1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 struct dm_table { 30 struct mapped_device *md; 31 unsigned type; 32 33 /* btree table */ 34 unsigned int depth; 35 unsigned int counts[MAX_DEPTH]; /* in nodes */ 36 sector_t *index[MAX_DEPTH]; 37 38 unsigned int num_targets; 39 unsigned int num_allocated; 40 sector_t *highs; 41 struct dm_target *targets; 42 43 struct target_type *immutable_target_type; 44 unsigned integrity_supported:1; 45 unsigned singleton:1; 46 47 /* 48 * Indicates the rw permissions for the new logical 49 * device. This should be a combination of FMODE_READ 50 * and FMODE_WRITE. 51 */ 52 fmode_t mode; 53 54 /* a list of devices used by this table */ 55 struct list_head devices; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 61 struct dm_md_mempools *mempools; 62 63 struct list_head target_callbacks; 64 }; 65 66 /* 67 * Similar to ceiling(log_size(n)) 68 */ 69 static unsigned int int_log(unsigned int n, unsigned int base) 70 { 71 int result = 0; 72 73 while (n > 1) { 74 n = dm_div_up(n, base); 75 result++; 76 } 77 78 return result; 79 } 80 81 /* 82 * Calculate the index of the child node of the n'th node k'th key. 83 */ 84 static inline unsigned int get_child(unsigned int n, unsigned int k) 85 { 86 return (n * CHILDREN_PER_NODE) + k; 87 } 88 89 /* 90 * Return the n'th node of level l from table t. 91 */ 92 static inline sector_t *get_node(struct dm_table *t, 93 unsigned int l, unsigned int n) 94 { 95 return t->index[l] + (n * KEYS_PER_NODE); 96 } 97 98 /* 99 * Return the highest key that you could lookup from the n'th 100 * node on level l of the btree. 101 */ 102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 103 { 104 for (; l < t->depth - 1; l++) 105 n = get_child(n, CHILDREN_PER_NODE - 1); 106 107 if (n >= t->counts[l]) 108 return (sector_t) - 1; 109 110 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 111 } 112 113 /* 114 * Fills in a level of the btree based on the highs of the level 115 * below it. 116 */ 117 static int setup_btree_index(unsigned int l, struct dm_table *t) 118 { 119 unsigned int n, k; 120 sector_t *node; 121 122 for (n = 0U; n < t->counts[l]; n++) { 123 node = get_node(t, l, n); 124 125 for (k = 0U; k < KEYS_PER_NODE; k++) 126 node[k] = high(t, l + 1, get_child(n, k)); 127 } 128 129 return 0; 130 } 131 132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 133 { 134 unsigned long size; 135 void *addr; 136 137 /* 138 * Check that we're not going to overflow. 139 */ 140 if (nmemb > (ULONG_MAX / elem_size)) 141 return NULL; 142 143 size = nmemb * elem_size; 144 addr = vzalloc(size); 145 146 return addr; 147 } 148 EXPORT_SYMBOL(dm_vcalloc); 149 150 /* 151 * highs, and targets are managed as dynamic arrays during a 152 * table load. 153 */ 154 static int alloc_targets(struct dm_table *t, unsigned int num) 155 { 156 sector_t *n_highs; 157 struct dm_target *n_targets; 158 int n = t->num_targets; 159 160 /* 161 * Allocate both the target array and offset array at once. 162 * Append an empty entry to catch sectors beyond the end of 163 * the device. 164 */ 165 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 166 sizeof(sector_t)); 167 if (!n_highs) 168 return -ENOMEM; 169 170 n_targets = (struct dm_target *) (n_highs + num); 171 172 if (n) { 173 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 174 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 175 } 176 177 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 178 vfree(t->highs); 179 180 t->num_allocated = num; 181 t->highs = n_highs; 182 t->targets = n_targets; 183 184 return 0; 185 } 186 187 int dm_table_create(struct dm_table **result, fmode_t mode, 188 unsigned num_targets, struct mapped_device *md) 189 { 190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 191 192 if (!t) 193 return -ENOMEM; 194 195 INIT_LIST_HEAD(&t->devices); 196 INIT_LIST_HEAD(&t->target_callbacks); 197 198 if (!num_targets) 199 num_targets = KEYS_PER_NODE; 200 201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 202 203 if (!num_targets) { 204 kfree(t); 205 return -ENOMEM; 206 } 207 208 if (alloc_targets(t, num_targets)) { 209 kfree(t); 210 return -ENOMEM; 211 } 212 213 t->mode = mode; 214 t->md = md; 215 *result = t; 216 return 0; 217 } 218 219 static void free_devices(struct list_head *devices) 220 { 221 struct list_head *tmp, *next; 222 223 list_for_each_safe(tmp, next, devices) { 224 struct dm_dev_internal *dd = 225 list_entry(tmp, struct dm_dev_internal, list); 226 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 227 dd->dm_dev.name); 228 kfree(dd); 229 } 230 } 231 232 void dm_table_destroy(struct dm_table *t) 233 { 234 unsigned int i; 235 236 if (!t) 237 return; 238 239 /* free the indexes */ 240 if (t->depth >= 2) 241 vfree(t->index[t->depth - 2]); 242 243 /* free the targets */ 244 for (i = 0; i < t->num_targets; i++) { 245 struct dm_target *tgt = t->targets + i; 246 247 if (tgt->type->dtr) 248 tgt->type->dtr(tgt); 249 250 dm_put_target_type(tgt->type); 251 } 252 253 vfree(t->highs); 254 255 /* free the device list */ 256 free_devices(&t->devices); 257 258 dm_free_md_mempools(t->mempools); 259 260 kfree(t); 261 } 262 263 /* 264 * Checks to see if we need to extend highs or targets. 