1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <asm/atomic.h> 19 20 #define DM_MSG_PREFIX "table" 21 22 #define MAX_DEPTH 16 23 #define NODE_SIZE L1_CACHE_BYTES 24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 26 27 struct dm_table { 28 struct mapped_device *md; 29 atomic_t holders; 30 31 /* btree table */ 32 unsigned int depth; 33 unsigned int counts[MAX_DEPTH]; /* in nodes */ 34 sector_t *index[MAX_DEPTH]; 35 36 unsigned int num_targets; 37 unsigned int num_allocated; 38 sector_t *highs; 39 struct dm_target *targets; 40 41 /* 42 * Indicates the rw permissions for the new logical 43 * device. This should be a combination of FMODE_READ 44 * and FMODE_WRITE. 45 */ 46 fmode_t mode; 47 48 /* a list of devices used by this table */ 49 struct list_head devices; 50 51 /* 52 * These are optimistic limits taken from all the 53 * targets, some targets will need smaller limits. 54 */ 55 struct io_restrictions limits; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 }; 61 62 /* 63 * Similar to ceiling(log_size(n)) 64 */ 65 static unsigned int int_log(unsigned int n, unsigned int base) 66 { 67 int result = 0; 68 69 while (n > 1) { 70 n = dm_div_up(n, base); 71 result++; 72 } 73 74 return result; 75 } 76 77 /* 78 * Returns the minimum that is _not_ zero, unless both are zero. 79 */ 80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 81 82 /* 83 * Combine two io_restrictions, always taking the lower value. 84 */ 85 static void combine_restrictions_low(struct io_restrictions *lhs, 86 struct io_restrictions *rhs) 87 { 88 lhs->max_sectors = 89 min_not_zero(lhs->max_sectors, rhs->max_sectors); 90 91 lhs->max_phys_segments = 92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 93 94 lhs->max_hw_segments = 95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 96 97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 98 99 lhs->max_segment_size = 100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 101 102 lhs->max_hw_sectors = 103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); 104 105 lhs->seg_boundary_mask = 106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 107 108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); 109 110 lhs->no_cluster |= rhs->no_cluster; 111 } 112 113 /* 114 * Calculate the index of the child node of the n'th node k'th key. 115 */ 116 static inline unsigned int get_child(unsigned int n, unsigned int k) 117 { 118 return (n * CHILDREN_PER_NODE) + k; 119 } 120 121 /* 122 * Return the n'th node of level l from table t. 123 */ 124 static inline sector_t *get_node(struct dm_table *t, 125 unsigned int l, unsigned int n) 126 { 127 return t->index[l] + (n * KEYS_PER_NODE); 128 } 129 130 /* 131 * Return the highest key that you could lookup from the n'th 132 * node on level l of the btree. 133 */ 134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 135 { 136 for (; l < t->depth - 1; l++) 137 n = get_child(n, CHILDREN_PER_NODE - 1); 138 139 if (n >= t->counts[l]) 140 return (sector_t) - 1; 141 142 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 143 } 144 145 /* 146 * Fills in a level of the btree based on the highs of the level 147 * below it. 148 */ 149 static int setup_btree_index(unsigned int l, struct dm_table *t) 150 { 151 unsigned int n, k; 152 sector_t *node; 153 154 for (n = 0U; n < t->counts[l]; n++) { 155 node = get_node(t, l, n); 156 157 for (k = 0U; k < KEYS_PER_NODE; k++) 158 node[k] = high(t, l + 1, get_child(n, k)); 159 } 160 161 return 0; 162 } 163 164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 165 { 166 unsigned long size; 167 void *addr; 168 169 /* 170 * Check that we're not going to overflow. 