xref: /openbmc/linux/drivers/md/dm-table.c (revision 801b27e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27 
28 #define DM_MSG_PREFIX "table"
29 
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 	int result = 0;
40 
41 	while (n > 1) {
42 		n = dm_div_up(n, base);
43 		result++;
44 	}
45 
46 	return result;
47 }
48 
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 	return (n * CHILDREN_PER_NODE) + k;
55 }
56 
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61 				 unsigned int l, unsigned int n)
62 {
63 	return t->index[l] + (n * KEYS_PER_NODE);
64 }
65 
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 	for (; l < t->depth - 1; l++)
73 		n = get_child(n, CHILDREN_PER_NODE - 1);
74 
75 	if (n >= t->counts[l])
76 		return (sector_t) -1;
77 
78 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80 
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 	unsigned int n, k;
88 	sector_t *node;
89 
90 	for (n = 0U; n < t->counts[l]; n++) {
91 		node = get_node(t, l, n);
92 
93 		for (k = 0U; k < KEYS_PER_NODE; k++)
94 			node[k] = high(t, l + 1, get_child(n, k));
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 	sector_t *n_highs;
107 	struct dm_target *n_targets;
108 
109 	/*
110 	 * Allocate both the target array and offset array at once.
111 	 */
112 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 			   GFP_KERNEL);
114 	if (!n_highs)
115 		return -ENOMEM;
116 
117 	n_targets = (struct dm_target *) (n_highs + num);
118 
119 	memset(n_highs, -1, sizeof(*n_highs) * num);
120 	kvfree(t->highs);
121 
122 	t->num_allocated = num;
123 	t->highs = n_highs;
124 	t->targets = n_targets;
125 
126 	return 0;
127 }
128 
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 		    unsigned int num_targets, struct mapped_device *md)
131 {
132 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
133 
134 	if (!t)
135 		return -ENOMEM;
136 
137 	INIT_LIST_HEAD(&t->devices);
138 
139 	if (!num_targets)
140 		num_targets = KEYS_PER_NODE;
141 
142 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
143 
144 	if (!num_targets) {
145 		kfree(t);
146 		return -ENOMEM;
147 	}
148 
149 	if (alloc_targets(t, num_targets)) {
150 		kfree(t);
151 		return -ENOMEM;
152 	}
153 
154 	t->type = DM_TYPE_NONE;
155 	t->mode = mode;
156 	t->md = md;
157 	*result = t;
158 	return 0;
159 }
160 
161 static void free_devices(struct list_head *devices, struct mapped_device *md)
162 {
163 	struct list_head *tmp, *next;
164 
165 	list_for_each_safe(tmp, next, devices) {
166 		struct dm_dev_internal *dd =
167 		    list_entry(tmp, struct dm_dev_internal, list);
168 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
169 		       dm_device_name(md), dd->dm_dev->name);
170 		dm_put_table_device(md, dd->dm_dev);
171 		kfree(dd);
172 	}
173 }
174 
175 static void dm_table_destroy_crypto_profile(struct dm_table *t);
176 
177 void dm_table_destroy(struct dm_table *t)
178 {
179 	if (!t)
180 		return;
181 
182 	/* free the indexes */
183 	if (t->depth >= 2)
184 		kvfree(t->index[t->depth - 2]);
185 
186 	/* free the targets */
187 	for (unsigned int i = 0; i < t->num_targets; i++) {
188 		struct dm_target *ti = dm_table_get_target(t, i);
189 
190 		if (ti->type->dtr)
191 			ti->type->dtr(ti);
192 
193 		dm_put_target_type(ti->type);
194 	}
195 
196 	kvfree(t->highs);
197 
198 	/* free the device list */
199 	free_devices(&t->devices, t->md);
200 
201 	dm_free_md_mempools(t->mempools);
202 
203 	dm_table_destroy_crypto_profile(t);
204 
205 	kfree(t);
206 }
207 
208 /*
209  * See if we've already got a device in the list.
210  */
211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213 	struct dm_dev_internal *dd;
214 
215 	list_for_each_entry(dd, l, list)
216 		if (dd->dm_dev->bdev->bd_dev == dev)
217 			return dd;
218 
219 	return NULL;
220 }
221 
222 /*
223  * If possible, this checks an area of a destination device is invalid.
224  */
225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226 				  sector_t start, sector_t len, void *data)
227 {
228 	struct queue_limits *limits = data;
229 	struct block_device *bdev = dev->bdev;
230 	sector_t dev_size = bdev_nr_sectors(bdev);
231 	unsigned short logical_block_size_sectors =
232 		limits->logical_block_size >> SECTOR_SHIFT;
233 
234 	if (!dev_size)
235 		return 0;
236 
237 	if ((start >= dev_size) || (start + len > dev_size)) {
238 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
239 		      dm_device_name(ti->table->md), bdev,
240 		      (unsigned long long)start,
241 		      (unsigned long long)len,
242 		      (unsigned long long)dev_size);
243 		return 1;
244 	}
245 
246 	/*
247 	 * If the target is mapped to zoned block device(s), check
248 	 * that the zones are not partially mapped.
249 	 */
250 	if (bdev_is_zoned(bdev)) {
251 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
252 
253 		if (start & (zone_sectors - 1)) {
254 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
255 			      dm_device_name(ti->table->md),
256 			      (unsigned long long)start,
257 			      zone_sectors, bdev);
258 			return 1;
259 		}
260 
261 		/*
262 		 * Note: The last zone of a zoned block device may be smaller
263 		 * than other zones. So for a target mapping the end of a
264 		 * zoned block device with such a zone, len would not be zone
265 		 * aligned. We do not allow such last smaller zone to be part
266 		 * of the mapping here to ensure that mappings with multiple
267 		 * devices do not end up with a smaller zone in the middle of
268 		 * the sector range.
269 		 */
270 		if (len & (zone_sectors - 1)) {
271 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
272 			      dm_device_name(ti->table->md),
273 			      (unsigned long long)len,
274 			      zone_sectors, bdev);
275 			return 1;
276 		}
277 	}
278 
279 	if (logical_block_size_sectors <= 1)
280 		return 0;
281 
282 	if (start & (logical_block_size_sectors - 1)) {
283 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
284 		      dm_device_name(ti->table->md),
285 		      (unsigned long long)start,
286 		      limits->logical_block_size, bdev);
287 		return 1;
288 	}
289 
290 	if (len & (logical_block_size_sectors - 1)) {
291 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
292 		      dm_device_name(ti->table->md),
293 		      (unsigned long long)len,
294 		      limits->logical_block_size, bdev);
295 		return 1;
296 	}
297 
298 	return 0;
299 }
300 
301 /*
302  * This upgrades the mode on an already open dm_dev, being
303  * careful to leave things as they were if we fail to reopen the
304  * device and not to touch the existing bdev field in case
305  * it is accessed concurrently.
306  */
307 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
308 			struct mapped_device *md)
309 {
310 	int r;
311 	struct dm_dev *old_dev, *new_dev;
312 
313 	old_dev = dd->dm_dev;
314 
315 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
316 				dd->dm_dev->mode | new_mode, &new_dev);
317 	if (r)
318 		return r;
319 
320 	dd->dm_dev = new_dev;
321 	dm_put_table_device(md, old_dev);
322 
323 	return 0;
324 }
325 
326 /*
327  * Add a device to the list, or just increment the usage count if
328  * it's already present.
329  *
330  * Note: the __ref annotation is because this function can call the __init
331  * marked early_lookup_bdev when called during early boot code from dm-init.c.
