xref: /openbmc/linux/drivers/md/dm-table.c (revision 79f08d9e)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 struct dm_table {
30 	struct mapped_device *md;
31 	unsigned type;
32 
33 	/* btree table */
34 	unsigned int depth;
35 	unsigned int counts[MAX_DEPTH];	/* in nodes */
36 	sector_t *index[MAX_DEPTH];
37 
38 	unsigned int num_targets;
39 	unsigned int num_allocated;
40 	sector_t *highs;
41 	struct dm_target *targets;
42 
43 	struct target_type *immutable_target_type;
44 	unsigned integrity_supported:1;
45 	unsigned singleton:1;
46 
47 	/*
48 	 * Indicates the rw permissions for the new logical
49 	 * device.  This should be a combination of FMODE_READ
50 	 * and FMODE_WRITE.
51 	 */
52 	fmode_t mode;
53 
54 	/* a list of devices used by this table */
55 	struct list_head devices;
56 
57 	/* events get handed up using this callback */
58 	void (*event_fn)(void *);
59 	void *event_context;
60 
61 	struct dm_md_mempools *mempools;
62 
63 	struct list_head target_callbacks;
64 };
65 
66 /*
67  * Similar to ceiling(log_size(n))
68  */
69 static unsigned int int_log(unsigned int n, unsigned int base)
70 {
71 	int result = 0;
72 
73 	while (n > 1) {
74 		n = dm_div_up(n, base);
75 		result++;
76 	}
77 
78 	return result;
79 }
80 
81 /*
82  * Calculate the index of the child node of the n'th node k'th key.
83  */
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
85 {
86 	return (n * CHILDREN_PER_NODE) + k;
87 }
88 
89 /*
90  * Return the n'th node of level l from table t.
91  */
92 static inline sector_t *get_node(struct dm_table *t,
93 				 unsigned int l, unsigned int n)
94 {
95 	return t->index[l] + (n * KEYS_PER_NODE);
96 }
97 
98 /*
99  * Return the highest key that you could lookup from the n'th
100  * node on level l of the btree.
101  */
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103 {
104 	for (; l < t->depth - 1; l++)
105 		n = get_child(n, CHILDREN_PER_NODE - 1);
106 
107 	if (n >= t->counts[l])
108 		return (sector_t) - 1;
109 
110 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
111 }
112 
113 /*
114  * Fills in a level of the btree based on the highs of the level
115  * below it.
116  */
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
118 {
119 	unsigned int n, k;
120 	sector_t *node;
121 
122 	for (n = 0U; n < t->counts[l]; n++) {
123 		node = get_node(t, l, n);
124 
125 		for (k = 0U; k < KEYS_PER_NODE; k++)
126 			node[k] = high(t, l + 1, get_child(n, k));
127 	}
128 
129 	return 0;
130 }
131 
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133 {
134 	unsigned long size;
135 	void *addr;
136 
137 	/*
138 	 * Check that we're not going to overflow.
139 	 */
140 	if (nmemb > (ULONG_MAX / elem_size))
141 		return NULL;
142 
143 	size = nmemb * elem_size;
144 	addr = vzalloc(size);
145 
146 	return addr;
147 }
148 EXPORT_SYMBOL(dm_vcalloc);
149 
150 /*
151  * highs, and targets are managed as dynamic arrays during a
152  * table load.
153  */
154 static int alloc_targets(struct dm_table *t, unsigned int num)
155 {
156 	sector_t *n_highs;
157 	struct dm_target *n_targets;
158 	int n = t->num_targets;
159 
160 	/*
161 	 * Allocate both the target array and offset array at once.
162 	 * Append an empty entry to catch sectors beyond the end of
163 	 * the device.
164 	 */
165 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166 					  sizeof(sector_t));
167 	if (!n_highs)
168 		return -ENOMEM;
169 
170 	n_targets = (struct dm_target *) (n_highs + num);
171 
172 	if (n) {
173 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
174 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
175 	}
176 
177 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
178 	vfree(t->highs);
179 
180 	t->num_allocated = num;
181 	t->highs = n_highs;
182 	t->targets = n_targets;
183 
184 	return 0;
185 }
186 
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 		    unsigned num_targets, struct mapped_device *md)
189 {
190 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191 
192 	if (!t)
193 		return -ENOMEM;
194 
195 	INIT_LIST_HEAD(&t->devices);
196 	INIT_LIST_HEAD(&t->target_callbacks);
197 
198 	if (!num_targets)
199 		num_targets = KEYS_PER_NODE;
200 
201 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202 
203 	if (alloc_targets(t, num_targets)) {
204 		kfree(t);
205 		return -ENOMEM;
206 	}
207 
208 	t->mode = mode;
209 	t->md = md;
210 	*result = t;
211 	return 0;
212 }
213 
214 static void free_devices(struct list_head *devices)
215 {
216 	struct list_head *tmp, *next;
217 
218 	list_for_each_safe(tmp, next, devices) {
219 		struct dm_dev_internal *dd =
220 		    list_entry(tmp, struct dm_dev_internal, list);
221 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
222 		       dd->dm_dev.name);
223 		kfree(dd);
224 	}
225 }
226 
227 void dm_table_destroy(struct dm_table *t)
228 {
229 	unsigned int i;
230 
231 	if (!t)
232 		return;
233 
234 	/* free the indexes */
235 	if (t->depth >= 2)
236 		vfree(t->index[t->depth - 2]);
237 
238 	/* free the targets */
239 	for (i = 0; i < t->num_targets; i++) {
240 		struct dm_target *tgt = t->targets + i;
241 
242 		if (tgt->type->dtr)
243 			tgt->type->dtr(tgt);
244 
245 		dm_put_target_type(tgt->type);
246 	}
247 
248 	vfree(t->highs);
249 
250 	/* free the device list */
251 	free_devices(&t->devices);
252 
253 	dm_free_md_mempools(t->mempools);
254 
255 	kfree(t);
256 }
257 
258 /*
259  * Checks to see if we need to extend highs or targets.