265 */ 266 static inline int check_space(struct dm_table *t) 267 { 268 if (t->num_targets >= t->num_allocated) 269 return alloc_targets(t, t->num_allocated * 2); 270 271 return 0; 272 } 273 274 /* 275 * See if we've already got a device in the list. 276 */ 277 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 278 { 279 struct dm_dev_internal *dd; 280 281 list_for_each_entry (dd, l, list) 282 if (dd->dm_dev.bdev->bd_dev == dev) 283 return dd; 284 285 return NULL; 286 } 287 288 /* 289 * Open a device so we can use it as a map destination. 290 */ 291 static int open_dev(struct dm_dev_internal *d, dev_t dev, 292 struct mapped_device *md) 293 { 294 static char *_claim_ptr = "I belong to device-mapper"; 295 struct block_device *bdev; 296 297 int r; 298 299 BUG_ON(d->dm_dev.bdev); 300 301 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 302 if (IS_ERR(bdev)) 303 return PTR_ERR(bdev); 304 305 r = bd_link_disk_holder(bdev, dm_disk(md)); 306 if (r) { 307 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 308 return r; 309 } 310 311 d->dm_dev.bdev = bdev; 312 return 0; 313 } 314 315 /* 316 * Close a device that we've been using. 317 */ 318 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 319 { 320 if (!d->dm_dev.bdev) 321 return; 322 323 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 324 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 325 d->dm_dev.bdev = NULL; 326 } 327 328 /* 329 * If possible, this checks an area of a destination device is invalid. 330 */ 331 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 332 sector_t start, sector_t len, void *data) 333 { 334 struct request_queue *q; 335 struct queue_limits *limits = data; 336 struct block_device *bdev = dev->bdev; 337 sector_t dev_size = 338 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 339 unsigned short logical_block_size_sectors = 340 limits->logical_block_size >> SECTOR_SHIFT; 341 char b[BDEVNAME_SIZE]; 342 343 /* 344 * Some devices exist without request functions, 345 * such as loop devices not yet bound to backing files. 346 * Forbid the use of such devices. 347 */ 348 q = bdev_get_queue(bdev); 349 if (!q || !q->make_request_fn) { 350 DMWARN("%s: %s is not yet initialised: " 351 "start=%llu, len=%llu, dev_size=%llu", 352 dm_device_name(ti->table->md), bdevname(bdev, b), 353 (unsigned long long)start, 354 (unsigned long long)len, 355 (unsigned long long)dev_size); 356 return 1; 357 } 358 359 if (!dev_size) 360 return 0; 361 362 if ((start >= dev_size) || (start + len > dev_size)) { 363 DMWARN("%s: %s too small for target: " 364 "start=%llu, len=%llu, dev_size=%llu", 365 dm_device_name(ti->table->md), bdevname(bdev, b), 366 (unsigned long long)start, 367 (unsigned long long)len, 368 (unsigned long long)dev_size); 369 return 1; 370 } 371 372 if (logical_block_size_sectors <= 1) 373 return 0; 374 375 if (start & (logical_block_size_sectors - 1)) { 376 DMWARN("%s: start=%llu not aligned to h/w " 377 "logical block size %u of %s", 378 dm_device_name(ti->table->md), 379 (unsigned long long)start, 380 limits->logical_block_size, bdevname(bdev, b)); 381 return 1; 382 } 383 384 if (len & (logical_block_size_sectors - 1)) { 385 DMWARN("%s: len=%llu not aligned to h/w " 386 "logical block size %u of %s", 387 dm_device_name(ti->table->md), 388 (unsigned long long)len, 389 limits->logical_block_size, bdevname(bdev, b)); 390 return 1; 391 } 392 393 return 0; 394 } 395 396 /* 397 * This upgrades the mode on an already open dm_dev, being 398 * careful to leave things as they were if we fail to reopen the 399 * device and not to touch the existing bdev field in case 400 * it is accessed concurrently inside dm_table_any_congested(). 401 */ 402 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 403 struct mapped_device *md) 404 { 405 int r; 406 struct dm_dev_internal dd_new, dd_old; 407 408 dd_new = dd_old = *dd; 409 410 dd_new.dm_dev.mode |= new_mode; 411 dd_new.dm_dev.bdev = NULL; 412 413 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 414 if (r) 415 return r; 416 417 dd->dm_dev.mode |= new_mode; 418 close_dev(&dd_old, md); 419 420 return 0; 421 } 422 423 /* 424 * Add a device to the list, or just increment the usage count if 425 * it's already present. 426 */ 427 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 428 struct dm_dev **result) 429 { 430 int r; 431 dev_t uninitialized_var(dev); 432 struct dm_dev_internal *dd; 433 unsigned int major, minor; 434 struct dm_table *t = ti->table; 435 char dummy; 436 437 BUG_ON(!t); 438 439 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 440 /* Extract the major/minor numbers */ 441 dev = MKDEV(major, minor); 442 if (MAJOR(dev) != major || MINOR(dev) != minor) 443 return -EOVERFLOW; 444 } else { 445 /* convert the path to a device */ 446 struct block_device *bdev = lookup_bdev(path); 447 448 if (IS_ERR(bdev)) 449 return PTR_ERR(bdev); 450 dev = bdev->bd_dev; 451 bdput(bdev); 452 } 453 454 dd = find_device(&t->devices, dev); 455 if (!dd) { 456 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 457 if (!dd) 458 return -ENOMEM; 459 460 dd->dm_dev.mode = mode; 461 dd->dm_dev.bdev = NULL; 462 463 if ((r = open_dev(dd, dev, t->md))) { 464 kfree(dd); 465 return r; 466 } 467 468 format_dev_t(dd->dm_dev.name, dev); 469 470 atomic_set(&dd->count, 0); 471 list_add(&dd->list, &t->devices); 472 473 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 474 r = upgrade_mode(dd, mode, t->md); 475 if (r) 476 return r; 477 } 478 