xref: /openbmc/linux/drivers/md/dm-table.c (revision 7dd65feb)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	/*
58 	 * Indicates the rw permissions for the new logical
59 	 * device.  This should be a combination of FMODE_READ
60 	 * and FMODE_WRITE.
61 	 */
62 	fmode_t mode;
63 
64 	/* a list of devices used by this table */
65 	struct list_head devices;
66 
67 	/* events get handed up using this callback */
68 	void (*event_fn)(void *);
69 	void *event_context;
70 
71 	struct dm_md_mempools *mempools;
72 };
73 
74 /*
75  * Similar to ceiling(log_size(n))
76  */
77 static unsigned int int_log(unsigned int n, unsigned int base)
78 {
79 	int result = 0;
80 
81 	while (n > 1) {
82 		n = dm_div_up(n, base);
83 		result++;
84 	}
85 
86 	return result;
87 }
88 
89 /*
90  * Calculate the index of the child node of the n'th node k'th key.
91  */
92 static inline unsigned int get_child(unsigned int n, unsigned int k)
93 {
94 	return (n * CHILDREN_PER_NODE) + k;
95 }
96 
97 /*
98  * Return the n'th node of level l from table t.
99  */
100 static inline sector_t *get_node(struct dm_table *t,
101 				 unsigned int l, unsigned int n)
102 {
103 	return t->index[l] + (n * KEYS_PER_NODE);
104 }
105 
106 /*
107  * Return the highest key that you could lookup from the n'th
108  * node on level l of the btree.
109  */
110 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
111 {
112 	for (; l < t->depth - 1; l++)
113 		n = get_child(n, CHILDREN_PER_NODE - 1);
114 
115 	if (n >= t->counts[l])
116 		return (sector_t) - 1;
117 
118 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
119 }
120 
121 /*
122  * Fills in a level of the btree based on the highs of the level
123  * below it.
124  */
125 static int setup_btree_index(unsigned int l, struct dm_table *t)
126 {
127 	unsigned int n, k;
128 	sector_t *node;
129 
130 	for (n = 0U; n < t->counts[l]; n++) {
131 		node = get_node(t, l, n);
132 
133 		for (k = 0U; k < KEYS_PER_NODE; k++)
134 			node[k] = high(t, l + 1, get_child(n, k));
135 	}
136 
137 	return 0;
138 }
139 
140 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
141 {
142 	unsigned long size;
143 	void *addr;
144 
145 	/*
146 	 * Check that we're not going to overflow.
147 	 */
148 	if (nmemb > (ULONG_MAX / elem_size))
149 		return NULL;
150 
151 	size = nmemb * elem_size;
152 	addr = vmalloc(size);
153 	if (addr)
154 		memset(addr, 0, size);
155 
156 	return addr;
157 }
158 
159 /*
160  * highs, and targets are managed as dynamic arrays during a
161  * table load.
162  */
163 static int alloc_targets(struct dm_table *t, unsigned int num)
164 {
165 	sector_t *n_highs;
166 	struct dm_target *n_targets;
167 	int n = t->num_targets;
168 
169 	/*
170 	 * Allocate both the target array and offset array at once.
171 	 * Append an empty entry to catch sectors beyond the end of
172 	 * the device.