260  */
261 static inline int check_space(struct dm_table *t)
262 {
263 	if (t->num_targets >= t->num_allocated)
264 		return alloc_targets(t, t->num_allocated * 2);
265 
266 	return 0;
267 }
268 
269 /*
270  * See if we've already got a device in the list.
271  */
272 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
273 {
274 	struct dm_dev_internal *dd;
275 
276 	list_for_each_entry (dd, l, list)
277 		if (dd->dm_dev.bdev->bd_dev == dev)
278 			return dd;
279 
280 	return NULL;
281 }
282 
283 /*
284  * Open a device so we can use it as a map destination.
285  */
286 static int open_dev(struct dm_dev_internal *d, dev_t dev,
287 		    struct mapped_device *md)
288 {
289 	static char *_claim_ptr = "I belong to device-mapper";
290 	struct block_device *bdev;
291 
292 	int r;
293 
294 	BUG_ON(d->dm_dev.bdev);
295 
296 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
297 	if (IS_ERR(bdev))
298 		return PTR_ERR(bdev);
299 
300 	r = bd_link_disk_holder(bdev, dm_disk(md));
301 	if (r) {
302 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
303 		return r;
304 	}
305 
306 	d->dm_dev.bdev = bdev;
307 	return 0;
308 }
309 
310 /*
311  * Close a device that we've been using.
312  */
313 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
314 {
315 	if (!d->dm_dev.bdev)
316 		return;
317 
318 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
319 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
320 	d->dm_dev.bdev = NULL;
321 }
322 
323 /*
324  * If possible, this checks an area of a destination device is invalid.
325  */
326 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
327 				  sector_t start, sector_t len, void *data)
328 {
329 	struct request_queue *q;
330 	struct queue_limits *limits = data;
331 	struct block_device *bdev = dev->bdev;
332 	sector_t dev_size =
333 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
334 	unsigned short logical_block_size_sectors =
335 		limits->logical_block_size >> SECTOR_SHIFT;
336 	char b[BDEVNAME_SIZE];
337 
338 	/*
339 	 * Some devices exist without request functions,
340 	 * such as loop devices not yet bound to backing files.
341 	 * Forbid the use of such devices.
342 	 */
343 	q = bdev_get_queue(bdev);
344 	if (!q || !q->make_request_fn) {
345 		DMWARN("%s: %s is not yet initialised: "
346 		       "start=%llu, len=%llu, dev_size=%llu",
347 		       dm_device_name(ti->table->md), bdevname(bdev, b),
348 		       (unsigned long long)start,
349 		       (unsigned long long)len,
350 		       (unsigned long long)dev_size);
351 		return 1;
352 	}
353 
354 	if (!dev_size)
355 		return 0;
356 
357 	if ((start >= dev_size) || (start + len > dev_size)) {
358 		DMWARN("%s: %s too small for target: "
359 		       "start=%llu, len=%llu, dev_size=%llu",
360 		       dm_device_name(ti->table->md), bdevname(bdev, b),
361 		       (unsigned long long)start,
362 		       (unsigned long long)len,
363 		       (unsigned long long)dev_size);
364 		return 1;
365 	}
366 
367 	if (logical_block_size_sectors <= 1)
368 		return 0;
369 
370 	if (start & (logical_block_size_sectors - 1)) {
371 		DMWARN("%s: start=%llu not aligned to h/w "
372 		       "logical block size %u of %s",
373 		       dm_device_name(ti->table->md),
374 		       (unsigned long long)start,
375 		       limits->logical_block_size, bdevname(bdev, b));
376 		return 1;
377 	}
378 
379 	if (len & (logical_block_size_sectors - 1)) {
380 		DMWARN("%s: len=%llu not aligned to h/w "
381 		       "logical block size %u of %s",
382 		       dm_device_name(ti->table->md),
383 		       (unsigned long long)len,
384 		       limits->logical_block_size, bdevname(bdev, b));
385 		return 1;
386 	}
387 
388 	return 0;
389 }
390 
391 /*
392  * This upgrades the mode on an already open dm_dev, being
393  * careful to leave things as they were if we fail to reopen the
394  * device and not to touch the existing bdev field in case
395  * it is accessed concurrently inside dm_table_any_congested().
396  */
397 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
398 			struct mapped_device *md)
399 {
400 	int r;
401 	struct dm_dev_internal dd_new, dd_old;
402 
403 	dd_new = dd_old = *dd;
404 
405 	dd_new.dm_dev.mode |= new_mode;
406 	dd_new.dm_dev.bdev = NULL;
407 
408 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
409 	if (r)
410 		return r;
411 
412 	dd->dm_dev.mode |= new_mode;
413 	close_dev(&dd_old, md);
414 
415 	return 0;
416 }
417 
418 /*
419  * Add a device to the list, or just increment the usage count if
420  * it's already present.
