 1456 unsigned int l, n = 0, k = 0; 1457 sector_t *node; 1458 1459 if (unlikely(sector >= dm_table_get_size(t))) 1460 return NULL; 1461 1462 for (l = 0; l < t->depth; l++) { 1463 n = get_child(n, k); 1464 node = get_node(t, l, n); 1465 1466 for (k = 0; k < KEYS_PER_NODE; k++) 1467 if (node[k] >= sector) 1468 break; 1469 } 1470 1471 return &t->targets[(KEYS_PER_NODE * n) + k]; 1472 } 1473 1474 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, 1475 sector_t start, sector_t len, void *data) 1476 { 1477 struct request_queue *q = bdev_get_queue(dev->bdev); 1478 1479 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); 1480 } 1481 1482 /* 1483 * type->iterate_devices() should be called when the sanity check needs to 1484 * iterate and check all underlying data devices. iterate_devices() will 1485 * iterate all underlying data devices until it encounters a non-zero return 1486 * code, returned by whether the input iterate_devices_callout_fn, or 1487 * iterate_devices() itself internally. 1488 * 1489 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1490 * iterate multiple underlying devices internally, in which case a non-zero 1491 * return code returned by iterate_devices_callout_fn will stop the iteration 1492 * in advance. 1493 * 1494 * Cases requiring _any_ underlying device supporting some kind of attribute, 1495 * should use the iteration structure like dm_table_any_dev_attr(), or call 1496 * it directly. @func should handle semantics of positive examples, e.g. 1497 * capable of something. 1498 * 1499 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1500 * should use the iteration structure like dm_table_supports_nowait() or 1501 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1502 * uses an @anti_func that handle semantics of counter examples, e.g. not 1503 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1504 */ 1505 static bool dm_table_any_dev_attr(struct dm_table *t, 1506 iterate_devices_callout_fn func, void *data) 1507 { 1508 for (unsigned int i = 0; i < t->num_targets; i++) { 1509 struct dm_target *ti = dm_table_get_target(t, i); 1510 1511 if (ti->type->iterate_devices && 1512 ti->type->iterate_devices(ti, func, data)) 1513 return true; 1514 } 1515 1516 return false; 1517 } 1518 1519 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1520 sector_t start, sector_t len, void *data) 1521 { 1522 unsigned int *num_devices = data; 1523 1524 (*num_devices)++; 1525 1526 return 0; 1527 } 1528 1529 static bool dm_table_supports_poll(struct dm_table *t) 1530 { 1531 for (unsigned int i = 0; i < t->num_targets; i++) { 1532 struct dm_target *ti = dm_table_get_target(t, i); 1533 1534 if (!ti->type->iterate_devices || 1535 ti->type->iterate_devices(ti, device_not_poll_capable, NULL)) 1536 return false; 1537 } 1538 1539 return true; 1540 } 1541 1542 /* 1543 * Check whether a table has no data devices attached using each 1544 * target's iterate_devices method. 1545 * Returns false if the result is unknown because a target doesn't 1546 * support iterate_devices. 1547 */ 1548 bool dm_table_has_no_data_devices(struct dm_table *t) 1549 { 1550 for (unsigned int i = 0; i < t->num_targets; i++) { 1551 struct dm_target *ti = dm_table_get_target(t, i); 1552 unsigned int num_devices = 0; 1553 1554 if (!ti->type->iterate_devices) 1555 return false; 1556 1557 ti->type->iterate_devices(ti, count_device, &num_devices); 1558 if (num_devices) 1559 return false; 1560 } 1561 1562 return true; 1563 } 1564 1565 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1566 sector_t start, sector_t len, void *data) 1567 { 1568 struct request_queue *q = bdev_get_queue(dev->bdev); 1569 enum blk_zoned_model *zoned_model = data; 1570 1571 return blk_queue_zoned_model(q) != *zoned_model; 1572 } 1573 1574 /* 1575 * Check the device zoned model based on the target feature flag. If the target 1576 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1577 * also accepted but all devices must have the same zoned model. If the target 1578 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1579 * zoned