173 	 */
174 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
175 					  sizeof(sector_t));
176 	if (!n_highs)
177 		return -ENOMEM;
178 
179 	n_targets = (struct dm_target *) (n_highs + num);
180 
181 	if (n) {
182 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
183 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
184 	}
185 
186 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
187 	vfree(t->highs);
188 
189 	t->num_allocated = num;
190 	t->highs = n_highs;
191 	t->targets = n_targets;
192 
193 	return 0;
194 }
195 
196 int dm_table_create(struct dm_table **result, fmode_t mode,
197 		    unsigned num_targets, struct mapped_device *md)
198 {
199 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
200 
201 	if (!t)
202 		return -ENOMEM;
203 
204 	INIT_LIST_HEAD(&t->devices);
205 	atomic_set(&t->holders, 0);
206 
207 	if (!num_targets)
208 		num_targets = KEYS_PER_NODE;
209 
210 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
211 
212 	if (alloc_targets(t, num_targets)) {
213 		kfree(t);
214 		t = NULL;
215 		return -ENOMEM;
216 	}
217 
218 	t->mode = mode;
219 	t->md = md;
220 	*result = t;
221 	return 0;
222 }
223 
224 static void free_devices(struct list_head *devices)
225 {
226 	struct list_head *tmp, *next;
227 
228 	list_for_each_safe(tmp, next, devices) {
229 		struct dm_dev_internal *dd =
230 		    list_entry(tmp, struct dm_dev_internal, list);
231 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
232 		       dd->dm_dev.name);
233 		kfree(dd);
234 	}
235 }
236 
237 void dm_table_destroy(struct dm_table *t)
238 {
239 	unsigned int i;
240 
241 	if (!t)
242 		return;
243 
244 	while (atomic_read(&t->holders))
245 		msleep(1);
246 	smp_mb();
247 
248 	/* free the indexes (see dm_table_complete) */
249 	if (t->depth >= 2)
250 		vfree(t->index[t->depth - 2]);
251 
252 	/* free the targets */
253 	for (i = 0; i < t->num_targets; i++) {
254 		struct dm_target *tgt = t->targets + i;
255 
256 		if (tgt->type->dtr)
257 			tgt->type->dtr(tgt);
258 
259 		dm_put_target_type(tgt->type);
260 	}
261 
262 	vfree(t->highs);
263 
264 	/* free the device list */
265 	if (t->devices.next != &t->devices)
266 		free_devices(&t->devices);
267 
268 	dm_free_md_mempools(t->mempools);
269 
270 	kfree(t);
271 }
272 
273 void dm_table_get(struct dm_table *t)
274 {
275 	atomic_inc(&t->holders);
276 }
277 
278 void dm_table_put(struct dm_table *t)
279 {
280 	if (!t)
281 		return;
282 
283 	smp_mb__before_atomic_dec();
284 	atomic_dec(&t->holders);
285 }
286 
287 /*
288  * Checks to see if we need to extend highs or targets.
289  */
290 static inline int check_space(struct dm_table *t)
291 {
292 	if (t->num_targets >= t->num_allocated)
293 		return alloc_targets(t, t->num_allocated * 2);
294 
295 	return 0;
296 }
297 
298 /*
299  * See if we've already got a device in the list.
300  */
301 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
302 {
303 	struct dm_dev_internal *dd;
304 
305 	list_for_each_entry (dd, l, list)
306 		if (dd->dm_dev.bdev->bd_dev == dev)
307 			return dd;
308 
309 	return NULL;
310 }
311 
312 /*
313  * Open a device so we can use it as a map destination.
314  */
315 static int open_dev(struct dm_dev_internal *d, dev_t dev,
316 		    struct mapped_device *md)
317 {
318 	static char *_claim_ptr = "I belong to device-mapper";
319 	struct block_device *bdev;
320 
321 	int r;
322 
323 	BUG_ON(d->dm_dev.bdev);
324 
325 	bdev = open_by_devnum(dev, d->dm_dev.mode);
326 	if (IS_ERR(bdev))
327 		return PTR_ERR(bdev);
328 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
329 	if (r)
330 		blkdev_put(bdev, d->dm_dev.mode);
331 	else
332 		d->dm_dev.bdev = bdev;
333 	return r;
334 }
335 
336 /*
337  * Close a device that we've been using.
338  */
339 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
340 {
341 	if (!d->dm_dev.bdev)
342 		return;
343 
344 	bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
345 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
346 	d->dm_dev.bdev = NULL;
347 }
348 
349 /*
350  * If possible, this checks an area of a destination device is invalid.
351  */
352 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
353 				  sector_t start, sector_t len, void *data)
354 {
355 	struct queue_limits *limits = data;
356 	struct block_device *bdev = dev->bdev;
357 	sector_t dev_size =
358 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
359 	unsigned short logical_block_size_sectors =
360 		limits->logical_block_size >> SECTOR_SHIFT;
361 	char b[BDEVNAME_SIZE];
362 
363 	if (!dev_size)
364 		return 0;
365 
366 	if ((start >= dev_size) || (start + len > dev_size)) {
367 		DMWARN("%s: %s too small for target: "
368 		       "start=%llu, len=%llu, dev_size=%llu",
369 		       dm_device_name(ti->table->md), bdevname(bdev, b),
370 		       (unsigned long long)start,
371 		       (unsigned long long)len,
372 		       (unsigned long long)dev_size);
373 		return 1;
374 	}
375 
376 	if (logical_block_size_sectors <= 1)
377 		return 0;
378 
379 	if (start & (logical_block_size_sectors - 1)) {
380 		DMWARN("%s: start=%llu not aligned to h/w "
381 		       "logical block size %u of %s",
382 		       dm_device_name(ti->table->md),
383 		       (unsigned long long)start,
384 		       limits->logical_block_size, bdevname(bdev, b));
385 		return 1;
386 	}
387 
388 	if (len & (logical_block_size_sectors - 1)) {
389 		DMWARN("%s: len=%llu not aligned to h/w "
390 		       "logical block size %u of %s",
391 		       dm_device_name(ti->table->md),
392 		       (unsigned long long)len,
393 		       limits->logical_block_size, bdevname(bdev, b));
394 		return 1;
395 	}
396 
397 	return 0;
398 }
399 
400 /*
401  * This upgrades the mode on an already open dm_dev, being
402  * careful to leave things as they were if we fail to reopen the
403  * device and not to touch the existing bdev field in case
404  * it is accessed concurrently inside dm_table_any_congested().