421  */
422 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
423 		  struct dm_dev **result)
424 {
425 	int r;
426 	dev_t uninitialized_var(dev);
427 	struct dm_dev_internal *dd;
428 	unsigned int major, minor;
429 	struct dm_table *t = ti->table;
430 	char dummy;
431 
432 	BUG_ON(!t);
433 
434 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
435 		/* Extract the major/minor numbers */
436 		dev = MKDEV(major, minor);
437 		if (MAJOR(dev) != major || MINOR(dev) != minor)
438 			return -EOVERFLOW;
439 	} else {
440 		/* convert the path to a device */
441 		struct block_device *bdev = lookup_bdev(path);
442 
443 		if (IS_ERR(bdev))
444 			return PTR_ERR(bdev);
445 		dev = bdev->bd_dev;
446 		bdput(bdev);
447 	}
448 
449 	dd = find_device(&t->devices, dev);
450 	if (!dd) {
451 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
452 		if (!dd)
453 			return -ENOMEM;
454 
455 		dd->dm_dev.mode = mode;
456 		dd->dm_dev.bdev = NULL;
457 
458 		if ((r = open_dev(dd, dev, t->md))) {
459 			kfree(dd);
460 			return r;
461 		}
462 
463 		format_dev_t(dd->dm_dev.name, dev);
464 
465 		atomic_set(&dd->count, 0);
466 		list_add(&dd->list, &t->devices);
467 
468 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
469 		r = upgrade_mode(dd, mode, t->md);
470 		if (r)
471 			return r;
472 	}
473 	atomic_inc(&dd->count);
474 
475 	*result = &dd->dm_dev;
476 	return 0;
477 }
478 EXPORT_SYMBOL(dm_get_device);
479 
480 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
481 			 sector_t start, sector_t len, void *data)
482 {
483 	struct queue_limits *limits = data;
484 	struct block_device *bdev = dev->bdev;
485 	struct request_queue *q = bdev_get_queue(bdev);
486 	char b[BDEVNAME_SIZE];
487 
488 	if (unlikely(!q)) {
489 		DMWARN("%s: Cannot set limits for nonexistent device %s",
490 		       dm_device_name(ti->table->md), bdevname(bdev, b));
491 		return 0;
492 	}
493 
494 	if (bdev_stack_limits(limits, bdev, start) < 0)
495 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
496 		       "physical_block_size=%u, logical_block_size=%u, "
497 		       "alignment_offset=%u, start=%llu",
498 		       dm_device_name(ti->table->md), bdevname(bdev, b),
499 		       q->limits.physical_block_size,
500 		       q->limits.logical_block_size,
501 		       q->limits.alignment_offset,
502 		       (unsigned long long) start << SECTOR_SHIFT);
503 
504 	/*
505 	 * Check if merge fn is supported.
506 	 * If not we'll force DM to use PAGE_SIZE or
507 	 * smaller I/O, just to be safe.
508 	 */
509 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
510 		blk_limits_max_hw_sectors(limits,
511 					  (unsigned int) (PAGE_SIZE >> 9));
512 	return 0;
513 }
514 EXPORT_SYMBOL_GPL(dm_set_device_limits);
515 
516 /*
517  * Decrement a device's use count and remove it if necessary.
518  */
519 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
520 {
521 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
522 						  dm_dev);
523 
524 	if (atomic_dec_and_test(&dd->count)) {
525 		close_dev(dd, ti->table->md);
526 		list_del(&dd->list);
527 		kfree(dd);
528 	}
529 }
530 EXPORT_SYMBOL(dm_put_device);
531 
532 /*
533  * Checks to see if the target joins onto the end of the table.
534  */
535 static int adjoin(struct dm_table *table, struct dm_target *ti)
536 {
537 	struct dm_target *prev;
538 
539 	if (!table->num_targets)
540 		return !ti->begin;
541 
542 	prev = &table->targets[table->num_targets - 1];
543 	return (ti->begin == (prev->begin + prev->len));
544 }
545 
546 /*
547  * Used to dynamically allocate the arg array.
548  *
549  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
550  * process messages even if some device is suspended. These messages have a
551  * small fixed number of arguments.
552  *
553  * On the other hand, dm-switch needs to process bulk data using messages and
554  * excessive use of GFP_NOIO could cause trouble.
555  */
556 static char **realloc_argv(unsigned *array_size, char **old_argv)
557 {
558 	char **argv;
559 	unsigned new_size;
560 	gfp_t gfp;
561 
562 	if (*array_size) {
563 		new_size = *array_size * 2;
564 		gfp = GFP_KERNEL;
565 	} else {
566 		new_size = 8;
567 		gfp = GFP_NOIO;
568 	}
569 	argv = kmalloc(new_size * sizeof(*argv), gfp);
570 	if (argv) {
571 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
572 		*array_size = new_size;
573 	}
574 
575 	kfree(old_argv);
576 	return argv;
577 }
578 
579 /*
580  * Destructively splits up the argument list to pass to ctr.
581  */
582 int dm_split_args(int *argc, char ***argvp, char *input)
583 {
584 	char *start, *end = input, *out, **argv = NULL;
585 	unsigned array_size = 0;
586 
587 	*argc = 0;
588 
589 	if (!input) {
590 		*argvp = NULL;
591 		return 0;
592 	}
593 
594 	argv = realloc_argv(&array_size, argv);
595 	if (!argv)
596 		return -ENOMEM;
597 
598 	while (1) {
599 		/* Skip whitespace */
600 		start = skip_spaces(end);
601 
602 		if (!*start)
603 			break;	/* success, we hit the end */
604 
605 		/* 'out' is used to remove any back-quotes */
606 		end = out = start;
607 		while (*end) {
608 			/* Everything apart from '\0' can be quoted */
609 			if (*end == '\\' && *(end + 1)) {
610 				*out++ = *(end + 1);
611 				end += 2;
612 				continue;
613 			}
614 
615 			if (isspace(*end))
616 				break;	/* end of token */
617 
618 			*out++ = *end++;
619 		}
620 
621 		/* have we already filled the array ? */
622 		if ((*argc + 1) > array_size) {
623 			argv = realloc_argv(&array_size, argv);
624 			if (!argv)
625 				return -ENOMEM;
626 		}
627 
628 		/* we know this is whitespace */
629 		if (*end)
630 			end++;
631 
632 		/* terminate the string and put it in the array */
633 		*out = '\0';
634 		argv[*argc] = start;
635 		(*argc)++;
636 	}
637 
638 	*argvp = argv;
639 	return 0;
640 }
641 
642 /*
643  * Impose necessary and sufficient conditions on a devices's table such
644  * that any incoming bio which respects its logical_block_size can be
645  * processed successfully.  If it falls across the boundary between
646  * two or more targets, the size of each piece it gets split into must
647  * be compatible with the logical_block_size of the target processing it.
648  */
649 static int validate_hardware_logical_block_alignment(struct dm_table *table,
650 						 struct queue_limits *limits)
651 {
652 	/*
653 	 * This function uses arithmetic modulo the logical_block_size
654 	 * (in units of 512-byte sectors).
655 	 */
656 	unsigned short device_logical_block_size_sects =
657 		limits->logical_block_size >> SECTOR_SHIFT;
658 
659 	/*
660 	 * Offset of the start of the next table entry, mod logical_block_size.
