1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 /* 32 * Similar to ceiling(log_size(n)) 33 */ 34 static unsigned int int_log(unsigned int n, unsigned int base) 35 { 36 int result = 0; 37 38 while (n > 1) { 39 n = dm_div_up(n, base); 40 result++; 41 } 42 43 return result; 44 } 45 46 /* 47 * Calculate the index of the child node of the n'th node k'th key. 48 */ 49 static inline unsigned int get_child(unsigned int n, unsigned int k) 50 { 51 return (n * CHILDREN_PER_NODE) + k; 52 } 53 54 /* 55 * Return the n'th node of level l from table t. 56 */ 57 static inline sector_t *get_node(struct dm_table *t, 58 unsigned int l, unsigned int n) 59 { 60 return t->index[l] + (n * KEYS_PER_NODE); 61 } 62 63 /* 64 * Return the highest key that you could lookup from the n'th 65 * node on level l of the btree. 66 */ 67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 68 { 69 for (; l < t->depth - 1; l++) 70 n = get_child(n, CHILDREN_PER_NODE - 1); 71 72 if (n >= t->counts[l]) 73 return (sector_t) - 1; 74 75 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 76 } 77 78 /* 79 * Fills in a level of the btree based on the highs of the level 80 * below it. 81 */ 82 static int setup_btree_index(unsigned int l, struct dm_table *t) 83 { 84 unsigned int n, k; 85 sector_t *node; 86 87 for (n = 0U; n < t->counts[l]; n++) { 88 node = get_node(t, l, n); 89 90 for (k = 0U; k < KEYS_PER_NODE; k++) 91 node[k] = high(t, l + 1, get_child(n, k)); 92 } 93 94 return 0; 95 } 96 97 /* 98 * highs, and targets are managed as dynamic arrays during a 99 * table load. 100 */ 101 static int alloc_targets(struct dm_table *t, unsigned int num) 102 { 103 sector_t *n_highs; 104 struct dm_target *n_targets; 105 106 /* 107 * Allocate both the target array and offset array at once. 108 */ 109 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 110 GFP_KERNEL); 111 if (!n_highs) 112 return -ENOMEM; 113 114 n_targets = (struct dm_target *) (n_highs + num); 115 116 memset(n_highs, -1, sizeof(*n_highs) * num); 117 kvfree(t->highs); 118 119 t->num_allocated = num; 120 t->highs = n_highs; 121 t->targets = n_targets; 122 123 return 0; 124 } 125 126 int dm_table_create(struct dm_table **result, fmode_t mode, 127 unsigned num_targets, struct mapped_device *md) 128 { 129 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 130 131 if (!t) 132 return -ENOMEM; 133 134 INIT_LIST_HEAD(&t->devices); 135 136 if (!num_targets) 137 num_targets = KEYS_PER_NODE; 138 139 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 140 141 if (!num_targets) { 142 kfree(t); 143 return -ENOMEM; 144 } 145 146 if (alloc_targets(t, num_targets)) { 147 kfree(t); 148 return -ENOMEM; 149 } 150 151 t->type = DM_TYPE_NONE; 152 t->mode = mode; 153 t->md = md; 154 *result = t; 155 return 0; 156 } 157 158 static void free_devices(struct list_head *devices, struct mapped_device *md) 159 { 160 struct list_head *tmp, *next; 161 162 list_for_each_safe(tmp, next, devices) { 163 struct dm_dev_internal *dd = 164 list_entry(tmp, struct dm_dev_internal, list); 165 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 166 dm_device_name(md), dd->dm_dev->name); 167 dm_put_table_device(md, dd->dm_dev); 168 kfree(dd); 169 } 170 } 171 172 static void dm_table_destroy_keyslot_manager(struct dm_table *t); 173 174 void dm_table_destroy(struct dm_table *t) 175 { 176 unsigned int i; 177 178 if (!t) 179 return; 180 181 /* free the indexes */ 182 if (t->depth >= 2) 183 kvfree(t->index[t->depth - 2]); 184 185 /* free the targets */ 186 for (i = 0; i < t->num_targets; i++) { 187 struct dm_target *tgt = t->targets + i; 188 189 if (tgt->type->dtr) 190 tgt->type->dtr(tgt); 191 192 