171 */ 172 if (nmemb > (ULONG_MAX / elem_size)) 173 return NULL; 174 175 size = nmemb * elem_size; 176 addr = vmalloc(size); 177 if (addr) 178 memset(addr, 0, size); 179 180 return addr; 181 } 182 183 /* 184 * highs, and targets are managed as dynamic arrays during a 185 * table load. 186 */ 187 static int alloc_targets(struct dm_table *t, unsigned int num) 188 { 189 sector_t *n_highs; 190 struct dm_target *n_targets; 191 int n = t->num_targets; 192 193 /* 194 * Allocate both the target array and offset array at once. 195 * Append an empty entry to catch sectors beyond the end of 196 * the device. 197 */ 198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 199 sizeof(sector_t)); 200 if (!n_highs) 201 return -ENOMEM; 202 203 n_targets = (struct dm_target *) (n_highs + num); 204 205 if (n) { 206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 208 } 209 210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 211 vfree(t->highs); 212 213 t->num_allocated = num; 214 t->highs = n_highs; 215 t->targets = n_targets; 216 217 return 0; 218 } 219 220 int dm_table_create(struct dm_table **result, fmode_t mode, 221 unsigned num_targets, struct mapped_device *md) 222 { 223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 224 225 if (!t) 226 return -ENOMEM; 227 228 INIT_LIST_HEAD(&t->devices); 229 atomic_set(&t->holders, 1); 230 231 if (!num_targets) 232 num_targets = KEYS_PER_NODE; 233 234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 235 236 if (alloc_targets(t, num_targets)) { 237 kfree(t); 238 t = NULL; 239 return -ENOMEM; 240 } 241 242 t->mode = mode; 243 t->md = md; 244 *result = t; 245 return 0; 246 } 247 248 static void free_devices(struct list_head *devices) 249 { 250 struct list_head *tmp, *next; 251 252 list_for_each_safe(tmp, next, devices) { 253 struct dm_dev_internal *dd = 254 list_entry(tmp, struct dm_dev_internal, list); 255 kfree(dd); 256 } 257 } 258 259 static void table_destroy(struct dm_table *t) 260 { 261 unsigned int i; 262 263 /* free the indexes (see dm_table_complete) */ 264 if (t->depth >= 2) 265 vfree(t->index[t->depth - 2]); 266 267 /* free the targets */ 268 for (i = 0; i < t->num_targets; i++) { 269 struct dm_target *tgt = t->targets + i; 270 271 if (tgt->type->dtr) 272 tgt->type->dtr(tgt); 273 274 dm_put_target_type(tgt->type); 275 } 276 277 vfree(t->highs); 278 279 /* free the device list */ 280 if (t->devices.next != &t->devices) { 281 DMWARN("devices still present during destroy: " 282 "dm_table_remove_device calls missing"); 283 284 free_devices(&t->devices); 285 } 286 287 kfree(t); 288 } 289 290 void dm_table_get(struct dm_table *t) 291 { 292 atomic_inc(&t->holders); 293 } 294 295 void dm_table_put(struct dm_table *t) 296 { 297 if (!t) 298 return; 299 300 if (atomic_dec_and_test(&t->holders)) 301 table_destroy(t); 302 } 303 304 /* 305 * Checks to see if we need to extend highs or targets. 306 */ 307 static inline int check_space(struct dm_table *t) 308 { 309 if (t->num_targets >= t->num_allocated) 310 return alloc_targets(t, t->num_allocated * 2); 311 312 return 0; 313 } 314 315 /* 316 * See if we've already got a device in the list. 317 */ 318 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 319 { 320 struct dm_dev_internal *dd; 321 322 list_for_each_entry (dd, l, list) 323 if (dd->dm_dev.bdev->bd_dev == dev) 324 return dd; 325 326 return NULL; 327 } 328 329 /* 330 * Open a device so we can use it as a map destination. 331 */ 332 static int open_dev(struct dm_dev_internal *d, dev_t dev, 333 struct mapped_device *md) 334 { 335 static char *_claim_ptr = "I belong to device-mapper"; 336 struct block_device *bdev; 337 338 int r; 339 340 BUG_ON(d->dm_dev.bdev); 341 342 bdev = open_by_devnum(dev, d->dm_dev.mode); 343 if (IS_ERR(bdev)) 344 return PTR_ERR(bdev); 345 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 346 if (r) 347 blkdev_put(bdev, d->dm_dev.mode); 348 else 349 d->dm_dev.bdev = bdev; 350 return r; 351 } 352 353 /* 354 * Close a device that we've been using. 