1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <asm/atomic.h> 19 20 #define DM_MSG_PREFIX "table" 21 22 #define MAX_DEPTH 16 23 #define NODE_SIZE L1_CACHE_BYTES 24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 26 27 struct dm_table { 28 struct mapped_device *md; 29 atomic_t holders; 30 31 /* btree table */ 32 unsigned int depth; 33 unsigned int counts[MAX_DEPTH]; /* in nodes */ 34 sector_t *index[MAX_DEPTH]; 35 36 unsigned int num_targets; 37 unsigned int num_allocated; 38 sector_t *highs; 39 struct dm_target *targets; 40 41 /* 42 * Indicates the rw permissions for the new logical 43 * device. This should be a combination of FMODE_READ 44 * and FMODE_WRITE. 45 */ 46 int mode; 47 48 /* a list of devices used by this table */ 49 struct list_head devices; 50 51 /* 52 * These are optimistic limits taken from all the 53 * targets, some targets will need smaller limits. 54 */ 55 struct io_restrictions limits; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 }; 61 62 /* 63 * Similar to ceiling(log_size(n)) 64 */ 65 static unsigned int int_log(unsigned int n, unsigned int base) 66 { 67 int result = 0; 68 69 while (n > 1) { 70 n = dm_div_up(n, base); 71 result++; 72 } 73 74 return result; 75 } 76 77 /* 78 * Returns the minimum that is _not_ zero, unless both are zero. 79 */ 80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 81 82 /* 83 * Combine two io_restrictions, always taking the lower value. 84 */ 85 static void combine_restrictions_low(struct io_restrictions *lhs, 86 struct io_restrictions *rhs) 87 { 88 lhs->max_sectors = 89 min_not_zero(lhs->max_sectors, rhs->max_sectors); 90 91 lhs->max_phys_segments = 92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 93 94 lhs->max_hw_segments = 95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 96 97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 98 99 lhs->max_segment_size = 100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 101 102 lhs->max_hw_sectors = 103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); 104 105 lhs->seg_boundary_mask = 106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 107 108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); 109 110 lhs->no_cluster |= rhs->no_cluster; 111 } 112 113 /* 114 * Calculate the index of the child node of the n'th node k'th key. 115 */ 116 static inline unsigned int get_child(unsigned int n, unsigned int k) 117 { 118 return (n * CHILDREN_PER_NODE) + k; 119 } 120 121 /* 122 * Return the n'th node of level l from table t. 123 */ 124 static inline sector_t *get_node(struct dm_table *t, 125 unsigned int l, unsigned int n) 126 { 127 return t->index[l] + (n * KEYS_PER_NODE); 128 } 129 130 /* 131 * Return the highest key that you could lookup from the n'th 132 * node on level l of the btree. 133 */ 134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 135 { 136 for (; l < t->depth - 1; l++) 137 n = get_child(n, CHILDREN_PER_NODE - 1); 138 139 if (n >= t->counts[l]) 140 return (sector_t) - 1; 141 142 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 143 } 144 145 /* 146 * Fills in a level of the btree based on the highs of the level 147 * below it. 148 */ 149 static int setup_btree_index(unsigned int l, struct dm_table *t) 150 { 151 unsigned int n, k; 152 sector_t *node; 153 154 for (n = 0U; n < t->counts[l]; n++) { 155 node = get_node(t, l, n); 156 157 for (k = 0U; k < KEYS_PER_NODE; k++) 158 node[k] = high(t, l + 1, get_child(n, k)); 159 } 160 161 return 0; 162 } 163 164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 165 { 166 unsigned long size; 167 void *addr; 168 169 /* 170 * Check that we're not going to overflow. 