dm_put_target_type(tgt->type); 193 } 194 195 kvfree(t->highs); 196 197 /* free the device list */ 198 free_devices(&t->devices, t->md); 199 200 dm_free_md_mempools(t->mempools); 201 202 dm_table_destroy_keyslot_manager(t); 203 204 kfree(t); 205 } 206 207 /* 208 * See if we've already got a device in the list. 209 */ 210 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 211 { 212 struct dm_dev_internal *dd; 213 214 list_for_each_entry (dd, l, list) 215 if (dd->dm_dev->bdev->bd_dev == dev) 216 return dd; 217 218 return NULL; 219 } 220 221 /* 222 * If possible, this checks an area of a destination device is invalid. 223 */ 224 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 225 sector_t start, sector_t len, void *data) 226 { 227 struct queue_limits *limits = data; 228 struct block_device *bdev = dev->bdev; 229 sector_t dev_size = 230 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 231 unsigned short logical_block_size_sectors = 232 limits->logical_block_size >> SECTOR_SHIFT; 233 char b[BDEVNAME_SIZE]; 234 235 if (!dev_size) 236 return 0; 237 238 if ((start >= dev_size) || (start + len > dev_size)) { 239 DMWARN("%s: %s too small for target: " 240 "start=%llu, len=%llu, dev_size=%llu", 241 dm_device_name(ti->table->md), bdevname(bdev, b), 242 (unsigned long long)start, 243 (unsigned long long)len, 244 (unsigned long long)dev_size); 245 return 1; 246 } 247 248 /* 249 * If the target is mapped to zoned block device(s), check 250 * that the zones are not partially mapped. 251 */ 252 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 253 unsigned int zone_sectors = bdev_zone_sectors(bdev); 254 255 if (start & (zone_sectors - 1)) { 256 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 257 dm_device_name(ti->table->md), 258 (unsigned long long)start, 259 zone_sectors, bdevname(bdev, b)); 260 return 1; 261 } 262 263 /* 264 * Note: The last zone of a zoned block device may be smaller 265 * than other zones. So for a target mapping the end of a 266 * zoned block device with such a zone, len would not be zone 267 * aligned. We do not allow such last smaller zone to be part 268 * of the mapping here to ensure that mappings with multiple 269 * devices do not end up with a smaller zone in the middle of 270 * the sector range. 271 */ 272 if (len & (zone_sectors - 1)) { 273 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 274 dm_device_name(ti->table->md), 275 (unsigned long long)len, 276 zone_sectors, bdevname(bdev, b)); 277 return 1; 278 } 279 } 280 281 if (logical_block_size_sectors <= 1) 282 return 0; 283 284 if (start & (logical_block_size_sectors - 1)) { 285 DMWARN("%s: start=%llu not aligned to h/w " 286 "logical block size %u of %s", 287 dm_device_name(ti->table->md), 288 (unsigned long long)start, 289 limits->logical_block_size, bdevname(bdev, b)); 290 return 1; 291 } 292 293 if (len & (logical_block_size_sectors - 1)) { 294 DMWARN("%s: len=%llu not aligned to h/w " 295 "logical block size %u of %s", 296 dm_device_name(ti->table->md), 297 (unsigned long long)len, 298 limits->logical_block_size, bdevname(bdev, b)); 299 return 1; 300 } 301 302 return 0; 303 } 304 305 /* 306 * This upgrades the mode on an already open dm_dev, being 307 * careful to leave things as they were if we fail to reopen the 308 * device and not to touch the existing bdev field in case 309 * it is accessed concurrently. 