355 */ 356 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 357 { 358 if (!d->dm_dev.bdev) 359 return; 360 361 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 362 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 363 d->dm_dev.bdev = NULL; 364 } 365 366 /* 367 * If possible, this checks an area of a destination device is valid. 368 */ 369 static int check_device_area(struct dm_dev_internal *dd, sector_t start, 370 sector_t len) 371 { 372 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT; 373 374 if (!dev_size) 375 return 1; 376 377 return ((start < dev_size) && (len <= (dev_size - start))); 378 } 379 380 /* 381 * This upgrades the mode on an already open dm_dev. Being 382 * careful to leave things as they were if we fail to reopen the 383 * device. 384 */ 385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 386 struct mapped_device *md) 387 { 388 int r; 389 struct dm_dev_internal dd_copy; 390 dev_t dev = dd->dm_dev.bdev->bd_dev; 391 392 dd_copy = *dd; 393 394 dd->dm_dev.mode |= new_mode; 395 dd->dm_dev.bdev = NULL; 396 r = open_dev(dd, dev, md); 397 if (!r) 398 close_dev(&dd_copy, md); 399 else 400 *dd = dd_copy; 401 402 return r; 403 } 404 405 /* 406 * Add a device to the list, or just increment the usage count if 407 * it's already present. 408 */ 409 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 410 const char *path, sector_t start, sector_t len, 411 fmode_t mode, struct dm_dev **result) 412 { 413 int r; 414 dev_t uninitialized_var(dev); 415 struct dm_dev_internal *dd; 416 unsigned int major, minor; 417 418 BUG_ON(!t); 419 420 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 421 /* Extract the major/minor numbers */ 422 dev = MKDEV(major, minor); 423 if (MAJOR(dev) != major || MINOR(dev) != minor) 424 return -EOVERFLOW; 425 } else { 426 /* convert the path to a device */ 427 struct block_device *bdev = lookup_bdev(path); 428 429 if (IS_ERR(bdev)) 430 return PTR_ERR(bdev); 431 dev = bdev->bd_dev; 432 bdput(bdev); 433 } 434 435 dd = find_device(&t->devices, dev); 436 if (!dd) { 437 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 438 if (!dd) 439 return -ENOMEM; 440 441 dd->dm_dev.mode = mode; 442 dd->dm_dev.bdev = NULL; 443 444 if ((r = open_dev(dd, dev, t->md))) { 445 kfree(dd); 446 return r; 447 } 448 449 format_dev_t(dd->dm_dev.name, dev); 450 451 atomic_set(&dd->count, 0); 452 list_add(&dd->list, &t->devices); 453 454 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 455 r = upgrade_mode(dd, mode, t->md); 456 if (r) 457 return r; 458 } 459 atomic_inc(&dd->count); 460 461 if (!check_device_area(dd, start, len)) { 462 DMWARN("device %s too small for target", path); 463 dm_put_device(ti, &dd->dm_dev); 464 return -EINVAL; 465 } 466 467 *result = &dd->dm_dev; 468 469 return 0; 470 } 471 472 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) 473 { 474 struct request_queue *q = bdev_get_queue(bdev); 475 struct io_restrictions *rs = &ti->limits; 476 char b[BDEVNAME_SIZE]; 477 478 if (unlikely(!q)) { 479 DMWARN("%s: Cannot set limits for nonexistent device %s", 480 dm_device_name(ti->table->md), bdevname(bdev, b)); 481 return; 482 } 483 484 /* 485 * Combine the device limits low. 486 * 487 * FIXME: if we move an io_restriction struct 488 * into q this would just be a call to 489 * combine_restrictions_low() 490 */ 491 rs->max_sectors = 492 min_not_zero(rs->max_sectors, q->max_sectors); 493 494 /* 495 * Check if merge fn is supported. 