1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 struct dm_table { 30 struct mapped_device *md; 31 unsigned type; 32 33 /* btree table */ 34 unsigned int depth; 35 unsigned int counts[MAX_DEPTH]; /* in nodes */ 36 sector_t *index[MAX_DEPTH]; 37 38 unsigned int num_targets; 39 unsigned int num_allocated; 40 sector_t *highs; 41 struct dm_target *targets; 42 43 struct target_type *immutable_target_type; 44 unsigned integrity_supported:1; 45 unsigned singleton:1; 46 47 /* 48 * Indicates the rw permissions for the new logical 49 * device. This should be a combination of FMODE_READ 50 * and FMODE_WRITE. 51 */ 52 fmode_t mode; 53 54 /* a list of devices used by this table */ 55 struct list_head devices; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 61 struct dm_md_mempools *mempools; 62 63 struct list_head target_callbacks; 64 }; 65 66 /* 67 * Similar to ceiling(log_size(n)) 68 */ 69 static unsigned int int_log(unsigned int n, unsigned int base) 70 { 71 int result = 0; 72 73 while (n > 1) { 74 n = dm_div_up(n, base); 75 result++; 76 } 77 78 return result; 79 } 80 81 /* 82 * Calculate the index of the child node of the n'th node k'th key. 83 */ 84 static inline unsigned int get_child(unsigned int n, unsigned int k) 85 { 86 return (n * CHILDREN_PER_NODE) + k; 87 } 88 89 /* 90 * Return the n'th node of level l from table t. 91 */ 92 static inline sector_t *get_node(struct dm_table *t, 93 unsigned int l, unsigned int n) 94 { 95 return t->index[l] + (n * KEYS_PER_NODE); 96 } 97 98 /* 99 * Return the highest key that you could lookup from the n'th 100 * node on level l of the btree. 101 */ 102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 103 { 104 for (; l < t->depth - 1; l++) 105 n = get_child(n, CHILDREN_PER_NODE - 1); 106 107 if (n >= t->counts[l]) 108 return (sector_t) - 1; 109 110 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 111 } 112 113 /* 114 * Fills in a level of the btree based on the highs of the level 115 * below it. 116 */ 117 static int setup_btree_index(unsigned int l, struct dm_table *t) 118 { 119 unsigned int n, k; 120 sector_t *node; 121 122 for (n = 0U; n < t->counts[l]; n++) { 123 node = get_node(t, l, n); 124 125 for (k = 0U; k < KEYS_PER_NODE; k++) 126 node[k] = high(t, l + 1, get_child(n, k)); 127 } 128 129 return 0; 130 } 131 132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 133 { 134 unsigned long size; 135 void *addr; 136 137 /* 138 * Check that we're not going to overflow. 139 */ 140 if (nmemb > (ULONG_MAX / elem_size)) 141 return NULL; 142 143 size = nmemb * elem_size; 144 addr = vzalloc(size); 145 146 return addr; 147 } 148 EXPORT_SYMBOL(dm_vcalloc); 149 150 /* 151 * highs, and targets are managed as dynamic arrays during a 152 * table load. 153 */ 154 static int alloc_targets(struct dm_table *t, unsigned int num) 155 { 156 sector_t *n_highs; 157 struct dm_target *n_targets; 158 int n = t->num_targets; 159 160 /* 161 * Allocate both the target array and offset array at once. 162 * Append an empty entry to catch sectors beyond the end of 163 * the device. 164 */ 165 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 166 sizeof(sector_t)); 167 if (!n_highs) 168 return -ENOMEM; 169 170 n_targets = (struct dm_target *) (n_highs + num); 171 172 if (n) { 173 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 174 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 175 } 176 177 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 178 vfree(t->highs); 179 180 t->num_allocated = num; 181 t->highs = n_highs; 182 t->targets = n_targets; 183 184 return 0; 185 } 186 187 int dm_table_create(struct dm_table **result, fmode_t mode, 188 unsigned num_targets, struct mapped_device *md) 189 { 190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 191 192 if (!t) 193 return -ENOMEM; 194 195 INIT_LIST_HEAD(&t->devices); 196 INIT_LIST_HEAD(&t->target_callbacks); 197 198 if (!num_targets) 199 num_targets = KEYS_PER_NODE; 200 201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 202 203 if (alloc_targets(t, num_targets)) { 204 kfree(t); 205 return -ENOMEM; 206 } 207 208 t->mode = mode; 209 t->md = md; 210 *result = t; 211 return 0; 212 } 213 214 static void free_devices(struct list_head *devices) 215 { 216 struct list_head *tmp, *next; 217 218 list_for_each_safe(tmp, next, devices) { 219 struct dm_dev_internal *dd = 220 list_entry(tmp, struct dm_dev_internal, list); 221 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 222 dd->dm_dev.name); 223 kfree(dd); 224 } 225 } 226 227 void dm_table_destroy(struct dm_table *t) 228 { 229 unsigned int i; 230 231 if (!t) 232 return; 233 234 /* free the indexes */ 235 if (t->depth >= 2) 236 vfree(t->index[t->depth - 2]); 237 238 /* free the targets */ 239 for (i = 0; i < t->num_targets; i++) { 240 struct dm_target *tgt = t->targets + i; 241 242 if (tgt->type->dtr) 243 tgt->type->dtr(tgt); 244 245 dm_put_target_type(tgt->type); 246 } 247 248 vfree(t->highs); 249 250 /* free the device list */ 251 free_devices(&t->devices); 252 253 dm_free_md_mempools(t->mempools); 254 255 kfree(t); 256 } 257 258 /* 259 * Checks to see if we need to extend highs or targets. 