310 */ 311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 312 struct mapped_device *md) 313 { 314 int r; 315 struct dm_dev *old_dev, *new_dev; 316 317 old_dev = dd->dm_dev; 318 319 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 320 dd->dm_dev->mode | new_mode, &new_dev); 321 if (r) 322 return r; 323 324 dd->dm_dev = new_dev; 325 dm_put_table_device(md, old_dev); 326 327 return 0; 328 } 329 330 /* 331 * Convert the path to a device 332 */ 333 dev_t dm_get_dev_t(const char *path) 334 { 335 dev_t dev; 336 337 if (lookup_bdev(path, &dev)) 338 dev = name_to_dev_t(path); 339 return dev; 340 } 341 EXPORT_SYMBOL_GPL(dm_get_dev_t); 342 343 /* 344 * Add a device to the list, or just increment the usage count if 345 * it's already present. 346 */ 347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 348 struct dm_dev **result) 349 { 350 int r; 351 dev_t dev; 352 unsigned int major, minor; 353 char dummy; 354 struct dm_dev_internal *dd; 355 struct dm_table *t = ti->table; 356 357 BUG_ON(!t); 358 359 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 360 /* Extract the major/minor numbers */ 361 dev = MKDEV(major, minor); 362 if (MAJOR(dev) != major || MINOR(dev) != minor) 363 return -EOVERFLOW; 364 } else { 365 dev = dm_get_dev_t(path); 366 if (!dev) 367 return -ENODEV; 368 } 369 370 dd = find_device(&t->devices, dev); 371 if (!dd) { 372 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 373 if (!dd) 374 return -ENOMEM; 375 376 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 377 kfree(dd); 378 return r; 379 } 380 381 refcount_set(&dd->count, 1); 382 list_add(&dd->list, &t->devices); 383 goto out; 384 385 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 386 r = upgrade_mode(dd, mode, t->md); 387 if (r) 388 return r; 389 } 390 refcount_inc(&dd->count); 391 out: 392 *result = dd->dm_dev; 393 return 0; 394 } 395 EXPORT_SYMBOL(dm_get_device); 396 397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 398 sector_t start, sector_t len, void *data) 399 { 400 struct queue_limits *limits = data; 401 struct block_device *bdev = dev->bdev; 402 struct request_queue *q = bdev_get_queue(bdev); 403 char b[BDEVNAME_SIZE]; 404 405 if (unlikely(!q)) { 406 DMWARN("%s: Cannot set limits for nonexistent device %s", 407 dm_device_name(ti->table->md), bdevname(bdev, b)); 408 return 0; 409 } 410 411 if (blk_stack_limits(limits, &q->limits, 412 get_start_sect(bdev) + start) < 0) 413 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 414 "physical_block_size=%u, logical_block_size=%u, " 415 "alignment_offset=%u, start=%llu", 416 dm_device_name(ti->table->md), bdevname(bdev, b), 417 q->limits.physical_block_size, 418 q->limits.logical_block_size, 419 q->limits.alignment_offset, 420 (unsigned long long) start << SECTOR_SHIFT); 421 return 0; 422 } 423 424 /* 425 * Decrement a device's use count and remove it if necessary. 426 */ 427 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 428 { 429 int found = 0; 430 struct list_head *devices = &ti->table->devices; 431 struct dm_dev_internal *dd; 432 433 list_for_each_entry(dd, devices, list) { 434 if (dd->dm_dev == d) { 435 found = 1; 436 break; 437 } 438 } 439 if (!found) { 440 DMWARN("%s: device %s not in table devices list", 441 dm_device_name(ti->table->md), d->name); 442 return; 443 } 444 if (refcount_dec_and_test(&dd->count)) { 445 dm_put_table_device(ti->table->md, d); 446 list_del(&dd->list); 447 kfree(dd); 448 } 449 } 450 EXPORT_SYMBOL(dm_put_device); 451 452 /* 453 * Checks to see if the target joins onto the end of the table. 454 */ 455 static int adjoin(struct dm_table *table, struct dm_target *ti) 456 { 457 struct dm_target *prev; 458 459 if (!table->num_targets) 460 return !ti->begin; 461 462 prev = &table->targets[table->num_targets - 1]; 463 return (ti->begin == (prev->begin + prev->len)); 464 } 465 466 /* 467 * Used to dynamically allocate the arg array. 