1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <asm/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 /* 58 * Indicates the rw permissions for the new logical 59 * device. This should be a combination of FMODE_READ 60 * and FMODE_WRITE. 61 */ 62 fmode_t mode; 63 64 /* a list of devices used by this table */ 65 struct list_head devices; 66 67 /* events get handed up using this callback */ 68 void (*event_fn)(void *); 69 void *event_context; 70 71 struct dm_md_mempools *mempools; 72 }; 73 74 /* 75 * Similar to ceiling(log_size(n)) 76 */ 77 static unsigned int int_log(unsigned int n, unsigned int base) 78 { 79 int result = 0; 80 81 while (n > 1) { 82 n = dm_div_up(n, base); 83 result++; 84 } 85 86 return result; 87 } 88 89 /* 90 * Calculate the index of the child node of the n'th node k'th key. 91 */ 92 static inline unsigned int get_child(unsigned int n, unsigned int k) 93 { 94 return (n * CHILDREN_PER_NODE) + k; 95 } 96 97 /* 98 * Return the n'th node of level l from table t. 99 */ 100 static inline sector_t *get_node(struct dm_table *t, 101 unsigned int l, unsigned int n) 102 { 103 return t->index[l] + (n * KEYS_PER_NODE); 104 } 105 106 /* 107 * Return the highest key that you could lookup from the n'th 108 * node on level l of the btree. 109 */ 110 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 111 { 112 for (; l < t->depth - 1; l++) 113 n = get_child(n, CHILDREN_PER_NODE - 1); 114 115 if (n >= t->counts[l]) 116 return (sector_t) - 1; 117 118 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 119 } 120 121 /* 122 * Fills in a level of the btree based on the highs of the level 123 * below it. 124 */ 125 static int setup_btree_index(unsigned int l, struct dm_table *t) 126 { 127 unsigned int n, k; 128 sector_t *node; 129 130 for (n = 0U; n < t->counts[l]; n++) { 131 node = get_node(t, l, n); 132 133 for (k = 0U; k < KEYS_PER_NODE; k++) 134 node[k] = high(t, l + 1, get_child(n, k)); 135 } 136 137 return 0; 138 } 139 140 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 141 { 142 unsigned long size; 143 void *addr; 144 145 /* 146 * Check that we're not going to overflow. 147 */ 148 if (nmemb > (ULONG_MAX / elem_size)) 149 return NULL; 150 151 size = nmemb * elem_size; 152 addr = vmalloc(size); 153 if (addr) 154 memset(addr, 0, size); 155 156 return addr; 157 } 158 159 /* 160 * highs, and targets are managed as dynamic arrays during a 161 * table load. 162 */ 163 static int alloc_targets(struct dm_table *t, unsigned int num) 164 { 165 sector_t *n_highs; 166 struct dm_target *n_targets; 167 int n = t->num_targets; 168 169 /* 170 * Allocate both the target array and offset array at once. 171 * Append an empty entry to catch sectors beyond the end of 172 * the device. 173 */ 174 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 175 sizeof(sector_t)); 176 if (!n_highs) 177 return -ENOMEM; 178 179 n_targets = (struct dm_target *) (n_highs + num); 180 181 if (n) { 182 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 183 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 184 } 185 186 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 187 vfree(t->highs); 188 189 t->num_allocated = num; 190 t->highs = n_highs; 191 t->targets = n_targets; 192 193 return 0; 194 } 195 196 int dm_table_create(struct dm_table **result, fmode_t mode, 197 unsigned num_targets, struct mapped_device *md) 198 { 199 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 200 201 if (!t) 202 return -ENOMEM; 203 204 INIT_LIST_HEAD(&t->devices); 205 atomic_set(&t->holders, 0); 206 207 if (!num_targets) 208 num_targets = KEYS_PER_NODE; 209 210 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 211 212 if (alloc_targets(t, num_targets)) { 213 kfree(t); 214 