atomic_inc(&dd->count); 479 480 *result = &dd->dm_dev; 481 return 0; 482 } 483 EXPORT_SYMBOL(dm_get_device); 484 485 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 486 sector_t start, sector_t len, void *data) 487 { 488 struct queue_limits *limits = data; 489 struct block_device *bdev = dev->bdev; 490 struct request_queue *q = bdev_get_queue(bdev); 491 char b[BDEVNAME_SIZE]; 492 493 if (unlikely(!q)) { 494 DMWARN("%s: Cannot set limits for nonexistent device %s", 495 dm_device_name(ti->table->md), bdevname(bdev, b)); 496 return 0; 497 } 498 499 if (bdev_stack_limits(limits, bdev, start) < 0) 500 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 501 "physical_block_size=%u, logical_block_size=%u, " 502 "alignment_offset=%u, start=%llu", 503 dm_device_name(ti->table->md), bdevname(bdev, b), 504 q->limits.physical_block_size, 505 q->limits.logical_block_size, 506 q->limits.alignment_offset, 507 (unsigned long long) start << SECTOR_SHIFT); 508 509 /* 510 * Check if merge fn is supported. 511 * If not we'll force DM to use PAGE_SIZE or 512 * smaller I/O, just to be safe. 513 */ 514 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge) 515 blk_limits_max_hw_sectors(limits, 516 (unsigned int) (PAGE_SIZE >> 9)); 517 return 0; 518 } 519 EXPORT_SYMBOL_GPL(dm_set_device_limits); 520 521 /* 522 * Decrement a device's use count and remove it if necessary. 523 */ 524 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 525 { 526 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 527 dm_dev); 528 529 if (atomic_dec_and_test(&dd->count)) { 530 close_dev(dd, ti->table->md); 531 list_del(&dd->list); 532 kfree(dd); 533 } 534 } 535 EXPORT_SYMBOL(dm_put_device); 536 537 /* 538 * Checks to see if the target joins onto the end of the table. 539 */ 540 static int adjoin(struct dm_table *table, struct dm_target *ti) 541 { 542 struct dm_target *prev; 543 544 if (!table->num_targets) 545 return !ti->begin; 546 547 prev = &table->targets[table->num_targets - 1]; 548 return (ti->begin == (prev->begin + prev->len)); 549 } 550 551 /* 552 * Used to dynamically allocate the arg array. 553 * 554 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 555 * process messages even if some device is suspended. These messages have a 556 * small fixed number of arguments. 557 * 558 * On the other hand, dm-switch needs to process bulk data using messages and 559 * excessive use of GFP_NOIO could cause trouble. 560 */ 561 static char **realloc_argv(unsigned *array_size, char **old_argv) 562 { 563 char **argv; 564 unsigned new_size; 565 gfp_t gfp; 566 567 if (*array_size) { 568 new_size = *array_size * 2; 569 gfp = GFP_KERNEL; 570 } else { 571 new_size = 8; 572 gfp = GFP_NOIO; 573 } 574 argv = kmalloc(new_size * sizeof(*argv), gfp); 575 if (argv) { 576 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 577 *array_size = new_size; 578 } 579 580 kfree(old_argv); 581 return argv; 582 } 583 584 /* 585 * Destructively splits up the argument list to pass to ctr. 586 */ 587 int dm_split_args(int *argc, char ***argvp, char *input) 588 { 589 char *start, *end = input, *out, **argv = NULL; 590 unsigned array_size = 0; 591 592 *argc = 0; 593 594 if (!input) { 595 *argvp = NULL; 596 return 0; 597 } 598 599 argv = realloc_argv(&array_size, argv); 600 if (!argv) 601 return -ENOMEM; 602 603 while (1) { 604 /* Skip whitespace */ 605 start = skip_spaces(end); 606 607 if (!*start) 608 break; /* success, we hit the end */ 609 610 /* 'out' is used to remove any back-quotes */ 611 end = out = start; 612 while (*end) { 613 /* Everything apart from '\0' can be quoted */ 614 if (*end == '\\' && *(end + 1)) { 615 *out++ = *(end + 1); 616 end += 2; 617 continue; 618 } 619 620 if (isspace(*end)) 621 break; /* end of token */ 622 623 *out++ = *end++; 624 } 625 626 /* have we already filled the array ? */ 627 if ((*argc + 1) > array_size) { 628 argv = realloc_argv(&array_size, argv); 629 if (!argv) 630 return -ENOMEM; 631 } 632 633 /* we know this is whitespace */ 634 if (*end) 635 end++; 636 637 /* terminate the string and put it in the array */ 638 *out = '\0'; 639 argv[*argc] = start; 640 (*argc)++; 641 } 642 643 *argvp = argv; 644 return 0; 645 } 646 647 /* 648 * Impose necessary and sufficient conditions on a devices's table such 649 * that any incoming bio which respects its logical_block_size can be 650 * processed successfully. If it falls across the boundary between 651 * two or more targets, the size of each piece it gets split into must 652 * be compatible with the logical_block_size of the target processing it. 653 */ 654 static int validate_hardware_logical_block_alignment(struct dm_table *table, 655 struct queue_limits *limits) 656 { 657 /* 658 * This function uses arithmetic modulo the logical_block_size 659 * (in units of 512-byte sectors). 660 */ 661 unsigned short device_logical_block_size_sects = 662 limits->logical_block_size >> SECTOR_SHIFT; 663 664 /* 665 * Offset of the start of the next table entry, mod logical_block_size. 666 */ 667 unsigned short next_target_start = 0; 668 669 /* 670 * Given an aligned bio that extends beyond the end of a 671 * target, how many sectors must the next target handle? 