468 * 469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 470 * process messages even if some device is suspended. These messages have a 471 * small fixed number of arguments. 472 * 473 * On the other hand, dm-switch needs to process bulk data using messages and 474 * excessive use of GFP_NOIO could cause trouble. 475 */ 476 static char **realloc_argv(unsigned *size, char **old_argv) 477 { 478 char **argv; 479 unsigned new_size; 480 gfp_t gfp; 481 482 if (*size) { 483 new_size = *size * 2; 484 gfp = GFP_KERNEL; 485 } else { 486 new_size = 8; 487 gfp = GFP_NOIO; 488 } 489 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 490 if (argv && old_argv) { 491 memcpy(argv, old_argv, *size * sizeof(*argv)); 492 *size = new_size; 493 } 494 495 kfree(old_argv); 496 return argv; 497 } 498 499 /* 500 * Destructively splits up the argument list to pass to ctr. 501 */ 502 int dm_split_args(int *argc, char ***argvp, char *input) 503 { 504 char *start, *end = input, *out, **argv = NULL; 505 unsigned array_size = 0; 506 507 *argc = 0; 508 509 if (!input) { 510 *argvp = NULL; 511 return 0; 512 } 513 514 argv = realloc_argv(&array_size, argv); 515 if (!argv) 516 return -ENOMEM; 517 518 while (1) { 519 /* Skip whitespace */ 520 start = skip_spaces(end); 521 522 if (!*start) 523 break; /* success, we hit the end */ 524 525 /* 'out' is used to remove any back-quotes */ 526 end = out = start; 527 while (*end) { 528 /* Everything apart from '\0' can be quoted */ 529 if (*end == '\\' && *(end + 1)) { 530 *out++ = *(end + 1); 531 end += 2; 532 continue; 533 } 534 535 if (isspace(*end)) 536 break; /* end of token */ 537 538 *out++ = *end++; 539 } 540 541 /* have we already filled the array ? */ 542 if ((*argc + 1) > array_size) { 543 argv = realloc_argv(&array_size, argv); 544 if (!argv) 545 return -ENOMEM; 546 } 547 548 /* we know this is whitespace */ 549 if (*end) 550 end++; 551 552 /* terminate the string and put it in the array */ 553 *out = '\0'; 554 argv[*argc] = start; 555 (*argc)++; 556 } 557 558 *argvp = argv; 559 return 0; 560 } 561 562 /* 563 * Impose necessary and sufficient conditions on a devices's table such 564 * that any incoming bio which respects its logical_block_size can be 565 * processed successfully. If it falls across the boundary between 566 * two or more targets, the size of each piece it gets split into must 567 * be compatible with the logical_block_size of the target processing it. 568 */ 569 static int validate_hardware_logical_block_alignment(struct dm_table *table, 570 struct queue_limits *limits) 571 { 572 /* 573 * This function uses arithmetic modulo the logical_block_size 574 * (in units of 512-byte sectors). 575 */ 576 unsigned short device_logical_block_size_sects = 577 limits->logical_block_size >> SECTOR_SHIFT; 578 579 /* 580 * Offset of the start of the next table entry, mod logical_block_size. 581 */ 582 unsigned short next_target_start = 0; 583 584 /* 585 * Given an aligned bio that extends beyond the end of a 586 * target, how many sectors must the next target handle? 587 */ 588 unsigned short remaining = 0; 589 590 struct dm_target *ti; 591 struct queue_limits ti_limits; 592 unsigned i; 593 594 /* 595 * Check each entry in the table in turn. 596 */ 597 for (i = 0; i < dm_table_get_num_targets(table); i++) { 598 ti = dm_table_get_target(table, i); 599 600 blk_set_stacking_limits(&ti_limits); 601 602 /* combine all target devices' limits */ 603 if (ti->type->iterate_devices) 604 ti->type->iterate_devices(ti, dm_set_device_limits, 605 &ti_limits); 606 607 /* 608 * If the remaining sectors fall entirely within this 609 * table entry are they compatible with its logical_block_size? 610 */ 611 if (remaining < ti->len && 612 remaining & ((ti_limits.logical_block_size >> 613 SECTOR_SHIFT) - 1)) 614 break; /* Error */ 615 616 next_target_start = 617 (unsigned short) ((next_target_start + ti->len) & 618 (device_logical_block_size_sects - 1)); 619 remaining = next_target_start ? 