332  */
333 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
334 		  struct dm_dev **result)
335 {
336 	int r;
337 	dev_t dev;
338 	unsigned int major, minor;
339 	char dummy;
340 	struct dm_dev_internal *dd;
341 	struct dm_table *t = ti->table;
342 
343 	BUG_ON(!t);
344 
345 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
346 		/* Extract the major/minor numbers */
347 		dev = MKDEV(major, minor);
348 		if (MAJOR(dev) != major || MINOR(dev) != minor)
349 			return -EOVERFLOW;
350 	} else {
351 		r = lookup_bdev(path, &dev);
352 #ifndef MODULE
353 		if (r && system_state < SYSTEM_RUNNING)
354 			r = early_lookup_bdev(path, &dev);
355 #endif
356 		if (r)
357 			return r;
358 	}
359 	if (dev == disk_devt(t->md->disk))
360 		return -EINVAL;
361 
362 	dd = find_device(&t->devices, dev);
363 	if (!dd) {
364 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
365 		if (!dd)
366 			return -ENOMEM;
367 
368 		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
369 		if (r) {
370 			kfree(dd);
371 			return r;
372 		}
373 
374 		refcount_set(&dd->count, 1);
375 		list_add(&dd->list, &t->devices);
376 		goto out;
377 
378 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
379 		r = upgrade_mode(dd, mode, t->md);
380 		if (r)
381 			return r;
382 	}
383 	refcount_inc(&dd->count);
384 out:
385 	*result = dd->dm_dev;
386 	return 0;
387 }
388 EXPORT_SYMBOL(dm_get_device);
389 
390 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
391 				sector_t start, sector_t len, void *data)
392 {
393 	struct queue_limits *limits = data;
394 	struct block_device *bdev = dev->bdev;
395 	struct request_queue *q = bdev_get_queue(bdev);
396 
397 	if (unlikely(!q)) {
398 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
399 		       dm_device_name(ti->table->md), bdev);
400 		return 0;
401 	}
402 
403 	if (blk_stack_limits(limits, &q->limits,
404 			get_start_sect(bdev) + start) < 0)
405 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
406 		       "physical_block_size=%u, logical_block_size=%u, "
407 		       "alignment_offset=%u, start=%llu",
408 		       dm_device_name(ti->table->md), bdev,
409 		       q->limits.physical_block_size,
410 		       q->limits.logical_block_size,
411 		       q->limits.alignment_offset,
412 		       (unsigned long long) start << SECTOR_SHIFT);
413 	return 0;
414 }
415 
416 /*
417  * Decrement a device's use count and remove it if necessary.
418  */
419 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
420 {
421 	int found = 0;
422 	struct list_head *devices = &ti->table->devices;
423 	struct dm_dev_internal *dd;
424 
425 	list_for_each_entry(dd, devices, list) {
426 		if (dd->dm_dev == d) {
427 			found = 1;
428 			break;
429 		}
430 	}
431 	if (!found) {
432 		DMERR("%s: device %s not in table devices list",
433 		      dm_device_name(ti->table->md), d->name);
434 		return;
435 	}
436 	if (refcount_dec_and_test(&dd->count)) {
437 		dm_put_table_device(ti->table->md, d);
438 		list_del(&dd->list);
439 		kfree(dd);
440 	}
441 }
442 EXPORT_SYMBOL(dm_put_device);
443 
444 /*
445  * Checks to see if the target joins onto the end of the table.
446  */
447 static int adjoin(struct dm_table *t, struct dm_target *ti)
448 {
449 	struct dm_target *prev;
450 
451 	if (!t->num_targets)
452 		return !ti->begin;
453 
454 	prev = &t->targets[t->num_targets - 1];
455 	return (ti->begin == (prev->begin + prev->len));
456 }
457 
458 /*
459  * Used to dynamically allocate the arg array.
460  *
461  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
462  * process messages even if some device is suspended. These messages have a
463  * small fixed number of arguments.
464  *
465  * On the other hand, dm-switch needs to process bulk data using messages and
466  * excessive use of GFP_NOIO could cause trouble.
467  */
468 static char **realloc_argv(unsigned int *size, char **old_argv)
469 {
470 	char **argv;
471 	unsigned int new_size;
472 	gfp_t gfp;
473 
474 	if (*size) {
475 		new_size = *size * 2;
476 		gfp = GFP_KERNEL;
477 	} else {
478 		new_size = 8;
479 		gfp = GFP_NOIO;
480 	}
481 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
482 	if (argv && old_argv) {
483 		memcpy(argv, old_argv, *size * sizeof(*argv));
484 		*size = new_size;
485 	}
486 
487 	kfree(old_argv);
488 	return argv;
489 }
490 
491 /*
492  * Destructively splits up the argument list to pass to ctr.
493  */
494 int dm_split_args(int *argc, char ***argvp, char *input)
495 {
496 	char *start, *end = input, *out, **argv = NULL;
497 	unsigned int array_size = 0;
498 
499 	*argc = 0;
500 
501 	if (!input) {
502 		*argvp = NULL;
503 		return 0;
504 	}
505 
506 	argv = realloc_argv(&array_size, argv);
507 	if (!argv)
508 		return -ENOMEM;
509 
510 	while (1) {
511 		/* Skip whitespace */
512 		start = skip_spaces(end);
513 
514 		if (!*start)
515 			break;	/* success, we hit the end */
516 
517 		/* 'out' is used to remove any back-quotes */
518 		end = out = start;
519 		while (*end) {
520 			/* Everything apart from '\0' can be quoted */
521 			if (*end == '\\' && *(end + 1)) {
522 				*out++ = *(end + 1);
523 				end += 2;
524 				continue;
525 			}
526 
527 			if (isspace(*end))
528 				break;	/* end of token */
529 
530 			*out++ = *end++;
531 		}
532 
533 		/* have we already filled the array ? */
534 		if ((*argc + 1) > array_size) {
535 			argv = realloc_argv(&array_size, argv);
536 			if (!argv)
537 				return -ENOMEM;
538 		}
539 
540 		/* we know this is whitespace */
541 		if (*end)
542 			end++;
543 
544 		/* terminate the string and put it in the array */
545 		*out = '\0';
546 		argv[*argc] = start;
547 		(*argc)++;
548 	}
549 
550 	*argvp = argv;
551 	return 0;
552 }
553 
554 /*
555  * Impose necessary and sufficient conditions on a devices's table such
556  * that any incoming bio which respects its logical_block_size can be
557  * processed successfully.  If it falls across the boundary between
558  * two or more targets, the size of each piece it gets split into must
559  * be compatible with the logical_block_size of the target processing it.
560  */
561 static int validate_hardware_logical_block_alignment(struct dm_table *t,
562 						     struct queue_limits *limits)
563 {
564 	/*
565 	 * This function uses arithmetic modulo the logical_block_size
566 	 * (in units of 512-byte sectors).
567 	 */
568 	unsigned short device_logical_block_size_sects =
569 		limits->logical_block_size >> SECTOR_SHIFT;
570 
571 	/*
572 	 * Offset of the start of the next table entry, mod logical_block_size.
573 	 */
574 	unsigned short next_target_start = 0;
575 
576 	/*
577 	 * Given an aligned bio that extends beyond the end of a
578 	 * target, how many sectors must the next target handle?
579 	 */
580 	unsigned short remaining = 0;
581 
582 	struct dm_target *ti;
583 	struct queue_limits ti_limits;
584 	unsigned int i;
585 
586 	/*
587 	 * Check each entry in the table in turn.
588 	 */
589 	for (i = 0; i < t->num_targets; i++) {
590 		ti = dm_table_get_target(t, i);
591 
592 		blk_set_stacking_limits(&ti_limits);
593 
594 		/* combine all target devices' limits */
595 		if (ti->type->iterate_devices)
596 			ti->type->iterate_devices(ti, dm_set_device_limits,
597 						  &ti_limits);
598 
599 		/*
600 		 * If the remaining sectors fall entirely within this
601 		 * table entry are they compatible with its logical_block_size?