672 */ 673 unsigned short remaining = 0; 674 675 struct dm_target *uninitialized_var(ti); 676 struct queue_limits ti_limits; 677 unsigned i = 0; 678 679 /* 680 * Check each entry in the table in turn. 681 */ 682 while (i < dm_table_get_num_targets(table)) { 683 ti = dm_table_get_target(table, i++); 684 685 blk_set_stacking_limits(&ti_limits); 686 687 /* combine all target devices' limits */ 688 if (ti->type->iterate_devices) 689 ti->type->iterate_devices(ti, dm_set_device_limits, 690 &ti_limits); 691 692 /* 693 * If the remaining sectors fall entirely within this 694 * table entry are they compatible with its logical_block_size? 695 */ 696 if (remaining < ti->len && 697 remaining & ((ti_limits.logical_block_size >> 698 SECTOR_SHIFT) - 1)) 699 break; /* Error */ 700 701 next_target_start = 702 (unsigned short) ((next_target_start + ti->len) & 703 (device_logical_block_size_sects - 1)); 704 remaining = next_target_start ? 705 device_logical_block_size_sects - next_target_start : 0; 706 } 707 708 if (remaining) { 709 DMWARN("%s: table line %u (start sect %llu len %llu) " 710 "not aligned to h/w logical block size %u", 711 dm_device_name(table->md), i, 712 (unsigned long long) ti->begin, 713 (unsigned long long) ti->len, 714 limits->logical_block_size); 715 return -EINVAL; 716 } 717 718 return 0; 719 } 720 721 int dm_table_add_target(struct dm_table *t, const char *type, 722 sector_t start, sector_t len, char *params) 723 { 724 int r = -EINVAL, argc; 725 char **argv; 726 struct dm_target *tgt; 727 728 if (t->singleton) { 729 DMERR("%s: target type %s must appear alone in table", 730 dm_device_name(t->md), t->targets->type->name); 731 return -EINVAL; 732 } 733 734 if ((r = check_space(t))) 735 return r; 736 737 tgt = t->targets + t->num_targets; 738 memset(tgt, 0, sizeof(*tgt)); 739 740 if (!len) { 741 DMERR("%s: zero-length target", dm_device_name(t->md)); 742 return -EINVAL; 743 } 744 745 tgt->type = dm_get_target_type(type); 746 if (!tgt->type) { 747 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 748 type); 749 return -EINVAL; 750 } 751 752 if (dm_target_needs_singleton(tgt->type)) { 753 if (t->num_targets) { 754 DMERR("%s: target type %s must appear alone in table", 755 dm_device_name(t->md), type); 756 return -EINVAL; 757 } 758 t->singleton = 1; 759 } 760 761 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 762 DMERR("%s: target type %s may not be included in read-only tables", 763 dm_device_name(t->md), type); 764 return -EINVAL; 765 } 766 767 if (t->immutable_target_type) { 768 if (t->immutable_target_type != tgt->type) { 769 DMERR("%s: immutable target type %s cannot be mixed with other target types", 770 dm_device_name(t->md), t->immutable_target_type->name); 771 return -EINVAL; 772 } 773 } else if (dm_target_is_immutable(tgt->type)) { 774 if (t->num_targets) { 775 DMERR("%s: immutable target type %s cannot be mixed with other target types", 776 dm_device_name(t->md), tgt->type->name); 777 return -EINVAL; 778 } 779 t->immutable_target_type = tgt->type; 780 } 781 782 tgt->table = t; 783 tgt->begin = start; 784 tgt->len = len; 785 tgt->error = "Unknown error"; 786 787 /* 788 * Does this target adjoin the previous one ? 789 */ 790 if (!adjoin(t, tgt)) { 791 tgt->error = "Gap in table"; 792 r = -EINVAL; 793 goto bad; 794 } 795 796 r = dm_split_args(&argc, &argv, params); 797 if (r) { 798 tgt->error = "couldn't split parameters (insufficient memory)"; 799 goto bad; 800 } 801 802 r = tgt->type->ctr(tgt, argc, argv); 803 kfree(argv); 804 if (r) 805 goto bad; 806 807 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 808 809 if (!tgt->num_discard_bios && tgt->discards_supported) 810 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 811 dm_device_name(t->md), type); 812 813 return 0; 814 815 bad: 816 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 817 dm_put_target_type(tgt->type); 818 return r; 819 } 820 821 /* 822 * Target argument parsing helpers. 823 */ 824 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 825 unsigned *value, char **error, unsigned grouped) 826 { 827 const char *arg_str = dm_shift_arg(arg_set); 828 char dummy; 829 830 if (!arg_str || 831 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 832 (*value < arg->min) || 833 (*value > arg->max) || 834 (grouped && arg_set->argc < *value)) { 835 *error = arg->error; 836 return -EINVAL; 837 } 838 839 return 0; 840 } 841 842 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 843 unsigned *value, char **error) 844 { 845 return validate_next_arg(arg, arg_set, value, error, 0); 846 } 847 EXPORT_SYMBOL(dm_read_arg); 848 849 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 850 unsigned *value, char **error) 851 { 852 return validate_next_arg(arg, arg_set, value, error, 1); 853 } 854 EXPORT_SYMBOL(dm_read_arg_group); 855 856 const char *dm_shift_arg(struct dm_arg_set *as) 857 { 858 char *r; 859 860 if (as->argc) { 861 as->argc--; 862 r = *as->argv; 863 as->argv++; 864 return r; 865 } 866 867 return NULL; 868 } 869 EXPORT_SYMBOL(dm_shift_arg); 870 871 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 872 { 873 BUG_ON(as->argc < num_args); 874 as->argc -= num_args; 875 as->argv += num_args; 876 } 877 EXPORT_SYMBOL(dm_consume_args); 878 879 static int dm_table_set_type(struct dm_table *t) 880 { 881 unsigned i; 882 unsigned bio_based = 0, request_based = 0, hybrid = 0; 883 struct dm_target *tgt; 884 struct dm_dev_internal *dd; 885 struct list_head *devices; 886 unsigned live_md_type; 887 888 for (i = 0; i < t->num_targets; i++) { 889 tgt = t->targets + i; 890 if (dm_target_hybrid(tgt)) 891 hybrid = 1; 892 else if (dm_target_request_based(tgt)) 893 request_based = 1; 894 else 895 bio_based = 1; 896 897 if (bio_based && request_based) { 898 DMWARN("Inconsistent table: different target types" 899 " can't be mixed up"); 900 return -EINVAL; 901 } 902 } 903 904 if (hybrid && !bio_based && !request_based) { 905 /* 906 * The targets can work either way. 907 * Determine the type from the live device. 