t = NULL; 215 return -ENOMEM; 216 } 217 218 t->mode = mode; 219 t->md = md; 220 *result = t; 221 return 0; 222 } 223 224 static void free_devices(struct list_head *devices) 225 { 226 struct list_head *tmp, *next; 227 228 list_for_each_safe(tmp, next, devices) { 229 struct dm_dev_internal *dd = 230 list_entry(tmp, struct dm_dev_internal, list); 231 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 232 dd->dm_dev.name); 233 kfree(dd); 234 } 235 } 236 237 void dm_table_destroy(struct dm_table *t) 238 { 239 unsigned int i; 240 241 if (!t) 242 return; 243 244 while (atomic_read(&t->holders)) 245 msleep(1); 246 smp_mb(); 247 248 /* free the indexes (see dm_table_complete) */ 249 if (t->depth >= 2) 250 vfree(t->index[t->depth - 2]); 251 252 /* free the targets */ 253 for (i = 0; i < t->num_targets; i++) { 254 struct dm_target *tgt = t->targets + i; 255 256 if (tgt->type->dtr) 257 tgt->type->dtr(tgt); 258 259 dm_put_target_type(tgt->type); 260 } 261 262 vfree(t->highs); 263 264 /* free the device list */ 265 if (t->devices.next != &t->devices) 266 free_devices(&t->devices); 267 268 dm_free_md_mempools(t->mempools); 269 270 kfree(t); 271 } 272 273 void dm_table_get(struct dm_table *t) 274 { 275 atomic_inc(&t->holders); 276 } 277 278 void dm_table_put(struct dm_table *t) 279 { 280 if (!t) 281 return; 282 283 smp_mb__before_atomic_dec(); 284 atomic_dec(&t->holders); 285 } 286 287 /* 288 * Checks to see if we need to extend highs or targets. 289 */ 290 static inline int check_space(struct dm_table *t) 291 { 292 if (t->num_targets >= t->num_allocated) 293 return alloc_targets(t, t->num_allocated * 2); 294 295 return 0; 296 } 297 298 /* 299 * See if we've already got a device in the list. 300 */ 301 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 302 { 303 struct dm_dev_internal *dd; 304 305 list_for_each_entry (dd, l, list) 306 if (dd->dm_dev.bdev->bd_dev == dev) 307 return dd; 308 309 return NULL; 310 } 311 312 /* 313 * Open a device so we can use it as a map destination. 314 */ 315 static int open_dev(struct dm_dev_internal *d, dev_t dev, 316 struct mapped_device *md) 317 { 318 static char *_claim_ptr = "I belong to device-mapper"; 319 struct block_device *bdev; 320 321 int r; 322 323 BUG_ON(d->dm_dev.bdev); 324 325 bdev = open_by_devnum(dev, d->dm_dev.mode); 326 if (IS_ERR(bdev)) 327 return PTR_ERR(bdev); 328 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 329 if (r) 330 blkdev_put(bdev, d->dm_dev.mode); 331 else 332 d->dm_dev.bdev = bdev; 333 return r; 334 } 335 336 /* 337 * Close a device that we've been using. 338 */ 339 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 340 { 341 if (!d->dm_dev.bdev) 342 return; 343 344 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 345 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 346 d->dm_dev.bdev = NULL; 347 } 348 349 /* 350 * If possible, this checks an area of a destination device is invalid. 351 */ 352 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 353 sector_t start, sector_t len, void *data) 354 { 355 struct queue_limits *limits = data; 356 struct block_device *bdev = dev->bdev; 357 sector_t dev_size = 358 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 359 unsigned short logical_block_size_sectors = 360 limits->logical_block_size >> SECTOR_SHIFT; 361 char b[BDEVNAME_SIZE]; 362 363 if (!dev_size) 364 return 0; 365 366 if ((start >= dev_size) || (start + len > dev_size)) { 367 DMWARN("%s: %s too small for target: " 368 "start=%llu, len=%llu, dev_size=%llu", 369 dm_device_name(ti->table->md), bdevname(bdev, b), 370 (unsigned long long)start, 371 (unsigned long long)len, 372 (unsigned long long)dev_size); 373 return 1; 374 } 375 376 if (logical_block_size_sectors <= 1) 