xref: /openbmc/linux/drivers/md/dm-table.c (revision 861e10be)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	struct target_type *immutable_target_type;
58 	unsigned integrity_supported:1;
59 	unsigned singleton:1;
60 
61 	/*
62 	 * Indicates the rw permissions for the new logical
63 	 * device.  This should be a combination of FMODE_READ
64 	 * and FMODE_WRITE.
65 	 */
66 	fmode_t mode;
67 
68 	/* a list of devices used by this table */
69 	struct list_head devices;
70 
71 	/* events get handed up using this callback */
72 	void (*event_fn)(void *);
73 	void *event_context;
74 
75 	struct dm_md_mempools *mempools;
76 
77 	struct list_head target_callbacks;
78 };
79 
80 /*
81  * Similar to ceiling(log_size(n))
82  */
83 static unsigned int int_log(unsigned int n, unsigned int base)
84 {
85 	int result = 0;
86 
87 	while (n > 1) {
88 		n = dm_div_up(n, base);
89 		result++;
90 	}
91 
92 	return result;
93 }
94 
95 /*
96  * Calculate the index of the child node of the n'th node k'th key.
97  */
98 static inline unsigned int get_child(unsigned int n, unsigned int k)
99 {
100 	return (n * CHILDREN_PER_NODE) + k;
101 }
102 
103 /*
104  * Return the n'th node of level l from table t.
105  */
106 static inline sector_t *get_node(struct dm_table *t,
107 				 unsigned int l, unsigned int n)
108 {
109 	return t->index[l] + (n * KEYS_PER_NODE);
110 }
111 
112 /*
113  * Return the highest key that you could lookup from the n'th
114  * node on level l of the btree.
115  */
116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117 {
118 	for (; l < t->depth - 1; l++)
119 		n = get_child(n, CHILDREN_PER_NODE - 1);
120 
121 	if (n >= t->counts[l])
122 		return (sector_t) - 1;
123 
124 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
125 }
126 
127 /*
128  * Fills in a level of the btree based on the highs of the level
129  * below it.
130  */
131 static int setup_btree_index(unsigned int l, struct dm_table *t)
132 {
133 	unsigned int n, k;
134 	sector_t *node;
135 
136 	for (n = 0U; n < t->counts[l]; n++) {
137 		node = get_node(t, l, n);
138 
139 		for (k = 0U; k < KEYS_PER_NODE; k++)
140 			node[k] = high(t, l + 1, get_child(n, k));
141 	}
142 
143 	return 0;
144 }
145 
146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147 {
148 	unsigned long size;
149 	void *addr;
150 
151 	/*
152 	 * Check that we're not going to overflow.
153 	 */
154 	if (nmemb > (ULONG_MAX / elem_size))
155 		return NULL;
156 
157 	size = nmemb * elem_size;
158 	addr = vzalloc(size);
159 
160 	return addr;
161 }
162 EXPORT_SYMBOL(dm_vcalloc);
163 
164 /*
165  * highs, and targets are managed as dynamic arrays during a
166  * table load.
167  */
168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 	sector_t *n_highs;
171 	struct dm_target *n_targets;
172 	int n = t->num_targets;
173 
174 	/*
175 	 * Allocate both the target array and offset array at once.
176 	 * Append an empty entry to catch sectors beyond the end of
177 	 * the device.
178 	 */
179 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 					  sizeof(sector_t));
181 	if (!n_highs)
182 		return -ENOMEM;
183 
184 	n_targets = (struct dm_target *) (n_highs + num);
185 
186 	if (n) {
187 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 	}
190 
191 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 	vfree(t->highs);
193 
194 	t->num_allocated = num;
195 	t->highs = n_highs;
196 	t->targets = n_targets;
197 
198 	return 0;
199 }
200 
201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 		    unsigned num_targets, struct mapped_device *md)
203 {
204 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205 
206 	if (!t)
207 		return -ENOMEM;
208 
209 	INIT_LIST_HEAD(&t->devices);
210 	INIT_LIST_HEAD(&t->target_callbacks);
211 	atomic_set(&t->holders, 0);
212 
213 	if (!num_targets)
214 		num_targets = KEYS_PER_NODE;
215 
216 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217 
218 	if (alloc_targets(t, num_targets)) {
219 		kfree(t);
220 		t = NULL;
221 		return -ENOMEM;
222 	}
223 
224 	t->mode = mode;
225 	t->md = md;
226 	*result = t;
227 	return 0;
228 }
229 
230 static void free_devices(struct list_head *devices)
231 {
232 	struct list_head *tmp, *next;
233 
234 	list_for_each_safe(tmp, next, devices) {
235 		struct dm_dev_internal *dd =
236 		    list_entry(tmp, struct dm_dev_internal, list);
237 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
238 		       dd->dm_dev.name);
239 		kfree(dd);
240 	}
241 }
242 
243 void dm_table_destroy(struct dm_table *t)
244 {
245 	unsigned int i;
246 
247 	if (!t)
248 		return;
249 
250 	while (atomic_read(&t->holders))
251 		msleep(1);
252 	smp_mb();
253 
254 	/* free the indexes */
255 	if (t->depth >= 2)
256 		vfree(t->index[t->depth - 2]);
257 
258 	/* free the targets */
259 	for (i = 0; i < t->num_targets; i++) {
260 		struct dm_target *tgt = t->targets + i;
261 
262 		if (tgt->type->dtr)
263 			tgt->type->dtr(tgt);
264 
265 		dm_put_target_type(tgt->type);
266 	}
267 
268 	vfree(t->highs);
269 
270 	/* free the device list */
271 	free_devices(&t->devices);
272 
273 	dm_free_md_mempools(t->mempools);
274 
275 	kfree(t);
276 }
277 
278 void dm_table_get(struct dm_table *t)
279 {
280 	atomic_inc(&t->holders);
281 }
282 EXPORT_SYMBOL(dm_table_get);
283 
284 void dm_table_put(struct dm_table *t)
285 {
286 	if (!t)
287 		return;
288 
289 	smp_mb__before_atomic_dec();
290 	atomic_dec(&t->holders);
291 }
292 EXPORT_SYMBOL(dm_table_put);
293 
294 /*
295  * Checks to see if we need to extend highs or targets.