908 * Default to bio-based if device is new. 909 */ 910 live_md_type = dm_get_md_type(t->md); 911 if (live_md_type == DM_TYPE_REQUEST_BASED) 912 request_based = 1; 913 else 914 bio_based = 1; 915 } 916 917 if (bio_based) { 918 /* We must use this table as bio-based */ 919 t->type = DM_TYPE_BIO_BASED; 920 return 0; 921 } 922 923 BUG_ON(!request_based); /* No targets in this table */ 924 925 /* Non-request-stackable devices can't be used for request-based dm */ 926 devices = dm_table_get_devices(t); 927 list_for_each_entry(dd, devices, list) { 928 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 929 DMWARN("table load rejected: including" 930 " non-request-stackable devices"); 931 return -EINVAL; 932 } 933 } 934 935 /* 936 * Request-based dm supports only tables that have a single target now. 937 * To support multiple targets, request splitting support is needed, 938 * and that needs lots of changes in the block-layer. 939 * (e.g. request completion process for partial completion.) 940 */ 941 if (t->num_targets > 1) { 942 DMWARN("Request-based dm doesn't support multiple targets yet"); 943 return -EINVAL; 944 } 945 946 t->type = DM_TYPE_REQUEST_BASED; 947 948 return 0; 949 } 950 951 unsigned dm_table_get_type(struct dm_table *t) 952 { 953 return t->type; 954 } 955 956 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 957 { 958 return t->immutable_target_type; 959 } 960 961 bool dm_table_request_based(struct dm_table *t) 962 { 963 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 964 } 965 966 int dm_table_alloc_md_mempools(struct dm_table *t) 967 { 968 unsigned type = dm_table_get_type(t); 969 unsigned per_bio_data_size = 0; 970 struct dm_target *tgt; 971 unsigned i; 972 973 if (unlikely(type == DM_TYPE_NONE)) { 974 DMWARN("no table type is set, can't allocate mempools"); 975 return -EINVAL; 976 } 977 978 if (type == DM_TYPE_BIO_BASED) 979 for (i = 0; i < t->num_targets; i++) { 980 tgt = t->targets + i; 981 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size); 982 } 983 984 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size); 985 if (!t->mempools) 986 return -ENOMEM; 987 988 return 0; 989 } 990 991 void dm_table_free_md_mempools(struct dm_table *t) 992 { 993 dm_free_md_mempools(t->mempools); 994 t->mempools = NULL; 995 } 996 997 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 998 { 999 return t->mempools; 1000 } 1001 1002 static int setup_indexes(struct dm_table *t) 1003 { 1004 int i; 1005 unsigned int total = 0; 1006 sector_t *indexes; 1007 1008 /* allocate the space for *all* the indexes */ 1009 for (i = t->depth - 2; i >= 0; i--) { 1010 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1011 total += t->counts[i]; 1012 } 1013 1014 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1015 if (!indexes) 1016 return -ENOMEM; 1017 1018 /* set up internal nodes, bottom-up */ 1019 for (i = t->depth - 2; i >= 0; i--) { 1020 t->index[i] = indexes; 1021 indexes += (KEYS_PER_NODE * t->counts[i]); 1022 setup_btree_index(i, t); 1023 } 1024 1025 return 0; 1026 } 1027 1028 /* 1029 * Builds the btree to index the map. 1030 */ 1031 static int dm_table_build_index(struct dm_table *t) 1032 { 1033 int r = 0; 1034 unsigned int leaf_nodes; 1035 1036 /* how many indexes will the btree have ? */ 1037 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1038 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1039 1040 /* leaf layer has already been set up */ 1041 t->counts[t->depth - 1] = leaf_nodes; 1042 t->index[t->depth - 1] = t->highs; 1043 1044 if (t->depth >= 2) 1045 r = setup_indexes(t); 1046 1047 return r; 1048 } 1049 1050 /* 1051 * Get a disk whose integrity profile reflects the table's profile. 1052 * If %match_all is true, all devices' profiles must match. 1053 * If %match_all is false, all devices must at least have an 1054 * allocated integrity profile; but uninitialized is ok. 1055 * Returns NULL if integrity support was inconsistent or unavailable. 1056 */ 1057 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 1058 bool match_all) 1059 { 1060 struct list_head *devices = dm_table_get_devices(t); 1061 struct dm_dev_internal *dd = NULL; 1062 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1063 1064 list_for_each_entry(dd, devices, list) { 1065 template_disk = dd->dm_dev.bdev->bd_disk; 1066 if (!blk_get_integrity(template_disk)) 1067 goto no_integrity; 1068 if (!match_all && !blk_integrity_is_initialized(template_disk)) 1069 continue; /* skip uninitialized profiles */ 1070 else if (prev_disk && 1071 blk_integrity_compare(prev_disk, template_disk) < 0) 1072 goto no_integrity; 1073 prev_disk = template_disk; 1074 } 1075 1076 return template_disk; 1077 1078 no_integrity: 1079 if (prev_disk) 1080 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1081 dm_device_name(t->md), 1082 prev_disk->disk_name, 1083 template_disk->disk_name); 1084 return NULL; 1085 } 1086 1087 /* 1088 * Register the mapped device for blk_integrity support if 1089 * the underlying devices have an integrity profile. But all devices 1090 * may not have matching profiles (checking all devices isn't reliable 1091 * during table load because this table may use other DM device(s) which 1092 * must be resumed before they will have an initialized integity profile). 