661 	 */
662 	unsigned short next_target_start = 0;
663 
664 	/*
665 	 * Given an aligned bio that extends beyond the end of a
666 	 * target, how many sectors must the next target handle?
667 	 */
668 	unsigned short remaining = 0;
669 
670 	struct dm_target *uninitialized_var(ti);
671 	struct queue_limits ti_limits;
672 	unsigned i = 0;
673 
674 	/*
675 	 * Check each entry in the table in turn.
676 	 */
677 	while (i < dm_table_get_num_targets(table)) {
678 		ti = dm_table_get_target(table, i++);
679 
680 		blk_set_stacking_limits(&ti_limits);
681 
682 		/* combine all target devices' limits */
683 		if (ti->type->iterate_devices)
684 			ti->type->iterate_devices(ti, dm_set_device_limits,
685 						  &ti_limits);
686 
687 		/*
688 		 * If the remaining sectors fall entirely within this
689 		 * table entry are they compatible with its logical_block_size?
690 		 */
691 		if (remaining < ti->len &&
692 		    remaining & ((ti_limits.logical_block_size >>
693 				  SECTOR_SHIFT) - 1))
694 			break;	/* Error */
695 
696 		next_target_start =
697 		    (unsigned short) ((next_target_start + ti->len) &
698 				      (device_logical_block_size_sects - 1));
699 		remaining = next_target_start ?
700 		    device_logical_block_size_sects - next_target_start : 0;
701 	}
702 
703 	if (remaining) {
704 		DMWARN("%s: table line %u (start sect %llu len %llu) "
705 		       "not aligned to h/w logical block size %u",
706 		       dm_device_name(table->md), i,
707 		       (unsigned long long) ti->begin,
708 		       (unsigned long long) ti->len,
709 		       limits->logical_block_size);
710 		return -EINVAL;
711 	}
712 
713 	return 0;
714 }
715 
716 int dm_table_add_target(struct dm_table *t, const char *type,
717 			sector_t start, sector_t len, char *params)
718 {
719 	int r = -EINVAL, argc;
720 	char **argv;
721 	struct dm_target *tgt;
722 
723 	if (t->singleton) {
724 		DMERR("%s: target type %s must appear alone in table",
725 		      dm_device_name(t->md), t->targets->type->name);
726 		return -EINVAL;
727 	}
728 
729 	if ((r = check_space(t)))
730 		return r;
731 
732 	tgt = t->targets + t->num_targets;
733 	memset(tgt, 0, sizeof(*tgt));
734 
735 	if (!len) {
736 		DMERR("%s: zero-length target", dm_device_name(t->md));
737 		return -EINVAL;
738 	}
739 
740 	tgt->type = dm_get_target_type(type);
741 	if (!tgt->type) {
742 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
743 		      type);
744 		return -EINVAL;
745 	}
746 
747 	if (dm_target_needs_singleton(tgt->type)) {
748 		if (t->num_targets) {
749 			DMERR("%s: target type %s must appear alone in table",
750 			      dm_device_name(t->md), type);
751 			return -EINVAL;
752 		}
753 		t->singleton = 1;
754 	}
755 
756 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
757 		DMERR("%s: target type %s may not be included in read-only tables",
758 		      dm_device_name(t->md), type);
759 		return -EINVAL;
760 	}
761 
762 	if (t->immutable_target_type) {
763 		if (t->immutable_target_type != tgt->type) {
764 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
765 			      dm_device_name(t->md), t->immutable_target_type->name);
766 			return -EINVAL;
767 		}
768 	} else if (dm_target_is_immutable(tgt->type)) {
769 		if (t->num_targets) {
770 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
771 			      dm_device_name(t->md), tgt->type->name);
772 			return -EINVAL;
773 		}
774 		t->immutable_target_type = tgt->type;
775 	}
776 
777 	tgt->table = t;
778 	tgt->begin = start;
779 	tgt->len = len;
780 	tgt->error = "Unknown error";
781 
782 	/*
783 	 * Does this target adjoin the previous one ?
784 	 */
785 	if (!adjoin(t, tgt)) {
786 		tgt->error = "Gap in table";
787 		r = -EINVAL;
788 		goto bad;
789 	}
790 
791 	r = dm_split_args(&argc, &argv, params);
792 	if (r) {
793 		tgt->error = "couldn't split parameters (insufficient memory)";
794 		goto bad;
795 	}
796 
797 	r = tgt->type->ctr(tgt, argc, argv);
798 	kfree(argv);
799 	if (r)
800 		goto bad;
801 
802 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
803 
804 	if (!tgt->num_discard_bios && tgt->discards_supported)
805 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
806 		       dm_device_name(t->md), type);
807 
808 	return 0;
809 
810  bad:
811 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
812 	dm_put_target_type(tgt->type);
813 	return r;
814 }
815 
816 /*
817  * Target argument parsing helpers.