296  */
297 static inline int check_space(struct dm_table *t)
298 {
299 	if (t->num_targets >= t->num_allocated)
300 		return alloc_targets(t, t->num_allocated * 2);
301 
302 	return 0;
303 }
304 
305 /*
306  * See if we've already got a device in the list.
307  */
308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309 {
310 	struct dm_dev_internal *dd;
311 
312 	list_for_each_entry (dd, l, list)
313 		if (dd->dm_dev.bdev->bd_dev == dev)
314 			return dd;
315 
316 	return NULL;
317 }
318 
319 /*
320  * Open a device so we can use it as a map destination.
321  */
322 static int open_dev(struct dm_dev_internal *d, dev_t dev,
323 		    struct mapped_device *md)
324 {
325 	static char *_claim_ptr = "I belong to device-mapper";
326 	struct block_device *bdev;
327 
328 	int r;
329 
330 	BUG_ON(d->dm_dev.bdev);
331 
332 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
333 	if (IS_ERR(bdev))
334 		return PTR_ERR(bdev);
335 
336 	r = bd_link_disk_holder(bdev, dm_disk(md));
337 	if (r) {
338 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
339 		return r;
340 	}
341 
342 	d->dm_dev.bdev = bdev;
343 	return 0;
344 }
345 
346 /*
347  * Close a device that we've been using.
348  */
349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350 {
351 	if (!d->dm_dev.bdev)
352 		return;
353 
354 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
355 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
356 	d->dm_dev.bdev = NULL;
357 }
358 
359 /*
360  * If possible, this checks an area of a destination device is invalid.
361  */
362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
363 				  sector_t start, sector_t len, void *data)
364 {
365 	struct request_queue *q;
366 	struct queue_limits *limits = data;
367 	struct block_device *bdev = dev->bdev;
368 	sector_t dev_size =
369 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
370 	unsigned short logical_block_size_sectors =
371 		limits->logical_block_size >> SECTOR_SHIFT;
372 	char b[BDEVNAME_SIZE];
373 
374 	/*
375 	 * Some devices exist without request functions,
376 	 * such as loop devices not yet bound to backing files.
377 	 * Forbid the use of such devices.
378 	 */
379 	q = bdev_get_queue(bdev);
380 	if (!q || !q->make_request_fn) {
381 		DMWARN("%s: %s is not yet initialised: "
382 		       "start=%llu, len=%llu, dev_size=%llu",
383 		       dm_device_name(ti->table->md), bdevname(bdev, b),
384 		       (unsigned long long)start,
385 		       (unsigned long long)len,
386 		       (unsigned long long)dev_size);
387 		return 1;
388 	}
389 
390 	if (!dev_size)
391 		return 0;
392 
393 	if ((start >= dev_size) || (start + len > dev_size)) {
394 		DMWARN("%s: %s too small for target: "
395 		       "start=%llu, len=%llu, dev_size=%llu",
396 		       dm_device_name(ti->table->md), bdevname(bdev, b),
397 		       (unsigned long long)start,
398 		       (unsigned long long)len,
399 		       (unsigned long long)dev_size);
400 		return 1;
401 	}
402 
403 	if (logical_block_size_sectors <= 1)
404 		return 0;
405 
406 	if (start & (logical_block_size_sectors - 1)) {
407 		DMWARN("%s: start=%llu not aligned to h/w "
408 		       "logical block size %u of %s",
409 		       dm_device_name(ti->table->md),
410 		       (unsigned long long)start,
411 		       limits->logical_block_size, bdevname(bdev, b));
412 		return 1;
413 	}
414 
415 	if (len & (logical_block_size_sectors - 1)) {
416 		DMWARN("%s: len=%llu not aligned to h/w "
417 		       "logical block size %u of %s",
418 		       dm_device_name(ti->table->md),
419 		       (unsigned long long)len,
420 		       limits->logical_block_size, bdevname(bdev, b));
421 		return 1;
422 	}
423 
424 	return 0;
425 }
426 
427 /*
428  * This upgrades the mode on an already open dm_dev, being
429  * careful to leave things as they were if we fail to reopen the
430  * device and not to touch the existing bdev field in case
431  * it is accessed concurrently inside dm_table_any_congested().
432  */
433 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
434 			struct mapped_device *md)
435 {
436 	int r;
437 	struct dm_dev_internal dd_new, dd_old;
438 
439 	dd_new = dd_old = *dd;
440 
441 	dd_new.dm_dev.mode |= new_mode;
442 	dd_new.dm_dev.bdev = NULL;
443 
444 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
445 	if (r)
446 		return r;
447 
448 	dd->dm_dev.mode |= new_mode;
449 	close_dev(&dd_old, md);
450 
451 	return 0;
452 }
453 
454 /*
455  * Add a device to the list, or just increment the usage count if
456  * it's already present.