602 		 */
603 		if (remaining < ti->len &&
604 		    remaining & ((ti_limits.logical_block_size >>
605 				  SECTOR_SHIFT) - 1))
606 			break;	/* Error */
607 
608 		next_target_start =
609 		    (unsigned short) ((next_target_start + ti->len) &
610 				      (device_logical_block_size_sects - 1));
611 		remaining = next_target_start ?
612 		    device_logical_block_size_sects - next_target_start : 0;
613 	}
614 
615 	if (remaining) {
616 		DMERR("%s: table line %u (start sect %llu len %llu) "
617 		      "not aligned to h/w logical block size %u",
618 		      dm_device_name(t->md), i,
619 		      (unsigned long long) ti->begin,
620 		      (unsigned long long) ti->len,
621 		      limits->logical_block_size);
622 		return -EINVAL;
623 	}
624 
625 	return 0;
626 }
627 
628 int dm_table_add_target(struct dm_table *t, const char *type,
629 			sector_t start, sector_t len, char *params)
630 {
631 	int r = -EINVAL, argc;
632 	char **argv;
633 	struct dm_target *ti;
634 
635 	if (t->singleton) {
636 		DMERR("%s: target type %s must appear alone in table",
637 		      dm_device_name(t->md), t->targets->type->name);
638 		return -EINVAL;
639 	}
640 
641 	BUG_ON(t->num_targets >= t->num_allocated);
642 
643 	ti = t->targets + t->num_targets;
644 	memset(ti, 0, sizeof(*ti));
645 
646 	if (!len) {
647 		DMERR("%s: zero-length target", dm_device_name(t->md));
648 		return -EINVAL;
649 	}
650 
651 	ti->type = dm_get_target_type(type);
652 	if (!ti->type) {
653 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
654 		return -EINVAL;
655 	}
656 
657 	if (dm_target_needs_singleton(ti->type)) {
658 		if (t->num_targets) {
659 			ti->error = "singleton target type must appear alone in table";
660 			goto bad;
661 		}
662 		t->singleton = true;
663 	}
664 
665 	if (dm_target_always_writeable(ti->type) &&
666 	    !(t->mode & BLK_OPEN_WRITE)) {
667 		ti->error = "target type may not be included in a read-only table";
668 		goto bad;
669 	}
670 
671 	if (t->immutable_target_type) {
672 		if (t->immutable_target_type != ti->type) {
673 			ti->error = "immutable target type cannot be mixed with other target types";
674 			goto bad;
675 		}
676 	} else if (dm_target_is_immutable(ti->type)) {
677 		if (t->num_targets) {
678 			ti->error = "immutable target type cannot be mixed with other target types";
679 			goto bad;
680 		}
681 		t->immutable_target_type = ti->type;
682 	}
683 
684 	if (dm_target_has_integrity(ti->type))
685 		t->integrity_added = 1;
686 
687 	ti->table = t;
688 	ti->begin = start;
689 	ti->len = len;
690 	ti->error = "Unknown error";
691 
692 	/*
693 	 * Does this target adjoin the previous one ?
694 	 */
695 	if (!adjoin(t, ti)) {
696 		ti->error = "Gap in table";
697 		goto bad;
698 	}
699 
700 	r = dm_split_args(&argc, &argv, params);
701 	if (r) {
702 		ti->error = "couldn't split parameters";
703 		goto bad;
704 	}
705 
706 	r = ti->type->ctr(ti, argc, argv);
707 	kfree(argv);
708 	if (r)
709 		goto bad;
710 
711 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
712 
713 	if (!ti->num_discard_bios && ti->discards_supported)
714 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
715 		       dm_device_name(t->md), type);
716 
717 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
718 		static_branch_enable(&swap_bios_enabled);
719 
720 	return 0;
721 
722  bad:
723 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
724 	dm_put_target_type(ti->type);
725 	return r;
726 }
727 
728 /*
729  * Target argument parsing helpers.
730  */
731 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
732 			     unsigned int *value, char **error, unsigned int grouped)
733 {
734 	const char *arg_str = dm_shift_arg(arg_set);
735 	char dummy;
736 
737 	if (!arg_str ||
738 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
739 	    (*value < arg->min) ||
740 	    (*value > arg->max) ||
741 	    (grouped && arg_set->argc < *value)) {
742 		*error = arg->error;
743 		return -EINVAL;
744 	}
745 
746 	return 0;
747 }
748 
749 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
750 		unsigned int *value, char **error)
751 {
752 	return validate_next_arg(arg, arg_set, value, error, 0);
753 }
754 EXPORT_SYMBOL(dm_read_arg);
755 
756 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
757 		      unsigned int *value, char **error)
758 {
759 	return validate_next_arg(arg, arg_set, value, error, 1);
760 }
761 EXPORT_SYMBOL(dm_read_arg_group);
762 
763 const char *dm_shift_arg(struct dm_arg_set *as)
764 {
765 	char *r;
766 
767 	if (as->argc) {
768 		as->argc--;
769 		r = *as->argv;
770 		as->argv++;
771 		return r;
772 	}
773 
774 	return NULL;
775 }
776 EXPORT_SYMBOL(dm_shift_arg);
777 
778 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
779 {
780 	BUG_ON(as->argc < num_args);
781 	as->argc -= num_args;
782 	as->argv += num_args;
783 }
784 EXPORT_SYMBOL(dm_consume_args);
785 
786 static bool __table_type_bio_based(enum dm_queue_mode table_type)
787 {
788 	return (table_type == DM_TYPE_BIO_BASED ||
789 		table_type == DM_TYPE_DAX_BIO_BASED);
790 }
791 
792 static bool __table_type_request_based(enum dm_queue_mode table_type)
793 {
794 	return table_type == DM_TYPE_REQUEST_BASED;
795 }
796 
797 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
798 {
799 	t->type = type;
800 }
801 EXPORT_SYMBOL_GPL(dm_table_set_type);
802 
803 /* validate the dax capability of the target device span */
804 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
805 			sector_t start, sector_t len, void *data)
806 {
807 	if (dev->dax_dev)
808 		return false;
809 
810 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
811 	return true;
812 }
813 
814 /* Check devices support synchronous DAX */
815 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
816 					      sector_t start, sector_t len, void *data)
817 {
818 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
819 }
820 
821 static bool dm_table_supports_dax(struct dm_table *t,
822 				  iterate_devices_callout_fn iterate_fn)
823 {
824 	/* Ensure that all targets support DAX. */
825 	for (unsigned int i = 0; i < t->num_targets; i++) {
826 		struct dm_target *ti = dm_table_get_target(t, i);
827 
828 		if (!ti->type->direct_access)
829 			return false;
830 
831 		if (!ti->type->iterate_devices ||
832 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
833 			return false;
834 	}
835 
836 	return true;
837 }
838 
839 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
840 				  sector_t start, sector_t len, void *data)
841 {
842 	struct block_device *bdev = dev->bdev;
843 	struct request_queue *q = bdev_get_queue(bdev);
844 
845 	/* request-based cannot stack on partitions! */
846 	if (bdev_is_partition(bdev))
847 		return false;
848 
849 	return queue_is_mq(q);
850 }
851 
852 static int dm_table_determine_type(struct dm_table *t)
853 {
854 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
855 	struct dm_target *ti;
856 	struct list_head *devices = dm_table_get_devices(t);
857 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
858 
859 	if (t->type != DM_TYPE_NONE) {
860 		/* target already set the table's type */
861 		if (t->type == DM_TYPE_BIO_BASED) {
862 			/* possibly upgrade to a variant of bio-based */
863 			goto verify_bio_based;
864 		}
865 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
866 		goto verify_rq_based;
867 	}
868 
869 	for (unsigned int i = 0; i < t->num_targets; i++) {
870 		ti = dm_table_get_target(t, i);
871 		if (dm_target_hybrid(ti))
872 			hybrid = 1;
873 		else if (dm_target_request_based(ti))
874 			request_based = 1;
875 		else
876 			bio_based = 1;
877 
878 		if (bio_based && request_based) {
879 			DMERR("Inconsistent table: different target types can't be mixed up");
880 			return -EINVAL;
881 		}
882 	}
883 
884 	if (hybrid && !bio_based && !request_based) {
885 		/*
886 		 * The targets can work either way.