1093 * Stacked DM devices force a 2 stage integrity profile validation: 1094 * 1 - during load, validate all initialized integrity profiles match 1095 * 2 - during resume, validate all integrity profiles match 1096 */ 1097 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 1098 { 1099 struct gendisk *template_disk = NULL; 1100 1101 template_disk = dm_table_get_integrity_disk(t, false); 1102 if (!template_disk) 1103 return 0; 1104 1105 if (!blk_integrity_is_initialized(dm_disk(md))) { 1106 t->integrity_supported = 1; 1107 return blk_integrity_register(dm_disk(md), NULL); 1108 } 1109 1110 /* 1111 * If DM device already has an initalized integrity 1112 * profile the new profile should not conflict. 1113 */ 1114 if (blk_integrity_is_initialized(template_disk) && 1115 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1116 DMWARN("%s: conflict with existing integrity profile: " 1117 "%s profile mismatch", 1118 dm_device_name(t->md), 1119 template_disk->disk_name); 1120 return 1; 1121 } 1122 1123 /* Preserve existing initialized integrity profile */ 1124 t->integrity_supported = 1; 1125 return 0; 1126 } 1127 1128 /* 1129 * Prepares the table for use by building the indices, 1130 * setting the type, and allocating mempools. 1131 */ 1132 int dm_table_complete(struct dm_table *t) 1133 { 1134 int r; 1135 1136 r = dm_table_set_type(t); 1137 if (r) { 1138 DMERR("unable to set table type"); 1139 return r; 1140 } 1141 1142 r = dm_table_build_index(t); 1143 if (r) { 1144 DMERR("unable to build btrees"); 1145 return r; 1146 } 1147 1148 r = dm_table_prealloc_integrity(t, t->md); 1149 if (r) { 1150 DMERR("could not register integrity profile."); 1151 return r; 1152 } 1153 1154 r = dm_table_alloc_md_mempools(t); 1155 if (r) 1156 DMERR("unable to allocate mempools"); 1157 1158 return r; 1159 } 1160 1161 static DEFINE_MUTEX(_event_lock); 1162 void dm_table_event_callback(struct dm_table *t, 1163 void (*fn)(void *), void *context) 1164 { 1165 mutex_lock(&_event_lock); 1166 t->event_fn = fn; 1167 t->event_context = context; 1168 mutex_unlock(&_event_lock); 1169 } 1170 1171 void dm_table_event(struct dm_table *t) 1172 { 1173 /* 1174 * You can no longer call dm_table_event() from interrupt 1175 * context, use a bottom half instead. 1176 */ 1177 BUG_ON(in_interrupt()); 1178 1179 mutex_lock(&_event_lock); 1180 if (t->event_fn) 1181 t->event_fn(t->event_context); 1182 mutex_unlock(&_event_lock); 1183 } 1184 EXPORT_SYMBOL(dm_table_event); 1185 1186 sector_t dm_table_get_size(struct dm_table *t) 1187 { 1188 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1189 } 1190 EXPORT_SYMBOL(dm_table_get_size); 1191 1192 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1193 { 1194 if (index >= t->num_targets) 1195 return NULL; 1196 1197 return t->targets + index; 1198 } 1199 1200 /* 1201 * Search the btree for the correct target. 1202 * 1203 * Caller should check returned pointer with dm_target_is_valid() 1204 * to trap I/O beyond end of device. 1205 */ 1206 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1207 { 1208 unsigned int l, n = 0, k = 0; 1209 sector_t *node; 1210 1211 for (l = 0; l < t->depth; l++) { 1212 n = get_child(n, k); 1213 node = get_node(t, l, n); 1214 1215 for (k = 0; k < KEYS_PER_NODE; k++) 1216 if (node[k] >= sector) 1217 break; 1218 } 1219 1220 return &t->targets[(KEYS_PER_NODE * n) + k]; 1221 } 1222 1223 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1224 sector_t start, sector_t len, void *data) 1225 { 1226 unsigned *num_devices = data; 1227 1228 (*num_devices)++; 1229 1230 return 0; 1231 } 1232 1233 /* 1234 * Check whether a table has no data devices attached using each 1235 * target's iterate_devices method. 1236 * Returns false if the result is unknown because a target doesn't 1237 * support iterate_devices. 1238 */ 1239 bool dm_table_has_no_data_devices(struct dm_table *table) 1240 { 1241 struct dm_target *uninitialized_var(ti); 1242 unsigned i = 0, num_devices = 0; 1243 1244 while (i < dm_table_get_num_targets(table)) { 1245 ti = dm_table_get_target(table, i++); 1246 1247 if (!ti->type->iterate_devices) 1248 return false; 1249 1250 ti->type->iterate_devices(ti, count_device, &num_devices); 1251 if (num_devices) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 /* 1259 * Establish the new table's queue_limits and validate them. 1260 */ 1261 int dm_calculate_queue_limits(struct dm_table *table, 1262 struct queue_limits *limits) 1263 { 1264 struct dm_target *uninitialized_var(ti); 1265 struct queue_limits ti_limits; 1266 unsigned i = 0; 1267 1268 blk_set_stacking_limits(limits); 1269 1270 while (i < dm_table_get_num_targets(table)) { 1271 blk_set_stacking_limits(&ti_limits); 1272 1273 ti = dm_table_get_target(table, i++); 1274 1275 if (!ti->type->iterate_devices) 1276 goto combine_limits; 1277 1278 /* 1279 * Combine queue limits of all the devices this target uses. 1280 */ 1281 ti->type->iterate_devices(ti, dm_set_device_limits, 1282 &ti_limits); 1283 1284 /* Set I/O hints portion of queue limits */ 1285 if (ti->type->io_hints) 1286 ti->type->io_hints(ti, &ti_limits); 1287 1288 /* 1289 * Check each device area is consistent with the target's 1290 * overall queue limits. 