377 return 0; 378 379 if (start & (logical_block_size_sectors - 1)) { 380 DMWARN("%s: start=%llu not aligned to h/w " 381 "logical block size %u of %s", 382 dm_device_name(ti->table->md), 383 (unsigned long long)start, 384 limits->logical_block_size, bdevname(bdev, b)); 385 return 1; 386 } 387 388 if (len & (logical_block_size_sectors - 1)) { 389 DMWARN("%s: len=%llu not aligned to h/w " 390 "logical block size %u of %s", 391 dm_device_name(ti->table->md), 392 (unsigned long long)len, 393 limits->logical_block_size, bdevname(bdev, b)); 394 return 1; 395 } 396 397 return 0; 398 } 399 400 /* 401 * This upgrades the mode on an already open dm_dev, being 402 * careful to leave things as they were if we fail to reopen the 403 * device and not to touch the existing bdev field in case 404 * it is accessed concurrently inside dm_table_any_congested(). 405 */ 406 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 407 struct mapped_device *md) 408 { 409 int r; 410 struct dm_dev_internal dd_new, dd_old; 411 412 dd_new = dd_old = *dd; 413 414 dd_new.dm_dev.mode |= new_mode; 415 dd_new.dm_dev.bdev = NULL; 416 417 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 418 if (r) 419 return r; 420 421 dd->dm_dev.mode |= new_mode; 422 close_dev(&dd_old, md); 423 424 return 0; 425 } 426 427 /* 428 * Add a device to the list, or just increment the usage count if 429 * it's already present. 430 */ 431 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 432 const char *path, sector_t start, sector_t len, 433 fmode_t mode, struct dm_dev **result) 434 { 435 int r; 436 dev_t uninitialized_var(dev); 437 struct dm_dev_internal *dd; 438 unsigned int major, minor; 439 440 BUG_ON(!t); 441 442 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 443 /* Extract the major/minor numbers */ 444 dev = MKDEV(major, minor); 445 if (MAJOR(dev) != major || MINOR(dev) != minor) 446 return -EOVERFLOW; 447 } else { 448 /* convert the path to a device */ 449 struct block_device *bdev = lookup_bdev(path); 450 451 if (IS_ERR(bdev)) 452 return PTR_ERR(bdev); 453 dev = bdev->bd_dev; 454 bdput(bdev); 455 } 456 457 dd = find_device(&t->devices, dev); 458 if (!dd) { 459 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 460 if (!dd) 461 return -ENOMEM; 462 463 dd->dm_dev.mode = mode; 464 dd->dm_dev.bdev = NULL; 465 466 if ((r = open_dev(dd, dev, t->md))) { 467 kfree(dd); 468 return r; 469 } 470 471 format_dev_t(dd->dm_dev.name, dev); 472 473 atomic_set(&dd->count, 0); 474 list_add(&dd->list, &t->devices); 475 476 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 477 r = upgrade_mode(dd, mode, t->md); 478 if (r) 479 return r; 480 } 481 atomic_inc(&dd->count); 482 483 *result = &dd->dm_dev; 484 return 0; 485 } 486 487 /* 488 * Returns the minimum that is _not_ zero, unless both are zero. 489 */ 490 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 491 492 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 493 sector_t start, sector_t len, void *data) 494 { 495 struct queue_limits *limits = data; 496 struct block_device *bdev = dev->bdev; 497 struct request_queue *q = bdev_get_queue(bdev); 498 char b[BDEVNAME_SIZE]; 499 500 if (unlikely(!q)) { 501 DMWARN("%s: Cannot set limits for nonexistent device %s", 502 dm_device_name(ti->table->md), bdevname(bdev, b)); 503 return 0; 504 } 505 506 if (blk_stack_limits(limits, &q->limits, start << 9) < 0) 507 DMWARN("%s: target device %s is misaligned: " 508 "physical_block_size=%u, logical_block_size=%u, " 509 "alignment_offset=%u, start=%llu", 510 dm_device_name(ti->table->md), bdevname(bdev, b), 511 q->limits.physical_block_size, 512 q->limits.logical_block_size, 513 q->limits.alignment_offset, 514 (unsigned long long) start << 9); 515 516 517 /* 518 * Check if merge fn is supported. 