405  */
406 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
407 			struct mapped_device *md)
408 {
409 	int r;
410 	struct dm_dev_internal dd_new, dd_old;
411 
412 	dd_new = dd_old = *dd;
413 
414 	dd_new.dm_dev.mode |= new_mode;
415 	dd_new.dm_dev.bdev = NULL;
416 
417 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
418 	if (r)
419 		return r;
420 
421 	dd->dm_dev.mode |= new_mode;
422 	close_dev(&dd_old, md);
423 
424 	return 0;
425 }
426 
427 /*
428  * Add a device to the list, or just increment the usage count if
429  * it's already present.
430  */
431 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
432 			      const char *path, sector_t start, sector_t len,
433 			      fmode_t mode, struct dm_dev **result)
434 {
435 	int r;
436 	dev_t uninitialized_var(dev);
437 	struct dm_dev_internal *dd;
438 	unsigned int major, minor;
439 
440 	BUG_ON(!t);
441 
442 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
443 		/* Extract the major/minor numbers */
444 		dev = MKDEV(major, minor);
445 		if (MAJOR(dev) != major || MINOR(dev) != minor)
446 			return -EOVERFLOW;
447 	} else {
448 		/* convert the path to a device */
449 		struct block_device *bdev = lookup_bdev(path);
450 
451 		if (IS_ERR(bdev))
452 			return PTR_ERR(bdev);
453 		dev = bdev->bd_dev;
454 		bdput(bdev);
455 	}
456 
457 	dd = find_device(&t->devices, dev);
458 	if (!dd) {
459 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
460 		if (!dd)
461 			return -ENOMEM;
462 
463 		dd->dm_dev.mode = mode;
464 		dd->dm_dev.bdev = NULL;
465 
466 		if ((r = open_dev(dd, dev, t->md))) {
467 			kfree(dd);
468 			return r;
469 		}
470 
471 		format_dev_t(dd->dm_dev.name, dev);
472 
473 		atomic_set(&dd->count, 0);
474 		list_add(&dd->list, &t->devices);
475 
476 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
477 		r = upgrade_mode(dd, mode, t->md);
478 		if (r)
479 			return r;
480 	}
481 	atomic_inc(&dd->count);
482 
483 	*result = &dd->dm_dev;
484 	return 0;
485 }
486 
487 /*
488  * Returns the minimum that is _not_ zero, unless both are zero.
489  */
490 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
491 
492 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
493 			 sector_t start, sector_t len, void *data)
494 {
495 	struct queue_limits *limits = data;
496 	struct block_device *bdev = dev->bdev;
497 	struct request_queue *q = bdev_get_queue(bdev);
498 	char b[BDEVNAME_SIZE];
499 
500 	if (unlikely(!q)) {
501 		DMWARN("%s: Cannot set limits for nonexistent device %s",
502 		       dm_device_name(ti->table->md), bdevname(bdev, b));
503 		return 0;
504 	}
505 
506 	if (blk_stack_limits(limits, &q->limits, start << 9) < 0)
507 		DMWARN("%s: target device %s is misaligned: "
508 		       "physical_block_size=%u, logical_block_size=%u, "
509 		       "alignment_offset=%u, start=%llu",
510 		       dm_device_name(ti->table->md), bdevname(bdev, b),
511 		       q->limits.physical_block_size,
512 		       q->limits.logical_block_size,
513 		       q->limits.alignment_offset,
514 		       (unsigned long long) start << 9);
515 
516 
517 	/*
518 	 * Check if merge fn is supported.