457  */
458 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
459 		  struct dm_dev **result)
460 {
461 	int r;
462 	dev_t uninitialized_var(dev);
463 	struct dm_dev_internal *dd;
464 	unsigned int major, minor;
465 	struct dm_table *t = ti->table;
466 	char dummy;
467 
468 	BUG_ON(!t);
469 
470 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
471 		/* Extract the major/minor numbers */
472 		dev = MKDEV(major, minor);
473 		if (MAJOR(dev) != major || MINOR(dev) != minor)
474 			return -EOVERFLOW;
475 	} else {
476 		/* convert the path to a device */
477 		struct block_device *bdev = lookup_bdev(path);
478 
479 		if (IS_ERR(bdev))
480 			return PTR_ERR(bdev);
481 		dev = bdev->bd_dev;
482 		bdput(bdev);
483 	}
484 
485 	dd = find_device(&t->devices, dev);
486 	if (!dd) {
487 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
488 		if (!dd)
489 			return -ENOMEM;
490 
491 		dd->dm_dev.mode = mode;
492 		dd->dm_dev.bdev = NULL;
493 
494 		if ((r = open_dev(dd, dev, t->md))) {
495 			kfree(dd);
496 			return r;
497 		}
498 
499 		format_dev_t(dd->dm_dev.name, dev);
500 
501 		atomic_set(&dd->count, 0);
502 		list_add(&dd->list, &t->devices);
503 
504 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
505 		r = upgrade_mode(dd, mode, t->md);
506 		if (r)
507 			return r;
508 	}
509 	atomic_inc(&dd->count);
510 
511 	*result = &dd->dm_dev;
512 	return 0;
513 }
514 EXPORT_SYMBOL(dm_get_device);
515 
516 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
517 			 sector_t start, sector_t len, void *data)
518 {
519 	struct queue_limits *limits = data;
520 	struct block_device *bdev = dev->bdev;
521 	struct request_queue *q = bdev_get_queue(bdev);
522 	char b[BDEVNAME_SIZE];
523 
524 	if (unlikely(!q)) {
525 		DMWARN("%s: Cannot set limits for nonexistent device %s",
526 		       dm_device_name(ti->table->md), bdevname(bdev, b));
527 		return 0;
528 	}
529 
530 	if (bdev_stack_limits(limits, bdev, start) < 0)
531 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
532 		       "physical_block_size=%u, logical_block_size=%u, "
533 		       "alignment_offset=%u, start=%llu",
534 		       dm_device_name(ti->table->md), bdevname(bdev, b),
535 		       q->limits.physical_block_size,
536 		       q->limits.logical_block_size,
537 		       q->limits.alignment_offset,
538 		       (unsigned long long) start << SECTOR_SHIFT);
539 
540 	/*
541 	 * Check if merge fn is supported.
542 	 * If not we'll force DM to use PAGE_SIZE or
543 	 * smaller I/O, just to be safe.
544 	 */
545 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
546 		blk_limits_max_hw_sectors(limits,
547 					  (unsigned int) (PAGE_SIZE >> 9));
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(dm_set_device_limits);
551 
552 /*
553  * Decrement a device's use count and remove it if necessary.
554  */
555 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
556 {
557 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
558 						  dm_dev);
559 
560 	if (atomic_dec_and_test(&dd->count)) {
561 		close_dev(dd, ti->table->md);
562 		list_del(&dd->list);
563 		kfree(dd);
564 	}
565 }
566 EXPORT_SYMBOL(dm_put_device);
567 
568 /*
569  * Checks to see if the target joins onto the end of the table.
570  */
571 static int adjoin(struct dm_table *table, struct dm_target *ti)
572 {
573 	struct dm_target *prev;
574 
575 	if (!table->num_targets)
576 		return !ti->begin;
577 
578 	prev = &table->targets[table->num_targets - 1];
579 	return (ti->begin == (prev->begin + prev->len));
580 }
581 
582 /*
583  * Used to dynamically allocate the arg array.
584  */
585 static char **realloc_argv(unsigned *array_size, char **old_argv)
586 {
587 	char **argv;
588 	unsigned new_size;
589 
590 	new_size = *array_size ? *array_size * 2 : 64;
591 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
592 	if (argv) {
593 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
594 		*array_size = new_size;
595 	}
596 
597 	kfree(old_argv);
598 	return argv;
599 }
600 
601 /*
602  * Destructively splits up the argument list to pass to ctr.
603  */
604 int dm_split_args(int *argc, char ***argvp, char *input)
605 {
606 	char *start, *end = input, *out, **argv = NULL;
607 	unsigned array_size = 0;
608 
609 	*argc = 0;
610 
611 	if (!input) {
612 		*argvp = NULL;
613 		return 0;
614 	}
615 
616 	argv = realloc_argv(&array_size, argv);
617 	if (!argv)
618 		return -ENOMEM;
619 
620 	while (1) {
621 		/* Skip whitespace */
622 		start = skip_spaces(end);
623 
624 		if (!*start)
625 			break;	/* success, we hit the end */
626 
627 		/* 'out' is used to remove any back-quotes */
628 		end = out = start;
629 		while (*end) {
630 			/* Everything apart from '\0' can be quoted */
631 			if (*end == '\\' && *(end + 1)) {
632 				*out++ = *(end + 1);
633 				end += 2;
634 				continue;
635 			}
636 
637 			if (isspace(*end))
638 				break;	/* end of token */
639 
640 			*out++ = *end++;
641 		}
642 
643 		/* have we already filled the array ? */
644 		if ((*argc + 1) > array_size) {
645 			argv = realloc_argv(&array_size, argv);
646 			if (!argv)
647 				return -ENOMEM;
648 		}
649 
650 		/* we know this is whitespace */
651 		if (*end)
652 			end++;
653 
654 		/* terminate the string and put it in the array */
655 		*out = '\0';
656 		argv[*argc] = start;
657 		(*argc)++;
658 	}
659 
660 	*argvp = argv;
661 	return 0;
662 }
663 
664 /*
665  * Impose necessary and sufficient conditions on a devices's table such
666  * that any incoming bio which respects its logical_block_size can be
667  * processed successfully.  If it falls across the boundary between
668  * two or more targets, the size of each piece it gets split into must
669  * be compatible with the logical_block_size of the target processing it.
670  */
671 static int validate_hardware_logical_block_alignment(struct dm_table *table,
672 						 struct queue_limits *limits)
673 {
674 	/*
675 	 * This function uses arithmetic modulo the logical_block_size
676 	 * (in units of 512-byte sectors).
677 	 */
678 	unsigned short device_logical_block_size_sects =
679 		limits->logical_block_size >> SECTOR_SHIFT;
680 
681 	/*
682 	 * Offset of the start of the next table entry, mod logical_block_size.