260 */ 261 static inline int check_space(struct dm_table *t) 262 { 263 if (t->num_targets >= t->num_allocated) 264 return alloc_targets(t, t->num_allocated * 2); 265 266 return 0; 267 } 268 269 /* 270 * See if we've already got a device in the list. 271 */ 272 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 273 { 274 struct dm_dev_internal *dd; 275 276 list_for_each_entry (dd, l, list) 277 if (dd->dm_dev.bdev->bd_dev == dev) 278 return dd; 279 280 return NULL; 281 } 282 283 /* 284 * Open a device so we can use it as a map destination. 285 */ 286 static int open_dev(struct dm_dev_internal *d, dev_t dev, 287 struct mapped_device *md) 288 { 289 static char *_claim_ptr = "I belong to device-mapper"; 290 struct block_device *bdev; 291 292 int r; 293 294 BUG_ON(d->dm_dev.bdev); 295 296 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 297 if (IS_ERR(bdev)) 298 return PTR_ERR(bdev); 299 300 r = bd_link_disk_holder(bdev, dm_disk(md)); 301 if (r) { 302 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 303 return r; 304 } 305 306 d->dm_dev.bdev = bdev; 307 return 0; 308 } 309 310 /* 311 * Close a device that we've been using. 312 */ 313 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 314 { 315 if (!d->dm_dev.bdev) 316 return; 317 318 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 319 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 320 d->dm_dev.bdev = NULL; 321 } 322 323 /* 324 * If possible, this checks an area of a destination device is invalid. 325 */ 326 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 327 sector_t start, sector_t len, void *data) 328 { 329 struct request_queue *q; 330 struct queue_limits *limits = data; 331 struct block_device *bdev = dev->bdev; 332 sector_t dev_size = 333 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 334 unsigned short logical_block_size_sectors = 335 limits->logical_block_size >> SECTOR_SHIFT; 336 char b[BDEVNAME_SIZE]; 337 338 /* 339 * Some devices exist without request functions, 340 * such as loop devices not yet bound to backing files. 341 * Forbid the use of such devices. 342 */ 343 q = bdev_get_queue(bdev); 344 if (!q || !q->make_request_fn) { 345 DMWARN("%s: %s is not yet initialised: " 346 "start=%llu, len=%llu, dev_size=%llu", 347 dm_device_name(ti->table->md), bdevname(bdev, b), 348 (unsigned long long)start, 349 (unsigned long long)len, 350 (unsigned long long)dev_size); 351 return 1; 352 } 353 354 if (!dev_size) 355 return 0; 356 357 if ((start >= dev_size) || (start + len > dev_size)) { 358 DMWARN("%s: %s too small for target: " 359 "start=%llu, len=%llu, dev_size=%llu", 360 dm_device_name(ti->table->md), bdevname(bdev, b), 361 (unsigned long long)start, 362 (unsigned long long)len, 363 (unsigned long long)dev_size); 364 return 1; 365 } 366 367 if (logical_block_size_sectors <= 1) 368 return 0; 369 370 if (start & (logical_block_size_sectors - 1)) { 371 DMWARN("%s: start=%llu not aligned to h/w " 372 "logical block size %u of %s", 373 dm_device_name(ti->table->md), 374 (unsigned long long)start, 375 limits->logical_block_size, bdevname(bdev, b)); 376 return 1; 377 } 378 379 if (len & (logical_block_size_sectors - 1)) { 380 DMWARN("%s: len=%llu not aligned to h/w " 381 "logical block size %u of %s", 382 dm_device_name(ti->table->md), 383 (unsigned long long)len, 384 limits->logical_block_size, bdevname(bdev, b)); 385 return 1; 386 } 387 388 return 0; 389 } 390 391 /* 392 * This upgrades the mode on an already open dm_dev, being 393 * careful to leave things as they were if we fail to reopen the 394 * device and not to touch the existing bdev field in case 395 * it is accessed concurrently inside dm_table_any_congested(). 396 */ 397 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 398 struct mapped_device *md) 399 { 400 int r; 401 struct dm_dev_internal dd_new, dd_old; 402 403 dd_new = dd_old = *dd; 404 405 dd_new.dm_dev.mode |= new_mode; 406 dd_new.dm_dev.bdev = NULL; 407 408 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 409 if (r) 410 return r; 411 412 dd->dm_dev.mode |= new_mode; 413 close_dev(&dd_old, md); 414 415 return 0; 416 } 417 418 /* 419 * Add a device to the list, or just increment the usage count if 420 * it's already present. 421 */ 422 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 423 struct dm_dev **result) 424 { 425 int r; 426 dev_t uninitialized_var(dev); 427 struct dm_dev_internal *dd; 428 unsigned int major, minor; 429 struct dm_table *t = ti->table; 430 char dummy; 431 432 BUG_ON(!t); 433 434 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 435 /* Extract the major/minor numbers */ 436 dev = MKDEV(major, minor); 437 if (MAJOR(dev) != major || MINOR(dev) != minor) 438 return -EOVERFLOW; 439 } else { 440 /* convert the path to a device */ 441 struct block_device *bdev = lookup_bdev(path); 442 443 if (IS_ERR(bdev)) 444 return PTR_ERR(bdev); 445 dev = bdev->bd_dev; 446 bdput(bdev); 447 } 448 449 dd = find_device(&t->devices, dev); 450 if (!dd) { 451 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 452 if (!dd) 453 return -ENOMEM; 454 455 dd->dm_dev.mode = mode; 456 dd->dm_dev.bdev = NULL; 457 458 if ((r = open_dev(dd, dev, t->md))) { 459 kfree(dd); 460 return r; 461 } 462 463 format_dev_t(dd->dm_dev.name, dev); 464 465 atomic_set(&dd->count, 0); 466 list_add(&dd->list, &t->devices); 467 468 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 469 r = upgrade_mode(dd, mode, t->md); 470 if (r) 471 return r; 472 } 473 atomic_inc(&dd->count); 474 475 *result = &dd->dm_dev; 