519 	 * If not we'll force DM to use PAGE_SIZE or
520 	 * smaller I/O, just to be safe.
521 	 */
522 
523 	if (q->merge_bvec_fn && !ti->type->merge)
524 		limits->max_sectors =
525 			min_not_zero(limits->max_sectors,
526 				     (unsigned int) (PAGE_SIZE >> 9));
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(dm_set_device_limits);
530 
531 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
532 		  sector_t len, fmode_t mode, struct dm_dev **result)
533 {
534 	return __table_get_device(ti->table, ti, path,
535 				  start, len, mode, result);
536 }
537 
538 
539 /*
540  * Decrement a devices use count and remove it if necessary.
541  */
542 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
543 {
544 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
545 						  dm_dev);
546 
547 	if (atomic_dec_and_test(&dd->count)) {
548 		close_dev(dd, ti->table->md);
549 		list_del(&dd->list);
550 		kfree(dd);
551 	}
552 }
553 
554 /*
555  * Checks to see if the target joins onto the end of the table.
556  */
557 static int adjoin(struct dm_table *table, struct dm_target *ti)
558 {
559 	struct dm_target *prev;
560 
561 	if (!table->num_targets)
562 		return !ti->begin;
563 
564 	prev = &table->targets[table->num_targets - 1];
565 	return (ti->begin == (prev->begin + prev->len));
566 }
567 
568 /*
569  * Used to dynamically allocate the arg array.
570  */
571 static char **realloc_argv(unsigned *array_size, char **old_argv)
572 {
573 	char **argv;
574 	unsigned new_size;
575 
576 	new_size = *array_size ? *array_size * 2 : 64;
577 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
578 	if (argv) {
579 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
580 		*array_size = new_size;
581 	}
582 
583 	kfree(old_argv);
584 	return argv;
585 }
586 
587 /*
588  * Destructively splits up the argument list to pass to ctr.
589  */
590 int dm_split_args(int *argc, char ***argvp, char *input)
591 {
592 	char *start, *end = input, *out, **argv = NULL;
593 	unsigned array_size = 0;
594 
595 	*argc = 0;
596 
597 	if (!input) {
598 		*argvp = NULL;
599 		return 0;
600 	}
601 
602 	argv = realloc_argv(&array_size, argv);
603 	if (!argv)
604 		return -ENOMEM;
605 
606 	while (1) {
607 		/* Skip whitespace */
608 		start = skip_spaces(end);
609 
610 		if (!*start)
611 			break;	/* success, we hit the end */
612 
613 		/* 'out' is used to remove any back-quotes */
614 		end = out = start;
615 		while (*end) {
616 			/* Everything apart from '\0' can be quoted */
617 			if (*end == '\\' && *(end + 1)) {
618 				*out++ = *(end + 1);
619 				end += 2;
620 				continue;
621 			}
622 
623 			if (isspace(*end))
624 				break;	/* end of token */
625 
626 			*out++ = *end++;
627 		}
628 
629 		/* have we already filled the array ? */
630 		if ((*argc + 1) > array_size) {
631 			argv = realloc_argv(&array_size, argv);
632 			if (!argv)
633 				return -ENOMEM;
634 		}
635 
636 		/* we know this is whitespace */
637 		if (*end)
638 			end++;
639 
640 		/* terminate the string and put it in the array */
641 		*out = '\0';
642 		argv[*argc] = start;
643 		(*argc)++;
644 	}
645 
646 	*argvp = argv;
647 	return 0;
648 }
649 
650 /*
651  * Impose necessary and sufficient conditions on a devices's table such
652  * that any incoming bio which respects its logical_block_size can be
653  * processed successfully.  If it falls across the boundary between
654  * two or more targets, the size of each piece it gets split into must
655  * be compatible with the logical_block_size of the target processing it.
656  */
657 static int validate_hardware_logical_block_alignment(struct dm_table *table,
658 						 struct queue_limits *limits)
659 {
660 	/*
661 	 * This function uses arithmetic modulo the logical_block_size
662 	 * (in units of 512-byte sectors).
663 	 */
664 	unsigned short device_logical_block_size_sects =
665 		limits->logical_block_size >> SECTOR_SHIFT;
666 
667 	/*
668 	 * Offset of the start of the next table entry, mod logical_block_size.
669 	 */
670 	unsigned short next_target_start = 0;
671 
672 	/*
673 	 * Given an aligned bio that extends beyond the end of a
674 	 * target, how many sectors must the next target handle?