683 	 */
684 	unsigned short next_target_start = 0;
685 
686 	/*
687 	 * Given an aligned bio that extends beyond the end of a
688 	 * target, how many sectors must the next target handle?
689 	 */
690 	unsigned short remaining = 0;
691 
692 	struct dm_target *uninitialized_var(ti);
693 	struct queue_limits ti_limits;
694 	unsigned i = 0;
695 
696 	/*
697 	 * Check each entry in the table in turn.
698 	 */
699 	while (i < dm_table_get_num_targets(table)) {
700 		ti = dm_table_get_target(table, i++);
701 
702 		blk_set_stacking_limits(&ti_limits);
703 
704 		/* combine all target devices' limits */
705 		if (ti->type->iterate_devices)
706 			ti->type->iterate_devices(ti, dm_set_device_limits,
707 						  &ti_limits);
708 
709 		/*
710 		 * If the remaining sectors fall entirely within this
711 		 * table entry are they compatible with its logical_block_size?
712 		 */
713 		if (remaining < ti->len &&
714 		    remaining & ((ti_limits.logical_block_size >>
715 				  SECTOR_SHIFT) - 1))
716 			break;	/* Error */
717 
718 		next_target_start =
719 		    (unsigned short) ((next_target_start + ti->len) &
720 				      (device_logical_block_size_sects - 1));
721 		remaining = next_target_start ?
722 		    device_logical_block_size_sects - next_target_start : 0;
723 	}
724 
725 	if (remaining) {
726 		DMWARN("%s: table line %u (start sect %llu len %llu) "
727 		       "not aligned to h/w logical block size %u",
728 		       dm_device_name(table->md), i,
729 		       (unsigned long long) ti->begin,
730 		       (unsigned long long) ti->len,
731 		       limits->logical_block_size);
732 		return -EINVAL;
733 	}
734 
735 	return 0;
736 }
737 
738 int dm_table_add_target(struct dm_table *t, const char *type,
739 			sector_t start, sector_t len, char *params)
740 {
741 	int r = -EINVAL, argc;
742 	char **argv;
743 	struct dm_target *tgt;
744 
745 	if (t->singleton) {
746 		DMERR("%s: target type %s must appear alone in table",
747 		      dm_device_name(t->md), t->targets->type->name);
748 		return -EINVAL;
749 	}
750 
751 	if ((r = check_space(t)))
752 		return r;
753 
754 	tgt = t->targets + t->num_targets;
755 	memset(tgt, 0, sizeof(*tgt));
756 
757 	if (!len) {
758 		DMERR("%s: zero-length target", dm_device_name(t->md));
759 		return -EINVAL;
760 	}
761 
762 	tgt->type = dm_get_target_type(type);
763 	if (!tgt->type) {
764 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
765 		      type);
766 		return -EINVAL;
767 	}
768 
769 	if (dm_target_needs_singleton(tgt->type)) {
770 		if (t->num_targets) {
771 			DMERR("%s: target type %s must appear alone in table",
772 			      dm_device_name(t->md), type);
773 			return -EINVAL;
774 		}
775 		t->singleton = 1;
776 	}
777 
778 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
779 		DMERR("%s: target type %s may not be included in read-only tables",
780 		      dm_device_name(t->md), type);
781 		return -EINVAL;
782 	}
783 
784 	if (t->immutable_target_type) {
785 		if (t->immutable_target_type != tgt->type) {
786 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
787 			      dm_device_name(t->md), t->immutable_target_type->name);
788 			return -EINVAL;
789 		}
790 	} else if (dm_target_is_immutable(tgt->type)) {
791 		if (t->num_targets) {
792 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
793 			      dm_device_name(t->md), tgt->type->name);
794 			return -EINVAL;
795 		}
796 		t->immutable_target_type = tgt->type;
797 	}
798 
799 	tgt->table = t;
800 	tgt->begin = start;
801 	tgt->len = len;
802 	tgt->error = "Unknown error";
803 
804 	/*
805 	 * Does this target adjoin the previous one ?
806 	 */
807 	if (!adjoin(t, tgt)) {
808 		tgt->error = "Gap in table";
809 		r = -EINVAL;
810 		goto bad;
811 	}
812 
813 	r = dm_split_args(&argc, &argv, params);
814 	if (r) {
815 		tgt->error = "couldn't split parameters (insufficient memory)";
816 		goto bad;
817 	}
818 
819 	r = tgt->type->ctr(tgt, argc, argv);
820 	kfree(argv);
821 	if (r)
822 		goto bad;
823 
824 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
825 
826 	if (!tgt->num_discard_requests && tgt->discards_supported)
827 		DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
828 		       dm_device_name(t->md), type);
829 
830 	return 0;
831 
832  bad:
833 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
834 	dm_put_target_type(tgt->type);
835 	return r;
836 }
837 
838 /*
839  * Target argument parsing helpers.