887 		 * Determine the type from the live device.
888 		 * Default to bio-based if device is new.
889 		 */
890 		if (__table_type_request_based(live_md_type))
891 			request_based = 1;
892 		else
893 			bio_based = 1;
894 	}
895 
896 	if (bio_based) {
897 verify_bio_based:
898 		/* We must use this table as bio-based */
899 		t->type = DM_TYPE_BIO_BASED;
900 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
901 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
902 			t->type = DM_TYPE_DAX_BIO_BASED;
903 		}
904 		return 0;
905 	}
906 
907 	BUG_ON(!request_based); /* No targets in this table */
908 
909 	t->type = DM_TYPE_REQUEST_BASED;
910 
911 verify_rq_based:
912 	/*
913 	 * Request-based dm supports only tables that have a single target now.
914 	 * To support multiple targets, request splitting support is needed,
915 	 * and that needs lots of changes in the block-layer.
916 	 * (e.g. request completion process for partial completion.)
917 	 */
918 	if (t->num_targets > 1) {
919 		DMERR("request-based DM doesn't support multiple targets");
920 		return -EINVAL;
921 	}
922 
923 	if (list_empty(devices)) {
924 		int srcu_idx;
925 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
926 
927 		/* inherit live table's type */
928 		if (live_table)
929 			t->type = live_table->type;
930 		dm_put_live_table(t->md, srcu_idx);
931 		return 0;
932 	}
933 
934 	ti = dm_table_get_immutable_target(t);
935 	if (!ti) {
936 		DMERR("table load rejected: immutable target is required");
937 		return -EINVAL;
938 	} else if (ti->max_io_len) {
939 		DMERR("table load rejected: immutable target that splits IO is not supported");
940 		return -EINVAL;
941 	}
942 
943 	/* Non-request-stackable devices can't be used for request-based dm */
944 	if (!ti->type->iterate_devices ||
945 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
946 		DMERR("table load rejected: including non-request-stackable devices");
947 		return -EINVAL;
948 	}
949 
950 	return 0;
951 }
952 
953 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
954 {
955 	return t->type;
956 }
957 
958 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
959 {
960 	return t->immutable_target_type;
961 }
962 
963 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
964 {
965 	/* Immutable target is implicitly a singleton */
966 	if (t->num_targets > 1 ||
967 	    !dm_target_is_immutable(t->targets[0].type))
968 		return NULL;
969 
970 	return t->targets;
971 }
972 
973 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
974 {
975 	for (unsigned int i = 0; i < t->num_targets; i++) {
976 		struct dm_target *ti = dm_table_get_target(t, i);
977 
978 		if (dm_target_is_wildcard(ti->type))
979 			return ti;
980 	}
981 
982 	return NULL;
983 }
984 
985 bool dm_table_bio_based(struct dm_table *t)
986 {
987 	return __table_type_bio_based(dm_table_get_type(t));
988 }
989 
990 bool dm_table_request_based(struct dm_table *t)
991 {
992 	return __table_type_request_based(dm_table_get_type(t));
993 }
994 
995 static bool dm_table_supports_poll(struct dm_table *t);
996 
997 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
998 {
999 	enum dm_queue_mode type = dm_table_get_type(t);
1000 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1001 	unsigned int min_pool_size = 0, pool_size;
1002 	struct dm_md_mempools *pools;
1003 
1004 	if (unlikely(type == DM_TYPE_NONE)) {
1005 		DMERR("no table type is set, can't allocate mempools");
1006 		return -EINVAL;
1007 	}
1008 
1009 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1010 	if (!pools)
1011 		return -ENOMEM;
1012 
1013 	if (type == DM_TYPE_REQUEST_BASED) {
1014 		pool_size = dm_get_reserved_rq_based_ios();
1015 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1016 		goto init_bs;
1017 	}
1018 
1019 	for (unsigned int i = 0; i < t->num_targets; i++) {
1020 		struct dm_target *ti = dm_table_get_target(t, i);
1021 
1022 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1023 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1024 	}
1025 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1026 	front_pad = roundup(per_io_data_size,
1027 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1028 
1029 	io_front_pad = roundup(per_io_data_size,
1030 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1031 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1032 			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1033 		goto out_free_pools;
1034 	if (t->integrity_supported &&
1035 	    bioset_integrity_create(&pools->io_bs, pool_size))
1036 		goto out_free_pools;
1037 init_bs:
1038 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1039 		goto out_free_pools;
1040 	if (t->integrity_supported &&
1041 	    bioset_integrity_create(&pools->bs, pool_size))
1042 		goto out_free_pools;
1043 
1044 	t->mempools = pools;
1045 	return 0;
1046 
1047 out_free_pools:
1048 	dm_free_md_mempools(pools);
1049 	return -ENOMEM;
1050 }
1051 
1052 static int setup_indexes(struct dm_table *t)
1053 {
1054 	int i;
1055 	unsigned int total = 0;
1056 	sector_t *indexes;
1057 
1058 	/* allocate the space for *all* the indexes */
1059 	for (i = t->depth - 2; i >= 0; i--) {
1060 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1061 		total += t->counts[i];
1062 	}
1063 
1064 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1065 	if (!indexes)
1066 		return -ENOMEM;
1067 
1068 	/* set up internal nodes, bottom-up */
1069 	for (i = t->depth - 2; i >= 0; i--) {
1070 		t->index[i] = indexes;
1071 		indexes += (KEYS_PER_NODE * t->counts[i]);
1072 		setup_btree_index(i, t);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Builds the btree to index the map.
1080  */
1081 static int dm_table_build_index(struct dm_table *t)
1082 {
1083 	int r = 0;
1084 	unsigned int leaf_nodes;
1085 
1086 	/* how many indexes will the btree have ? */
1087 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1088 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1089 
1090 	/* leaf layer has already been set up */
1091 	t->counts[t->depth - 1] = leaf_nodes;
1092 	t->index[t->depth - 1] = t->highs;
1093 
1094 	if (t->depth >= 2)
1095 		r = setup_indexes(t);
1096 
1097 	return r;
1098 }
1099 
1100 static bool integrity_profile_exists(struct gendisk *disk)
1101 {
1102 	return !!blk_get_integrity(disk);
1103 }
1104 
1105 /*
1106  * Get a disk whose integrity profile reflects the table's profile.
1107  * Returns NULL if integrity support was inconsistent or unavailable.
1108  */
1109 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1110 {
1111 	struct list_head *devices = dm_table_get_devices(t);
1112 	struct dm_dev_internal *dd = NULL;
1113 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1114 
1115 	for (unsigned int i = 0; i < t->num_targets; i++) {
1116 		struct dm_target *ti = dm_table_get_target(t, i);
1117 
1118 		if (!dm_target_passes_integrity(ti->type))
1119 			goto no_integrity;
1120 	}
1121 
1122 	list_for_each_entry(dd, devices, list) {
1123 		template_disk = dd->dm_dev->bdev->bd_disk;
1124 		if (!integrity_profile_exists(template_disk))
1125 			goto no_integrity;
1126 		else if (prev_disk &&
1127 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1128 			goto no_integrity;
1129 		prev_disk = template_disk;
1130 	}
1131 
1132 	return template_disk;
1133 
1134 no_integrity:
1135 	if (prev_disk)
1136 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1137 		       dm_device_name(t->md),
1138 		       prev_disk->disk_name,
1139 		       template_disk->disk_name);
1140 	return NULL;
1141 }
1142 
1143 /*
1144  * Register the mapped device for blk_integrity support if the
1145  * underlying devices have an integrity profile.  But all devices may
1146  * not have matching profiles (checking all devices isn't reliable
1147  * during table load because this table may use other DM device(s) which
1148  * must be resumed before they will have an initialized integity
1149  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1150  * profile validation: First pass during table load, final pass during
1151  * resume.