model with all zoned devices having the same zone size. 1580 */ 1581 static bool dm_table_supports_zoned_model(struct dm_table *t, 1582 enum blk_zoned_model zoned_model) 1583 { 1584 for (unsigned int i = 0; i < t->num_targets; i++) { 1585 struct dm_target *ti = dm_table_get_target(t, i); 1586 1587 if (dm_target_supports_zoned_hm(ti->type)) { 1588 if (!ti->type->iterate_devices || 1589 ti->type->iterate_devices(ti, device_not_zoned_model, 1590 &zoned_model)) 1591 return false; 1592 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1593 if (zoned_model == BLK_ZONED_HM) 1594 return false; 1595 } 1596 } 1597 1598 return true; 1599 } 1600 1601 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1602 sector_t start, sector_t len, void *data) 1603 { 1604 unsigned int *zone_sectors = data; 1605 1606 if (!bdev_is_zoned(dev->bdev)) 1607 return 0; 1608 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1609 } 1610 1611 /* 1612 * Check consistency of zoned model and zone sectors across all targets. For 1613 * zone sectors, if the destination device is a zoned block device, it shall 1614 * have the specified zone_sectors. 1615 */ 1616 static int validate_hardware_zoned_model(struct dm_table *t, 1617 enum blk_zoned_model zoned_model, 1618 unsigned int zone_sectors) 1619 { 1620 if (zoned_model == BLK_ZONED_NONE) 1621 return 0; 1622 1623 if (!dm_table_supports_zoned_model(t, zoned_model)) { 1624 DMERR("%s: zoned model is not consistent across all devices", 1625 dm_device_name(t->md)); 1626 return -EINVAL; 1627 } 1628 1629 /* Check zone size validity and compatibility */ 1630 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1631 return -EINVAL; 1632 1633 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1634 DMERR("%s: zone sectors is not consistent across all zoned devices", 1635 dm_device_name(t->md)); 1636 return -EINVAL; 1637 } 1638 1639 return 0; 1640 } 1641 1642 /* 1643 * Establish the new table's queue_limits and validate them. 1644 */ 1645 int dm_calculate_queue_limits(struct dm_table *t, 1646 struct queue_limits *limits) 1647 { 1648 struct queue_limits ti_limits; 1649 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1650 unsigned int zone_sectors = 0; 1651 1652 blk_set_stacking_limits(limits); 1653 1654 for (unsigned int i = 0; i < t->num_targets; i++) { 1655 struct dm_target *ti = dm_table_get_target(t, i); 1656 1657 blk_set_stacking_limits(&ti_limits); 1658 1659 if (!ti->type->iterate_devices) { 1660 /* Set I/O hints portion of queue limits */ 1661 if (ti->type->io_hints) 1662 ti->type->io_hints(ti, &ti_limits); 1663 goto combine_limits; 1664 } 1665 1666 /* 1667 * Combine queue limits of all the devices this target uses. 1668 */ 1669 ti->type->iterate_devices(ti, dm_set_device_limits, 1670 &ti_limits); 1671 1672 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1673 /* 1674 * After stacking all limits, validate all devices 1675 * in table support this zoned model and zone sectors. 1676 */ 1677 zoned_model = ti_limits.zoned; 1678 zone_sectors = ti_limits.chunk_sectors; 1679 } 1680 1681 /* Set I/O hints portion of queue limits */ 1682 if (ti->type->io_hints) 1683 ti->type->io_hints(ti, &ti_limits); 1684 1685 /* 1686 * Check each device area is consistent with the target's 1687 * overall queue limits. 1688 */ 1689 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1690 &ti_limits)) 1691 return -EINVAL; 1692 1693 combine_limits: 1694 /* 1695 * Merge this target's queue limits into the overall limits 1696 * for the table. 1697 */ 1698 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1699 DMWARN("%s: adding target device (start sect %llu len %llu) " 1700 "caused an alignment inconsistency", 1701 dm_device_name(t->md), 1702 (unsigned long long) ti->begin, 1703 (unsigned long long) ti->len); 1704 } 1705 1706 /* 1707 * Verify that the zoned model and zone sectors, as determined before 1708 * any .io_hints override, are the same across all devices in the table. 