675 	 */
676 	unsigned short remaining = 0;
677 
678 	struct dm_target *uninitialized_var(ti);
679 	struct queue_limits ti_limits;
680 	unsigned i = 0;
681 
682 	/*
683 	 * Check each entry in the table in turn.
684 	 */
685 	while (i < dm_table_get_num_targets(table)) {
686 		ti = dm_table_get_target(table, i++);
687 
688 		blk_set_default_limits(&ti_limits);
689 
690 		/* combine all target devices' limits */
691 		if (ti->type->iterate_devices)
692 			ti->type->iterate_devices(ti, dm_set_device_limits,
693 						  &ti_limits);
694 
695 		/*
696 		 * If the remaining sectors fall entirely within this
697 		 * table entry are they compatible with its logical_block_size?
698 		 */
699 		if (remaining < ti->len &&
700 		    remaining & ((ti_limits.logical_block_size >>
701 				  SECTOR_SHIFT) - 1))
702 			break;	/* Error */
703 
704 		next_target_start =
705 		    (unsigned short) ((next_target_start + ti->len) &
706 				      (device_logical_block_size_sects - 1));
707 		remaining = next_target_start ?
708 		    device_logical_block_size_sects - next_target_start : 0;
709 	}
710 
711 	if (remaining) {
712 		DMWARN("%s: table line %u (start sect %llu len %llu) "
713 		       "not aligned to h/w logical block size %u",
714 		       dm_device_name(table->md), i,
715 		       (unsigned long long) ti->begin,
716 		       (unsigned long long) ti->len,
717 		       limits->logical_block_size);
718 		return -EINVAL;
719 	}
720 
721 	return 0;
722 }
723 
724 int dm_table_add_target(struct dm_table *t, const char *type,
725 			sector_t start, sector_t len, char *params)
726 {
727 	int r = -EINVAL, argc;
728 	char **argv;
729 	struct dm_target *tgt;
730 
731 	if ((r = check_space(t)))
732 		return r;
733 
734 	tgt = t->targets + t->num_targets;
735 	memset(tgt, 0, sizeof(*tgt));
736 
737 	if (!len) {
738 		DMERR("%s: zero-length target", dm_device_name(t->md));
739 		return -EINVAL;
740 	}
741 
742 	tgt->type = dm_get_target_type(type);
743 	if (!tgt->type) {
744 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
745 		      type);
746 		return -EINVAL;
747 	}
748 
749 	tgt->table = t;
750 	tgt->begin = start;
751 	tgt->len = len;
752 	tgt->error = "Unknown error";
753 
754 	/*
755 	 * Does this target adjoin the previous one ?
756 	 */
757 	if (!adjoin(t, tgt)) {
758 		tgt->error = "Gap in table";
759 		r = -EINVAL;
760 		goto bad;
761 	}
762 
763 	r = dm_split_args(&argc, &argv, params);
764 	if (r) {
765 		tgt->error = "couldn't split parameters (insufficient memory)";
766 		goto bad;
767 	}
768 
769 	r = tgt->type->ctr(tgt, argc, argv);
770 	kfree(argv);
771 	if (r)
772 		goto bad;
773 
774 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
775 
776 	return 0;
777 
778  bad:
779 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
780 	dm_put_target_type(tgt->type);
781 	return r;
782 }
783 
784 int dm_table_set_type(struct dm_table *t)
785 {
786 	unsigned i;
787 	unsigned bio_based = 0, request_based = 0;
788 	struct dm_target *tgt;
789 	struct dm_dev_internal *dd;
790 	struct list_head *devices;
791 
792 	for (i = 0; i < t->num_targets; i++) {
793 		tgt = t->targets + i;
794 		if (dm_target_request_based(tgt))
795 			request_based = 1;
796 		else
797 			bio_based = 1;
798 
799 		if (bio_based && request_based) {
800 			DMWARN("Inconsistent table: different target types"
801 			       " can't be mixed up");
802 			return -EINVAL;
803 		}
804 	}
805 
806 	if (bio_based) {
807 		/* We must use this table as bio-based */
808 		t->type = DM_TYPE_BIO_BASED;
809 		return 0;
810 	}
811 
812 	BUG_ON(!request_based); /* No targets in this table */
813 
814 	/* Non-request-stackable devices can't be used for request-based dm */
815 	devices = dm_table_get_devices(t);
816 	list_for_each_entry(dd, devices, list) {
817 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
818 			DMWARN("table load rejected: including"
819 			       " non-request-stackable devices");
820 			return -EINVAL;
821 		}
822 	}
823 
824 	/*
825 	 * Request-based dm supports only tables that have a single target now.