1152  */
1153 static int dm_table_register_integrity(struct dm_table *t)
1154 {
1155 	struct mapped_device *md = t->md;
1156 	struct gendisk *template_disk = NULL;
1157 
1158 	/* If target handles integrity itself do not register it here. */
1159 	if (t->integrity_added)
1160 		return 0;
1161 
1162 	template_disk = dm_table_get_integrity_disk(t);
1163 	if (!template_disk)
1164 		return 0;
1165 
1166 	if (!integrity_profile_exists(dm_disk(md))) {
1167 		t->integrity_supported = true;
1168 		/*
1169 		 * Register integrity profile during table load; we can do
1170 		 * this because the final profile must match during resume.
1171 		 */
1172 		blk_integrity_register(dm_disk(md),
1173 				       blk_get_integrity(template_disk));
1174 		return 0;
1175 	}
1176 
1177 	/*
1178 	 * If DM device already has an initialized integrity
1179 	 * profile the new profile should not conflict.
1180 	 */
1181 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1182 		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1183 		      dm_device_name(t->md),
1184 		      template_disk->disk_name);
1185 		return 1;
1186 	}
1187 
1188 	/* Preserve existing integrity profile */
1189 	t->integrity_supported = true;
1190 	return 0;
1191 }
1192 
1193 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1194 
1195 struct dm_crypto_profile {
1196 	struct blk_crypto_profile profile;
1197 	struct mapped_device *md;
1198 };
1199 
1200 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1201 				     sector_t start, sector_t len, void *data)
1202 {
1203 	const struct blk_crypto_key *key = data;
1204 
1205 	blk_crypto_evict_key(dev->bdev, key);
1206 	return 0;
1207 }
1208 
1209 /*
1210  * When an inline encryption key is evicted from a device-mapper device, evict
1211  * it from all the underlying devices.
1212  */
1213 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1214 			    const struct blk_crypto_key *key, unsigned int slot)
1215 {
1216 	struct mapped_device *md =
1217 		container_of(profile, struct dm_crypto_profile, profile)->md;
1218 	struct dm_table *t;
1219 	int srcu_idx;
1220 
1221 	t = dm_get_live_table(md, &srcu_idx);
1222 	if (!t)
1223 		return 0;
1224 
1225 	for (unsigned int i = 0; i < t->num_targets; i++) {
1226 		struct dm_target *ti = dm_table_get_target(t, i);
1227 
1228 		if (!ti->type->iterate_devices)
1229 			continue;
1230 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1231 					  (void *)key);
1232 	}
1233 
1234 	dm_put_live_table(md, srcu_idx);
1235 	return 0;
1236 }
1237 
1238 static int
1239 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1240 				     sector_t start, sector_t len, void *data)
1241 {
1242 	struct blk_crypto_profile *parent = data;
1243 	struct blk_crypto_profile *child =
1244 		bdev_get_queue(dev->bdev)->crypto_profile;
1245 
1246 	blk_crypto_intersect_capabilities(parent, child);
1247 	return 0;
1248 }
1249 
1250 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1251 {
1252 	struct dm_crypto_profile *dmcp = container_of(profile,
1253 						      struct dm_crypto_profile,
1254 						      profile);
1255 
1256 	if (!profile)
1257 		return;
1258 
1259 	blk_crypto_profile_destroy(profile);
1260 	kfree(dmcp);
1261 }
1262 
1263 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1264 {
1265 	dm_destroy_crypto_profile(t->crypto_profile);
1266 	t->crypto_profile = NULL;
1267 }
1268 
1269 /*
1270  * Constructs and initializes t->crypto_profile with a crypto profile that
1271  * represents the common set of crypto capabilities of the devices described by
1272  * the dm_table.  However, if the constructed crypto profile doesn't support all
1273  * crypto capabilities that are supported by the current mapped_device, it
1274  * returns an error instead, since we don't support removing crypto capabilities
1275  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1276  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1277  */
1278 static int dm_table_construct_crypto_profile(struct dm_table *t)
1279 {
1280 	struct dm_crypto_profile *dmcp;
1281 	struct blk_crypto_profile *profile;
1282 	unsigned int i;
1283 	bool empty_profile = true;
1284 
1285 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1286 	if (!dmcp)
1287 		return -ENOMEM;
1288 	dmcp->md = t->md;
1289 
1290 	profile = &dmcp->profile;
1291 	blk_crypto_profile_init(profile, 0);
1292 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1293 	profile->max_dun_bytes_supported = UINT_MAX;
1294 	memset(profile->modes_supported, 0xFF,
1295 	       sizeof(profile->modes_supported));
1296 
1297 	for (i = 0; i < t->num_targets; i++) {
1298 		struct dm_target *ti = dm_table_get_target(t, i);
1299 
1300 		if (!dm_target_passes_crypto(ti->type)) {
1301 			blk_crypto_intersect_capabilities(profile, NULL);
1302 			break;
1303 		}
1304 		if (!ti->type->iterate_devices)
1305 			continue;
1306 		ti->type->iterate_devices(ti,
1307 					  device_intersect_crypto_capabilities,
1308 					  profile);
1309 	}
1310 
1311 	if (t->md->queue &&
1312 	    !blk_crypto_has_capabilities(profile,
1313 					 t->md->queue->crypto_profile)) {
1314 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1315 		dm_destroy_crypto_profile(profile);
1316 		return -EINVAL;
1317 	}
1318 
1319 	/*
1320 	 * If the new profile doesn't actually support any crypto capabilities,
1321 	 * we may as well represent it with a NULL profile.
1322 	 */
1323 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1324 		if (profile->modes_supported[i]) {
1325 			empty_profile = false;
1326 			break;
1327 		}
1328 	}
1329 
1330 	if (empty_profile) {
1331 		dm_destroy_crypto_profile(profile);
1332 		profile = NULL;
1333 	}
1334 
1335 	/*
1336 	 * t->crypto_profile is only set temporarily while the table is being
1337 	 * set up, and it gets set to NULL after the profile has been
1338 	 * transferred to the request_queue.
1339 	 */
1340 	t->crypto_profile = profile;
1341 
1342 	return 0;
1343 }
1344 
1345 static void dm_update_crypto_profile(struct request_queue *q,
1346 				     struct dm_table *t)
1347 {
1348 	if (!t->crypto_profile)
1349 		return;
1350 
1351 	/* Make the crypto profile less restrictive. */
1352 	if (!q->crypto_profile) {
1353 		blk_crypto_register(t->crypto_profile, q);
1354 	} else {
1355 		blk_crypto_update_capabilities(q->crypto_profile,
1356 					       t->crypto_profile);
1357 		dm_destroy_crypto_profile(t->crypto_profile);
1358 	}
1359 	t->crypto_profile = NULL;
1360 }
1361 
1362 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1363 
1364 static int dm_table_construct_crypto_profile(struct dm_table *t)
1365 {
1366 	return 0;
1367 }
1368 
1369 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1370 {
1371 }
1372 
1373 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1374 {
1375 }
1376 
1377 static void dm_update_crypto_profile(struct request_queue *q,
1378 				     struct dm_table *t)
1379 {
1380 }
1381 
1382 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1383 
1384 /*
1385  * Prepares the table for use by building the indices,
1386  * setting the type, and allocating mempools.