476 return 0; 477 } 478 EXPORT_SYMBOL(dm_get_device); 479 480 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 481 sector_t start, sector_t len, void *data) 482 { 483 struct queue_limits *limits = data; 484 struct block_device *bdev = dev->bdev; 485 struct request_queue *q = bdev_get_queue(bdev); 486 char b[BDEVNAME_SIZE]; 487 488 if (unlikely(!q)) { 489 DMWARN("%s: Cannot set limits for nonexistent device %s", 490 dm_device_name(ti->table->md), bdevname(bdev, b)); 491 return 0; 492 } 493 494 if (bdev_stack_limits(limits, bdev, start) < 0) 495 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 496 "physical_block_size=%u, logical_block_size=%u, " 497 "alignment_offset=%u, start=%llu", 498 dm_device_name(ti->table->md), bdevname(bdev, b), 499 q->limits.physical_block_size, 500 q->limits.logical_block_size, 501 q->limits.alignment_offset, 502 (unsigned long long) start << SECTOR_SHIFT); 503 504 /* 505 * Check if merge fn is supported. 506 * If not we'll force DM to use PAGE_SIZE or 507 * smaller I/O, just to be safe. 508 */ 509 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge) 510 blk_limits_max_hw_sectors(limits, 511 (unsigned int) (PAGE_SIZE >> 9)); 512 return 0; 513 } 514 EXPORT_SYMBOL_GPL(dm_set_device_limits); 515 516 /* 517 * Decrement a device's use count and remove it if necessary. 518 */ 519 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 520 { 521 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 522 dm_dev); 523 524 if (atomic_dec_and_test(&dd->count)) { 525 close_dev(dd, ti->table->md); 526 list_del(&dd->list); 527 kfree(dd); 528 } 529 } 530 EXPORT_SYMBOL(dm_put_device); 531 532 /* 533 * Checks to see if the target joins onto the end of the table. 534 */ 535 static int adjoin(struct dm_table *table, struct dm_target *ti) 536 { 537 struct dm_target *prev; 538 539 if (!table->num_targets) 540 return !ti->begin; 541 542 prev = &table->targets[table->num_targets - 1]; 543 return (ti->begin == (prev->begin + prev->len)); 544 } 545 546 /* 547 * Used to dynamically allocate the arg array. 548 * 549 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 550 * process messages even if some device is suspended. These messages have a 551 * small fixed number of arguments. 552 * 553 * On the other hand, dm-switch needs to process bulk data using messages and 554 * excessive use of GFP_NOIO could cause trouble. 555 */ 556 static char **realloc_argv(unsigned *array_size, char **old_argv) 557 { 558 char **argv; 559 unsigned new_size; 560 gfp_t gfp; 561 562 if (*array_size) { 563 new_size = *array_size * 2; 564 gfp = GFP_KERNEL; 565 } else { 566 new_size = 8; 567 gfp = GFP_NOIO; 568 } 569 argv = kmalloc(new_size * sizeof(*argv), gfp); 570 if (argv) { 571 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 572 *array_size = new_size; 573 } 574 575 kfree(old_argv); 576 return argv; 577 } 578 579 /* 580 * Destructively splits up the argument list to pass to ctr. 581 */ 582 int dm_split_args(int *argc, char ***argvp, char *input) 583 { 584 char *start, *end = input, *out, **argv = NULL; 585 unsigned array_size = 0; 586 587 *argc = 0; 588 589 if (!input) { 590 *argvp = NULL; 591 return 0; 592 } 593 594 argv = realloc_argv(&array_size, argv); 595 if (!argv) 596 return -ENOMEM; 597 598 while (1) { 599 /* Skip whitespace */ 600 start = skip_spaces(end); 601 602 if (!*start) 603 break; /* success, we hit the end */ 604 605 /* 'out' is used to remove any back-quotes */ 606 end = out = start; 607 while (*end) { 608 /* Everything apart from '\0' can be quoted */ 609 if (*end == '\\' && *(end + 1)) { 610 *out++ = *(end + 1); 611 end += 2; 612 continue; 613 } 614 615 if (isspace(*end)) 616 break; /* end of token */ 617 618 *out++ = *end++; 619 } 620 621 /* have we already filled the array ? */ 622 if ((*argc + 1) > array_size) { 623 argv = realloc_argv(&array_size, argv); 624 if (!argv) 625 return -ENOMEM; 626 } 627 628 /* we know this is whitespace */ 629 if (*end) 630 end++; 631 632 /* terminate the string and put it in the array */ 633 *out = '\0'; 634 argv[*argc] = start; 635 (*argc)++; 636 } 637 638 *argvp = argv; 639 return 0; 640 } 641 642 /* 643 * Impose necessary and sufficient conditions on a devices's table such 644 * that any incoming bio which respects its logical_block_size can be 645 * processed successfully. If it falls across the boundary between 646 * two or more targets, the size of each piece it gets split into must 647 * be compatible with the logical_block_size of the target processing it. 648 */ 649 static int validate_hardware_logical_block_alignment(struct dm_table *table, 650 struct queue_limits *limits) 651 { 652 /* 653 * This function uses arithmetic modulo the logical_block_size 654 * (in units of 512-byte sectors). 655 */ 656 unsigned short device_logical_block_size_sects = 657 limits->logical_block_size >> SECTOR_SHIFT; 658 659 /* 660 * Offset of the start of the next table entry, mod logical_block_size. 661 */ 662 unsigned short next_target_start = 0; 663 664 /* 665 * Given an aligned bio that extends beyond the end of a 666 * target, how many sectors must the next target handle? 