818  */
819 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
820 			     unsigned *value, char **error, unsigned grouped)
821 {
822 	const char *arg_str = dm_shift_arg(arg_set);
823 	char dummy;
824 
825 	if (!arg_str ||
826 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
827 	    (*value < arg->min) ||
828 	    (*value > arg->max) ||
829 	    (grouped && arg_set->argc < *value)) {
830 		*error = arg->error;
831 		return -EINVAL;
832 	}
833 
834 	return 0;
835 }
836 
837 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
838 		unsigned *value, char **error)
839 {
840 	return validate_next_arg(arg, arg_set, value, error, 0);
841 }
842 EXPORT_SYMBOL(dm_read_arg);
843 
844 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
845 		      unsigned *value, char **error)
846 {
847 	return validate_next_arg(arg, arg_set, value, error, 1);
848 }
849 EXPORT_SYMBOL(dm_read_arg_group);
850 
851 const char *dm_shift_arg(struct dm_arg_set *as)
852 {
853 	char *r;
854 
855 	if (as->argc) {
856 		as->argc--;
857 		r = *as->argv;
858 		as->argv++;
859 		return r;
860 	}
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dm_shift_arg);
865 
866 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
867 {
868 	BUG_ON(as->argc < num_args);
869 	as->argc -= num_args;
870 	as->argv += num_args;
871 }
872 EXPORT_SYMBOL(dm_consume_args);
873 
874 static int dm_table_set_type(struct dm_table *t)
875 {
876 	unsigned i;
877 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
878 	struct dm_target *tgt;
879 	struct dm_dev_internal *dd;
880 	struct list_head *devices;
881 	unsigned live_md_type;
882 
883 	for (i = 0; i < t->num_targets; i++) {
884 		tgt = t->targets + i;
885 		if (dm_target_hybrid(tgt))
886 			hybrid = 1;
887 		else if (dm_target_request_based(tgt))
888 			request_based = 1;
889 		else
890 			bio_based = 1;
891 
892 		if (bio_based && request_based) {
893 			DMWARN("Inconsistent table: different target types"
894 			       " can't be mixed up");
895 			return -EINVAL;
896 		}
897 	}
898 
899 	if (hybrid && !bio_based && !request_based) {
900 		/*
901 		 * The targets can work either way.
902 		 * Determine the type from the live device.
903 		 * Default to bio-based if device is new.
904 		 */
905 		live_md_type = dm_get_md_type(t->md);
906 		if (live_md_type == DM_TYPE_REQUEST_BASED)
907 			request_based = 1;
908 		else
909 			bio_based = 1;
910 	}
911 
912 	if (bio_based) {
913 		/* We must use this table as bio-based */
914 		t->type = DM_TYPE_BIO_BASED;
915 		return 0;
916 	}
917 
918 	BUG_ON(!request_based); /* No targets in this table */
919 
920 	/* Non-request-stackable devices can't be used for request-based dm */
921 	devices = dm_table_get_devices(t);
922 	list_for_each_entry(dd, devices, list) {
923 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
924 			DMWARN("table load rejected: including"
925 			       " non-request-stackable devices");
926 			return -EINVAL;
927 		}
928 	}
929 
930 	/*
931 	 * Request-based dm supports only tables that have a single target now.
932 	 * To support multiple targets, request splitting support is needed,
933 	 * and that needs lots of changes in the block-layer.
934 	 * (e.g. request completion process for partial completion.)
935 	 */
936 	if (t->num_targets > 1) {
937 		DMWARN("Request-based dm doesn't support multiple targets yet");
938 		return -EINVAL;
939 	}
940 
941 	t->type = DM_TYPE_REQUEST_BASED;
942 
943 	return 0;
944 }
945 
946 unsigned dm_table_get_type(struct dm_table *t)
947 {
948 	return t->type;
949 }
950 
951 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
952 {
953 	return t->immutable_target_type;
954 }
955 
956 bool dm_table_request_based(struct dm_table *t)
957 {
958 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
959 }
960 
961 int dm_table_alloc_md_mempools(struct dm_table *t)
962 {
963 	unsigned type = dm_table_get_type(t);
964 	unsigned per_bio_data_size = 0;
965 	struct dm_target *tgt;
966 	unsigned i;
967 
968 	if (unlikely(type == DM_TYPE_NONE)) {
969 		DMWARN("no table type is set, can't allocate mempools");
970 		return -EINVAL;
971 	}
972 
973 	if (type == DM_TYPE_BIO_BASED)
974 		for (i = 0; i < t->num_targets; i++) {
975 			tgt = t->targets + i;
976 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
977 		}
978 
979 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
980 	if (!t->mempools)
981 		return -ENOMEM;
982 
983 	return 0;
984 }
985 
986 void dm_table_free_md_mempools(struct dm_table *t)
987 {
988 	dm_free_md_mempools(t->mempools);
989 	t->mempools = NULL;
990 }
991 
992 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
993 {
994 	return t->mempools;
995 }
996 
997 static int setup_indexes(struct dm_table *t)
998 {
999 	int i;
1000 	unsigned int total = 0;
1001 	sector_t *indexes;
1002 
1003 	/* allocate the space for *all* the indexes */
1004 	for (i = t->depth - 2; i >= 0; i--) {
1005 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1006 		total += t->counts[i];
1007 	}
1008 
1009 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1010 	if (!indexes)
1011 		return -ENOMEM;
1012 
1013 	/* set up internal nodes, bottom-up */
1014 	for (i = t->depth - 2; i >= 0; i--) {
1015 		t->index[i] = indexes;
1016 		indexes += (KEYS_PER_NODE * t->counts[i]);
1017 		setup_btree_index(i, t);
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 /*
1024  * Builds the btree to index the map.
1025  */
1026 static int dm_table_build_index(struct dm_table *t)
1027 {
1028 	int r = 0;
1029 	unsigned int leaf_nodes;
1030 
1031 	/* how many indexes will the btree have ? */
1032 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1033 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1034 
1035 	/* leaf layer has already been set up */
1036 	t->counts[t->depth - 1] = leaf_nodes;
1037 	t->index[t->depth - 1] = t->highs;
1038 
1039 	if (t->depth >= 2)
1040 		r = setup_indexes(t);
1041 
1042 	return r;
1043 }
1044 
1045 /*
1046  * Get a disk whose integrity profile reflects the table's profile.
1047  * If %match_all is true, all devices' profiles must match.
1048  * If %match_all is false, all devices must at least have an
1049  * allocated integrity profile; but uninitialized is ok.
1050  * Returns NULL if integrity support was inconsistent or unavailable.