1387  */
1388 int dm_table_complete(struct dm_table *t)
1389 {
1390 	int r;
1391 
1392 	r = dm_table_determine_type(t);
1393 	if (r) {
1394 		DMERR("unable to determine table type");
1395 		return r;
1396 	}
1397 
1398 	r = dm_table_build_index(t);
1399 	if (r) {
1400 		DMERR("unable to build btrees");
1401 		return r;
1402 	}
1403 
1404 	r = dm_table_register_integrity(t);
1405 	if (r) {
1406 		DMERR("could not register integrity profile.");
1407 		return r;
1408 	}
1409 
1410 	r = dm_table_construct_crypto_profile(t);
1411 	if (r) {
1412 		DMERR("could not construct crypto profile.");
1413 		return r;
1414 	}
1415 
1416 	r = dm_table_alloc_md_mempools(t, t->md);
1417 	if (r)
1418 		DMERR("unable to allocate mempools");
1419 
1420 	return r;
1421 }
1422 
1423 static DEFINE_MUTEX(_event_lock);
1424 void dm_table_event_callback(struct dm_table *t,
1425 			     void (*fn)(void *), void *context)
1426 {
1427 	mutex_lock(&_event_lock);
1428 	t->event_fn = fn;
1429 	t->event_context = context;
1430 	mutex_unlock(&_event_lock);
1431 }
1432 
1433 void dm_table_event(struct dm_table *t)
1434 {
1435 	mutex_lock(&_event_lock);
1436 	if (t->event_fn)
1437 		t->event_fn(t->event_context);
1438 	mutex_unlock(&_event_lock);
1439 }
1440 EXPORT_SYMBOL(dm_table_event);
1441 
1442 inline sector_t dm_table_get_size(struct dm_table *t)
1443 {
1444 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1445 }
1446 EXPORT_SYMBOL(dm_table_get_size);
1447 
1448 /*
1449  * Search the btree for the correct target.
1450  *
1451  * Caller should check returned pointer for NULL
1452  * to trap I/O beyond end of device.
1453  */
1454 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1455 {
1456 	unsigned int l, n = 0, k = 0;
1457 	sector_t *node;
1458 
1459 	if (unlikely(sector >= dm_table_get_size(t)))
1460 		return NULL;
1461 
1462 	for (l = 0; l < t->depth; l++) {
1463 		n = get_child(n, k);
1464 		node = get_node(t, l, n);
1465 
1466 		for (k = 0; k < KEYS_PER_NODE; k++)
1467 			if (node[k] >= sector)
1468 				break;
1469 	}
1470 
1471 	return &t->targets[(KEYS_PER_NODE * n) + k];
1472 }
1473 
1474 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1475 				   sector_t start, sector_t len, void *data)
1476 {
1477 	struct request_queue *q = bdev_get_queue(dev->bdev);
1478 
1479 	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1480 }
1481 
1482 /*
1483  * type->iterate_devices() should be called when the sanity check needs to
1484  * iterate and check all underlying data devices. iterate_devices() will
1485  * iterate all underlying data devices until it encounters a non-zero return
1486  * code, returned by whether the input iterate_devices_callout_fn, or
1487  * iterate_devices() itself internally.
1488  *
1489  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1490  * iterate multiple underlying devices internally, in which case a non-zero
1491  * return code returned by iterate_devices_callout_fn will stop the iteration
1492  * in advance.
1493  *
1494  * Cases requiring _any_ underlying device supporting some kind of attribute,
1495  * should use the iteration structure like dm_table_any_dev_attr(), or call
1496  * it directly. @func should handle semantics of positive examples, e.g.
1497  * capable of something.
1498  *
1499  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1500  * should use the iteration structure like dm_table_supports_nowait() or
1501  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1502  * uses an @anti_func that handle semantics of counter examples, e.g. not
1503  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1504  */
1505 static bool dm_table_any_dev_attr(struct dm_table *t,
1506 				  iterate_devices_callout_fn func, void *data)
1507 {
1508 	for (unsigned int i = 0; i < t->num_targets; i++) {
1509 		struct dm_target *ti = dm_table_get_target(t, i);
1510 
1511 		if (ti->type->iterate_devices &&
1512 		    ti->type->iterate_devices(ti, func, data))
1513 			return true;
1514 	}
1515 
1516 	return false;
1517 }
1518 
1519 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1520 			sector_t start, sector_t len, void *data)
1521 {
1522 	unsigned int *num_devices = data;
1523 
1524 	(*num_devices)++;
1525 
1526 	return 0;
1527 }
1528 
1529 static bool dm_table_supports_poll(struct dm_table *t)
1530 {
1531 	for (unsigned int i = 0; i < t->num_targets; i++) {
1532 		struct dm_target *ti = dm_table_get_target(t, i);
1533 
1534 		if (!ti->type->iterate_devices ||
1535 		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1536 			return false;
1537 	}
1538 
1539 	return true;
1540 }
1541 
1542 /*
1543  * Check whether a table has no data devices attached using each
1544  * target's iterate_devices method.
1545  * Returns false if the result is unknown because a target doesn't
1546  * support iterate_devices.
1547  */
1548 bool dm_table_has_no_data_devices(struct dm_table *t)
1549 {
1550 	for (unsigned int i = 0; i < t->num_targets; i++) {
1551 		struct dm_target *ti = dm_table_get_target(t, i);
1552 		unsigned int num_devices = 0;
1553 
1554 		if (!ti->type->iterate_devices)
1555 			return false;
1556 
1557 		ti->type->iterate_devices(ti, count_device, &num_devices);
1558 		if (num_devices)
1559 			return false;
1560 	}
1561 
1562 	return true;
1563 }
1564 
1565 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1566 				  sector_t start, sector_t len, void *data)
1567 {
1568 	struct request_queue *q = bdev_get_queue(dev->bdev);
1569 	enum blk_zoned_model *zoned_model = data;
1570 
1571 	return blk_queue_zoned_model(q) != *zoned_model;
1572 }
1573 
1574 /*
1575  * Check the device zoned model based on the target feature flag. If the target
1576  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1577  * also accepted but all devices must have the same zoned model. If the target
1578  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1579  * zoned model with all zoned devices having the same zone size.
1580  */
1581 static bool dm_table_supports_zoned_model(struct dm_table *t,
1582 					  enum blk_zoned_model zoned_model)
1583 {
1584 	for (unsigned int i = 0; i < t->num_targets; i++) {
1585 		struct dm_target *ti = dm_table_get_target(t, i);
1586 
1587 		if (dm_target_supports_zoned_hm(ti->type)) {
1588 			if (!ti->type->iterate_devices ||
1589 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1590 						      &zoned_model))
1591 				return false;
1592 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1593 			if (zoned_model == BLK_ZONED_HM)
1594 				return false;
1595 		}
1596 	}
1597 
1598 	return true;
1599 }
1600 
1601 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1602 					   sector_t start, sector_t len, void *data)
1603 {
1604 	unsigned int *zone_sectors = data;
1605 
1606 	if (!bdev_is_zoned(dev->bdev))
1607 		return 0;
1608 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1609 }
1610 
1611 /*
1612  * Check consistency of zoned model and zone sectors across all targets. For
1613  * zone sectors, if the destination device is a zoned block device, it shall
1614  * have the specified zone_sectors.
1615  */
1616 static int validate_hardware_zoned_model(struct dm_table *t,
1617 					 enum blk_zoned_model zoned_model,
1618 					 unsigned int zone_sectors)
1619 {
1620 	if (zoned_model == BLK_ZONED_NONE)
1621 		return 0;
1622 
1623 	if (!dm_table_supports_zoned_model(t, zoned_model)) {
1624 		DMERR("%s: zoned model is not consistent across all devices",
1625 		      dm_device_name(t->md));
1626 		return -EINVAL;
1627 	}
1628 
1629 	/* Check zone size validity and compatibility */
1630 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1631 		return -EINVAL;
1632 
1633 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1634 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1635 		      dm_device_name(t->md));
1636 		return -EINVAL;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 /*
1643  * Establish the new table's queue_limits and validate them.