171 */ 172 if (nmemb > (ULONG_MAX / elem_size)) 173 return NULL; 174 175 size = nmemb * elem_size; 176 addr = vmalloc(size); 177 if (addr) 178 memset(addr, 0, size); 179 180 return addr; 181 } 182 183 /* 184 * highs, and targets are managed as dynamic arrays during a 185 * table load. 186 */ 187 static int alloc_targets(struct dm_table *t, unsigned int num) 188 { 189 sector_t *n_highs; 190 struct dm_target *n_targets; 191 int n = t->num_targets; 192 193 /* 194 * Allocate both the target array and offset array at once. 195 * Append an empty entry to catch sectors beyond the end of 196 * the device. 197 */ 198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 199 sizeof(sector_t)); 200 if (!n_highs) 201 return -ENOMEM; 202 203 n_targets = (struct dm_target *) (n_highs + num); 204 205 if (n) { 206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 208 } 209 210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 211 vfree(t->highs); 212 213 t->num_allocated = num; 214 t->highs = n_highs; 215 t->targets = n_targets; 216 217 return 0; 218 } 219 220 int dm_table_create(struct dm_table **result, int mode, 221 unsigned num_targets, struct mapped_device *md) 222 { 223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 224 225 if (!t) 226 return -ENOMEM; 227 228 INIT_LIST_HEAD(&t->devices); 229 atomic_set(&t->holders, 1); 230 231 if (!num_targets) 232 num_targets = KEYS_PER_NODE; 233 234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 235 236 if (alloc_targets(t, num_targets)) { 237 kfree(t); 238 t = NULL; 239 return -ENOMEM; 240 } 241 242 t->mode = mode; 243 t->md = md; 244 *result = t; 245 return 0; 246 } 247 248 static void free_devices(struct list_head *devices) 249 { 250 struct list_head *tmp, *next; 251 252 list_for_each_safe(tmp, next, devices) { 253 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); 254 kfree(dd); 255 } 256 } 257 258 static void table_destroy(struct dm_table *t) 259 { 260 unsigned int i; 261 262 /* free the indexes (see dm_table_complete) */ 263 if (t->depth >= 2) 264 vfree(t->index[t->depth - 2]); 265 266 /* free the targets */ 267 for (i = 0; i < t->num_targets; i++) { 268 struct dm_target *tgt = t->targets + i; 269 270 if (tgt->type->dtr) 271 tgt->type->dtr(tgt); 272 273 dm_put_target_type(tgt->type); 274 } 275 276 vfree(t->highs); 277 278 /* free the device list */ 279 if (t->devices.next != &t->devices) { 280 DMWARN("devices still present during destroy: " 281 "dm_table_remove_device calls missing"); 282 283 free_devices(&t->devices); 284 } 285 286 kfree(t); 287 } 288 289 void dm_table_get(struct dm_table *t) 290 { 291 atomic_inc(&t->holders); 292 } 293 294 void dm_table_put(struct dm_table *t) 295 { 296 if (!t) 297 return; 298 299 if (atomic_dec_and_test(&t->holders)) 300 table_destroy(t); 301 } 302 303 /* 304 * Checks to see if we need to extend highs or targets. 305 */ 306 static inline int check_space(struct dm_table *t) 307 { 308 if (t->num_targets >= t->num_allocated) 309 return alloc_targets(t, t->num_allocated * 2); 310 311 return 0; 312 } 313 314 /* 315 * Convert a device path to a dev_t. 316 */ 317 static int lookup_device(const char *path, dev_t *dev) 318 { 319 int r; 320 struct nameidata nd; 321 struct inode *inode; 322 323 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) 324 return r; 325 326 inode = nd.path.dentry->d_inode; 327 if (!inode) { 328 r = -ENOENT; 329 goto out; 330 } 331 332 if (!S_ISBLK(inode->i_mode)) { 333 r = -ENOTBLK; 334 goto out; 335 } 336 337 *dev = inode->i_rdev; 338 339 out: 340 path_put(&nd.path); 341 return r; 342 } 343 344 /* 345 * See if we've already got a device in the list. 346 */ 347 static struct dm_dev *find_device(struct list_head *l, dev_t dev) 348 { 349 struct dm_dev *dd; 350 351 list_for_each_entry (dd, l, list) 352 if (dd->bdev->bd_dev == dev) 353 return dd; 354 355 return NULL; 356 } 357 358 /* 359 * Open a device so we can use it as a map destination. 