840  */
841 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
842 			     unsigned *value, char **error, unsigned grouped)
843 {
844 	const char *arg_str = dm_shift_arg(arg_set);
845 	char dummy;
846 
847 	if (!arg_str ||
848 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
849 	    (*value < arg->min) ||
850 	    (*value > arg->max) ||
851 	    (grouped && arg_set->argc < *value)) {
852 		*error = arg->error;
853 		return -EINVAL;
854 	}
855 
856 	return 0;
857 }
858 
859 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
860 		unsigned *value, char **error)
861 {
862 	return validate_next_arg(arg, arg_set, value, error, 0);
863 }
864 EXPORT_SYMBOL(dm_read_arg);
865 
866 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
867 		      unsigned *value, char **error)
868 {
869 	return validate_next_arg(arg, arg_set, value, error, 1);
870 }
871 EXPORT_SYMBOL(dm_read_arg_group);
872 
873 const char *dm_shift_arg(struct dm_arg_set *as)
874 {
875 	char *r;
876 
877 	if (as->argc) {
878 		as->argc--;
879 		r = *as->argv;
880 		as->argv++;
881 		return r;
882 	}
883 
884 	return NULL;
885 }
886 EXPORT_SYMBOL(dm_shift_arg);
887 
888 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
889 {
890 	BUG_ON(as->argc < num_args);
891 	as->argc -= num_args;
892 	as->argv += num_args;
893 }
894 EXPORT_SYMBOL(dm_consume_args);
895 
896 static int dm_table_set_type(struct dm_table *t)
897 {
898 	unsigned i;
899 	unsigned bio_based = 0, request_based = 0;
900 	struct dm_target *tgt;
901 	struct dm_dev_internal *dd;
902 	struct list_head *devices;
903 
904 	for (i = 0; i < t->num_targets; i++) {
905 		tgt = t->targets + i;
906 		if (dm_target_request_based(tgt))
907 			request_based = 1;
908 		else
909 			bio_based = 1;
910 
911 		if (bio_based && request_based) {
912 			DMWARN("Inconsistent table: different target types"
913 			       " can't be mixed up");
914 			return -EINVAL;
915 		}
916 	}
917 
918 	if (bio_based) {
919 		/* We must use this table as bio-based */
920 		t->type = DM_TYPE_BIO_BASED;
921 		return 0;
922 	}
923 
924 	BUG_ON(!request_based); /* No targets in this table */
925 
926 	/* Non-request-stackable devices can't be used for request-based dm */
927 	devices = dm_table_get_devices(t);
928 	list_for_each_entry(dd, devices, list) {
929 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
930 			DMWARN("table load rejected: including"
931 			       " non-request-stackable devices");
932 			return -EINVAL;
933 		}
934 	}
935 
936 	/*
937 	 * Request-based dm supports only tables that have a single target now.
938 	 * To support multiple targets, request splitting support is needed,
939 	 * and that needs lots of changes in the block-layer.
940 	 * (e.g. request completion process for partial completion.)
941 	 */
942 	if (t->num_targets > 1) {
943 		DMWARN("Request-based dm doesn't support multiple targets yet");
944 		return -EINVAL;
945 	}
946 
947 	t->type = DM_TYPE_REQUEST_BASED;
948 
949 	return 0;
950 }
951 
952 unsigned dm_table_get_type(struct dm_table *t)
953 {
954 	return t->type;
955 }
956 
957 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
958 {
959 	return t->immutable_target_type;
960 }
961 
962 bool dm_table_request_based(struct dm_table *t)
963 {
964 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
965 }
966 
967 int dm_table_alloc_md_mempools(struct dm_table *t)
968 {
969 	unsigned type = dm_table_get_type(t);
970 	unsigned per_bio_data_size = 0;
971 	struct dm_target *tgt;
972 	unsigned i;
973 
974 	if (unlikely(type == DM_TYPE_NONE)) {
975 		DMWARN("no table type is set, can't allocate mempools");
976 		return -EINVAL;
977 	}
978 
979 	if (type == DM_TYPE_BIO_BASED)
980 		for (i = 0; i < t->num_targets; i++) {
981 			tgt = t->targets + i;
982 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
983 		}
984 
985 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
986 	if (!t->mempools)
987 		return -ENOMEM;
988 
989 	return 0;
990 }
991 
992 void dm_table_free_md_mempools(struct dm_table *t)
993 {
994 	dm_free_md_mempools(t->mempools);
995 	t->mempools = NULL;
996 }
997 
998 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
999 {
1000 	return t->mempools;
1001 }
1002 
1003 static int setup_indexes(struct dm_table *t)
1004 {
1005 	int i;
1006 	unsigned int total = 0;
1007 	sector_t *indexes;
1008 
1009 	/* allocate the space for *all* the indexes */
1010 	for (i = t->depth - 2; i >= 0; i--) {
1011 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1012 		total += t->counts[i];
1013 	}
1014 
1015 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1016 	if (!indexes)
1017 		return -ENOMEM;
1018 
1019 	/* set up internal nodes, bottom-up */
1020 	for (i = t->depth - 2; i >= 0; i--) {
1021 		t->index[i] = indexes;
1022 		indexes += (KEYS_PER_NODE * t->counts[i]);
1023 		setup_btree_index(i, t);
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Builds the btree to index the map.
1031  */
1032 static int dm_table_build_index(struct dm_table *t)
1033 {
1034 	int r = 0;
1035 	unsigned int leaf_nodes;
1036 
1037 	/* how many indexes will the btree have ? */
1038 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1039 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1040 
1041 	/* leaf layer has already been set up */
1042 	t->counts[t->depth - 1] = leaf_nodes;
1043 	t->index[t->depth - 1] = t->highs;
1044 
1045 	if (t->depth >= 2)
1046 		r = setup_indexes(t);
1047 
1048 	return r;
1049 }
1050 
1051 /*
1052  * Get a disk whose integrity profile reflects the table's profile.
1053  * If %match_all is true, all devices' profiles must match.
1054  * If %match_all is false, all devices must at least have an
1055  * allocated integrity profile; but uninitialized is ok.
1056  * Returns NULL if integrity support was inconsistent or unavailable.
1057  */
1058 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1059 						    bool match_all)
1060 {
1061 	struct list_head *devices = dm_table_get_devices(t);
1062 	struct dm_dev_internal *dd = NULL;
1063 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1064 
1065 	list_for_each_entry(dd, devices, list) {
1066 		template_disk = dd->dm_dev.bdev->bd_disk;
1067 		if (!blk_get_integrity(template_disk))
1068 			goto no_integrity;
1069 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1070 			continue; /* skip uninitialized profiles */
1071 		else if (prev_disk &&
1072 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1073 			goto no_integrity;
1074 		prev_disk = template_disk;
1075 	}
1076 
1077 	return template_disk;
1078 
1079 no_integrity:
1080 	if (prev_disk)
1081 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1082 		       dm_device_name(t->md),
1083 		       prev_disk->disk_name,
1084 		       template_disk->disk_name);
1085 	return NULL;
1086 }
1087 
1088 /*
1089  * Register the mapped device for blk_integrity support if
1090  * the underlying devices have an integrity profile.  But all devices
1091  * may not have matching profiles (checking all devices isn't reliable
1092  * during table load because this table may use other DM device(s) which
1093  * must be resumed before they will have an initialized integity profile).