1291 */ 1292 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1293 &ti_limits)) 1294 return -EINVAL; 1295 1296 combine_limits: 1297 /* 1298 * Merge this target's queue limits into the overall limits 1299 * for the table. 1300 */ 1301 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1302 DMWARN("%s: adding target device " 1303 "(start sect %llu len %llu) " 1304 "caused an alignment inconsistency", 1305 dm_device_name(table->md), 1306 (unsigned long long) ti->begin, 1307 (unsigned long long) ti->len); 1308 } 1309 1310 return validate_hardware_logical_block_alignment(table, limits); 1311 } 1312 1313 /* 1314 * Set the integrity profile for this device if all devices used have 1315 * matching profiles. We're quite deep in the resume path but still 1316 * don't know if all devices (particularly DM devices this device 1317 * may be stacked on) have matching profiles. Even if the profiles 1318 * don't match we have no way to fail (to resume) at this point. 1319 */ 1320 static void dm_table_set_integrity(struct dm_table *t) 1321 { 1322 struct gendisk *template_disk = NULL; 1323 1324 if (!blk_get_integrity(dm_disk(t->md))) 1325 return; 1326 1327 template_disk = dm_table_get_integrity_disk(t, true); 1328 if (template_disk) 1329 blk_integrity_register(dm_disk(t->md), 1330 blk_get_integrity(template_disk)); 1331 else if (blk_integrity_is_initialized(dm_disk(t->md))) 1332 DMWARN("%s: device no longer has a valid integrity profile", 1333 dm_device_name(t->md)); 1334 else 1335 DMWARN("%s: unable to establish an integrity profile", 1336 dm_device_name(t->md)); 1337 } 1338 1339 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1340 sector_t start, sector_t len, void *data) 1341 { 1342 unsigned flush = (*(unsigned *)data); 1343 struct request_queue *q = bdev_get_queue(dev->bdev); 1344 1345 return q && (q->flush_flags & flush); 1346 } 1347 1348 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1349 { 1350 struct dm_target *ti; 1351 unsigned i = 0; 1352 1353 /* 1354 * Require at least one underlying device to support flushes. 1355 * t->devices includes internal dm devices such as mirror logs 1356 * so we need to use iterate_devices here, which targets 1357 * supporting flushes must provide. 1358 */ 1359 while (i < dm_table_get_num_targets(t)) { 1360 ti = dm_table_get_target(t, i++); 1361 1362 if (!ti->num_flush_bios) 1363 continue; 1364 1365 if (ti->flush_supported) 1366 return 1; 1367 1368 if (ti->type->iterate_devices && 1369 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1370 return 1; 1371 } 1372 1373 return 0; 1374 } 1375 1376 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1377 { 1378 struct dm_target *ti; 1379 unsigned i = 0; 1380 1381 /* Ensure that all targets supports discard_zeroes_data. */ 1382 while (i < dm_table_get_num_targets(t)) { 1383 ti = dm_table_get_target(t, i++); 1384 1385 if (ti->discard_zeroes_data_unsupported) 1386 return 0; 1387 } 1388 1389 return 1; 1390 } 1391 1392 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1393 sector_t start, sector_t len, void *data) 1394 { 1395 struct request_queue *q = bdev_get_queue(dev->bdev); 1396 1397 return q && blk_queue_nonrot(q); 1398 } 1399 1400 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1401 sector_t start, sector_t len, void *data) 1402 { 1403 struct request_queue *q = bdev_get_queue(dev->bdev); 1404 1405 return q && !blk_queue_add_random(q); 1406 } 1407 1408 static bool dm_table_all_devices_attribute(struct dm_table *t, 1409 iterate_devices_callout_fn func) 1410 { 1411 struct dm_target *ti; 1412 unsigned i = 0; 1413 1414 while (i < dm_table_get_num_targets(t)) { 1415 ti = dm_table_get_target(t, i++); 1416 1417 if (!ti->type->iterate_devices || 1418 !ti->type->iterate_devices(ti, func, NULL)) 1419 return 0; 1420 } 1421 1422 return 1; 1423 } 1424 1425 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1426 sector_t start, sector_t len, void *data) 1427 { 1428 struct request_queue *q = bdev_get_queue(dev->bdev); 1429 1430 return q && !q->limits.max_write_same_sectors; 1431 } 1432 1433 static bool dm_table_supports_write_same(struct dm_table *t) 1434 { 1435 struct dm_target *ti; 1436 unsigned i = 0; 1437 1438 while (i < dm_table_get_num_targets(t)) { 1439 ti = dm_table_get_target(t, i++); 1440 1441 if (!ti->num_write_same_bios) 1442 return false; 1443 1444 if (!ti->type->iterate_devices || 1445 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1446 return false; 1447 } 1448 1449 return true; 1450 } 1451 1452 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1453 struct queue_limits *limits) 1454 { 1455 unsigned flush = 0; 1456 1457 /* 1458 * Copy table's limits to the DM device's request_queue 1459 */ 1460 q->limits = *limits; 1461 1462 if (!dm_table_supports_discards(t)) 1463 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1464 else 1465 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1466 1467 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1468 flush |= REQ_FLUSH; 1469 if (dm_table_supports_flush(t, REQ_FUA)) 1470 flush |= REQ_FUA; 1471 } 