667 */ 668 unsigned short remaining = 0; 669 670 struct dm_target *uninitialized_var(ti); 671 struct queue_limits ti_limits; 672 unsigned i = 0; 673 674 /* 675 * Check each entry in the table in turn. 676 */ 677 while (i < dm_table_get_num_targets(table)) { 678 ti = dm_table_get_target(table, i++); 679 680 blk_set_stacking_limits(&ti_limits); 681 682 /* combine all target devices' limits */ 683 if (ti->type->iterate_devices) 684 ti->type->iterate_devices(ti, dm_set_device_limits, 685 &ti_limits); 686 687 /* 688 * If the remaining sectors fall entirely within this 689 * table entry are they compatible with its logical_block_size? 690 */ 691 if (remaining < ti->len && 692 remaining & ((ti_limits.logical_block_size >> 693 SECTOR_SHIFT) - 1)) 694 break; /* Error */ 695 696 next_target_start = 697 (unsigned short) ((next_target_start + ti->len) & 698 (device_logical_block_size_sects - 1)); 699 remaining = next_target_start ? 700 device_logical_block_size_sects - next_target_start : 0; 701 } 702 703 if (remaining) { 704 DMWARN("%s: table line %u (start sect %llu len %llu) " 705 "not aligned to h/w logical block size %u", 706 dm_device_name(table->md), i, 707 (unsigned long long) ti->begin, 708 (unsigned long long) ti->len, 709 limits->logical_block_size); 710 return -EINVAL; 711 } 712 713 return 0; 714 } 715 716 int dm_table_add_target(struct dm_table *t, const char *type, 717 sector_t start, sector_t len, char *params) 718 { 719 int r = -EINVAL, argc; 720 char **argv; 721 struct dm_target *tgt; 722 723 if (t->singleton) { 724 DMERR("%s: target type %s must appear alone in table", 725 dm_device_name(t->md), t->targets->type->name); 726 return -EINVAL; 727 } 728 729 if ((r = check_space(t))) 730 return r; 731 732 tgt = t->targets + t->num_targets; 733 memset(tgt, 0, sizeof(*tgt)); 734 735 if (!len) { 736 DMERR("%s: zero-length target", dm_device_name(t->md)); 737 return -EINVAL; 738 } 739 740 tgt->type = dm_get_target_type(type); 741 if (!tgt->type) { 742 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 743 type); 744 return -EINVAL; 745 } 746 747 if (dm_target_needs_singleton(tgt->type)) { 748 if (t->num_targets) { 749 DMERR("%s: target type %s must appear alone in table", 750 dm_device_name(t->md), type); 751 return -EINVAL; 752 } 753 t->singleton = 1; 754 } 755 756 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 757 DMERR("%s: target type %s may not be included in read-only tables", 758 dm_device_name(t->md), type); 759 return -EINVAL; 760 } 761 762 if (t->immutable_target_type) { 763 if (t->immutable_target_type != tgt->type) { 764 DMERR("%s: immutable target type %s cannot be mixed with other target types", 765 dm_device_name(t->md), t->immutable_target_type->name); 766 return -EINVAL; 767 } 768 } else if (dm_target_is_immutable(tgt->type)) { 769 if (t->num_targets) { 770 DMERR("%s: immutable target type %s cannot be mixed with other target types", 771 dm_device_name(t->md), tgt->type->name); 772 return -EINVAL; 773 } 774 t->immutable_target_type = tgt->type; 775 } 776 777 tgt->table = t; 778 tgt->begin = start; 779 tgt->len = len; 780 tgt->error = "Unknown error"; 781 782 /* 783 * Does this target adjoin the previous one ? 784 */ 785 if (!adjoin(t, tgt)) { 786 tgt->error = "Gap in table"; 787 r = -EINVAL; 788 goto bad; 789 } 790 791 r = dm_split_args(&argc, &argv, params); 792 if (r) { 793 tgt->error = "couldn't split parameters (insufficient memory)"; 794 goto bad; 795 } 796 797 r = tgt->type->ctr(tgt, argc, argv); 798 kfree(argv); 799 if (r) 800 goto bad; 801 802 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 803 804 if (!tgt->num_discard_bios && tgt->discards_supported) 805 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 806 dm_device_name(t->md), type); 807 808 return 0; 809 810 bad: 811 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 812 dm_put_target_type(tgt->type); 813 return r; 814 } 815 816 /* 817 * Target argument parsing helpers. 818 */ 819 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 820 unsigned *value, char **error, unsigned grouped) 821 { 822 const char *arg_str = dm_shift_arg(arg_set); 823 char dummy; 824 825 if (!arg_str || 826 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 827 (*value < arg->min) || 828 (*value > arg->max) || 829 (grouped && arg_set->argc < *value)) { 830 *error = arg->error; 831 return -EINVAL; 832 } 833 834 return 0; 835 } 836 837 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 838 unsigned *value, char **error) 839 { 840 return validate_next_arg(arg, arg_set, value, error, 0); 841 } 842 EXPORT_SYMBOL(dm_read_arg); 843 844 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 845 unsigned *value, char **error) 846 { 847 return validate_next_arg(arg, arg_set, value, error, 1); 848 } 849 EXPORT_SYMBOL(dm_read_arg_group); 850 851 const char *dm_shift_arg(struct dm_arg_set *as) 852 { 853 char *r; 854 855 if (as->argc) { 856 as->argc--; 857 r = *as->argv; 858 as->argv++; 859 return r; 860 } 861 862 return NULL; 863 } 864 EXPORT_SYMBOL(dm_shift_arg); 865 866 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 867 { 868 BUG_ON(as->argc < num_args); 869 as->argc -= num_args; 870 as->argv += num_args; 871 } 872 EXPORT_SYMBOL(dm_consume_args); 873 874 static int dm_table_set_type(struct dm_table *t) 875 { 876 unsigned i; 877 unsigned bio_based = 0, request_based = 0, hybrid = 0; 878 struct dm_target *tgt; 879 struct dm_dev_internal *dd; 880 struct list_head *devices; 881 unsigned live_md_type; 882 883 for (i = 0; i < t->num_targets; i++) { 884 tgt = t->targets + i; 885 if (dm_target_hybrid(tgt)) 886 hybrid = 1; 887 else if (dm_target_request_based(tgt)) 888 request_based = 1; 889 else 890 bio_based = 1; 891 892 if (bio_based && request_based) { 893 DMWARN("Inconsistent table: different target types" 894 " can't be mixed up"); 895 return -EINVAL; 896 } 897 } 898 899 if (hybrid && !bio_based && !request_based) { 900 /* 901 * The targets can work either way. 902 * Determine the type from the live device. 