1644  */
1645 int dm_calculate_queue_limits(struct dm_table *t,
1646 			      struct queue_limits *limits)
1647 {
1648 	struct queue_limits ti_limits;
1649 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1650 	unsigned int zone_sectors = 0;
1651 
1652 	blk_set_stacking_limits(limits);
1653 
1654 	for (unsigned int i = 0; i < t->num_targets; i++) {
1655 		struct dm_target *ti = dm_table_get_target(t, i);
1656 
1657 		blk_set_stacking_limits(&ti_limits);
1658 
1659 		if (!ti->type->iterate_devices) {
1660 			/* Set I/O hints portion of queue limits */
1661 			if (ti->type->io_hints)
1662 				ti->type->io_hints(ti, &ti_limits);
1663 			goto combine_limits;
1664 		}
1665 
1666 		/*
1667 		 * Combine queue limits of all the devices this target uses.
1668 		 */
1669 		ti->type->iterate_devices(ti, dm_set_device_limits,
1670 					  &ti_limits);
1671 
1672 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1673 			/*
1674 			 * After stacking all limits, validate all devices
1675 			 * in table support this zoned model and zone sectors.
1676 			 */
1677 			zoned_model = ti_limits.zoned;
1678 			zone_sectors = ti_limits.chunk_sectors;
1679 		}
1680 
1681 		/* Set I/O hints portion of queue limits */
1682 		if (ti->type->io_hints)
1683 			ti->type->io_hints(ti, &ti_limits);
1684 
1685 		/*
1686 		 * Check each device area is consistent with the target's
1687 		 * overall queue limits.
1688 		 */
1689 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1690 					      &ti_limits))
1691 			return -EINVAL;
1692 
1693 combine_limits:
1694 		/*
1695 		 * Merge this target's queue limits into the overall limits
1696 		 * for the table.
1697 		 */
1698 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1699 			DMWARN("%s: adding target device (start sect %llu len %llu) "
1700 			       "caused an alignment inconsistency",
1701 			       dm_device_name(t->md),
1702 			       (unsigned long long) ti->begin,
1703 			       (unsigned long long) ti->len);
1704 	}
1705 
1706 	/*
1707 	 * Verify that the zoned model and zone sectors, as determined before
1708 	 * any .io_hints override, are the same across all devices in the table.
1709 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1710 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1711 	 * BUT...
1712 	 */
1713 	if (limits->zoned != BLK_ZONED_NONE) {
1714 		/*
1715 		 * ...IF the above limits stacking determined a zoned model
1716 		 * validate that all of the table's devices conform to it.
1717 		 */
1718 		zoned_model = limits->zoned;
1719 		zone_sectors = limits->chunk_sectors;
1720 	}
1721 	if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1722 		return -EINVAL;
1723 
1724 	return validate_hardware_logical_block_alignment(t, limits);
1725 }
1726 
1727 /*
1728  * Verify that all devices have an integrity profile that matches the
1729  * DM device's registered integrity profile.  If the profiles don't
1730  * match then unregister the DM device's integrity profile.
1731  */
1732 static void dm_table_verify_integrity(struct dm_table *t)
1733 {
1734 	struct gendisk *template_disk = NULL;
1735 
1736 	if (t->integrity_added)
1737 		return;
1738 
1739 	if (t->integrity_supported) {
1740 		/*
1741 		 * Verify that the original integrity profile
1742 		 * matches all the devices in this table.
1743 		 */
1744 		template_disk = dm_table_get_integrity_disk(t);
1745 		if (template_disk &&
1746 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1747 			return;
1748 	}
1749 
1750 	if (integrity_profile_exists(dm_disk(t->md))) {
1751 		DMWARN("%s: unable to establish an integrity profile",
1752 		       dm_device_name(t->md));
1753 		blk_integrity_unregister(dm_disk(t->md));
1754 	}
1755 }
1756 
1757 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1758 				sector_t start, sector_t len, void *data)
1759 {
1760 	unsigned long flush = (unsigned long) data;
1761 	struct request_queue *q = bdev_get_queue(dev->bdev);
1762 
1763 	return (q->queue_flags & flush);
1764 }
1765 
1766 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1767 {
1768 	/*
1769 	 * Require at least one underlying device to support flushes.
1770 	 * t->devices includes internal dm devices such as mirror logs
1771 	 * so we need to use iterate_devices here, which targets
1772 	 * supporting flushes must provide.
1773 	 */
1774 	for (unsigned int i = 0; i < t->num_targets; i++) {
1775 		struct dm_target *ti = dm_table_get_target(t, i);
1776 
1777 		if (!ti->num_flush_bios)
1778 			continue;
1779 
1780 		if (ti->flush_supported)
1781 			return true;
1782 
1783 		if (ti->type->iterate_devices &&
1784 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1785 			return true;
1786 	}
1787 
1788 	return false;
1789 }
1790 
1791 static int device_dax_write_cache_enabled(struct dm_target *ti,
1792 					  struct dm_dev *dev, sector_t start,
1793 					  sector_t len, void *data)
1794 {
1795 	struct dax_device *dax_dev = dev->dax_dev;
1796 
1797 	if (!dax_dev)
1798 		return false;
1799 
1800 	if (dax_write_cache_enabled(dax_dev))
1801 		return true;
1802 	return false;
1803 }
1804 
1805 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1806 				sector_t start, sector_t len, void *data)
1807 {
1808 	return !bdev_nonrot(dev->bdev);
1809 }
1810 
1811 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1812 			     sector_t start, sector_t len, void *data)
1813 {
1814 	struct request_queue *q = bdev_get_queue(dev->bdev);
1815 
1816 	return !blk_queue_add_random(q);
1817 }
1818 
1819 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1820 					   sector_t start, sector_t len, void *data)
1821 {
1822 	struct request_queue *q = bdev_get_queue(dev->bdev);
1823 
1824 	return !q->limits.max_write_zeroes_sectors;
1825 }
1826 
1827 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1828 {
1829 	for (unsigned int i = 0; i < t->num_targets; i++) {
1830 		struct dm_target *ti = dm_table_get_target(t, i);
1831 
1832 		if (!ti->num_write_zeroes_bios)
1833 			return false;
1834 
1835 		if (!ti->type->iterate_devices ||
1836 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1837 			return false;
1838 	}
1839 
1840 	return true;
1841 }
1842 
1843 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1844 				     sector_t start, sector_t len, void *data)
1845 {
1846 	return !bdev_nowait(dev->bdev);
1847 }
1848 
1849 static bool dm_table_supports_nowait(struct dm_table *t)
1850 {
1851 	for (unsigned int i = 0; i < t->num_targets; i++) {
1852 		struct dm_target *ti = dm_table_get_target(t, i);
1853 
1854 		if (!dm_target_supports_nowait(ti->type))
1855 			return false;
1856 
1857 		if (!ti->type->iterate_devices ||
1858 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1859 			return false;
1860 	}
1861 
1862 	return true;
1863 }
1864 
1865 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1866 				      sector_t start, sector_t len, void *data)
1867 {
1868 	return !bdev_max_discard_sectors(dev->bdev);
1869 }
1870 
1871 static bool dm_table_supports_discards(struct dm_table *t)
1872 {
1873 	for (unsigned int i = 0; i < t->num_targets; i++) {
1874 		struct dm_target *ti = dm_table_get_target(t, i);
1875 
1876 		if (!ti->num_discard_bios)
1877 			return false;
1878 
1879 		/*
1880 		 * Either the target provides discard support (as implied by setting
1881 		 * 'discards_supported') or it relies on _all_ data devices having
1882 		 * discard support.