1472 blk_queue_flush(q, flush); 1473 1474 if (!dm_table_discard_zeroes_data(t)) 1475 q->limits.discard_zeroes_data = 0; 1476 1477 /* Ensure that all underlying devices are non-rotational. */ 1478 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1479 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1480 else 1481 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1482 1483 if (!dm_table_supports_write_same(t)) 1484 q->limits.max_write_same_sectors = 0; 1485 1486 dm_table_set_integrity(t); 1487 1488 /* 1489 * Determine whether or not this queue's I/O timings contribute 1490 * to the entropy pool, Only request-based targets use this. 1491 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1492 * have it set. 1493 */ 1494 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1495 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1496 1497 /* 1498 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1499 * visible to other CPUs because, once the flag is set, incoming bios 1500 * are processed by request-based dm, which refers to the queue 1501 * settings. 1502 * Until the flag set, bios are passed to bio-based dm and queued to 1503 * md->deferred where queue settings are not needed yet. 1504 * Those bios are passed to request-based dm at the resume time. 1505 */ 1506 smp_mb(); 1507 if (dm_table_request_based(t)) 1508 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1509 } 1510 1511 unsigned int dm_table_get_num_targets(struct dm_table *t) 1512 { 1513 return t->num_targets; 1514 } 1515 1516 struct list_head *dm_table_get_devices(struct dm_table *t) 1517 { 1518 return &t->devices; 1519 } 1520 1521 fmode_t dm_table_get_mode(struct dm_table *t) 1522 { 1523 return t->mode; 1524 } 1525 EXPORT_SYMBOL(dm_table_get_mode); 1526 1527 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1528 { 1529 int i = t->num_targets; 1530 struct dm_target *ti = t->targets; 1531 1532 while (i--) { 1533 if (postsuspend) { 1534 if (ti->type->postsuspend) 1535 ti->type->postsuspend(ti); 1536 } else if (ti->type->presuspend) 1537 ti->type->presuspend(ti); 1538 1539 ti++; 1540 } 1541 } 1542 1543 void dm_table_presuspend_targets(struct dm_table *t) 1544 { 1545 if (!t) 1546 return; 1547 1548 suspend_targets(t, 0); 1549 } 1550 1551 void dm_table_postsuspend_targets(struct dm_table *t) 1552 { 1553 if (!t) 1554 return; 1555 1556 suspend_targets(t, 1); 1557 } 1558 1559 int dm_table_resume_targets(struct dm_table *t) 1560 { 1561 int i, r = 0; 1562 1563 for (i = 0; i < t->num_targets; i++) { 1564 struct dm_target *ti = t->targets + i; 1565 1566 if (!ti->type->preresume) 1567 continue; 1568 1569 r = ti->type->preresume(ti); 1570 if (r) { 1571 DMERR("%s: %s: preresume failed, error = %d", 1572 dm_device_name(t->md), ti->type->name, r); 1573 return r; 1574 } 1575 } 1576 1577 for (i = 0; i < t->num_targets; i++) { 1578 struct dm_target *ti = t->targets + i; 1579 1580 if (ti->type->resume) 1581 ti->type->resume(ti); 1582 } 1583 1584 return 0; 1585 } 1586 1587 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1588 { 1589 list_add(&cb->list, &t->target_callbacks); 1590 } 1591 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1592 1593 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1594 { 1595 struct dm_dev_internal *dd; 1596 struct list_head *devices = dm_table_get_devices(t); 1597 struct dm_target_callbacks *cb; 1598 int r = 0; 1599 1600 list_for_each_entry(dd, devices, list) { 1601 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1602 char b[BDEVNAME_SIZE]; 1603 1604 if (likely(q)) 1605 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1606 else 1607 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1608 dm_device_name(t->md), 1609 bdevname(dd->dm_dev.bdev, b)); 1610 } 1611 1612 list_for_each_entry(cb, &t->target_callbacks, list) 1613 if (cb->congested_fn) 1614 r |= cb->congested_fn(cb, bdi_bits); 1615 1616 return r; 1617 } 1618 1619 int dm_table_any_busy_target(struct dm_table *t) 1620 { 1621 unsigned i; 1622 struct dm_target *ti; 1623 1624 for (i = 0; i < t->num_targets; i++) { 1625 ti = t->targets + i; 1626 if (ti->type->busy && ti->type->busy(ti)) 1627 return 1; 1628 } 1629 1630 return 0; 1631 } 1632 1633 struct mapped_device *dm_table_get_md(struct dm_table *t) 1634 { 1635 return t->md; 1636 } 1637 EXPORT_SYMBOL(dm_table_get_md); 1638 1639 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1640 sector_t start, sector_t len, void *data) 1641 { 1642 struct request_queue *q = bdev_get_queue(dev->bdev); 1643 1644 return q && blk_queue_discard(q); 1645 } 1646 1647 bool dm_table_supports_discards(struct dm_table *t) 1648 { 1649 struct dm_target *ti; 1650 unsigned i = 0; 1651 1652 /* 1653 * Unless any target used by the table set discards_supported, 1654 * require at least one underlying device to support discards. 1655 * t->devices includes internal dm devices such as mirror logs 1656 * so we need to use iterate_devices here, which targets 1657 * supporting discard selectively must provide. 1658 */ 1659 while (i < dm_table_get_num_targets(t)) { 1660 ti = dm_table_get_target(t, i++); 1661 1662 if (!ti->num_discard_bios) 1663 continue; 1664 1665 if (ti->discards_supported) 1666 return 1; 1667 1668 if (ti->type->iterate_devices && 1669 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1670 return 1; 1671 } 1672 1673 return 0; 1674 } 1675