620 device_logical_block_size_sects - next_target_start : 0; 621 } 622 623 if (remaining) { 624 DMWARN("%s: table line %u (start sect %llu len %llu) " 625 "not aligned to h/w logical block size %u", 626 dm_device_name(table->md), i, 627 (unsigned long long) ti->begin, 628 (unsigned long long) ti->len, 629 limits->logical_block_size); 630 return -EINVAL; 631 } 632 633 return 0; 634 } 635 636 int dm_table_add_target(struct dm_table *t, const char *type, 637 sector_t start, sector_t len, char *params) 638 { 639 int r = -EINVAL, argc; 640 char **argv; 641 struct dm_target *tgt; 642 643 if (t->singleton) { 644 DMERR("%s: target type %s must appear alone in table", 645 dm_device_name(t->md), t->targets->type->name); 646 return -EINVAL; 647 } 648 649 BUG_ON(t->num_targets >= t->num_allocated); 650 651 tgt = t->targets + t->num_targets; 652 memset(tgt, 0, sizeof(*tgt)); 653 654 if (!len) { 655 DMERR("%s: zero-length target", dm_device_name(t->md)); 656 return -EINVAL; 657 } 658 659 tgt->type = dm_get_target_type(type); 660 if (!tgt->type) { 661 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 662 return -EINVAL; 663 } 664 665 if (dm_target_needs_singleton(tgt->type)) { 666 if (t->num_targets) { 667 tgt->error = "singleton target type must appear alone in table"; 668 goto bad; 669 } 670 t->singleton = true; 671 } 672 673 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 674 tgt->error = "target type may not be included in a read-only table"; 675 goto bad; 676 } 677 678 if (t->immutable_target_type) { 679 if (t->immutable_target_type != tgt->type) { 680 tgt->error = "immutable target type cannot be mixed with other target types"; 681 goto bad; 682 } 683 } else if (dm_target_is_immutable(tgt->type)) { 684 if (t->num_targets) { 685 tgt->error = "immutable target type cannot be mixed with other target types"; 686 goto bad; 687 } 688 t->immutable_target_type = tgt->type; 689 } 690 691 if (dm_target_has_integrity(tgt->type)) 692 t->integrity_added = 1; 693 694 tgt->table = t; 695 tgt->begin = start; 696 tgt->len = len; 697 tgt->error = "Unknown error"; 698 699 /* 700 * Does this target adjoin the previous one ? 701 */ 702 if (!adjoin(t, tgt)) { 703 tgt->error = "Gap in table"; 704 goto bad; 705 } 706 707 r = dm_split_args(&argc, &argv, params); 708 if (r) { 709 tgt->error = "couldn't split parameters (insufficient memory)"; 710 goto bad; 711 } 712 713 r = tgt->type->ctr(tgt, argc, argv); 714 kfree(argv); 715 if (r) 716 goto bad; 717 718 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 719 720 if (!tgt->num_discard_bios && tgt->discards_supported) 721 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 722 dm_device_name(t->md), type); 723 724 return 0; 725 726 bad: 727 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 728 dm_put_target_type(tgt->type); 729 return r; 730 } 731 732 /* 733 * Target argument parsing helpers. 