1709 * - this is especially relevant if .io_hints is emulating a disk-managed 1710 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1711 * BUT... 1712 */ 1713 if (limits->zoned != BLK_ZONED_NONE) { 1714 /* 1715 * ...IF the above limits stacking determined a zoned model 1716 * validate that all of the table's devices conform to it. 1717 */ 1718 zoned_model = limits->zoned; 1719 zone_sectors = limits->chunk_sectors; 1720 } 1721 if (validate_hardware_zoned_model(t, zoned_model, zone_sectors)) 1722 return -EINVAL; 1723 1724 return validate_hardware_logical_block_alignment(t, limits); 1725 } 1726 1727 /* 1728 * Verify that all devices have an integrity profile that matches the 1729 * DM device's registered integrity profile. If the profiles don't 1730 * match then unregister the DM device's integrity profile. 1731 */ 1732 static void dm_table_verify_integrity(struct dm_table *t) 1733 { 1734 struct gendisk *template_disk = NULL; 1735 1736 if (t->integrity_added) 1737 return; 1738 1739 if (t->integrity_supported) { 1740 /* 1741 * Verify that the original integrity profile 1742 * matches all the devices in this table. 1743 */ 1744 template_disk = dm_table_get_integrity_disk(t); 1745 if (template_disk && 1746 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1747 return; 1748 } 1749 1750 if (integrity_profile_exists(dm_disk(t->md))) { 1751 DMWARN("%s: unable to establish an integrity profile", 1752 dm_device_name(t->md)); 1753 blk_integrity_unregister(dm_disk(t->md)); 1754 } 1755 } 1756 1757 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1758 sector_t start, sector_t len, void *data) 1759 { 1760 unsigned long flush = (unsigned long) data; 1761 struct request_queue *q = bdev_get_queue(dev->bdev); 1762 1763 return (q->queue_flags & flush); 1764 } 1765 1766 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1767 { 1768 /* 1769 * Require at least one underlying device to support flushes. 1770 * t->devices includes internal dm devices such as mirror logs 1771 * so we need to use iterate_devices here, which targets 1772 * supporting flushes must provide. 1773 */ 1774 for (unsigned int i = 0; i < t->num_targets; i++) { 1775 struct dm_target *ti = dm_table_get_target(t, i); 1776 1777 if (!ti->num_flush_bios) 1778 continue; 1779 1780 if (ti->flush_supported) 1781 return true; 1782 1783 if (ti->type->iterate_devices && 1784 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1785 return true; 1786 } 1787 1788 return false; 1789 } 1790 1791 static int device_dax_write_cache_enabled(struct dm_target *ti, 1792 struct dm_dev *dev, sector_t start, 1793 sector_t len, void *data) 1794 { 1795 struct dax_device *dax_dev = dev->dax_dev; 1796 1797 if (!dax_dev) 1798 return false; 1799 1800 if (dax_write_cache_enabled(dax_dev)) 1801 return true; 1802 return false; 1803 } 1804 1805 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1806 sector_t start, sector_t len, void *data) 1807 { 1808 return !bdev_nonrot(dev->bdev); 1809 } 1810 1811 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1812 sector_t start, sector_t len, void *data) 1813 { 1814 struct request_queue *q = bdev_get_queue(dev->bdev); 1815 1816 return !blk_queue_add_random(q); 1817 } 1818 1819 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1820 sector_t start, sector_t len, void *data) 1821 { 1822 struct request_queue *q = bdev_get_queue(dev->bdev); 1823 1824 return !q->limits.max_write_zeroes_sectors; 1825 } 1826 1827 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1828 { 1829 for (unsigned int i = 0; i < t->num_targets; i++) { 1830 struct dm_target *ti = dm_table_get_target(t, i); 1831 1832 if (!ti->num_write_zeroes_bios) 1833 return false; 1834 1835 if (!ti->type->iterate_devices || 1836 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1837 return false; 1838 } 1839 1840 return true; 1841 } 1842 1843 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1844 sector_t start, sector_t len, void *data) 1845 { 1846 return !bdev_nowait(dev->bdev); 1847 } 1848 1849 static bool dm_table_supports_nowait(struct dm_table *t) 1850 { 1851 for (unsigned int i = 0; i < t->num_targets; i++) { 1852 struct dm_target *ti = dm_table_get_target(t, i); 