903 * Default to bio-based if device is new. 904 */ 905 live_md_type = dm_get_md_type(t->md); 906 if (live_md_type == DM_TYPE_REQUEST_BASED) 907 request_based = 1; 908 else 909 bio_based = 1; 910 } 911 912 if (bio_based) { 913 /* We must use this table as bio-based */ 914 t->type = DM_TYPE_BIO_BASED; 915 return 0; 916 } 917 918 BUG_ON(!request_based); /* No targets in this table */ 919 920 /* Non-request-stackable devices can't be used for request-based dm */ 921 devices = dm_table_get_devices(t); 922 list_for_each_entry(dd, devices, list) { 923 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 924 DMWARN("table load rejected: including" 925 " non-request-stackable devices"); 926 return -EINVAL; 927 } 928 } 929 930 /* 931 * Request-based dm supports only tables that have a single target now. 932 * To support multiple targets, request splitting support is needed, 933 * and that needs lots of changes in the block-layer. 934 * (e.g. request completion process for partial completion.) 935 */ 936 if (t->num_targets > 1) { 937 DMWARN("Request-based dm doesn't support multiple targets yet"); 938 return -EINVAL; 939 } 940 941 t->type = DM_TYPE_REQUEST_BASED; 942 943 return 0; 944 } 945 946 unsigned dm_table_get_type(struct dm_table *t) 947 { 948 return t->type; 949 } 950 951 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 952 { 953 return t->immutable_target_type; 954 } 955 956 bool dm_table_request_based(struct dm_table *t) 957 { 958 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 959 } 960 961 int dm_table_alloc_md_mempools(struct dm_table *t) 962 { 963 unsigned type = dm_table_get_type(t); 964 unsigned per_bio_data_size = 0; 965 struct dm_target *tgt; 966 unsigned i; 967 968 if (unlikely(type == DM_TYPE_NONE)) { 969 DMWARN("no table type is set, can't allocate mempools"); 970 return -EINVAL; 971 } 972 973 if (type == DM_TYPE_BIO_BASED) 974 for (i = 0; i < t->num_targets; i++) { 975 tgt = t->targets + i; 976 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size); 977 } 978 979 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size); 980 if (!t->mempools) 981 return -ENOMEM; 982 983 return 0; 984 } 985 986 void dm_table_free_md_mempools(struct dm_table *t) 987 { 988 dm_free_md_mempools(t->mempools); 989 t->mempools = NULL; 990 } 991 992 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 993 { 994 return t->mempools; 995 } 996 997 static int setup_indexes(struct dm_table *t) 998 { 999 int i; 1000 unsigned int total = 0; 1001 sector_t *indexes; 1002 1003 /* allocate the space for *all* the indexes */ 1004 for (i = t->depth - 2; i >= 0; i--) { 1005 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1006 total += t->counts[i]; 1007 } 1008 1009 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1010 if (!indexes) 1011 return -ENOMEM; 1012 1013 /* set up internal nodes, bottom-up */ 1014 for (i = t->depth - 2; i >= 0; i--) { 1015 t->index[i] = indexes; 1016 indexes += (KEYS_PER_NODE * t->counts[i]); 1017 setup_btree_index(i, t); 1018 } 1019 1020 return 0; 1021 } 1022 1023 /* 1024 * Builds the btree to index the map. 1025 */ 1026 static int dm_table_build_index(struct dm_table *t) 1027 { 1028 int r = 0; 1029 unsigned int leaf_nodes; 1030 1031 /* how many indexes will the btree have ? */ 1032 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1033 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1034 1035 /* leaf layer has already been set up */ 1036 t->counts[t->depth - 1] = leaf_nodes; 1037 t->index[t->depth - 1] = t->highs; 1038 1039 if (t->depth >= 2) 1040 r = setup_indexes(t); 1041 1042 return r; 1043 } 1044 1045 /* 1046 * Get a disk whose integrity profile reflects the table's profile. 1047 * If %match_all is true, all devices' profiles must match. 1048 * If %match_all is false, all devices must at least have an 1049 * allocated integrity profile; but uninitialized is ok. 1050 * Returns NULL if integrity support was inconsistent or unavailable. 1051 */ 1052 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 1053 bool match_all) 1054 { 1055 struct list_head *devices = dm_table_get_devices(t); 1056 struct dm_dev_internal *dd = NULL; 1057 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1058 1059 list_for_each_entry(dd, devices, list) { 1060 template_disk = dd->dm_dev.bdev->bd_disk; 1061 if (!blk_get_integrity(template_disk)) 1062 goto no_integrity; 1063 if (!match_all && !blk_integrity_is_initialized(template_disk)) 1064 continue; /* skip uninitialized profiles */ 1065 else if (prev_disk && 1066 blk_integrity_compare(prev_disk, template_disk) < 0) 1067 goto no_integrity; 1068 prev_disk = template_disk; 1069 } 1070 1071 return template_disk; 1072 1073 no_integrity: 1074 if (prev_disk) 1075 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1076 dm_device_name(t->md), 1077 prev_disk->disk_name, 1078 template_disk->disk_name); 1079 return NULL; 1080 } 1081 1082 /* 1083 * Register the mapped device for blk_integrity support if 1084 * the underlying devices have an integrity profile. But all devices 1085 * may not have matching profiles (checking all devices isn't reliable 1086 * during table load because this table may use other DM device(s) which 1087 * must be resumed before they will have an initialized integity profile). 