496 * If not we'll force DM to use PAGE_SIZE or 497 * smaller I/O, just to be safe. 498 */ 499 500 if (q->merge_bvec_fn && !ti->type->merge) 501 rs->max_sectors = 502 min_not_zero(rs->max_sectors, 503 (unsigned int) (PAGE_SIZE >> 9)); 504 505 rs->max_phys_segments = 506 min_not_zero(rs->max_phys_segments, 507 q->max_phys_segments); 508 509 rs->max_hw_segments = 510 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 511 512 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 513 514 rs->max_segment_size = 515 min_not_zero(rs->max_segment_size, q->max_segment_size); 516 517 rs->max_hw_sectors = 518 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); 519 520 rs->seg_boundary_mask = 521 min_not_zero(rs->seg_boundary_mask, 522 q->seg_boundary_mask); 523 524 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); 525 526 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 527 } 528 EXPORT_SYMBOL_GPL(dm_set_device_limits); 529 530 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 531 sector_t len, fmode_t mode, struct dm_dev **result) 532 { 533 int r = __table_get_device(ti->table, ti, path, 534 start, len, mode, result); 535 536 if (!r) 537 dm_set_device_limits(ti, (*result)->bdev); 538 539 return r; 540 } 541 542 /* 543 * Decrement a devices use count and remove it if necessary. 544 */ 545 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 546 { 547 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 548 dm_dev); 549 550 if (atomic_dec_and_test(&dd->count)) { 551 close_dev(dd, ti->table->md); 552 list_del(&dd->list); 553 kfree(dd); 554 } 555 } 556 557 /* 558 * Checks to see if the target joins onto the end of the table. 559 */ 560 static int adjoin(struct dm_table *table, struct dm_target *ti) 561 { 562 struct dm_target *prev; 563 564 if (!table->num_targets) 565 return !ti->begin; 566 567 prev = &table->targets[table->num_targets - 1]; 568 return (ti->begin == (prev->begin + prev->len)); 569 } 570 571 /* 572 * Used to dynamically allocate the arg array. 573 */ 574 static char **realloc_argv(unsigned *array_size, char **old_argv) 575 { 576 char **argv; 577 unsigned new_size; 578 579 new_size = *array_size ? *array_size * 2 : 64; 580 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 581 if (argv) { 582 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 583 *array_size = new_size; 584 } 585 586 kfree(old_argv); 587 return argv; 588 } 589 590 /* 591 * Destructively splits up the argument list to pass to ctr. 592 */ 593 int dm_split_args(int *argc, char ***argvp, char *input) 594 { 595 char *start, *end = input, *out, **argv = NULL; 596 unsigned array_size = 0; 597 598 *argc = 0; 599 600 if (!input) { 601 *argvp = NULL; 602 return 0; 603 } 604 605 argv = realloc_argv(&array_size, argv); 606 if (!argv) 607 return -ENOMEM; 608 609 while (1) { 610 start = end; 611 612 /* Skip whitespace */ 613 while (*start && isspace(*start)) 614 start++; 615 616 if (!*start) 617 break; /* success, we hit the end */ 618 619 /* 'out' is used to remove any back-quotes */ 620 end = out = start; 621 while (*end) { 622 /* Everything apart from '\0' can be quoted */ 623 if (*end == '\\' && *(end + 1)) { 624 *out++ = *(end + 1); 625 end += 2; 626 continue; 627 } 628 629 if (isspace(*end)) 630 break; /* end of token */ 631 632 *out++ = *end++; 633 } 634 635 /* have we already filled the array ? */ 636 if ((*argc + 1) > array_size) { 637 argv = realloc_argv(&array_size, argv); 638 if (!argv) 639 return -ENOMEM; 640 } 641 642 /* we know this is whitespace */ 643 if (*end) 644 end++; 645 646 /* terminate the string and put it in the array */ 647 *out = '\0'; 648 argv[*argc] = start; 649 (*argc)++; 650 } 651 652 *argvp = argv; 653 return 0; 654 } 655 656 static void check_for_valid_limits(struct io_restrictions *rs) 657 { 658 if (!rs->max_sectors) 659 rs->max_sectors = SAFE_MAX_SECTORS; 660 if (!rs->max_hw_sectors) 661 rs->max_hw_sectors = SAFE_MAX_SECTORS; 662 if (!rs->max_phys_segments) 663 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 664 if (!rs->max_hw_segments) 665 rs->max_hw_segments = MAX_HW_SEGMENTS; 666 if (!rs->hardsect_size) 667 rs->hardsect_size = 1 << SECTOR_SHIFT; 668 if (!rs->max_segment_size) 669 rs->max_segment_size = MAX_SEGMENT_SIZE; 670 if (!rs->seg_boundary_mask) 671 rs->seg_boundary_mask = -1; 672 if (!rs->bounce_pfn) 