360 */ 361 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md) 362 { 363 static char *_claim_ptr = "I belong to device-mapper"; 364 struct block_device *bdev; 365 366 int r; 367 368 BUG_ON(d->bdev); 369 370 bdev = open_by_devnum(dev, d->mode); 371 if (IS_ERR(bdev)) 372 return PTR_ERR(bdev); 373 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 374 if (r) 375 blkdev_put(bdev); 376 else 377 d->bdev = bdev; 378 return r; 379 } 380 381 /* 382 * Close a device that we've been using. 383 */ 384 static void close_dev(struct dm_dev *d, struct mapped_device *md) 385 { 386 if (!d->bdev) 387 return; 388 389 bd_release_from_disk(d->bdev, dm_disk(md)); 390 blkdev_put(d->bdev); 391 d->bdev = NULL; 392 } 393 394 /* 395 * If possible, this checks an area of a destination device is valid. 396 */ 397 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) 398 { 399 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; 400 401 if (!dev_size) 402 return 1; 403 404 return ((start < dev_size) && (len <= (dev_size - start))); 405 } 406 407 /* 408 * This upgrades the mode on an already open dm_dev. Being 409 * careful to leave things as they were if we fail to reopen the 410 * device. 411 */ 412 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md) 413 { 414 int r; 415 struct dm_dev dd_copy; 416 dev_t dev = dd->bdev->bd_dev; 417 418 dd_copy = *dd; 419 420 dd->mode |= new_mode; 421 dd->bdev = NULL; 422 r = open_dev(dd, dev, md); 423 if (!r) 424 close_dev(&dd_copy, md); 425 else 426 *dd = dd_copy; 427 428 return r; 429 } 430 431 /* 432 * Add a device to the list, or just increment the usage count if 433 * it's already present. 434 */ 435 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 436 const char *path, sector_t start, sector_t len, 437 int mode, struct dm_dev **result) 438 { 439 int r; 440 dev_t uninitialized_var(dev); 441 struct dm_dev *dd; 442 unsigned int major, minor; 443 444 BUG_ON(!t); 445 446 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 447 /* Extract the major/minor numbers */ 448 dev = MKDEV(major, minor); 449 if (MAJOR(dev) != major || MINOR(dev) != minor) 450 return -EOVERFLOW; 451 } else { 452 /* convert the path to a device */ 453 if ((r = lookup_device(path, &dev))) 454 return r; 455 } 456 457 dd = find_device(&t->devices, dev); 458 if (!dd) { 459 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 460 if (!dd) 461 return -ENOMEM; 462 463 dd->mode = mode; 464 dd->bdev = NULL; 465 466 if ((r = open_dev(dd, dev, t->md))) { 467 kfree(dd); 468 return r; 469 } 470 471 format_dev_t(dd->name, dev); 472 473 atomic_set(&dd->count, 0); 474 list_add(&dd->list, &t->devices); 475 476 } else if (dd->mode != (mode | dd->mode)) { 477 r = upgrade_mode(dd, mode, t->md); 478 if (r) 479 return r; 480 } 481 atomic_inc(&dd->count); 482 483 if (!check_device_area(dd, start, len)) { 484 DMWARN("device %s too small for target", path); 485 dm_put_device(ti, dd); 486 return -EINVAL; 487 } 488 489 *result = dd; 490 491 return 0; 492 } 493 494 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) 495 { 496 struct request_queue *q = bdev_get_queue(bdev); 497 struct io_restrictions *rs = &ti->limits; 498 499 /* 500 * Combine the device limits low. 501 * 502 * FIXME: if we move an io_restriction struct 503 * into q this would just be a call to 504 * combine_restrictions_low() 505 */ 506 rs->max_sectors = 507 min_not_zero(rs->max_sectors, q->max_sectors); 508 509 /* 510 * Check if merge fn is supported. 