1088 * Stacked DM devices force a 2 stage integrity profile validation: 1089 * 1 - during load, validate all initialized integrity profiles match 1090 * 2 - during resume, validate all integrity profiles match 1091 */ 1092 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 1093 { 1094 struct gendisk *template_disk = NULL; 1095 1096 template_disk = dm_table_get_integrity_disk(t, false); 1097 if (!template_disk) 1098 return 0; 1099 1100 if (!blk_integrity_is_initialized(dm_disk(md))) { 1101 t->integrity_supported = 1; 1102 return blk_integrity_register(dm_disk(md), NULL); 1103 } 1104 1105 /* 1106 * If DM device already has an initalized integrity 1107 * profile the new profile should not conflict. 1108 */ 1109 if (blk_integrity_is_initialized(template_disk) && 1110 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1111 DMWARN("%s: conflict with existing integrity profile: " 1112 "%s profile mismatch", 1113 dm_device_name(t->md), 1114 template_disk->disk_name); 1115 return 1; 1116 } 1117 1118 /* Preserve existing initialized integrity profile */ 1119 t->integrity_supported = 1; 1120 return 0; 1121 } 1122 1123 /* 1124 * Prepares the table for use by building the indices, 1125 * setting the type, and allocating mempools. 1126 */ 1127 int dm_table_complete(struct dm_table *t) 1128 { 1129 int r; 1130 1131 r = dm_table_set_type(t); 1132 if (r) { 1133 DMERR("unable to set table type"); 1134 return r; 1135 } 1136 1137 r = dm_table_build_index(t); 1138 if (r) { 1139 DMERR("unable to build btrees"); 1140 return r; 1141 } 1142 1143 r = dm_table_prealloc_integrity(t, t->md); 1144 if (r) { 1145 DMERR("could not register integrity profile."); 1146 return r; 1147 } 1148 1149 r = dm_table_alloc_md_mempools(t); 1150 if (r) 1151 DMERR("unable to allocate mempools"); 1152 1153 return r; 1154 } 1155 1156 static DEFINE_MUTEX(_event_lock); 1157 void dm_table_event_callback(struct dm_table *t, 1158 void (*fn)(void *), void *context) 1159 { 1160 mutex_lock(&_event_lock); 1161 t->event_fn = fn; 1162 t->event_context = context; 1163 mutex_unlock(&_event_lock); 1164 } 1165 1166 void dm_table_event(struct dm_table *t) 1167 { 1168 /* 1169 * You can no longer call dm_table_event() from interrupt 1170 * context, use a bottom half instead. 1171 */ 1172 BUG_ON(in_interrupt()); 1173 1174 mutex_lock(&_event_lock); 1175 if (t->event_fn) 1176 t->event_fn(t->event_context); 1177 mutex_unlock(&_event_lock); 1178 } 1179 EXPORT_SYMBOL(dm_table_event); 1180 1181 sector_t dm_table_get_size(struct dm_table *t) 1182 { 1183 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1184 } 1185 EXPORT_SYMBOL(dm_table_get_size); 1186 1187 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1188 { 1189 if (index >= t->num_targets) 1190 return NULL; 1191 1192 return t->targets + index; 1193 } 1194 1195 /* 1196 * Search the btree for the correct target. 1197 * 1198 * Caller should check returned pointer with dm_target_is_valid() 1199 * to trap I/O beyond end of device. 1200 */ 1201 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1202 { 1203 unsigned int l, n = 0, k = 0; 1204 sector_t *node; 1205 1206 for (l = 0; l < t->depth; l++) { 1207 n = get_child(n, k); 1208 node = get_node(t, l, n); 1209 1210 for (k = 0; k < KEYS_PER_NODE; k++) 1211 if (node[k] >= sector) 1212 break; 1213 } 1214 1215 return &t->targets[(KEYS_PER_NODE * n) + k]; 1216 } 1217 1218 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1219 sector_t start, sector_t len, void *data) 1220 { 1221 unsigned *num_devices = data; 1222 1223 (*num_devices)++; 1224 1225 return 0; 1226 } 1227 1228 /* 1229 * Check whether a table has no data devices attached using each 1230 * target's iterate_devices method. 1231 * Returns false if the result is unknown because a target doesn't 1232 * support iterate_devices. 1233 */ 1234 bool dm_table_has_no_data_devices(struct dm_table *table) 1235 { 1236 struct dm_target *uninitialized_var(ti); 1237 unsigned i = 0, num_devices = 0; 1238 1239 while (i < dm_table_get_num_targets(table)) { 1240 ti = dm_table_get_target(table, i++); 1241 1242 if (!ti->type->iterate_devices) 1243 return false; 1244 1245 ti->type->iterate_devices(ti, count_device, &num_devices); 1246 if (num_devices) 1247 return false; 1248 } 1249 1250 return true; 1251 } 1252 1253 /* 1254 * Establish the new table's queue_limits and validate them. 1255 */ 1256 int dm_calculate_queue_limits(struct dm_table *table, 1257 struct queue_limits *limits) 1258 { 1259 struct dm_target *uninitialized_var(ti); 1260 struct queue_limits ti_limits; 1261 unsigned i = 0; 1262 1263 blk_set_stacking_limits(limits); 1264 1265 while (i < dm_table_get_num_targets(table)) { 1266 blk_set_stacking_limits(&ti_limits); 1267 1268 ti = dm_table_get_target(table, i++); 1269 1270 if (!ti->type->iterate_devices) 1271 goto combine_limits; 1272 1273 /* 1274 * Combine queue limits of all the devices this target uses. 1275 */ 1276 ti->type->iterate_devices(ti, dm_set_device_limits, 1277 &ti_limits); 1278 1279 /* Set I/O hints portion of queue limits */ 1280 if (ti->type->io_hints) 1281 ti->type->io_hints(ti, &ti_limits); 1282 1283 /* 1284 * Check each device area is consistent with the target's 1285 * overall queue limits. 