734 */ 735 static int validate_next_arg(const struct dm_arg *arg, 736 struct dm_arg_set *arg_set, 737 unsigned *value, char **error, unsigned grouped) 738 { 739 const char *arg_str = dm_shift_arg(arg_set); 740 char dummy; 741 742 if (!arg_str || 743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 744 (*value < arg->min) || 745 (*value > arg->max) || 746 (grouped && arg_set->argc < *value)) { 747 *error = arg->error; 748 return -EINVAL; 749 } 750 751 return 0; 752 } 753 754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 755 unsigned *value, char **error) 756 { 757 return validate_next_arg(arg, arg_set, value, error, 0); 758 } 759 EXPORT_SYMBOL(dm_read_arg); 760 761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 762 unsigned *value, char **error) 763 { 764 return validate_next_arg(arg, arg_set, value, error, 1); 765 } 766 EXPORT_SYMBOL(dm_read_arg_group); 767 768 const char *dm_shift_arg(struct dm_arg_set *as) 769 { 770 char *r; 771 772 if (as->argc) { 773 as->argc--; 774 r = *as->argv; 775 as->argv++; 776 return r; 777 } 778 779 return NULL; 780 } 781 EXPORT_SYMBOL(dm_shift_arg); 782 783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 784 { 785 BUG_ON(as->argc < num_args); 786 as->argc -= num_args; 787 as->argv += num_args; 788 } 789 EXPORT_SYMBOL(dm_consume_args); 790 791 static bool __table_type_bio_based(enum dm_queue_mode table_type) 792 { 793 return (table_type == DM_TYPE_BIO_BASED || 794 table_type == DM_TYPE_DAX_BIO_BASED); 795 } 796 797 static bool __table_type_request_based(enum dm_queue_mode table_type) 798 { 799 return table_type == DM_TYPE_REQUEST_BASED; 800 } 801 802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 803 { 804 t->type = type; 805 } 806 EXPORT_SYMBOL_GPL(dm_table_set_type); 807 808 /* validate the dax capability of the target device span */ 809 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 810 sector_t start, sector_t len, void *data) 811 { 812 int blocksize = *(int *) data, id; 813 bool rc; 814 815 id = dax_read_lock(); 816 rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len); 817 dax_read_unlock(id); 818 819 return rc; 820 } 821 822 /* Check devices support synchronous DAX */ 823 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 824 sector_t start, sector_t len, void *data) 825 { 826 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 827 } 828 829 bool dm_table_supports_dax(struct dm_table *t, 830 iterate_devices_callout_fn iterate_fn, int *blocksize) 831 { 832 struct dm_target *ti; 833 unsigned i; 834 835 /* Ensure that all targets support DAX. */ 836 for (i = 0; i < dm_table_get_num_targets(t); i++) { 837 ti = dm_table_get_target(t, i); 838 839 if (!ti->type->direct_access) 840 return false; 841 842 if (!ti->type->iterate_devices || 843 ti->type->iterate_devices(ti, iterate_fn, blocksize)) 844 return false; 845 } 846 847 return true; 848 } 849 850 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 851 sector_t start, sector_t len, void *data) 852 { 853 struct block_device *bdev = dev->bdev; 854 struct request_queue *q = bdev_get_queue(bdev); 855 856 /* request-based cannot stack on partitions! */ 857 if (bdev_is_partition(bdev)) 858 return false; 859 860 return queue_is_mq(q); 861 } 862 863 static int dm_table_determine_type(struct dm_table *t) 864 { 865 unsigned i; 866 unsigned bio_based = 0, request_based = 0, hybrid = 0; 867 struct dm_target *tgt; 868 struct list_head *devices = dm_table_get_devices(t); 869 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 870 int page_size = PAGE_SIZE; 871 872 if (t->type != DM_TYPE_NONE) { 873 /* target already set the table's type */ 874 if (t->type == DM_TYPE_BIO_BASED) { 875 /* possibly upgrade to a variant of bio-based */ 876 goto verify_bio_based; 877 } 878 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 879 goto verify_rq_based; 880 } 881 882 for (i = 0; i < t->num_targets; i++) { 883 tgt = t->targets + i; 884 if (dm_target_hybrid(tgt)) 885 hybrid = 1; 886 else if (dm_target_request_based(tgt)) 887 request_based = 1; 888 else 889 bio_based = 1; 890 891 if (bio_based && request_based) { 892 DMERR("Inconsistent table: different target types" 893 " can't be mixed up"); 894 return -EINVAL; 895 } 896 } 897 898 if (hybrid && !bio_based && !request_based) { 899 /* 900 * The targets can work either way. 901 * Determine the type from the live device. 