511 * If not we'll force DM to use PAGE_SIZE or 512 * smaller I/O, just to be safe. 513 */ 514 515 if (q->merge_bvec_fn && !ti->type->merge) 516 rs->max_sectors = 517 min_not_zero(rs->max_sectors, 518 (unsigned int) (PAGE_SIZE >> 9)); 519 520 rs->max_phys_segments = 521 min_not_zero(rs->max_phys_segments, 522 q->max_phys_segments); 523 524 rs->max_hw_segments = 525 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 526 527 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 528 529 rs->max_segment_size = 530 min_not_zero(rs->max_segment_size, q->max_segment_size); 531 532 rs->max_hw_sectors = 533 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); 534 535 rs->seg_boundary_mask = 536 min_not_zero(rs->seg_boundary_mask, 537 q->seg_boundary_mask); 538 539 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); 540 541 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 542 } 543 EXPORT_SYMBOL_GPL(dm_set_device_limits); 544 545 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 546 sector_t len, int mode, struct dm_dev **result) 547 { 548 int r = __table_get_device(ti->table, ti, path, 549 start, len, mode, result); 550 551 if (!r) 552 dm_set_device_limits(ti, (*result)->bdev); 553 554 return r; 555 } 556 557 /* 558 * Decrement a devices use count and remove it if necessary. 559 */ 560 void dm_put_device(struct dm_target *ti, struct dm_dev *dd) 561 { 562 if (atomic_dec_and_test(&dd->count)) { 563 close_dev(dd, ti->table->md); 564 list_del(&dd->list); 565 kfree(dd); 566 } 567 } 568 569 /* 570 * Checks to see if the target joins onto the end of the table. 571 */ 572 static int adjoin(struct dm_table *table, struct dm_target *ti) 573 { 574 struct dm_target *prev; 575 576 if (!table->num_targets) 577 return !ti->begin; 578 579 prev = &table->targets[table->num_targets - 1]; 580 return (ti->begin == (prev->begin + prev->len)); 581 } 582 583 /* 584 * Used to dynamically allocate the arg array. 585 */ 586 static char **realloc_argv(unsigned *array_size, char **old_argv) 587 { 588 char **argv; 589 unsigned new_size; 590 591 new_size = *array_size ? *array_size * 2 : 64; 592 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 593 if (argv) { 594 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 595 *array_size = new_size; 596 } 597 598 kfree(old_argv); 599 return argv; 600 } 601 602 /* 603 * Destructively splits up the argument list to pass to ctr. 604 */ 605 int dm_split_args(int *argc, char ***argvp, char *input) 606 { 607 char *start, *end = input, *out, **argv = NULL; 608 unsigned array_size = 0; 609 610 *argc = 0; 611 612 if (!input) { 613 *argvp = NULL; 614 return 0; 615 } 616 617 argv = realloc_argv(&array_size, argv); 618 if (!argv) 619 return -ENOMEM; 620 621 while (1) { 622 start = end; 623 624 /* Skip whitespace */ 625 while (*start && isspace(*start)) 626 start++; 627 628 if (!*start) 629 break; /* success, we hit the end */ 630 631 /* 'out' is used to remove any back-quotes */ 632 end = out = start; 633 while (*end) { 634 /* Everything apart from '\0' can be quoted */ 635 if (*end == '\\' && *(end + 1)) { 636 *out++ = *(end + 1); 637 end += 2; 638 continue; 639 } 640 641 if (isspace(*end)) 642 break; /* end of token */ 643 644 *out++ = *end++; 645 } 646 647 /* have we already filled the array ? */ 648 if ((*argc + 1) > array_size) { 649 argv = realloc_argv(&array_size, argv); 650 if (!argv) 651 return -ENOMEM; 652 } 653 654 /* we know this is whitespace */ 655 if (*end) 656 end++; 657 658 /* terminate the string and put it in the array */ 659 *out = '\0'; 660 argv[*argc] = start; 661 (*argc)++; 662 } 663 664 *argvp = argv; 665 return 0; 666 } 667 668 static void check_for_valid_limits(struct io_restrictions *rs) 669 { 670 if (!rs->max_sectors) 671 rs->max_sectors = SAFE_MAX_SECTORS; 672 if (!rs->max_hw_sectors) 673 rs->max_hw_sectors = SAFE_MAX_SECTORS; 674 if (!rs->max_phys_segments) 675 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 676 if (!rs->max_hw_segments) 677 rs->max_hw_segments = MAX_HW_SEGMENTS; 678 if (!rs->hardsect_size) 