1853 1854 if (!dm_target_supports_nowait(ti->type)) 1855 return false; 1856 1857 if (!ti->type->iterate_devices || 1858 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1859 return false; 1860 } 1861 1862 return true; 1863 } 1864 1865 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1866 sector_t start, sector_t len, void *data) 1867 { 1868 return !bdev_max_discard_sectors(dev->bdev); 1869 } 1870 1871 static bool dm_table_supports_discards(struct dm_table *t) 1872 { 1873 for (unsigned int i = 0; i < t->num_targets; i++) { 1874 struct dm_target *ti = dm_table_get_target(t, i); 1875 1876 if (!ti->num_discard_bios) 1877 return false; 1878 1879 /* 1880 * Either the target provides discard support (as implied by setting 1881 * 'discards_supported') or it relies on _all_ data devices having 1882 * discard support. 1883 */ 1884 if (!ti->discards_supported && 1885 (!ti->type->iterate_devices || 1886 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1887 return false; 1888 } 1889 1890 return true; 1891 } 1892 1893 static int device_not_secure_erase_capable(struct dm_target *ti, 1894 struct dm_dev *dev, sector_t start, 1895 sector_t len, void *data) 1896 { 1897 return !bdev_max_secure_erase_sectors(dev->bdev); 1898 } 1899 1900 static bool dm_table_supports_secure_erase(struct dm_table *t) 1901 { 1902 for (unsigned int i = 0; i < t->num_targets; i++) { 1903 struct dm_target *ti = dm_table_get_target(t, i); 1904 1905 if (!ti->num_secure_erase_bios) 1906 return false; 1907 1908 if (!ti->type->iterate_devices || 1909 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1910 return false; 1911 } 1912 1913 return true; 1914 } 1915 1916 static int device_requires_stable_pages(struct dm_target *ti, 1917 struct dm_dev *dev, sector_t start, 1918 sector_t len, void *data) 1919 { 1920 return bdev_stable_writes(dev->bdev); 1921 } 1922 1923 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1924 struct queue_limits *limits) 1925 { 1926 bool wc = false, fua = false; 1927 int r; 1928 1929 /* 1930 * Copy table's limits to the DM device's request_queue 1931 */ 1932 q->limits = *limits; 1933 1934 if (dm_table_supports_nowait(t)) 1935 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1936 else 1937 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1938 1939 if (!dm_table_supports_discards(t)) { 1940 q->limits.max_discard_sectors = 0; 1941 q->limits.max_hw_discard_sectors = 0; 1942 q->limits.discard_granularity = 0; 1943 q->limits.discard_alignment = 0; 1944 q->limits.discard_misaligned = 0; 1945 } 1946 1947 if (!dm_table_supports_secure_erase(t)) 1948 q->limits.max_secure_erase_sectors = 0; 1949 1950 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1951 wc = true; 1952 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1953 fua = true; 1954 } 1955 blk_queue_write_cache(q, wc, fua); 1956 1957 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1958 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1959 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1960 set_dax_synchronous(t->md->dax_dev); 1961 } else 1962 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1963 1964 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1965 dax_write_cache(t->md->dax_dev, true); 1966 1967 /* Ensure that all underlying devices are non-rotational. */ 1968 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 1969 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1970 else 1971 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1972 1973 if (!dm_table_supports_write_zeroes(t)) 1974 q->limits.max_write_zeroes_sectors = 0; 1975 1976 dm_table_verify_integrity(t); 1977 1978 /* 1979 * Some devices don't use blk_integrity but still want stable pages 1980 * because they do their own checksumming. 1981 * If any underlying device requires stable pages, a table must require 1982 * them as well. Only targets that support iterate_devices are considered: 1983 * don't want error, zero, etc to require stable pages. 