1051  */
1052 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1053 						    bool match_all)
1054 {
1055 	struct list_head *devices = dm_table_get_devices(t);
1056 	struct dm_dev_internal *dd = NULL;
1057 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1058 
1059 	list_for_each_entry(dd, devices, list) {
1060 		template_disk = dd->dm_dev.bdev->bd_disk;
1061 		if (!blk_get_integrity(template_disk))
1062 			goto no_integrity;
1063 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1064 			continue; /* skip uninitialized profiles */
1065 		else if (prev_disk &&
1066 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1067 			goto no_integrity;
1068 		prev_disk = template_disk;
1069 	}
1070 
1071 	return template_disk;
1072 
1073 no_integrity:
1074 	if (prev_disk)
1075 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1076 		       dm_device_name(t->md),
1077 		       prev_disk->disk_name,
1078 		       template_disk->disk_name);
1079 	return NULL;
1080 }
1081 
1082 /*
1083  * Register the mapped device for blk_integrity support if
1084  * the underlying devices have an integrity profile.  But all devices
1085  * may not have matching profiles (checking all devices isn't reliable
1086  * during table load because this table may use other DM device(s) which
1087  * must be resumed before they will have an initialized integity profile).
1088  * Stacked DM devices force a 2 stage integrity profile validation:
1089  * 1 - during load, validate all initialized integrity profiles match
1090  * 2 - during resume, validate all integrity profiles match
1091  */
1092 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1093 {
1094 	struct gendisk *template_disk = NULL;
1095 
1096 	template_disk = dm_table_get_integrity_disk(t, false);
1097 	if (!template_disk)
1098 		return 0;
1099 
1100 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1101 		t->integrity_supported = 1;
1102 		return blk_integrity_register(dm_disk(md), NULL);
1103 	}
1104 
1105 	/*
1106 	 * If DM device already has an initalized integrity
1107 	 * profile the new profile should not conflict.
1108 	 */
1109 	if (blk_integrity_is_initialized(template_disk) &&
1110 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1111 		DMWARN("%s: conflict with existing integrity profile: "
1112 		       "%s profile mismatch",
1113 		       dm_device_name(t->md),
1114 		       template_disk->disk_name);
1115 		return 1;
1116 	}
1117 
1118 	/* Preserve existing initialized integrity profile */
1119 	t->integrity_supported = 1;
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Prepares the table for use by building the indices,
1125  * setting the type, and allocating mempools.
1126  */
1127 int dm_table_complete(struct dm_table *t)
1128 {
1129 	int r;
1130 
1131 	r = dm_table_set_type(t);
1132 	if (r) {
1133 		DMERR("unable to set table type");
1134 		return r;
1135 	}
1136 
1137 	r = dm_table_build_index(t);
1138 	if (r) {
1139 		DMERR("unable to build btrees");
1140 		return r;
1141 	}
1142 
1143 	r = dm_table_prealloc_integrity(t, t->md);
1144 	if (r) {
1145 		DMERR("could not register integrity profile.");
1146 		return r;
1147 	}
1148 
1149 	r = dm_table_alloc_md_mempools(t);
1150 	if (r)
1151 		DMERR("unable to allocate mempools");
1152 
1153 	return r;
1154 }
1155 
1156 static DEFINE_MUTEX(_event_lock);
1157 void dm_table_event_callback(struct dm_table *t,
1158 			     void (*fn)(void *), void *context)
1159 {
1160 	mutex_lock(&_event_lock);
1161 	t->event_fn = fn;
1162 	t->event_context = context;
1163 	mutex_unlock(&_event_lock);
1164 }
1165 
1166 void dm_table_event(struct dm_table *t)
1167 {
1168 	/*
1169 	 * You can no longer call dm_table_event() from interrupt
1170 	 * context, use a bottom half instead.
1171 	 */
1172 	BUG_ON(in_interrupt());
1173 
1174 	mutex_lock(&_event_lock);
1175 	if (t->event_fn)
1176 		t->event_fn(t->event_context);
1177 	mutex_unlock(&_event_lock);
1178 }
1179 EXPORT_SYMBOL(dm_table_event);
1180 
1181 sector_t dm_table_get_size(struct dm_table *t)
1182 {
1183 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1184 }
1185 EXPORT_SYMBOL(dm_table_get_size);
1186 
1187 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1188 {
1189 	if (index >= t->num_targets)
1190 		return NULL;
1191 
1192 	return t->targets + index;
1193 }
1194 
1195 /*
1196  * Search the btree for the correct target.
1197  *
1198  * Caller should check returned pointer with dm_target_is_valid()
1199  * to trap I/O beyond end of device.
1200  */
1201 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1202 {
1203 	unsigned int l, n = 0, k = 0;
1204 	sector_t *node;
1205 
1206 	for (l = 0; l < t->depth; l++) {
1207 		n = get_child(n, k);
1208 		node = get_node(t, l, n);
1209 
1210 		for (k = 0; k < KEYS_PER_NODE; k++)
1211 			if (node[k] >= sector)
1212 				break;
1213 	}
1214 
1215 	return &t->targets[(KEYS_PER_NODE * n) + k];
1216 }
1217 
1218 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1219 			sector_t start, sector_t len, void *data)
1220 {
1221 	unsigned *num_devices = data;
1222 
1223 	(*num_devices)++;
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Check whether a table has no data devices attached using each
1230  * target's iterate_devices method.
1231  * Returns false if the result is unknown because a target doesn't
1232  * support iterate_devices.
1233  */
1234 bool dm_table_has_no_data_devices(struct dm_table *table)
1235 {
1236 	struct dm_target *uninitialized_var(ti);
1237 	unsigned i = 0, num_devices = 0;
1238 
1239 	while (i < dm_table_get_num_targets(table)) {
1240 		ti = dm_table_get_target(table, i++);
1241 
1242 		if (!ti->type->iterate_devices)
1243 			return false;
1244 
1245 		ti->type->iterate_devices(ti, count_device, &num_devices);
1246 		if (num_devices)
1247 			return false;
1248 	}
1249 
1250 	return true;
1251 }
1252 
1253 /*
1254  * Establish the new table's queue_limits and validate them.
1255  */
1256 int dm_calculate_queue_limits(struct dm_table *table,
1257 			      struct queue_limits *limits)
1258 {
1259 	struct dm_target *uninitialized_var(ti);
1260 	struct queue_limits ti_limits;
1261 	unsigned i = 0;
1262 
1263 	blk_set_stacking_limits(limits);
1264 
1265 	while (i < dm_table_get_num_targets(table)) {
1266 		blk_set_stacking_limits(&ti_limits);
1267 
1268 		ti = dm_table_get_target(table, i++);
1269 
1270 		if (!ti->type->iterate_devices)
1271 			goto combine_limits;
1272 
1273 		/*
1274 		 * Combine queue limits of all the devices this target uses.