519 * If not we'll force DM to use PAGE_SIZE or 520 * smaller I/O, just to be safe. 521 */ 522 523 if (q->merge_bvec_fn && !ti->type->merge) 524 limits->max_sectors = 525 min_not_zero(limits->max_sectors, 526 (unsigned int) (PAGE_SIZE >> 9)); 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(dm_set_device_limits); 530 531 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 532 sector_t len, fmode_t mode, struct dm_dev **result) 533 { 534 return __table_get_device(ti->table, ti, path, 535 start, len, mode, result); 536 } 537 538 539 /* 540 * Decrement a devices use count and remove it if necessary. 541 */ 542 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 543 { 544 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 545 dm_dev); 546 547 if (atomic_dec_and_test(&dd->count)) { 548 close_dev(dd, ti->table->md); 549 list_del(&dd->list); 550 kfree(dd); 551 } 552 } 553 554 /* 555 * Checks to see if the target joins onto the end of the table. 556 */ 557 static int adjoin(struct dm_table *table, struct dm_target *ti) 558 { 559 struct dm_target *prev; 560 561 if (!table->num_targets) 562 return !ti->begin; 563 564 prev = &table->targets[table->num_targets - 1]; 565 return (ti->begin == (prev->begin + prev->len)); 566 } 567 568 /* 569 * Used to dynamically allocate the arg array. 570 */ 571 static char **realloc_argv(unsigned *array_size, char **old_argv) 572 { 573 char **argv; 574 unsigned new_size; 575 576 new_size = *array_size ? *array_size * 2 : 64; 577 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 578 if (argv) { 579 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 580 *array_size = new_size; 581 } 582 583 kfree(old_argv); 584 return argv; 585 } 586 587 /* 588 * Destructively splits up the argument list to pass to ctr. 589 */ 590 int dm_split_args(int *argc, char ***argvp, char *input) 591 { 592 char *start, *end = input, *out, **argv = NULL; 593 unsigned array_size = 0; 594 595 *argc = 0; 596 597 if (!input) { 598 *argvp = NULL; 599 return 0; 600 } 601 602 argv = realloc_argv(&array_size, argv); 603 if (!argv) 604 return -ENOMEM; 605 606 while (1) { 607 /* Skip whitespace */ 608 start = skip_spaces(end); 609 610 if (!*start) 611 break; /* success, we hit the end */ 612 613 /* 'out' is used to remove any back-quotes */ 614 end = out = start; 615 while (*end) { 616 /* Everything apart from '\0' can be quoted */ 617 if (*end == '\\' && *(end + 1)) { 618 *out++ = *(end + 1); 619 end += 2; 620 continue; 621 } 622 623 if (isspace(*end)) 624 break; /* end of token */ 625 626 *out++ = *end++; 627 } 628 629 /* have we already filled the array ? */ 630 if ((*argc + 1) > array_size) { 631 argv = realloc_argv(&array_size, argv); 632 if (!argv) 633 return -ENOMEM; 634 } 635 636 /* we know this is whitespace */ 637 if (*end) 638 end++; 639 640 /* terminate the string and put it in the array */ 641 *out = '\0'; 642 argv[*argc] = start; 643 (*argc)++; 644 } 645 646 *argvp = argv; 647 return 0; 648 } 649 650 /* 651 * Impose necessary and sufficient conditions on a devices's table such 652 * that any incoming bio which respects its logical_block_size can be 653 * processed successfully. If it falls across the boundary between 654 * two or more targets, the size of each piece it gets split into must 655 * be compatible with the logical_block_size of the target processing it. 656 */ 657 static int validate_hardware_logical_block_alignment(struct dm_table *table, 658 struct queue_limits *limits) 659 { 660 /* 661 * This function uses arithmetic modulo the logical_block_size 662 * (in units of 512-byte sectors). 