1286 */ 1287 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1288 &ti_limits)) 1289 return -EINVAL; 1290 1291 combine_limits: 1292 /* 1293 * Merge this target's queue limits into the overall limits 1294 * for the table. 1295 */ 1296 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1297 DMWARN("%s: adding target device " 1298 "(start sect %llu len %llu) " 1299 "caused an alignment inconsistency", 1300 dm_device_name(table->md), 1301 (unsigned long long) ti->begin, 1302 (unsigned long long) ti->len); 1303 } 1304 1305 return validate_hardware_logical_block_alignment(table, limits); 1306 } 1307 1308 /* 1309 * Set the integrity profile for this device if all devices used have 1310 * matching profiles. We're quite deep in the resume path but still 1311 * don't know if all devices (particularly DM devices this device 1312 * may be stacked on) have matching profiles. Even if the profiles 1313 * don't match we have no way to fail (to resume) at this point. 1314 */ 1315 static void dm_table_set_integrity(struct dm_table *t) 1316 { 1317 struct gendisk *template_disk = NULL; 1318 1319 if (!blk_get_integrity(dm_disk(t->md))) 1320 return; 1321 1322 template_disk = dm_table_get_integrity_disk(t, true); 1323 if (template_disk) 1324 blk_integrity_register(dm_disk(t->md), 1325 blk_get_integrity(template_disk)); 1326 else if (blk_integrity_is_initialized(dm_disk(t->md))) 1327 DMWARN("%s: device no longer has a valid integrity profile", 1328 dm_device_name(t->md)); 1329 else 1330 DMWARN("%s: unable to establish an integrity profile", 1331 dm_device_name(t->md)); 1332 } 1333 1334 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1335 sector_t start, sector_t len, void *data) 1336 { 1337 unsigned flush = (*(unsigned *)data); 1338 struct request_queue *q = bdev_get_queue(dev->bdev); 1339 1340 return q && (q->flush_flags & flush); 1341 } 1342 1343 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1344 { 1345 struct dm_target *ti; 1346 unsigned i = 0; 1347 1348 /* 1349 * Require at least one underlying device to support flushes. 1350 * t->devices includes internal dm devices such as mirror logs 1351 * so we need to use iterate_devices here, which targets 1352 * supporting flushes must provide. 1353 */ 1354 while (i < dm_table_get_num_targets(t)) { 1355 ti = dm_table_get_target(t, i++); 1356 1357 if (!ti->num_flush_bios) 1358 continue; 1359 1360 if (ti->flush_supported) 1361 return 1; 1362 1363 if (ti->type->iterate_devices && 1364 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1365 return 1; 1366 } 1367 1368 return 0; 1369 } 1370 1371 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1372 { 1373 struct dm_target *ti; 1374 unsigned i = 0; 1375 1376 /* Ensure that all targets supports discard_zeroes_data. */ 1377 while (i < dm_table_get_num_targets(t)) { 1378 ti = dm_table_get_target(t, i++); 1379 1380 if (ti->discard_zeroes_data_unsupported) 1381 return 0; 1382 } 1383 1384 return 1; 1385 } 1386 1387 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1388 sector_t start, sector_t len, void *data) 1389 { 1390 struct request_queue *q = bdev_get_queue(dev->bdev); 1391 1392 return q && blk_queue_nonrot(q); 1393 } 1394 1395 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1396 sector_t start, sector_t len, void *data) 1397 { 1398 struct request_queue *q = bdev_get_queue(dev->bdev); 1399 1400 return q && !blk_queue_add_random(q); 1401 } 1402 1403 static bool dm_table_all_devices_attribute(struct dm_table *t, 1404 iterate_devices_callout_fn func) 1405 { 1406 struct dm_target *ti; 1407 unsigned i = 0; 1408 1409 while (i < dm_table_get_num_targets(t)) { 1410 ti = dm_table_get_target(t, i++); 1411 1412 if (!ti->type->iterate_devices || 1413 !ti->type->iterate_devices(ti, func, NULL)) 1414 return 0; 1415 } 1416 1417 return 1; 1418 } 1419 1420 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1421 sector_t start, sector_t len, void *data) 1422 { 1423 struct request_queue *q = bdev_get_queue(dev->bdev); 1424 1425 return q && !q->limits.max_write_same_sectors; 1426 } 1427 1428 static bool dm_table_supports_write_same(struct dm_table *t) 1429 { 1430 struct dm_target *ti; 1431 unsigned i = 0; 1432 1433 while (i < dm_table_get_num_targets(t)) { 1434 ti = dm_table_get_target(t, i++); 1435 1436 if (!ti->num_write_same_bios) 1437 return false; 1438 1439 if (!ti->type->iterate_devices || 1440 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1441 return false; 1442 } 1443 1444 return true; 1445 } 1446 1447 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1448 struct queue_limits *limits) 1449 { 1450 unsigned flush = 0; 1451 1452 /* 1453 * Copy table's limits to the DM device's request_queue 1454 */ 1455 q->limits = *limits; 1456 1457 if (!dm_table_supports_discards(t)) 1458 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1459 else 1460 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1461 1462 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1463 flush |= REQ_FLUSH; 1464 if (dm_table_supports_flush(t, REQ_FUA)) 1465 flush |= REQ_FUA; 1466 } 1467 