826 	 * To support multiple targets, request splitting support is needed,
827 	 * and that needs lots of changes in the block-layer.
828 	 * (e.g. request completion process for partial completion.)
829 	 */
830 	if (t->num_targets > 1) {
831 		DMWARN("Request-based dm doesn't support multiple targets yet");
832 		return -EINVAL;
833 	}
834 
835 	t->type = DM_TYPE_REQUEST_BASED;
836 
837 	return 0;
838 }
839 
840 unsigned dm_table_get_type(struct dm_table *t)
841 {
842 	return t->type;
843 }
844 
845 bool dm_table_request_based(struct dm_table *t)
846 {
847 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
848 }
849 
850 int dm_table_alloc_md_mempools(struct dm_table *t)
851 {
852 	unsigned type = dm_table_get_type(t);
853 
854 	if (unlikely(type == DM_TYPE_NONE)) {
855 		DMWARN("no table type is set, can't allocate mempools");
856 		return -EINVAL;
857 	}
858 
859 	t->mempools = dm_alloc_md_mempools(type);
860 	if (!t->mempools)
861 		return -ENOMEM;
862 
863 	return 0;
864 }
865 
866 void dm_table_free_md_mempools(struct dm_table *t)
867 {
868 	dm_free_md_mempools(t->mempools);
869 	t->mempools = NULL;
870 }
871 
872 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
873 {
874 	return t->mempools;
875 }
876 
877 static int setup_indexes(struct dm_table *t)
878 {
879 	int i;
880 	unsigned int total = 0;
881 	sector_t *indexes;
882 
883 	/* allocate the space for *all* the indexes */
884 	for (i = t->depth - 2; i >= 0; i--) {
885 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
886 		total += t->counts[i];
887 	}
888 
889 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
890 	if (!indexes)
891 		return -ENOMEM;
892 
893 	/* set up internal nodes, bottom-up */
894 	for (i = t->depth - 2; i >= 0; i--) {
895 		t->index[i] = indexes;
896 		indexes += (KEYS_PER_NODE * t->counts[i]);
897 		setup_btree_index(i, t);
898 	}
899 
900 	return 0;
901 }
902 
903 /*
904  * Builds the btree to index the map.
905  */
906 int dm_table_complete(struct dm_table *t)
907 {
908 	int r = 0;
909 	unsigned int leaf_nodes;
910 
911 	/* how many indexes will the btree have ? */
912 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
913 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
914 
915 	/* leaf layer has already been set up */
916 	t->counts[t->depth - 1] = leaf_nodes;
917 	t->index[t->depth - 1] = t->highs;
918 
919 	if (t->depth >= 2)
920 		r = setup_indexes(t);
921 
922 	return r;
923 }
924 
925 static DEFINE_MUTEX(_event_lock);
926 void dm_table_event_callback(struct dm_table *t,
927 			     void (*fn)(void *), void *context)
928 {
929 	mutex_lock(&_event_lock);
930 	t->event_fn = fn;
931 	t->event_context = context;
932 	mutex_unlock(&_event_lock);
933 }
934 
935 void dm_table_event(struct dm_table *t)
936 {
937 	/*
938 	 * You can no longer call dm_table_event() from interrupt
939 	 * context, use a bottom half instead.
940 	 */
941 	BUG_ON(in_interrupt());
942 
943 	mutex_lock(&_event_lock);
944 	if (t->event_fn)
945 		t->event_fn(t->event_context);
946 	mutex_unlock(&_event_lock);
947 }
948 
949 sector_t dm_table_get_size(struct dm_table *t)
950 {
951 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
952 }
953 
954 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
955 {
956 	if (index >= t->num_targets)
957 		return NULL;
958 
959 	return t->targets + index;
960 }
961 
962 /*
963  * Search the btree for the correct target.
964  *
965  * Caller should check returned pointer with dm_target_is_valid()
966  * to trap I/O beyond end of device.