673 rs->bounce_pfn = -1; 674 } 675 676 int dm_table_add_target(struct dm_table *t, const char *type, 677 sector_t start, sector_t len, char *params) 678 { 679 int r = -EINVAL, argc; 680 char **argv; 681 struct dm_target *tgt; 682 683 if ((r = check_space(t))) 684 return r; 685 686 tgt = t->targets + t->num_targets; 687 memset(tgt, 0, sizeof(*tgt)); 688 689 if (!len) { 690 DMERR("%s: zero-length target", dm_device_name(t->md)); 691 return -EINVAL; 692 } 693 694 tgt->type = dm_get_target_type(type); 695 if (!tgt->type) { 696 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 697 type); 698 return -EINVAL; 699 } 700 701 tgt->table = t; 702 tgt->begin = start; 703 tgt->len = len; 704 tgt->error = "Unknown error"; 705 706 /* 707 * Does this target adjoin the previous one ? 708 */ 709 if (!adjoin(t, tgt)) { 710 tgt->error = "Gap in table"; 711 r = -EINVAL; 712 goto bad; 713 } 714 715 r = dm_split_args(&argc, &argv, params); 716 if (r) { 717 tgt->error = "couldn't split parameters (insufficient memory)"; 718 goto bad; 719 } 720 721 r = tgt->type->ctr(tgt, argc, argv); 722 kfree(argv); 723 if (r) 724 goto bad; 725 726 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 727 728 /* FIXME: the plan is to combine high here and then have 729 * the merge fn apply the target level restrictions. */ 730 combine_restrictions_low(&t->limits, &tgt->limits); 731 return 0; 732 733 bad: 734 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 735 dm_put_target_type(tgt->type); 736 return r; 737 } 738 739 static int setup_indexes(struct dm_table *t) 740 { 741 int i; 742 unsigned int total = 0; 743 sector_t *indexes; 744 745 /* allocate the space for *all* the indexes */ 746 for (i = t->depth - 2; i >= 0; i--) { 747 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 748 total += t->counts[i]; 749 } 750 751 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 752 if (!indexes) 753 return -ENOMEM; 754 755 /* set up internal nodes, bottom-up */ 756 for (i = t->depth - 2; i >= 0; i--) { 757 t->index[i] = indexes; 758 indexes += (KEYS_PER_NODE * t->counts[i]); 759 setup_btree_index(i, t); 760 } 761 762 return 0; 763 } 764 765 /* 766 * Builds the btree to index the map. 767 */ 768 int dm_table_complete(struct dm_table *t) 769 { 770 int r = 0; 771 unsigned int leaf_nodes; 772 773 check_for_valid_limits(&t->limits); 774 775 /* how many indexes will the btree have ? */ 776 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 777 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 778 779 /* leaf layer has already been set up */ 780 t->counts[t->depth - 1] = leaf_nodes; 781 t->index[t->depth - 1] = t->highs; 782 783 if (t->depth >= 2) 784 r = setup_indexes(t); 785 786 return r; 787 } 788 789 static DEFINE_MUTEX(_event_lock); 790 void dm_table_event_callback(struct dm_table *t, 791 void (*fn)(void *), void *context) 792 { 793 mutex_lock(&_event_lock); 794 t->event_fn = fn; 795 t->event_context = context; 796 mutex_unlock(&_event_lock); 797 } 798 799 void dm_table_event(struct dm_table *t) 800 { 801 /* 802 * You can no longer call dm_table_event() from interrupt 803 * context, use a bottom half instead. 804 */ 805 BUG_ON(in_interrupt()); 806 807 mutex_lock(&_event_lock); 808 if (t->event_fn) 809 t->event_fn(t->event_context); 810 mutex_unlock(&_event_lock); 811 } 812 813 sector_t dm_table_get_size(struct dm_table *t) 814 { 815 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 816 } 817 818 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 819 { 820 if (index >= t->num_targets) 821 return NULL; 822 823 return t->targets + index; 824 } 825 826 /* 827 * Search the btree for the correct target. 828 * 829 * Caller should check returned pointer with dm_target_is_valid() 830 * to trap I/O beyond end of device. 