1094  * Stacked DM devices force a 2 stage integrity profile validation:
1095  * 1 - during load, validate all initialized integrity profiles match
1096  * 2 - during resume, validate all integrity profiles match
1097  */
1098 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1099 {
1100 	struct gendisk *template_disk = NULL;
1101 
1102 	template_disk = dm_table_get_integrity_disk(t, false);
1103 	if (!template_disk)
1104 		return 0;
1105 
1106 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1107 		t->integrity_supported = 1;
1108 		return blk_integrity_register(dm_disk(md), NULL);
1109 	}
1110 
1111 	/*
1112 	 * If DM device already has an initalized integrity
1113 	 * profile the new profile should not conflict.
1114 	 */
1115 	if (blk_integrity_is_initialized(template_disk) &&
1116 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1117 		DMWARN("%s: conflict with existing integrity profile: "
1118 		       "%s profile mismatch",
1119 		       dm_device_name(t->md),
1120 		       template_disk->disk_name);
1121 		return 1;
1122 	}
1123 
1124 	/* Preserve existing initialized integrity profile */
1125 	t->integrity_supported = 1;
1126 	return 0;
1127 }
1128 
1129 /*
1130  * Prepares the table for use by building the indices,
1131  * setting the type, and allocating mempools.
1132  */
1133 int dm_table_complete(struct dm_table *t)
1134 {
1135 	int r;
1136 
1137 	r = dm_table_set_type(t);
1138 	if (r) {
1139 		DMERR("unable to set table type");
1140 		return r;
1141 	}
1142 
1143 	r = dm_table_build_index(t);
1144 	if (r) {
1145 		DMERR("unable to build btrees");
1146 		return r;
1147 	}
1148 
1149 	r = dm_table_prealloc_integrity(t, t->md);
1150 	if (r) {
1151 		DMERR("could not register integrity profile.");
1152 		return r;
1153 	}
1154 
1155 	r = dm_table_alloc_md_mempools(t);
1156 	if (r)
1157 		DMERR("unable to allocate mempools");
1158 
1159 	return r;
1160 }
1161 
1162 static DEFINE_MUTEX(_event_lock);
1163 void dm_table_event_callback(struct dm_table *t,
1164 			     void (*fn)(void *), void *context)
1165 {
1166 	mutex_lock(&_event_lock);
1167 	t->event_fn = fn;
1168 	t->event_context = context;
1169 	mutex_unlock(&_event_lock);
1170 }
1171 
1172 void dm_table_event(struct dm_table *t)
1173 {
1174 	/*
1175 	 * You can no longer call dm_table_event() from interrupt
1176 	 * context, use a bottom half instead.
1177 	 */
1178 	BUG_ON(in_interrupt());
1179 
1180 	mutex_lock(&_event_lock);
1181 	if (t->event_fn)
1182 		t->event_fn(t->event_context);
1183 	mutex_unlock(&_event_lock);
1184 }
1185 EXPORT_SYMBOL(dm_table_event);
1186 
1187 sector_t dm_table_get_size(struct dm_table *t)
1188 {
1189 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1190 }
1191 EXPORT_SYMBOL(dm_table_get_size);
1192 
1193 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1194 {
1195 	if (index >= t->num_targets)
1196 		return NULL;
1197 
1198 	return t->targets + index;
1199 }
1200 
1201 /*
1202  * Search the btree for the correct target.
1203  *
1204  * Caller should check returned pointer with dm_target_is_valid()
1205  * to trap I/O beyond end of device.
1206  */
1207 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1208 {
1209 	unsigned int l, n = 0, k = 0;
1210 	sector_t *node;
1211 
1212 	for (l = 0; l < t->depth; l++) {
1213 		n = get_child(n, k);
1214 		node = get_node(t, l, n);
1215 
1216 		for (k = 0; k < KEYS_PER_NODE; k++)
1217 			if (node[k] >= sector)
1218 				break;
1219 	}
1220 
1221 	return &t->targets[(KEYS_PER_NODE * n) + k];
1222 }
1223 
1224 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1225 			sector_t start, sector_t len, void *data)
1226 {
1227 	unsigned *num_devices = data;
1228 
1229 	(*num_devices)++;
1230 
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Check whether a table has no data devices attached using each
1236  * target's iterate_devices method.
1237  * Returns false if the result is unknown because a target doesn't
1238  * support iterate_devices.
1239  */
1240 bool dm_table_has_no_data_devices(struct dm_table *table)
1241 {
1242 	struct dm_target *uninitialized_var(ti);
1243 	unsigned i = 0, num_devices = 0;
1244 
1245 	while (i < dm_table_get_num_targets(table)) {
1246 		ti = dm_table_get_target(table, i++);
1247 
1248 		if (!ti->type->iterate_devices)
1249 			return false;
1250 
1251 		ti->type->iterate_devices(ti, count_device, &num_devices);
1252 		if (num_devices)
1253 			return false;
1254 	}
1255 
1256 	return true;
1257 }
1258 
1259 /*
1260  * Establish the new table's queue_limits and validate them.
1261  */
1262 int dm_calculate_queue_limits(struct dm_table *table,
1263 			      struct queue_limits *limits)
1264 {
1265 	struct dm_target *uninitialized_var(ti);
1266 	struct queue_limits ti_limits;
1267 	unsigned i = 0;
1268 
1269 	blk_set_stacking_limits(limits);
1270 
1271 	while (i < dm_table_get_num_targets(table)) {
1272 		blk_set_stacking_limits(&ti_limits);
1273 
1274 		ti = dm_table_get_target(table, i++);
1275 
1276 		if (!ti->type->iterate_devices)
1277 			goto combine_limits;
1278 
1279 		/*
1280 		 * Combine queue limits of all the devices this target uses.