blk_queue_flush(q, flush); 1468 1469 if (!dm_table_discard_zeroes_data(t)) 1470 q->limits.discard_zeroes_data = 0; 1471 1472 /* Ensure that all underlying devices are non-rotational. */ 1473 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1474 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1475 else 1476 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1477 1478 if (!dm_table_supports_write_same(t)) 1479 q->limits.max_write_same_sectors = 0; 1480 1481 dm_table_set_integrity(t); 1482 1483 /* 1484 * Determine whether or not this queue's I/O timings contribute 1485 * to the entropy pool, Only request-based targets use this. 1486 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1487 * have it set. 1488 */ 1489 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1490 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1491 1492 /* 1493 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1494 * visible to other CPUs because, once the flag is set, incoming bios 1495 * are processed by request-based dm, which refers to the queue 1496 * settings. 1497 * Until the flag set, bios are passed to bio-based dm and queued to 1498 * md->deferred where queue settings are not needed yet. 1499 * Those bios are passed to request-based dm at the resume time. 1500 */ 1501 smp_mb(); 1502 if (dm_table_request_based(t)) 1503 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1504 } 1505 1506 unsigned int dm_table_get_num_targets(struct dm_table *t) 1507 { 1508 return t->num_targets; 1509 } 1510 1511 struct list_head *dm_table_get_devices(struct dm_table *t) 1512 { 1513 return &t->devices; 1514 } 1515 1516 fmode_t dm_table_get_mode(struct dm_table *t) 1517 { 1518 return t->mode; 1519 } 1520 EXPORT_SYMBOL(dm_table_get_mode); 1521 1522 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1523 { 1524 int i = t->num_targets; 1525 struct dm_target *ti = t->targets; 1526 1527 while (i--) { 1528 if (postsuspend) { 1529 if (ti->type->postsuspend) 1530 ti->type->postsuspend(ti); 1531 } else if (ti->type->presuspend) 1532 ti->type->presuspend(ti); 1533 1534 ti++; 1535 } 1536 } 1537 1538 void dm_table_presuspend_targets(struct dm_table *t) 1539 { 1540 if (!t) 1541 return; 1542 1543 suspend_targets(t, 0); 1544 } 1545 1546 void dm_table_postsuspend_targets(struct dm_table *t) 1547 { 1548 if (!t) 1549 return; 1550 1551 suspend_targets(t, 1); 1552 } 1553 1554 int dm_table_resume_targets(struct dm_table *t) 1555 { 1556 int i, r = 0; 1557 1558 for (i = 0; i < t->num_targets; i++) { 1559 struct dm_target *ti = t->targets + i; 1560 1561 if (!ti->type->preresume) 1562 continue; 1563 1564 r = ti->type->preresume(ti); 1565 if (r) { 1566 DMERR("%s: %s: preresume failed, error = %d", 1567 dm_device_name(t->md), ti->type->name, r); 1568 return r; 1569 } 1570 } 1571 1572 for (i = 0; i < t->num_targets; i++) { 1573 struct dm_target *ti = t->targets + i; 1574 1575 if (ti->type->resume) 1576 ti->type->resume(ti); 1577 } 1578 1579 return 0; 1580 } 1581 1582 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1583 { 1584 list_add(&cb->list, &t->target_callbacks); 1585 } 1586 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1587 1588 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1589 { 1590 struct dm_dev_internal *dd; 1591 struct list_head *devices = dm_table_get_devices(t); 1592 struct dm_target_callbacks *cb; 1593 int r = 0; 1594 1595 list_for_each_entry(dd, devices, list) { 1596 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1597 char b[BDEVNAME_SIZE]; 1598 1599 if (likely(q)) 1600 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1601 else 1602 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1603 dm_device_name(t->md), 1604 bdevname(dd->dm_dev.bdev, b)); 1605 } 1606 1607 list_for_each_entry(cb, &t->target_callbacks, list) 1608 if (cb->congested_fn) 1609 r |= cb->congested_fn(cb, bdi_bits); 1610 1611 return r; 1612 } 1613 1614 int dm_table_any_busy_target(struct dm_table *t) 1615 { 1616 unsigned i; 1617 struct dm_target *ti; 1618 1619 for (i = 0; i < t->num_targets; i++) { 1620 ti = t->targets + i; 1621 if (ti->type->busy && ti->type->busy(ti)) 1622 return 1; 1623 } 1624 1625 return 0; 1626 } 1627 1628 struct mapped_device *dm_table_get_md(struct dm_table *t) 1629 { 1630 return t->md; 1631 } 1632 EXPORT_SYMBOL(dm_table_get_md); 1633 1634 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1635 sector_t start, sector_t len, void *data) 1636 { 1637 struct request_queue *q = bdev_get_queue(dev->bdev); 1638 1639 return q && blk_queue_discard(q); 1640 } 1641 1642 bool dm_table_supports_discards(struct dm_table *t) 1643 { 1644 struct dm_target *ti; 1645 unsigned i = 0; 1646 1647 /* 1648 * Unless any target used by the table set discards_supported, 1649 * require at least one underlying device to support discards. 1650 * t->devices includes internal dm devices such as mirror logs 1651 * so we need to use iterate_devices here, which targets 1652 * supporting discard selectively must provide. 1653 */ 1654 while (i < dm_table_get_num_targets(t)) { 1655 ti = dm_table_get_target(t, i++); 1656 1657 if (!ti->num_discard_bios) 1658 continue; 1659 1660 if (ti->discards_supported) 1661 return 1; 1662 1663 if (ti->type->iterate_devices && 1664 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1665 return 1; 1666 } 1667 1668 return 0; 1669 } 1670