831 */ 832 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 833 { 834 unsigned int l, n = 0, k = 0; 835 sector_t *node; 836 837 for (l = 0; l < t->depth; l++) { 838 n = get_child(n, k); 839 node = get_node(t, l, n); 840 841 for (k = 0; k < KEYS_PER_NODE; k++) 842 if (node[k] >= sector) 843 break; 844 } 845 846 return &t->targets[(KEYS_PER_NODE * n) + k]; 847 } 848 849 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 850 { 851 /* 852 * Make sure we obey the optimistic sub devices 853 * restrictions. 854 */ 855 blk_queue_max_sectors(q, t->limits.max_sectors); 856 q->max_phys_segments = t->limits.max_phys_segments; 857 q->max_hw_segments = t->limits.max_hw_segments; 858 q->hardsect_size = t->limits.hardsect_size; 859 q->max_segment_size = t->limits.max_segment_size; 860 q->max_hw_sectors = t->limits.max_hw_sectors; 861 q->seg_boundary_mask = t->limits.seg_boundary_mask; 862 q->bounce_pfn = t->limits.bounce_pfn; 863 864 if (t->limits.no_cluster) 865 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 866 else 867 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 868 869 } 870 871 unsigned int dm_table_get_num_targets(struct dm_table *t) 872 { 873 return t->num_targets; 874 } 875 876 struct list_head *dm_table_get_devices(struct dm_table *t) 877 { 878 return &t->devices; 879 } 880 881 fmode_t dm_table_get_mode(struct dm_table *t) 882 { 883 return t->mode; 884 } 885 886 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 887 { 888 int i = t->num_targets; 889 struct dm_target *ti = t->targets; 890 891 while (i--) { 892 if (postsuspend) { 893 if (ti->type->postsuspend) 894 ti->type->postsuspend(ti); 895 } else if (ti->type->presuspend) 896 ti->type->presuspend(ti); 897 898 ti++; 899 } 900 } 901 902 void dm_table_presuspend_targets(struct dm_table *t) 903 { 904 if (!t) 905 return; 906 907 suspend_targets(t, 0); 908 } 909 910 void dm_table_postsuspend_targets(struct dm_table *t) 911 { 912 if (!t) 913 return; 914 915 suspend_targets(t, 1); 916 } 917 918 int dm_table_resume_targets(struct dm_table *t) 919 { 920 int i, r = 0; 921 922 for (i = 0; i < t->num_targets; i++) { 923 struct dm_target *ti = t->targets + i; 924 925 if (!ti->type->preresume) 926 continue; 927 928 r = ti->type->preresume(ti); 929 if (r) 930 return r; 931 } 932 933 for (i = 0; i < t->num_targets; i++) { 934 struct dm_target *ti = t->targets + i; 935 936 if (ti->type->resume) 937 ti->type->resume(ti); 938 } 939 940 return 0; 941 } 942 943 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 944 { 945 struct dm_dev_internal *dd; 946 struct list_head *devices = dm_table_get_devices(t); 947 int r = 0; 948 949 list_for_each_entry(dd, devices, list) { 950 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 951 char b[BDEVNAME_SIZE]; 952 953 if (likely(q)) 954 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 955 else 956 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 957 dm_device_name(t->md), 958 bdevname(dd->dm_dev.bdev, b)); 959 } 960 961 return r; 962 } 963 964 void dm_table_unplug_all(struct dm_table *t) 965 { 966 struct dm_dev_internal *dd; 967 struct list_head *devices = dm_table_get_devices(t); 968 969 list_for_each_entry(dd, devices, list) { 970 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 971 char b[BDEVNAME_SIZE]; 972 973 if (likely(q)) 974 blk_unplug(q); 975 else 976 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 977 dm_device_name(t->md), 978 bdevname(dd->dm_dev.bdev, b)); 979 } 980 } 981 982 struct mapped_device *dm_table_get_md(struct dm_table *t) 983 { 984 dm_get(t->md); 985 986 return t->md; 987 } 988 989 EXPORT_SYMBOL(dm_vcalloc); 990 EXPORT_SYMBOL(dm_get_device); 991 EXPORT_SYMBOL(dm_put_device); 992 EXPORT_SYMBOL(dm_table_event); 993 EXPORT_SYMBOL(dm_table_get_size); 994 EXPORT_SYMBOL(dm_table_get_mode); 995 EXPORT_SYMBOL(dm_table_get_md); 996 EXPORT_SYMBOL(dm_table_put); 997 EXPORT_SYMBOL(dm_table_get); 998 EXPORT_SYMBOL(dm_table_unplug_all); 999