1883 		 */
1884 		if (!ti->discards_supported &&
1885 		    (!ti->type->iterate_devices ||
1886 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1887 			return false;
1888 	}
1889 
1890 	return true;
1891 }
1892 
1893 static int device_not_secure_erase_capable(struct dm_target *ti,
1894 					   struct dm_dev *dev, sector_t start,
1895 					   sector_t len, void *data)
1896 {
1897 	return !bdev_max_secure_erase_sectors(dev->bdev);
1898 }
1899 
1900 static bool dm_table_supports_secure_erase(struct dm_table *t)
1901 {
1902 	for (unsigned int i = 0; i < t->num_targets; i++) {
1903 		struct dm_target *ti = dm_table_get_target(t, i);
1904 
1905 		if (!ti->num_secure_erase_bios)
1906 			return false;
1907 
1908 		if (!ti->type->iterate_devices ||
1909 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1910 			return false;
1911 	}
1912 
1913 	return true;
1914 }
1915 
1916 static int device_requires_stable_pages(struct dm_target *ti,
1917 					struct dm_dev *dev, sector_t start,
1918 					sector_t len, void *data)
1919 {
1920 	return bdev_stable_writes(dev->bdev);
1921 }
1922 
1923 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1924 			      struct queue_limits *limits)
1925 {
1926 	bool wc = false, fua = false;
1927 	int r;
1928 
1929 	/*
1930 	 * Copy table's limits to the DM device's request_queue
1931 	 */
1932 	q->limits = *limits;
1933 
1934 	if (dm_table_supports_nowait(t))
1935 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1936 	else
1937 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1938 
1939 	if (!dm_table_supports_discards(t)) {
1940 		q->limits.max_discard_sectors = 0;
1941 		q->limits.max_hw_discard_sectors = 0;
1942 		q->limits.discard_granularity = 0;
1943 		q->limits.discard_alignment = 0;
1944 		q->limits.discard_misaligned = 0;
1945 	}
1946 
1947 	if (!dm_table_supports_secure_erase(t))
1948 		q->limits.max_secure_erase_sectors = 0;
1949 
1950 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1951 		wc = true;
1952 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1953 			fua = true;
1954 	}
1955 	blk_queue_write_cache(q, wc, fua);
1956 
1957 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1958 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1959 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1960 			set_dax_synchronous(t->md->dax_dev);
1961 	} else
1962 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1963 
1964 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1965 		dax_write_cache(t->md->dax_dev, true);
1966 
1967 	/* Ensure that all underlying devices are non-rotational. */
1968 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1969 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1970 	else
1971 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1972 
1973 	if (!dm_table_supports_write_zeroes(t))
1974 		q->limits.max_write_zeroes_sectors = 0;
1975 
1976 	dm_table_verify_integrity(t);
1977 
1978 	/*
1979 	 * Some devices don't use blk_integrity but still want stable pages
1980 	 * because they do their own checksumming.
1981 	 * If any underlying device requires stable pages, a table must require
1982 	 * them as well.  Only targets that support iterate_devices are considered:
1983 	 * don't want error, zero, etc to require stable pages.
1984 	 */
1985 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
1986 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1987 	else
1988 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1989 
1990 	/*
1991 	 * Determine whether or not this queue's I/O timings contribute
1992 	 * to the entropy pool, Only request-based targets use this.
1993 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1994 	 * have it set.
1995 	 */
1996 	if (blk_queue_add_random(q) &&
1997 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
1998 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1999 
2000 	/*
2001 	 * For a zoned target, setup the zones related queue attributes
2002 	 * and resources necessary for zone append emulation if necessary.
2003 	 */
2004 	if (blk_queue_is_zoned(q)) {
2005 		r = dm_set_zones_restrictions(t, q);
2006 		if (r)
2007 			return r;
2008 		if (!static_key_enabled(&zoned_enabled.key))
2009 			static_branch_enable(&zoned_enabled);
2010 	}
2011 
2012 	dm_update_crypto_profile(q, t);
2013 	disk_update_readahead(t->md->disk);
2014 
2015 	/*
2016 	 * Check for request-based device is left to
2017 	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2018 	 *
2019 	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2020 	 * underlying devices supporting polling.
2021 	 */
2022 	if (__table_type_bio_based(t->type)) {
2023 		if (dm_table_supports_poll(t))
2024 			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2025 		else
2026 			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 struct list_head *dm_table_get_devices(struct dm_table *t)
2033 {
2034 	return &t->devices;
2035 }
2036 
2037 blk_mode_t dm_table_get_mode(struct dm_table *t)
2038 {
2039 	return t->mode;
2040 }
2041 EXPORT_SYMBOL(dm_table_get_mode);
2042 
2043 enum suspend_mode {
2044 	PRESUSPEND,
2045 	PRESUSPEND_UNDO,
2046 	POSTSUSPEND,
2047 };
2048 
2049 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2050 {
2051 	lockdep_assert_held(&t->md->suspend_lock);
2052 
2053 	for (unsigned int i = 0; i < t->num_targets; i++) {
2054 		struct dm_target *ti = dm_table_get_target(t, i);
2055 
2056 		switch (mode) {
2057 		case PRESUSPEND:
2058 			if (ti->type->presuspend)
2059 				ti->type->presuspend(ti);
2060 			break;
2061 		case PRESUSPEND_UNDO:
2062 			if (ti->type->presuspend_undo)
2063 				ti->type->presuspend_undo(ti);
2064 			break;
2065 		case POSTSUSPEND:
2066 			if (ti->type->postsuspend)
2067 				ti->type->postsuspend(ti);
2068 			break;
2069 		}
2070 	}
2071 }
2072 
2073 void dm_table_presuspend_targets(struct dm_table *t)
2074 {
2075 	if (!t)
2076 		return;
2077 
2078 	suspend_targets(t, PRESUSPEND);
2079 }
2080 
2081 void dm_table_presuspend_undo_targets(struct dm_table *t)
2082 {
2083 	if (!t)
2084 		return;
2085 
2086 	suspend_targets(t, PRESUSPEND_UNDO);
2087 }
2088 
2089 void dm_table_postsuspend_targets(struct dm_table *t)
2090 {
2091 	if (!t)
2092 		return;
2093 
2094 	suspend_targets(t, POSTSUSPEND);
2095 }
2096 
2097 int dm_table_resume_targets(struct dm_table *t)
2098 {
2099 	unsigned int i;
2100 	int r = 0;
2101 
2102 	lockdep_assert_held(&t->md->suspend_lock);
2103 
2104 	for (i = 0; i < t->num_targets; i++) {
2105 		struct dm_target *ti = dm_table_get_target(t, i);
2106 
2107 		if (!ti->type->preresume)
2108 			continue;
2109 
2110 		r = ti->type->preresume(ti);
2111 		if (r) {
2112 			DMERR("%s: %s: preresume failed, error = %d",
2113 			      dm_device_name(t->md), ti->type->name, r);
2114 			return r;
2115 		}
2116 	}
2117 
2118 	for (i = 0; i < t->num_targets; i++) {
2119 		struct dm_target *ti = dm_table_get_target(t, i);
2120 
2121 		if (ti->type->resume)
2122 			ti->type->resume(ti);
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 struct mapped_device *dm_table_get_md(struct dm_table *t)
2129 {
2130 	return t->md;
2131 }
2132 EXPORT_SYMBOL(dm_table_get_md);
2133 
2134 const char *dm_table_device_name(struct dm_table *t)
2135 {
2136 	return dm_device_name(t->md);
2137 }
2138 EXPORT_SYMBOL_GPL(dm_table_device_name);
2139 
2140 void dm_table_run_md_queue_async(struct dm_table *t)
2141 {
2142 	if (!dm_table_request_based(t))
2143 		return;
2144 
2145 	if (t->md->queue)
2146 		blk_mq_run_hw_queues(t->md->queue, true);
2147 }
2148 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2149 
2150