663 */ 664 unsigned short device_logical_block_size_sects = 665 limits->logical_block_size >> SECTOR_SHIFT; 666 667 /* 668 * Offset of the start of the next table entry, mod logical_block_size. 669 */ 670 unsigned short next_target_start = 0; 671 672 /* 673 * Given an aligned bio that extends beyond the end of a 674 * target, how many sectors must the next target handle? 675 */ 676 unsigned short remaining = 0; 677 678 struct dm_target *uninitialized_var(ti); 679 struct queue_limits ti_limits; 680 unsigned i = 0; 681 682 /* 683 * Check each entry in the table in turn. 684 */ 685 while (i < dm_table_get_num_targets(table)) { 686 ti = dm_table_get_target(table, i++); 687 688 blk_set_default_limits(&ti_limits); 689 690 /* combine all target devices' limits */ 691 if (ti->type->iterate_devices) 692 ti->type->iterate_devices(ti, dm_set_device_limits, 693 &ti_limits); 694 695 /* 696 * If the remaining sectors fall entirely within this 697 * table entry are they compatible with its logical_block_size? 698 */ 699 if (remaining < ti->len && 700 remaining & ((ti_limits.logical_block_size >> 701 SECTOR_SHIFT) - 1)) 702 break; /* Error */ 703 704 next_target_start = 705 (unsigned short) ((next_target_start + ti->len) & 706 (device_logical_block_size_sects - 1)); 707 remaining = next_target_start ? 708 device_logical_block_size_sects - next_target_start : 0; 709 } 710 711 if (remaining) { 712 DMWARN("%s: table line %u (start sect %llu len %llu) " 713 "not aligned to h/w logical block size %u", 714 dm_device_name(table->md), i, 715 (unsigned long long) ti->begin, 716 (unsigned long long) ti->len, 717 limits->logical_block_size); 718 return -EINVAL; 719 } 720 721 return 0; 722 } 723 724 int dm_table_add_target(struct dm_table *t, const char *type, 725 sector_t start, sector_t len, char *params) 726 { 727 int r = -EINVAL, argc; 728 char **argv; 729 struct dm_target *tgt; 730 731 if ((r = check_space(t))) 732 return r; 733 734 tgt = t->targets + t->num_targets; 735 memset(tgt, 0, sizeof(*tgt)); 736 737 if (!len) { 738 DMERR("%s: zero-length target", dm_device_name(t->md)); 739 return -EINVAL; 740 } 741 742 tgt->type = dm_get_target_type(type); 743 if (!tgt->type) { 744 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 745 type); 746 return -EINVAL; 747 } 748 749 tgt->table = t; 750 tgt->begin = start; 751 tgt->len = len; 752 tgt->error = "Unknown error"; 753 754 /* 755 * Does this target adjoin the previous one ? 756 */ 757 if (!adjoin(t, tgt)) { 758 tgt->error = "Gap in table"; 759 r = -EINVAL; 760 goto bad; 761 } 762 763 r = dm_split_args(&argc, &argv, params); 764 if (r) { 765 tgt->error = "couldn't split parameters (insufficient memory)"; 766 goto bad; 767 } 768 769 r = tgt->type->ctr(tgt, argc, argv); 770 kfree(argv); 771 if (r) 772 goto bad; 773 774 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 775 776 return 0; 777 778 bad: 779 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 780 dm_put_target_type(tgt->type); 781 return r; 782 } 783 784 int dm_table_set_type(struct dm_table *t) 785 { 786 unsigned i; 787 unsigned bio_based = 0, request_based = 0; 788 struct dm_target *tgt; 789 struct dm_dev_internal *dd; 790 struct list_head *devices; 791 792 for (i = 0; i < t->num_targets; i++) { 793 tgt = t->targets + i; 794 if (dm_target_request_based(tgt)) 795 request_based = 1; 796 else 797 bio_based = 1; 798 799 if (bio_based && request_based) { 800 DMWARN("Inconsistent table: different target types" 801 " can't be mixed up"); 802 return -EINVAL; 803 } 804 } 805 806 if (bio_based) { 807 /* We must use this table as bio-based */ 808 t->type = DM_TYPE_BIO_BASED; 809 return 0; 810 } 811 812 BUG_ON(!request_based); /* No targets in this table */ 813 814 /* Non-request-stackable devices can't be used for request-based dm */ 815 devices = dm_table_get_devices(t); 816 list_for_each_entry(dd, devices, list) { 817 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 818 DMWARN("table load rejected: including" 819 " non-request-stackable devices"); 820 return -EINVAL; 821 } 822 } 823 824 /* 825 * Request-based dm supports only tables that have a single target now. 826 * To support multiple targets, request splitting support is needed, 827 * and that needs lots of changes in the block-layer. 