902 * Default to bio-based if device is new. 903 */ 904 if (__table_type_request_based(live_md_type)) 905 request_based = 1; 906 else 907 bio_based = 1; 908 } 909 910 if (bio_based) { 911 verify_bio_based: 912 /* We must use this table as bio-based */ 913 t->type = DM_TYPE_BIO_BASED; 914 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) || 915 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 916 t->type = DM_TYPE_DAX_BIO_BASED; 917 } 918 return 0; 919 } 920 921 BUG_ON(!request_based); /* No targets in this table */ 922 923 t->type = DM_TYPE_REQUEST_BASED; 924 925 verify_rq_based: 926 /* 927 * Request-based dm supports only tables that have a single target now. 928 * To support multiple targets, request splitting support is needed, 929 * and that needs lots of changes in the block-layer. 930 * (e.g. request completion process for partial completion.) 931 */ 932 if (t->num_targets > 1) { 933 DMERR("request-based DM doesn't support multiple targets"); 934 return -EINVAL; 935 } 936 937 if (list_empty(devices)) { 938 int srcu_idx; 939 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 940 941 /* inherit live table's type */ 942 if (live_table) 943 t->type = live_table->type; 944 dm_put_live_table(t->md, srcu_idx); 945 return 0; 946 } 947 948 tgt = dm_table_get_immutable_target(t); 949 if (!tgt) { 950 DMERR("table load rejected: immutable target is required"); 951 return -EINVAL; 952 } else if (tgt->max_io_len) { 953 DMERR("table load rejected: immutable target that splits IO is not supported"); 954 return -EINVAL; 955 } 956 957 /* Non-request-stackable devices can't be used for request-based dm */ 958 if (!tgt->type->iterate_devices || 959 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 960 DMERR("table load rejected: including non-request-stackable devices"); 961 return -EINVAL; 962 } 963 964 return 0; 965 } 966 967 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 968 { 969 return t->type; 970 } 971 972 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 973 { 974 return t->immutable_target_type; 975 } 976 977 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 978 { 979 /* Immutable target is implicitly a singleton */ 980 if (t->num_targets > 1 || 981 !dm_target_is_immutable(t->targets[0].type)) 982 return NULL; 983 984 return t->targets; 985 } 986 987 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 988 { 989 struct dm_target *ti; 990 unsigned i; 991 992 for (i = 0; i < dm_table_get_num_targets(t); i++) { 993 ti = dm_table_get_target(t, i); 994 if (dm_target_is_wildcard(ti->type)) 995 return ti; 996 } 997 998 return NULL; 999 } 1000 1001 bool dm_table_bio_based(struct dm_table *t) 1002 { 1003 return __table_type_bio_based(dm_table_get_type(t)); 1004 } 1005 1006 bool dm_table_request_based(struct dm_table *t) 1007 { 1008 return __table_type_request_based(dm_table_get_type(t)); 1009 } 1010 1011 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1012 { 1013 enum dm_queue_mode type = dm_table_get_type(t); 1014 unsigned per_io_data_size = 0; 1015 unsigned min_pool_size = 0; 1016 struct dm_target *ti; 1017 unsigned i; 1018 1019 if (unlikely(type == DM_TYPE_NONE)) { 1020 DMWARN("no table type is set, can't allocate mempools"); 1021 return -EINVAL; 1022 } 1023 1024 if (__table_type_bio_based(type)) 1025 for (i = 0; i < t->num_targets; i++) { 1026 ti = t->targets + i; 1027 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1028 