679 rs->hardsect_size = 1 << SECTOR_SHIFT; 680 if (!rs->max_segment_size) 681 rs->max_segment_size = MAX_SEGMENT_SIZE; 682 if (!rs->seg_boundary_mask) 683 rs->seg_boundary_mask = -1; 684 if (!rs->bounce_pfn) 685 rs->bounce_pfn = -1; 686 } 687 688 int dm_table_add_target(struct dm_table *t, const char *type, 689 sector_t start, sector_t len, char *params) 690 { 691 int r = -EINVAL, argc; 692 char **argv; 693 struct dm_target *tgt; 694 695 if ((r = check_space(t))) 696 return r; 697 698 tgt = t->targets + t->num_targets; 699 memset(tgt, 0, sizeof(*tgt)); 700 701 if (!len) { 702 DMERR("%s: zero-length target", dm_device_name(t->md)); 703 return -EINVAL; 704 } 705 706 tgt->type = dm_get_target_type(type); 707 if (!tgt->type) { 708 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 709 type); 710 return -EINVAL; 711 } 712 713 tgt->table = t; 714 tgt->begin = start; 715 tgt->len = len; 716 tgt->error = "Unknown error"; 717 718 /* 719 * Does this target adjoin the previous one ? 720 */ 721 if (!adjoin(t, tgt)) { 722 tgt->error = "Gap in table"; 723 r = -EINVAL; 724 goto bad; 725 } 726 727 r = dm_split_args(&argc, &argv, params); 728 if (r) { 729 tgt->error = "couldn't split parameters (insufficient memory)"; 730 goto bad; 731 } 732 733 r = tgt->type->ctr(tgt, argc, argv); 734 kfree(argv); 735 if (r) 736 goto bad; 737 738 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 739 740 /* FIXME: the plan is to combine high here and then have 741 * the merge fn apply the target level restrictions. */ 742 combine_restrictions_low(&t->limits, &tgt->limits); 743 return 0; 744 745 bad: 746 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 747 dm_put_target_type(tgt->type); 748 return r; 749 } 750 751 static int setup_indexes(struct dm_table *t) 752 { 753 int i; 754 unsigned int total = 0; 755 sector_t *indexes; 756 757 /* allocate the space for *all* the indexes */ 758 for (i = t->depth - 2; i >= 0; i--) { 759 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 760 total += t->counts[i]; 761 } 762 763 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 764 if (!indexes) 765 return -ENOMEM; 766 767 /* set up internal nodes, bottom-up */ 768 for (i = t->depth - 2; i >= 0; i--) { 769 t->index[i] = indexes; 770 indexes += (KEYS_PER_NODE * t->counts[i]); 771 setup_btree_index(i, t); 772 } 773 774 return 0; 775 } 776 777 /* 778 * Builds the btree to index the map. 779 */ 780 int dm_table_complete(struct dm_table *t) 781 { 782 int r = 0; 783 unsigned int leaf_nodes; 784 785 check_for_valid_limits(&t->limits); 786 787 /* how many indexes will the btree have ? */ 788 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 789 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 790 791 /* leaf layer has already been set up */ 792 t->counts[t->depth - 1] = leaf_nodes; 793 t->index[t->depth - 1] = t->highs; 794 795 if (t->depth >= 2) 796 r = setup_indexes(t); 797 798 return r; 799 } 800 801 static DEFINE_MUTEX(_event_lock); 802 void dm_table_event_callback(struct dm_table *t, 803 void (*fn)(void *), void *context) 804 { 805 mutex_lock(&_event_lock); 806 t->event_fn = fn; 807 t->event_context = context; 808 mutex_unlock(&_event_lock); 809 } 810 811 void dm_table_event(struct dm_table *t) 812 { 813 /* 814 * You can no longer call dm_table_event() from interrupt 815 * context, use a bottom half instead. 816 */ 817 BUG_ON(in_interrupt()); 818 819 mutex_lock(&_event_lock); 820 if (t->event_fn) 821 t->event_fn(t->event_context); 822 mutex_unlock(&_event_lock); 823 } 824 825 sector_t dm_table_get_size(struct dm_table *t) 826 { 827 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 828 } 829 830 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 831 { 832 if (index >= t->num_targets) 833 return NULL; 834 835 return t->targets + index; 836 } 837 838 /* 839 * Search the btree for the correct target. 