1281 		 */
1282 		ti->type->iterate_devices(ti, dm_set_device_limits,
1283 					  &ti_limits);
1284 
1285 		/* Set I/O hints portion of queue limits */
1286 		if (ti->type->io_hints)
1287 			ti->type->io_hints(ti, &ti_limits);
1288 
1289 		/*
1290 		 * Check each device area is consistent with the target's
1291 		 * overall queue limits.
1292 		 */
1293 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1294 					      &ti_limits))
1295 			return -EINVAL;
1296 
1297 combine_limits:
1298 		/*
1299 		 * Merge this target's queue limits into the overall limits
1300 		 * for the table.
1301 		 */
1302 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1303 			DMWARN("%s: adding target device "
1304 			       "(start sect %llu len %llu) "
1305 			       "caused an alignment inconsistency",
1306 			       dm_device_name(table->md),
1307 			       (unsigned long long) ti->begin,
1308 			       (unsigned long long) ti->len);
1309 	}
1310 
1311 	return validate_hardware_logical_block_alignment(table, limits);
1312 }
1313 
1314 /*
1315  * Set the integrity profile for this device if all devices used have
1316  * matching profiles.  We're quite deep in the resume path but still
1317  * don't know if all devices (particularly DM devices this device
1318  * may be stacked on) have matching profiles.  Even if the profiles
1319  * don't match we have no way to fail (to resume) at this point.
1320  */
1321 static void dm_table_set_integrity(struct dm_table *t)
1322 {
1323 	struct gendisk *template_disk = NULL;
1324 
1325 	if (!blk_get_integrity(dm_disk(t->md)))
1326 		return;
1327 
1328 	template_disk = dm_table_get_integrity_disk(t, true);
1329 	if (template_disk)
1330 		blk_integrity_register(dm_disk(t->md),
1331 				       blk_get_integrity(template_disk));
1332 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1333 		DMWARN("%s: device no longer has a valid integrity profile",
1334 		       dm_device_name(t->md));
1335 	else
1336 		DMWARN("%s: unable to establish an integrity profile",
1337 		       dm_device_name(t->md));
1338 }
1339 
1340 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1341 				sector_t start, sector_t len, void *data)
1342 {
1343 	unsigned flush = (*(unsigned *)data);
1344 	struct request_queue *q = bdev_get_queue(dev->bdev);
1345 
1346 	return q && (q->flush_flags & flush);
1347 }
1348 
1349 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1350 {
1351 	struct dm_target *ti;
1352 	unsigned i = 0;
1353 
1354 	/*
1355 	 * Require at least one underlying device to support flushes.
1356 	 * t->devices includes internal dm devices such as mirror logs
1357 	 * so we need to use iterate_devices here, which targets
1358 	 * supporting flushes must provide.
1359 	 */
1360 	while (i < dm_table_get_num_targets(t)) {
1361 		ti = dm_table_get_target(t, i++);
1362 
1363 		if (!ti->num_flush_requests)
1364 			continue;
1365 
1366 		if (ti->flush_supported)
1367 			return 1;
1368 
1369 		if (ti->type->iterate_devices &&
1370 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1371 			return 1;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1378 {
1379 	struct dm_target *ti;
1380 	unsigned i = 0;
1381 
1382 	/* Ensure that all targets supports discard_zeroes_data. */
1383 	while (i < dm_table_get_num_targets(t)) {
1384 		ti = dm_table_get_target(t, i++);
1385 
1386 		if (ti->discard_zeroes_data_unsupported)
1387 			return 0;
1388 	}
1389 
1390 	return 1;
1391 }
1392 
1393 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1394 			    sector_t start, sector_t len, void *data)
1395 {
1396 	struct request_queue *q = bdev_get_queue(dev->bdev);
1397 
1398 	return q && blk_queue_nonrot(q);
1399 }
1400 
1401 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1402 			     sector_t start, sector_t len, void *data)
1403 {
1404 	struct request_queue *q = bdev_get_queue(dev->bdev);
1405 
1406 	return q && !blk_queue_add_random(q);
1407 }
1408 
1409 static bool dm_table_all_devices_attribute(struct dm_table *t,
1410 					   iterate_devices_callout_fn func)
1411 {
1412 	struct dm_target *ti;
1413 	unsigned i = 0;
1414 
1415 	while (i < dm_table_get_num_targets(t)) {
1416 		ti = dm_table_get_target(t, i++);
1417 
1418 		if (!ti->type->iterate_devices ||
1419 		    !ti->type->iterate_devices(ti, func, NULL))
1420 			return 0;
1421 	}
1422 
1423 	return 1;
1424 }
1425 
1426 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1427 					 sector_t start, sector_t len, void *data)
1428 {
1429 	struct request_queue *q = bdev_get_queue(dev->bdev);
1430 
1431 	return q && !q->limits.max_write_same_sectors;
1432 }
1433 
1434 static bool dm_table_supports_write_same(struct dm_table *t)
1435 {
1436 	struct dm_target *ti;
1437 	unsigned i = 0;
1438 
1439 	while (i < dm_table_get_num_targets(t)) {
1440 		ti = dm_table_get_target(t, i++);
1441 
1442 		if (!ti->num_write_same_requests)
1443 			return false;
1444 
1445 		if (!ti->type->iterate_devices ||
1446 		    !ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1447 			return false;
1448 	}
1449 
1450 	return true;
1451 }
1452 
1453 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1454 			       struct queue_limits *limits)
1455 {
1456 	unsigned flush = 0;
1457 
1458 	/*
1459 	 * Copy table's limits to the DM device's request_queue
1460 	 */
1461 	q->limits = *limits;
1462 
1463 	if (!dm_table_supports_discards(t))
1464 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1465 	else
1466 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1467 
1468 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1469 		flush |= REQ_FLUSH;
1470 		if (dm_table_supports_flush(t, REQ_FUA))
1471 			flush |= REQ_FUA;
1472 	}
1473 	blk_queue_flush(q, flush);
1474 
1475 	if (!dm_table_discard_zeroes_data(t))
1476 		q->limits.discard_zeroes_data = 0;
1477 
1478 	/* Ensure that all underlying devices are non-rotational. */
1479 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1480 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1481 	else
1482 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1483 
1484 	if (!dm_table_supports_write_same(t))
1485 		q->limits.max_write_same_sectors = 0;
1486 
1487 	dm_table_set_integrity(t);
1488 
1489 	/*
1490 	 * Determine whether or not this queue's I/O timings contribute
1491 	 * to the entropy pool, Only request-based targets use this.