1275 		 */
1276 		ti->type->iterate_devices(ti, dm_set_device_limits,
1277 					  &ti_limits);
1278 
1279 		/* Set I/O hints portion of queue limits */
1280 		if (ti->type->io_hints)
1281 			ti->type->io_hints(ti, &ti_limits);
1282 
1283 		/*
1284 		 * Check each device area is consistent with the target's
1285 		 * overall queue limits.
1286 		 */
1287 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1288 					      &ti_limits))
1289 			return -EINVAL;
1290 
1291 combine_limits:
1292 		/*
1293 		 * Merge this target's queue limits into the overall limits
1294 		 * for the table.
1295 		 */
1296 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1297 			DMWARN("%s: adding target device "
1298 			       "(start sect %llu len %llu) "
1299 			       "caused an alignment inconsistency",
1300 			       dm_device_name(table->md),
1301 			       (unsigned long long) ti->begin,
1302 			       (unsigned long long) ti->len);
1303 	}
1304 
1305 	return validate_hardware_logical_block_alignment(table, limits);
1306 }
1307 
1308 /*
1309  * Set the integrity profile for this device if all devices used have
1310  * matching profiles.  We're quite deep in the resume path but still
1311  * don't know if all devices (particularly DM devices this device
1312  * may be stacked on) have matching profiles.  Even if the profiles
1313  * don't match we have no way to fail (to resume) at this point.
1314  */
1315 static void dm_table_set_integrity(struct dm_table *t)
1316 {
1317 	struct gendisk *template_disk = NULL;
1318 
1319 	if (!blk_get_integrity(dm_disk(t->md)))
1320 		return;
1321 
1322 	template_disk = dm_table_get_integrity_disk(t, true);
1323 	if (template_disk)
1324 		blk_integrity_register(dm_disk(t->md),
1325 				       blk_get_integrity(template_disk));
1326 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1327 		DMWARN("%s: device no longer has a valid integrity profile",
1328 		       dm_device_name(t->md));
1329 	else
1330 		DMWARN("%s: unable to establish an integrity profile",
1331 		       dm_device_name(t->md));
1332 }
1333 
1334 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1335 				sector_t start, sector_t len, void *data)
1336 {
1337 	unsigned flush = (*(unsigned *)data);
1338 	struct request_queue *q = bdev_get_queue(dev->bdev);
1339 
1340 	return q && (q->flush_flags & flush);
1341 }
1342 
1343 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1344 {
1345 	struct dm_target *ti;
1346 	unsigned i = 0;
1347 
1348 	/*
1349 	 * Require at least one underlying device to support flushes.
1350 	 * t->devices includes internal dm devices such as mirror logs
1351 	 * so we need to use iterate_devices here, which targets
1352 	 * supporting flushes must provide.
1353 	 */
1354 	while (i < dm_table_get_num_targets(t)) {
1355 		ti = dm_table_get_target(t, i++);
1356 
1357 		if (!ti->num_flush_bios)
1358 			continue;
1359 
1360 		if (ti->flush_supported)
1361 			return 1;
1362 
1363 		if (ti->type->iterate_devices &&
1364 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1365 			return 1;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1372 {
1373 	struct dm_target *ti;
1374 	unsigned i = 0;
1375 
1376 	/* Ensure that all targets supports discard_zeroes_data. */
1377 	while (i < dm_table_get_num_targets(t)) {
1378 		ti = dm_table_get_target(t, i++);
1379 
1380 		if (ti->discard_zeroes_data_unsupported)
1381 			return 0;
1382 	}
1383 
1384 	return 1;
1385 }
1386 
1387 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1388 			    sector_t start, sector_t len, void *data)
1389 {
1390 	struct request_queue *q = bdev_get_queue(dev->bdev);
1391 
1392 	return q && blk_queue_nonrot(q);
1393 }
1394 
1395 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1396 			     sector_t start, sector_t len, void *data)
1397 {
1398 	struct request_queue *q = bdev_get_queue(dev->bdev);
1399 
1400 	return q && !blk_queue_add_random(q);
1401 }
1402 
1403 static bool dm_table_all_devices_attribute(struct dm_table *t,
1404 					   iterate_devices_callout_fn func)
1405 {
1406 	struct dm_target *ti;
1407 	unsigned i = 0;
1408 
1409 	while (i < dm_table_get_num_targets(t)) {
1410 		ti = dm_table_get_target(t, i++);
1411 
1412 		if (!ti->type->iterate_devices ||
1413 		    !ti->type->iterate_devices(ti, func, NULL))
1414 			return 0;
1415 	}
1416 
1417 	return 1;
1418 }
1419 
1420 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1421 					 sector_t start, sector_t len, void *data)
1422 {
1423 	struct request_queue *q = bdev_get_queue(dev->bdev);
1424 
1425 	return q && !q->limits.max_write_same_sectors;
1426 }
1427 
1428 static bool dm_table_supports_write_same(struct dm_table *t)
1429 {
1430 	struct dm_target *ti;
1431 	unsigned i = 0;
1432 
1433 	while (i < dm_table_get_num_targets(t)) {
1434 		ti = dm_table_get_target(t, i++);
1435 
1436 		if (!ti->num_write_same_bios)
1437 			return false;
1438 
1439 		if (!ti->type->iterate_devices ||
1440 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1441 			return false;
1442 	}
1443 
1444 	return true;
1445 }
1446 
1447 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1448 			       struct queue_limits *limits)
1449 {
1450 	unsigned flush = 0;
1451 
1452 	/*
1453 	 * Copy table's limits to the DM device's request_queue
1454 	 */
1455 	q->limits = *limits;
1456 
1457 	if (!dm_table_supports_discards(t))
1458 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1459 	else
1460 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1461 
1462 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1463 		flush |= REQ_FLUSH;
1464 		if (dm_table_supports_flush(t, REQ_FUA))
1465 			flush |= REQ_FUA;
1466 	}
1467 	blk_queue_flush(q, flush);
1468 
1469 	if (!dm_table_discard_zeroes_data(t))
1470 		q->limits.discard_zeroes_data = 0;
1471 
1472 	/* Ensure that all underlying devices are non-rotational. */
1473 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1474 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1475 	else
1476 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1477 
1478 	if (!dm_table_supports_write_same(t))
1479 		q->limits.max_write_same_sectors = 0;
1480 
1481 	dm_table_set_integrity(t);
1482 
1483 	/*
1484 	 * Determine whether or not this queue's I/O timings contribute
1485 	 * to the entropy pool, Only request-based targets use this.