828 * (e.g. request completion process for partial completion.) 829 */ 830 if (t->num_targets > 1) { 831 DMWARN("Request-based dm doesn't support multiple targets yet"); 832 return -EINVAL; 833 } 834 835 t->type = DM_TYPE_REQUEST_BASED; 836 837 return 0; 838 } 839 840 unsigned dm_table_get_type(struct dm_table *t) 841 { 842 return t->type; 843 } 844 845 bool dm_table_request_based(struct dm_table *t) 846 { 847 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 848 } 849 850 int dm_table_alloc_md_mempools(struct dm_table *t) 851 { 852 unsigned type = dm_table_get_type(t); 853 854 if (unlikely(type == DM_TYPE_NONE)) { 855 DMWARN("no table type is set, can't allocate mempools"); 856 return -EINVAL; 857 } 858 859 t->mempools = dm_alloc_md_mempools(type); 860 if (!t->mempools) 861 return -ENOMEM; 862 863 return 0; 864 } 865 866 void dm_table_free_md_mempools(struct dm_table *t) 867 { 868 dm_free_md_mempools(t->mempools); 869 t->mempools = NULL; 870 } 871 872 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 873 { 874 return t->mempools; 875 } 876 877 static int setup_indexes(struct dm_table *t) 878 { 879 int i; 880 unsigned int total = 0; 881 sector_t *indexes; 882 883 /* allocate the space for *all* the indexes */ 884 for (i = t->depth - 2; i >= 0; i--) { 885 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 886 total += t->counts[i]; 887 } 888 889 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 890 if (!indexes) 891 return -ENOMEM; 892 893 /* set up internal nodes, bottom-up */ 894 for (i = t->depth - 2; i >= 0; i--) { 895 t->index[i] = indexes; 896 indexes += (KEYS_PER_NODE * t->counts[i]); 897 setup_btree_index(i, t); 898 } 899 900 return 0; 901 } 902 903 /* 904 * Builds the btree to index the map. 905 */ 906 int dm_table_complete(struct dm_table *t) 907 { 908 int r = 0; 909 unsigned int leaf_nodes; 910 911 /* how many indexes will the btree have ? */ 912 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 913 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 914 915 /* leaf layer has already been set up */ 916 t->counts[t->depth - 1] = leaf_nodes; 917 t->index[t->depth - 1] = t->highs; 918 919 if (t->depth >= 2) 920 r = setup_indexes(t); 921 922 return r; 923 } 924 925 static DEFINE_MUTEX(_event_lock); 926 void dm_table_event_callback(struct dm_table *t, 927 void (*fn)(void *), void *context) 928 { 929 mutex_lock(&_event_lock); 930 t->event_fn = fn; 931 t->event_context = context; 932 mutex_unlock(&_event_lock); 933 } 934 935 void dm_table_event(struct dm_table *t) 936 { 937 /* 938 * You can no longer call dm_table_event() from interrupt 939 * context, use a bottom half instead. 940 */ 941 BUG_ON(in_interrupt()); 942 943 mutex_lock(&_event_lock); 944 if (t->event_fn) 945 t->event_fn(t->event_context); 946 mutex_unlock(&_event_lock); 947 } 948 949 sector_t dm_table_get_size(struct dm_table *t) 950 { 951 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 952 } 953 954 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 955 { 956 if (index >= t->num_targets) 957 return NULL; 958 959 return t->targets + index; 960 } 961 962 /* 963 * Search the btree for the correct target. 964 * 965 * Caller should check returned pointer with dm_target_is_valid() 966 * to trap I/O beyond end of device. 