1492 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1493 	 * have it set.
1494 	 */
1495 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1496 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1497 
1498 	/*
1499 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1500 	 * visible to other CPUs because, once the flag is set, incoming bios
1501 	 * are processed by request-based dm, which refers to the queue
1502 	 * settings.
1503 	 * Until the flag set, bios are passed to bio-based dm and queued to
1504 	 * md->deferred where queue settings are not needed yet.
1505 	 * Those bios are passed to request-based dm at the resume time.
1506 	 */
1507 	smp_mb();
1508 	if (dm_table_request_based(t))
1509 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1510 }
1511 
1512 unsigned int dm_table_get_num_targets(struct dm_table *t)
1513 {
1514 	return t->num_targets;
1515 }
1516 
1517 struct list_head *dm_table_get_devices(struct dm_table *t)
1518 {
1519 	return &t->devices;
1520 }
1521 
1522 fmode_t dm_table_get_mode(struct dm_table *t)
1523 {
1524 	return t->mode;
1525 }
1526 EXPORT_SYMBOL(dm_table_get_mode);
1527 
1528 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1529 {
1530 	int i = t->num_targets;
1531 	struct dm_target *ti = t->targets;
1532 
1533 	while (i--) {
1534 		if (postsuspend) {
1535 			if (ti->type->postsuspend)
1536 				ti->type->postsuspend(ti);
1537 		} else if (ti->type->presuspend)
1538 			ti->type->presuspend(ti);
1539 
1540 		ti++;
1541 	}
1542 }
1543 
1544 void dm_table_presuspend_targets(struct dm_table *t)
1545 {
1546 	if (!t)
1547 		return;
1548 
1549 	suspend_targets(t, 0);
1550 }
1551 
1552 void dm_table_postsuspend_targets(struct dm_table *t)
1553 {
1554 	if (!t)
1555 		return;
1556 
1557 	suspend_targets(t, 1);
1558 }
1559 
1560 int dm_table_resume_targets(struct dm_table *t)
1561 {
1562 	int i, r = 0;
1563 
1564 	for (i = 0; i < t->num_targets; i++) {
1565 		struct dm_target *ti = t->targets + i;
1566 
1567 		if (!ti->type->preresume)
1568 			continue;
1569 
1570 		r = ti->type->preresume(ti);
1571 		if (r)
1572 			return r;
1573 	}
1574 
1575 	for (i = 0; i < t->num_targets; i++) {
1576 		struct dm_target *ti = t->targets + i;
1577 
1578 		if (ti->type->resume)
1579 			ti->type->resume(ti);
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1586 {
1587 	list_add(&cb->list, &t->target_callbacks);
1588 }
1589 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1590 
1591 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1592 {
1593 	struct dm_dev_internal *dd;
1594 	struct list_head *devices = dm_table_get_devices(t);
1595 	struct dm_target_callbacks *cb;
1596 	int r = 0;
1597 
1598 	list_for_each_entry(dd, devices, list) {
1599 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1600 		char b[BDEVNAME_SIZE];
1601 
1602 		if (likely(q))
1603 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1604 		else
1605 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1606 				     dm_device_name(t->md),
1607 				     bdevname(dd->dm_dev.bdev, b));
1608 	}
1609 
1610 	list_for_each_entry(cb, &t->target_callbacks, list)
1611 		if (cb->congested_fn)
1612 			r |= cb->congested_fn(cb, bdi_bits);
1613 
1614 	return r;
1615 }
1616 
1617 int dm_table_any_busy_target(struct dm_table *t)
1618 {
1619 	unsigned i;
1620 	struct dm_target *ti;
1621 
1622 	for (i = 0; i < t->num_targets; i++) {
1623 		ti = t->targets + i;
1624 		if (ti->type->busy && ti->type->busy(ti))
1625 			return 1;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 struct mapped_device *dm_table_get_md(struct dm_table *t)
1632 {
1633 	return t->md;
1634 }
1635 EXPORT_SYMBOL(dm_table_get_md);
1636 
1637 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1638 				  sector_t start, sector_t len, void *data)
1639 {
1640 	struct request_queue *q = bdev_get_queue(dev->bdev);
1641 
1642 	return q && blk_queue_discard(q);
1643 }
1644 
1645 bool dm_table_supports_discards(struct dm_table *t)
1646 {
1647 	struct dm_target *ti;
1648 	unsigned i = 0;
1649 
1650 	/*
1651 	 * Unless any target used by the table set discards_supported,
1652 	 * require at least one underlying device to support discards.
1653 	 * t->devices includes internal dm devices such as mirror logs
1654 	 * so we need to use iterate_devices here, which targets
1655 	 * supporting discard selectively must provide.
1656 	 */
1657 	while (i < dm_table_get_num_targets(t)) {
1658 		ti = dm_table_get_target(t, i++);
1659 
1660 		if (!ti->num_discard_requests)
1661 			continue;
1662 
1663 		if (ti->discards_supported)
1664 			return 1;
1665 
1666 		if (ti->type->iterate_devices &&
1667 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1668 			return 1;
1669 	}
1670 
1671 	return 0;
1672 }
1673