1486 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1487 	 * have it set.
1488 	 */
1489 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1490 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1491 
1492 	/*
1493 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1494 	 * visible to other CPUs because, once the flag is set, incoming bios
1495 	 * are processed by request-based dm, which refers to the queue
1496 	 * settings.
1497 	 * Until the flag set, bios are passed to bio-based dm and queued to
1498 	 * md->deferred where queue settings are not needed yet.
1499 	 * Those bios are passed to request-based dm at the resume time.
1500 	 */
1501 	smp_mb();
1502 	if (dm_table_request_based(t))
1503 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1504 }
1505 
1506 unsigned int dm_table_get_num_targets(struct dm_table *t)
1507 {
1508 	return t->num_targets;
1509 }
1510 
1511 struct list_head *dm_table_get_devices(struct dm_table *t)
1512 {
1513 	return &t->devices;
1514 }
1515 
1516 fmode_t dm_table_get_mode(struct dm_table *t)
1517 {
1518 	return t->mode;
1519 }
1520 EXPORT_SYMBOL(dm_table_get_mode);
1521 
1522 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1523 {
1524 	int i = t->num_targets;
1525 	struct dm_target *ti = t->targets;
1526 
1527 	while (i--) {
1528 		if (postsuspend) {
1529 			if (ti->type->postsuspend)
1530 				ti->type->postsuspend(ti);
1531 		} else if (ti->type->presuspend)
1532 			ti->type->presuspend(ti);
1533 
1534 		ti++;
1535 	}
1536 }
1537 
1538 void dm_table_presuspend_targets(struct dm_table *t)
1539 {
1540 	if (!t)
1541 		return;
1542 
1543 	suspend_targets(t, 0);
1544 }
1545 
1546 void dm_table_postsuspend_targets(struct dm_table *t)
1547 {
1548 	if (!t)
1549 		return;
1550 
1551 	suspend_targets(t, 1);
1552 }
1553 
1554 int dm_table_resume_targets(struct dm_table *t)
1555 {
1556 	int i, r = 0;
1557 
1558 	for (i = 0; i < t->num_targets; i++) {
1559 		struct dm_target *ti = t->targets + i;
1560 
1561 		if (!ti->type->preresume)
1562 			continue;
1563 
1564 		r = ti->type->preresume(ti);
1565 		if (r) {
1566 			DMERR("%s: %s: preresume failed, error = %d",
1567 			      dm_device_name(t->md), ti->type->name, r);
1568 			return r;
1569 		}
1570 	}
1571 
1572 	for (i = 0; i < t->num_targets; i++) {
1573 		struct dm_target *ti = t->targets + i;
1574 
1575 		if (ti->type->resume)
1576 			ti->type->resume(ti);
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1583 {
1584 	list_add(&cb->list, &t->target_callbacks);
1585 }
1586 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1587 
1588 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1589 {
1590 	struct dm_dev_internal *dd;
1591 	struct list_head *devices = dm_table_get_devices(t);
1592 	struct dm_target_callbacks *cb;
1593 	int r = 0;
1594 
1595 	list_for_each_entry(dd, devices, list) {
1596 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1597 		char b[BDEVNAME_SIZE];
1598 
1599 		if (likely(q))
1600 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1601 		else
1602 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1603 				     dm_device_name(t->md),
1604 				     bdevname(dd->dm_dev.bdev, b));
1605 	}
1606 
1607 	list_for_each_entry(cb, &t->target_callbacks, list)
1608 		if (cb->congested_fn)
1609 			r |= cb->congested_fn(cb, bdi_bits);
1610 
1611 	return r;
1612 }
1613 
1614 int dm_table_any_busy_target(struct dm_table *t)
1615 {
1616 	unsigned i;
1617 	struct dm_target *ti;
1618 
1619 	for (i = 0; i < t->num_targets; i++) {
1620 		ti = t->targets + i;
1621 		if (ti->type->busy && ti->type->busy(ti))
1622 			return 1;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 struct mapped_device *dm_table_get_md(struct dm_table *t)
1629 {
1630 	return t->md;
1631 }
1632 EXPORT_SYMBOL(dm_table_get_md);
1633 
1634 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1635 				  sector_t start, sector_t len, void *data)
1636 {
1637 	struct request_queue *q = bdev_get_queue(dev->bdev);
1638 
1639 	return q && blk_queue_discard(q);
1640 }
1641 
1642 bool dm_table_supports_discards(struct dm_table *t)
1643 {
1644 	struct dm_target *ti;
1645 	unsigned i = 0;
1646 
1647 	/*
1648 	 * Unless any target used by the table set discards_supported,
1649 	 * require at least one underlying device to support discards.
1650 	 * t->devices includes internal dm devices such as mirror logs
1651 	 * so we need to use iterate_devices here, which targets
1652 	 * supporting discard selectively must provide.
1653 	 */
1654 	while (i < dm_table_get_num_targets(t)) {
1655 		ti = dm_table_get_target(t, i++);
1656 
1657 		if (!ti->num_discard_bios)
1658 			continue;
1659 
1660 		if (ti->discards_supported)
1661 			return 1;
1662 
1663 		if (ti->type->iterate_devices &&
1664 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1665 			return 1;
1666 	}
1667 
1668 	return 0;
1669 }
1670