967  */
968 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
969 {
970 	unsigned int l, n = 0, k = 0;
971 	sector_t *node;
972 
973 	for (l = 0; l < t->depth; l++) {
974 		n = get_child(n, k);
975 		node = get_node(t, l, n);
976 
977 		for (k = 0; k < KEYS_PER_NODE; k++)
978 			if (node[k] >= sector)
979 				break;
980 	}
981 
982 	return &t->targets[(KEYS_PER_NODE * n) + k];
983 }
984 
985 /*
986  * Establish the new table's queue_limits and validate them.
987  */
988 int dm_calculate_queue_limits(struct dm_table *table,
989 			      struct queue_limits *limits)
990 {
991 	struct dm_target *uninitialized_var(ti);
992 	struct queue_limits ti_limits;
993 	unsigned i = 0;
994 
995 	blk_set_default_limits(limits);
996 
997 	while (i < dm_table_get_num_targets(table)) {
998 		blk_set_default_limits(&ti_limits);
999 
1000 		ti = dm_table_get_target(table, i++);
1001 
1002 		if (!ti->type->iterate_devices)
1003 			goto combine_limits;
1004 
1005 		/*
1006 		 * Combine queue limits of all the devices this target uses.
1007 		 */
1008 		ti->type->iterate_devices(ti, dm_set_device_limits,
1009 					  &ti_limits);
1010 
1011 		/* Set I/O hints portion of queue limits */
1012 		if (ti->type->io_hints)
1013 			ti->type->io_hints(ti, &ti_limits);
1014 
1015 		/*
1016 		 * Check each device area is consistent with the target's
1017 		 * overall queue limits.
1018 		 */
1019 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1020 					      &ti_limits))
1021 			return -EINVAL;
1022 
1023 combine_limits:
1024 		/*
1025 		 * Merge this target's queue limits into the overall limits
1026 		 * for the table.
1027 		 */
1028 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1029 			DMWARN("%s: target device "
1030 			       "(start sect %llu len %llu) "
1031 			       "is misaligned",
1032 			       dm_device_name(table->md),
1033 			       (unsigned long long) ti->begin,
1034 			       (unsigned long long) ti->len);
1035 	}
1036 
1037 	return validate_hardware_logical_block_alignment(table, limits);
1038 }
1039 
1040 /*
1041  * Set the integrity profile for this device if all devices used have
1042  * matching profiles.
1043  */
1044 static void dm_table_set_integrity(struct dm_table *t)
1045 {
1046 	struct list_head *devices = dm_table_get_devices(t);
1047 	struct dm_dev_internal *prev = NULL, *dd = NULL;
1048 
1049 	if (!blk_get_integrity(dm_disk(t->md)))
1050 		return;
1051 
1052 	list_for_each_entry(dd, devices, list) {
1053 		if (prev &&
1054 		    blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
1055 					  dd->dm_dev.bdev->bd_disk) < 0) {
1056 			DMWARN("%s: integrity not set: %s and %s mismatch",
1057 			       dm_device_name(t->md),
1058 			       prev->dm_dev.bdev->bd_disk->disk_name,
1059 			       dd->dm_dev.bdev->bd_disk->disk_name);
1060 			goto no_integrity;
1061 		}
1062 		prev = dd;
1063 	}
1064 
1065 	if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
1066 		goto no_integrity;
1067 
1068 	blk_integrity_register(dm_disk(t->md),
1069 			       bdev_get_integrity(prev->dm_dev.bdev));
1070 
1071 	return;
1072 
1073 no_integrity:
1074 	blk_integrity_register(dm_disk(t->md), NULL);
1075 
1076 	return;
1077 }
1078 
1079 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1080 			       struct queue_limits *limits)
1081 {
1082 	/*
1083 	 * Each target device in the table has a data area that should normally
1084 	 * be aligned such that the DM device's alignment_offset is 0.
1085 	 * FIXME: Propagate alignment_offsets up the stack and warn of
1086 	 *	  sub-optimal or inconsistent settings.
1087 	 */
1088 	limits->alignment_offset = 0;
1089 	limits->misaligned = 0;
1090 
1091 	/*
1092 	 * Copy table's limits to the DM device's request_queue
1093 	 */
1094 	q->limits = *limits;
1095 
1096 	if (limits->no_cluster)
1097 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1098 	else
1099 		queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
1100 
1101 	dm_table_set_integrity(t);
1102 
1103 	/*
1104 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1105 	 * visible to other CPUs because, once the flag is set, incoming bios
1106 	 * are processed by request-based dm, which refers to the queue
1107 	 * settings.
1108 	 * Until the flag set, bios are passed to bio-based dm and queued to
1109 	 * md->deferred where queue settings are not needed yet.