967 */ 968 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 969 { 970 unsigned int l, n = 0, k = 0; 971 sector_t *node; 972 973 for (l = 0; l < t->depth; l++) { 974 n = get_child(n, k); 975 node = get_node(t, l, n); 976 977 for (k = 0; k < KEYS_PER_NODE; k++) 978 if (node[k] >= sector) 979 break; 980 } 981 982 return &t->targets[(KEYS_PER_NODE * n) + k]; 983 } 984 985 /* 986 * Establish the new table's queue_limits and validate them. 987 */ 988 int dm_calculate_queue_limits(struct dm_table *table, 989 struct queue_limits *limits) 990 { 991 struct dm_target *uninitialized_var(ti); 992 struct queue_limits ti_limits; 993 unsigned i = 0; 994 995 blk_set_default_limits(limits); 996 997 while (i < dm_table_get_num_targets(table)) { 998 blk_set_default_limits(&ti_limits); 999 1000 ti = dm_table_get_target(table, i++); 1001 1002 if (!ti->type->iterate_devices) 1003 goto combine_limits; 1004 1005 /* 1006 * Combine queue limits of all the devices this target uses. 1007 */ 1008 ti->type->iterate_devices(ti, dm_set_device_limits, 1009 &ti_limits); 1010 1011 /* Set I/O hints portion of queue limits */ 1012 if (ti->type->io_hints) 1013 ti->type->io_hints(ti, &ti_limits); 1014 1015 /* 1016 * Check each device area is consistent with the target's 1017 * overall queue limits. 1018 */ 1019 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1020 &ti_limits)) 1021 return -EINVAL; 1022 1023 combine_limits: 1024 /* 1025 * Merge this target's queue limits into the overall limits 1026 * for the table. 1027 */ 1028 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1029 DMWARN("%s: target device " 1030 "(start sect %llu len %llu) " 1031 "is misaligned", 1032 dm_device_name(table->md), 1033 (unsigned long long) ti->begin, 1034 (unsigned long long) ti->len); 1035 } 1036 1037 return validate_hardware_logical_block_alignment(table, limits); 1038 } 1039 1040 /* 1041 * Set the integrity profile for this device if all devices used have 1042 * matching profiles. 1043 */ 1044 static void dm_table_set_integrity(struct dm_table *t) 1045 { 1046 struct list_head *devices = dm_table_get_devices(t); 1047 struct dm_dev_internal *prev = NULL, *dd = NULL; 1048 1049 if (!blk_get_integrity(dm_disk(t->md))) 1050 return; 1051 1052 list_for_each_entry(dd, devices, list) { 1053 if (prev && 1054 blk_integrity_compare(prev->dm_dev.bdev->bd_disk, 1055 dd->dm_dev.bdev->bd_disk) < 0) { 1056 DMWARN("%s: integrity not set: %s and %s mismatch", 1057 dm_device_name(t->md), 1058 prev->dm_dev.bdev->bd_disk->disk_name, 1059 dd->dm_dev.bdev->bd_disk->disk_name); 1060 goto no_integrity; 1061 } 1062 prev = dd; 1063 } 1064 1065 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev)) 1066 goto no_integrity; 1067 1068 blk_integrity_register(dm_disk(t->md), 1069 bdev_get_integrity(prev->dm_dev.bdev)); 1070 1071 return; 1072 1073 no_integrity: 1074 blk_integrity_register(dm_disk(t->md), NULL); 1075 1076 return; 1077 } 1078 1079 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1080 struct queue_limits *limits) 1081 { 1082 /* 1083 * Each target device in the table has a data area that should normally 1084 * be aligned such that the DM device's alignment_offset is 0. 1085 * FIXME: Propagate alignment_offsets up the stack and warn of 1086 * sub-optimal or inconsistent settings. 1087 */ 1088 limits->alignment_offset = 0; 1089 limits->misaligned = 0; 1090 1091 /* 1092 * Copy table's limits to the DM device's request_queue 1093 */ 1094 q->limits = *limits; 1095 1096 if (limits->no_cluster) 1097 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1098 else 1099 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 1100 1101 dm_table_set_integrity(t); 1102 1103 /* 1104 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1105 * visible to other CPUs because, once the flag is set, incoming bios 1106 * are processed by request-based dm, which refers to the queue 1107 * settings. 