1984 */ 1985 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 1986 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 1987 else 1988 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 1989 1990 /* 1991 * Determine whether or not this queue's I/O timings contribute 1992 * to the entropy pool, Only request-based targets use this. 1993 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1994 * have it set. 1995 */ 1996 if (blk_queue_add_random(q) && 1997 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 1998 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1999 2000 /* 2001 * For a zoned target, setup the zones related queue attributes 2002 * and resources necessary for zone append emulation if necessary. 2003 */ 2004 if (blk_queue_is_zoned(q)) { 2005 r = dm_set_zones_restrictions(t, q); 2006 if (r) 2007 return r; 2008 if (!static_key_enabled(&zoned_enabled.key)) 2009 static_branch_enable(&zoned_enabled); 2010 } 2011 2012 dm_update_crypto_profile(q, t); 2013 disk_update_readahead(t->md->disk); 2014 2015 /* 2016 * Check for request-based device is left to 2017 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). 2018 * 2019 * For bio-based device, only set QUEUE_FLAG_POLL when all 2020 * underlying devices supporting polling. 2021 */ 2022 if (__table_type_bio_based(t->type)) { 2023 if (dm_table_supports_poll(t)) 2024 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2025 else 2026 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 2027 } 2028 2029 return 0; 2030 } 2031 2032 struct list_head *dm_table_get_devices(struct dm_table *t) 2033 { 2034 return &t->devices; 2035 } 2036 2037 blk_mode_t dm_table_get_mode(struct dm_table *t) 2038 { 2039 return t->mode; 2040 } 2041 EXPORT_SYMBOL(dm_table_get_mode); 2042 2043 enum suspend_mode { 2044 PRESUSPEND, 2045 PRESUSPEND_UNDO, 2046 POSTSUSPEND, 2047 }; 2048 2049 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2050 { 2051 lockdep_assert_held(&t->md->suspend_lock); 2052 2053 for (unsigned int i = 0; i < t->num_targets; i++) { 2054 struct dm_target *ti = dm_table_get_target(t, i); 2055 2056 switch (mode) { 2057 case PRESUSPEND: 2058 if (ti->type->presuspend) 2059 ti->type->presuspend(ti); 2060 break; 2061 case PRESUSPEND_UNDO: 2062 if (ti->type->presuspend_undo) 2063 ti->type->presuspend_undo(ti); 2064 break; 2065 case POSTSUSPEND: 2066 if (ti->type->postsuspend) 2067 ti->type->postsuspend(ti); 2068 break; 2069 } 2070 } 2071 } 2072 2073 void dm_table_presuspend_targets(struct dm_table *t) 2074 { 2075 if (!t) 2076 return; 2077 2078 suspend_targets(t, PRESUSPEND); 2079 } 2080 2081 void dm_table_presuspend_undo_targets(struct dm_table *t) 2082 { 2083 if (!t) 2084 return; 2085 2086 suspend_targets(t, PRESUSPEND_UNDO); 2087 } 2088 2089 void dm_table_postsuspend_targets(struct dm_table *t) 2090 { 2091 if (!t) 2092 return; 2093 2094 suspend_targets(t, POSTSUSPEND); 2095 } 2096 2097 int dm_table_resume_targets(struct dm_table *t) 2098 { 2099 unsigned int i; 2100 int r = 0; 2101 2102 lockdep_assert_held(&t->md->suspend_lock); 2103 2104 for (i = 0; i < t->num_targets; i++) { 2105 struct dm_target *ti = dm_table_get_target(t, i); 2106 2107 if (!ti->type->preresume) 2108 continue; 2109 2110 r = ti->type->preresume(ti); 2111 if (r) { 2112 DMERR("%s: %s: preresume failed, error = %d", 2113 dm_device_name(t->md), ti->type->name, r); 2114 return r; 2115 } 2116 } 2117 2118 for (i = 0; i < t->num_targets; i++) { 2119 struct dm_target *ti = dm_table_get_target(t, i); 2120 2121 if (ti->type->resume) 2122 ti->type->resume(ti); 2123 } 2124 2125 return 0; 2126 } 2127 2128 struct mapped_device *dm_table_get_md(struct dm_table *t) 2129 { 2130 return t->md; 2131 } 2132 EXPORT_SYMBOL(dm_table_get_md); 2133 2134 const char *dm_table_device_name(struct dm_table *t) 2135 { 2136 return dm_device_name(t->md); 2137 } 2138 EXPORT_SYMBOL_GPL(dm_table_device_name); 2139 2140 void dm_table_run_md_queue_async(struct dm_table *t) 2141 { 2142 if (!dm_table_request_based(t)) 2143 return; 2144 2145 if (t->md->queue) 2146 blk_mq_run_hw_queues(t->md->queue, true); 2147 } 2148 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2149 2150