1110 	 * Those bios are passed to request-based dm at the resume time.
1111 	 */
1112 	smp_mb();
1113 	if (dm_table_request_based(t))
1114 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1115 }
1116 
1117 unsigned int dm_table_get_num_targets(struct dm_table *t)
1118 {
1119 	return t->num_targets;
1120 }
1121 
1122 struct list_head *dm_table_get_devices(struct dm_table *t)
1123 {
1124 	return &t->devices;
1125 }
1126 
1127 fmode_t dm_table_get_mode(struct dm_table *t)
1128 {
1129 	return t->mode;
1130 }
1131 
1132 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1133 {
1134 	int i = t->num_targets;
1135 	struct dm_target *ti = t->targets;
1136 
1137 	while (i--) {
1138 		if (postsuspend) {
1139 			if (ti->type->postsuspend)
1140 				ti->type->postsuspend(ti);
1141 		} else if (ti->type->presuspend)
1142 			ti->type->presuspend(ti);
1143 
1144 		ti++;
1145 	}
1146 }
1147 
1148 void dm_table_presuspend_targets(struct dm_table *t)
1149 {
1150 	if (!t)
1151 		return;
1152 
1153 	suspend_targets(t, 0);
1154 }
1155 
1156 void dm_table_postsuspend_targets(struct dm_table *t)
1157 {
1158 	if (!t)
1159 		return;
1160 
1161 	suspend_targets(t, 1);
1162 }
1163 
1164 int dm_table_resume_targets(struct dm_table *t)
1165 {
1166 	int i, r = 0;
1167 
1168 	for (i = 0; i < t->num_targets; i++) {
1169 		struct dm_target *ti = t->targets + i;
1170 
1171 		if (!ti->type->preresume)
1172 			continue;
1173 
1174 		r = ti->type->preresume(ti);
1175 		if (r)
1176 			return r;
1177 	}
1178 
1179 	for (i = 0; i < t->num_targets; i++) {
1180 		struct dm_target *ti = t->targets + i;
1181 
1182 		if (ti->type->resume)
1183 			ti->type->resume(ti);
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1190 {
1191 	struct dm_dev_internal *dd;
1192 	struct list_head *devices = dm_table_get_devices(t);
1193 	int r = 0;
1194 
1195 	list_for_each_entry(dd, devices, list) {
1196 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1197 		char b[BDEVNAME_SIZE];
1198 
1199 		if (likely(q))
1200 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1201 		else
1202 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1203 				     dm_device_name(t->md),
1204 				     bdevname(dd->dm_dev.bdev, b));
1205 	}
1206 
1207 	return r;
1208 }
1209 
1210 int dm_table_any_busy_target(struct dm_table *t)
1211 {
1212 	unsigned i;
1213 	struct dm_target *ti;
1214 
1215 	for (i = 0; i < t->num_targets; i++) {
1216 		ti = t->targets + i;
1217 		if (ti->type->busy && ti->type->busy(ti))
1218 			return 1;
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 void dm_table_unplug_all(struct dm_table *t)
1225 {
1226 	struct dm_dev_internal *dd;
1227 	struct list_head *devices = dm_table_get_devices(t);
1228 
1229 	list_for_each_entry(dd, devices, list) {
1230 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1231 		char b[BDEVNAME_SIZE];
1232 
1233 		if (likely(q))
1234 			blk_unplug(q);
1235 		else
1236 			DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1237 				     dm_device_name(t->md),
1238 				     bdevname(dd->dm_dev.bdev, b));
1239 	}
1240 }
1241 
1242 struct mapped_device *dm_table_get_md(struct dm_table *t)
1243 {
1244 	dm_get(t->md);
1245 
1246 	return t->md;
1247 }
1248 
1249 EXPORT_SYMBOL(dm_vcalloc);
1250 EXPORT_SYMBOL(dm_get_device);
1251 EXPORT_SYMBOL(dm_put_device);
1252 EXPORT_SYMBOL(dm_table_event);
1253 EXPORT_SYMBOL(dm_table_get_size);
1254 EXPORT_SYMBOL(dm_table_get_mode);
1255 EXPORT_SYMBOL(dm_table_get_md);
1256 EXPORT_SYMBOL(dm_table_put);
1257 EXPORT_SYMBOL(dm_table_get);
1258 EXPORT_SYMBOL(dm_table_unplug_all);
1259