840 * 841 * Caller should check returned pointer with dm_target_is_valid() 842 * to trap I/O beyond end of device. 843 */ 844 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 845 { 846 unsigned int l, n = 0, k = 0; 847 sector_t *node; 848 849 for (l = 0; l < t->depth; l++) { 850 n = get_child(n, k); 851 node = get_node(t, l, n); 852 853 for (k = 0; k < KEYS_PER_NODE; k++) 854 if (node[k] >= sector) 855 break; 856 } 857 858 return &t->targets[(KEYS_PER_NODE * n) + k]; 859 } 860 861 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 862 { 863 /* 864 * Make sure we obey the optimistic sub devices 865 * restrictions. 866 */ 867 blk_queue_max_sectors(q, t->limits.max_sectors); 868 q->max_phys_segments = t->limits.max_phys_segments; 869 q->max_hw_segments = t->limits.max_hw_segments; 870 q->hardsect_size = t->limits.hardsect_size; 871 q->max_segment_size = t->limits.max_segment_size; 872 q->max_hw_sectors = t->limits.max_hw_sectors; 873 q->seg_boundary_mask = t->limits.seg_boundary_mask; 874 q->bounce_pfn = t->limits.bounce_pfn; 875 876 if (t->limits.no_cluster) 877 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 878 else 879 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 880 881 } 882 883 unsigned int dm_table_get_num_targets(struct dm_table *t) 884 { 885 return t->num_targets; 886 } 887 888 struct list_head *dm_table_get_devices(struct dm_table *t) 889 { 890 return &t->devices; 891 } 892 893 int dm_table_get_mode(struct dm_table *t) 894 { 895 return t->mode; 896 } 897 898 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 899 { 900 int i = t->num_targets; 901 struct dm_target *ti = t->targets; 902 903 while (i--) { 904 if (postsuspend) { 905 if (ti->type->postsuspend) 906 ti->type->postsuspend(ti); 907 } else if (ti->type->presuspend) 908 ti->type->presuspend(ti); 909 910 ti++; 911 } 912 } 913 914 void dm_table_presuspend_targets(struct dm_table *t) 915 { 916 if (!t) 917 return; 918 919 suspend_targets(t, 0); 920 } 921 922 void dm_table_postsuspend_targets(struct dm_table *t) 923 { 924 if (!t) 925 return; 926 927 suspend_targets(t, 1); 928 } 929 930 int dm_table_resume_targets(struct dm_table *t) 931 { 932 int i, r = 0; 933 934 for (i = 0; i < t->num_targets; i++) { 935 struct dm_target *ti = t->targets + i; 936 937 if (!ti->type->preresume) 938 continue; 939 940 r = ti->type->preresume(ti); 941 if (r) 942 return r; 943 } 944 945 for (i = 0; i < t->num_targets; i++) { 946 struct dm_target *ti = t->targets + i; 947 948 if (ti->type->resume) 949 ti->type->resume(ti); 950 } 951 952 return 0; 953 } 954 955 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 956 { 957 struct dm_dev *dd; 958 struct list_head *devices = dm_table_get_devices(t); 959 int r = 0; 960 961 list_for_each_entry(dd, devices, list) { 962 struct request_queue *q = bdev_get_queue(dd->bdev); 963 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 964 } 965 966 return r; 967 } 968 969 void dm_table_unplug_all(struct dm_table *t) 970 { 971 struct dm_dev *dd; 972 struct list_head *devices = dm_table_get_devices(t); 973 974 list_for_each_entry(dd, devices, list) { 975 struct request_queue *q = bdev_get_queue(dd->bdev); 976 977 blk_unplug(q); 978 } 979 } 980 981 struct mapped_device *dm_table_get_md(struct dm_table *t) 982 { 983 dm_get(t->md); 984 985 return t->md; 986 } 987 988 EXPORT_SYMBOL(dm_vcalloc); 989 EXPORT_SYMBOL(dm_get_device); 990 EXPORT_SYMBOL(dm_put_device); 991 EXPORT_SYMBOL(dm_table_event); 992 EXPORT_SYMBOL(dm_table_get_size); 993 EXPORT_SYMBOL(dm_table_get_mode); 994 EXPORT_SYMBOL(dm_table_get_md); 995 EXPORT_SYMBOL(dm_table_put); 996 EXPORT_SYMBOL(dm_table_get); 997 EXPORT_SYMBOL(dm_table_unplug_all); 998