1108 * Until the flag set, bios are passed to bio-based dm and queued to 1109 * md->deferred where queue settings are not needed yet. 1110 * Those bios are passed to request-based dm at the resume time. 1111 */ 1112 smp_mb(); 1113 if (dm_table_request_based(t)) 1114 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1115 } 1116 1117 unsigned int dm_table_get_num_targets(struct dm_table *t) 1118 { 1119 return t->num_targets; 1120 } 1121 1122 struct list_head *dm_table_get_devices(struct dm_table *t) 1123 { 1124 return &t->devices; 1125 } 1126 1127 fmode_t dm_table_get_mode(struct dm_table *t) 1128 { 1129 return t->mode; 1130 } 1131 1132 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1133 { 1134 int i = t->num_targets; 1135 struct dm_target *ti = t->targets; 1136 1137 while (i--) { 1138 if (postsuspend) { 1139 if (ti->type->postsuspend) 1140 ti->type->postsuspend(ti); 1141 } else if (ti->type->presuspend) 1142 ti->type->presuspend(ti); 1143 1144 ti++; 1145 } 1146 } 1147 1148 void dm_table_presuspend_targets(struct dm_table *t) 1149 { 1150 if (!t) 1151 return; 1152 1153 suspend_targets(t, 0); 1154 } 1155 1156 void dm_table_postsuspend_targets(struct dm_table *t) 1157 { 1158 if (!t) 1159 return; 1160 1161 suspend_targets(t, 1); 1162 } 1163 1164 int dm_table_resume_targets(struct dm_table *t) 1165 { 1166 int i, r = 0; 1167 1168 for (i = 0; i < t->num_targets; i++) { 1169 struct dm_target *ti = t->targets + i; 1170 1171 if (!ti->type->preresume) 1172 continue; 1173 1174 r = ti->type->preresume(ti); 1175 if (r) 1176 return r; 1177 } 1178 1179 for (i = 0; i < t->num_targets; i++) { 1180 struct dm_target *ti = t->targets + i; 1181 1182 if (ti->type->resume) 1183 ti->type->resume(ti); 1184 } 1185 1186 return 0; 1187 } 1188 1189 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1190 { 1191 struct dm_dev_internal *dd; 1192 struct list_head *devices = dm_table_get_devices(t); 1193 int r = 0; 1194 1195 list_for_each_entry(dd, devices, list) { 1196 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1197 char b[BDEVNAME_SIZE]; 1198 1199 if (likely(q)) 1200 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1201 else 1202 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1203 dm_device_name(t->md), 1204 bdevname(dd->dm_dev.bdev, b)); 1205 } 1206 1207 return r; 1208 } 1209 1210 int dm_table_any_busy_target(struct dm_table *t) 1211 { 1212 unsigned i; 1213 struct dm_target *ti; 1214 1215 for (i = 0; i < t->num_targets; i++) { 1216 ti = t->targets + i; 1217 if (ti->type->busy && ti->type->busy(ti)) 1218 return 1; 1219 } 1220 1221 return 0; 1222 } 1223 1224 void dm_table_unplug_all(struct dm_table *t) 1225 { 1226 struct dm_dev_internal *dd; 1227 struct list_head *devices = dm_table_get_devices(t); 1228 1229 list_for_each_entry(dd, devices, list) { 1230 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1231 char b[BDEVNAME_SIZE]; 1232 1233 if (likely(q)) 1234 blk_unplug(q); 1235 else 1236 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1237 dm_device_name(t->md), 1238 bdevname(dd->dm_dev.bdev, b)); 1239 } 1240 } 1241 1242 struct mapped_device *dm_table_get_md(struct dm_table *t) 1243 { 1244 dm_get(t->md); 1245 1246 return t->md; 1247 } 1248 1249 EXPORT_SYMBOL(dm_vcalloc); 1250 EXPORT_SYMBOL(dm_get_device); 1251 EXPORT_SYMBOL(dm_put_device); 1252 EXPORT_SYMBOL(dm_table_event); 1253 EXPORT_SYMBOL(dm_table_get_size); 1254 EXPORT_SYMBOL(dm_table_get_mode); 1255 EXPORT_SYMBOL(dm_table_get_md); 1256 EXPORT_SYMBOL(dm_table_put); 1257 EXPORT_SYMBOL(dm_table_get); 1258 EXPORT_SYMBOL(dm_table_unplug_all); 1259