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1029 } 1030 1031 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1032 per_io_data_size, min_pool_size); 1033 if (!t->mempools) 1034 return -ENOMEM; 1035 1036 return 0; 1037 } 1038 1039 void dm_table_free_md_mempools(struct dm_table *t) 1040 { 1041 dm_free_md_mempools(t->mempools); 1042 t->mempools = NULL; 1043 } 1044 1045 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1046 { 1047 return t->mempools; 1048 } 1049 1050 static int setup_indexes(struct dm_table *t) 1051 { 1052 int i; 1053 unsigned int total = 0; 1054 sector_t *indexes; 1055 1056 /* allocate the space for *all* the indexes */ 1057 for (i = t->depth - 2; i >= 0; i--) { 1058 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1059 total += t->counts[i]; 1060 } 1061 1062 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1063 if (!indexes) 1064 return -ENOMEM; 1065 1066 /* set up internal nodes, bottom-up */ 1067 for (i = t->depth - 2; i >= 0; i--) { 1068 t->index[i] = indexes; 1069 indexes += (KEYS_PER_NODE * t->counts[i]); 1070 setup_btree_index(i, t); 1071 } 1072 1073 return 0; 1074 } 1075 1076 /* 1077 * Builds the btree to index the map. 1078 */ 1079 static int dm_table_build_index(struct dm_table *t) 1080 { 1081 int r = 0; 1082 unsigned int leaf_nodes; 1083 1084 /* how many indexes will the btree have ? */ 1085 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1086 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1087 1088 /* leaf layer has already been set up */ 1089 t->counts[t->depth - 1] = leaf_nodes; 1090 t->index[t->depth - 1] = t->highs; 1091 1092 if (t->depth >= 2) 1093 r = setup_indexes(t); 1094 1095 return r; 1096 } 1097 1098 static bool integrity_profile_exists(struct gendisk *disk) 1099 { 1100 return !!blk_get_integrity(disk); 1101 } 1102 1103 /* 1104 * Get a disk whose integrity profile reflects the table's profile. 1105 * Returns NULL if integrity support was inconsistent or unavailable. 1106 */ 1107 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1108 { 1109 struct list_head *devices = dm_table_get_devices(t); 1110 struct dm_dev_internal *dd = NULL; 1111 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1112 unsigned i; 1113 1114 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1115 struct dm_target *ti = dm_table_get_target(t, i); 1116 if (!dm_target_passes_integrity(ti->type)) 1117 goto no_integrity; 1118 } 1119 1120 list_for_each_entry(dd, devices, list) { 1121 template_disk = dd->dm_dev->bdev->bd_disk; 1122 if (!integrity_profile_exists(template_disk)) 1123 goto no_integrity; 1124 else if (prev_disk && 1125 blk_integrity_compare(prev_disk, template_disk) < 0) 1126 goto no_integrity; 1127 prev_disk = template_disk; 1128 } 1129 1130 return template_disk; 1131 1132 no_integrity: 1133 if (prev_disk) 1134 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1135 dm_device_name(t->md), 1136 prev_disk->disk_name, 1137 template_disk->disk_name); 1138 return NULL; 1139 } 1140 1141 /* 1142 * Register the mapped device for blk_integrity support if the 1143 * underlying devices have an integrity profile. But all devices may 1144 * not have matching profiles (checking all devices isn't reliable 1145 * during table load because this table may use other DM device(s) which 1146 * must be resumed before they will have an initialized integity 1147 * profile). Consequently, stacked DM devices force a 2 stage integrity 1148 * profile validation: First pass during table load, final pass during 1149 * resume. 1150 */ 1151 static int dm_table_register_integrity(struct dm_table *t) 1152 { 1153 struct mapped_device *md = t->md; 1154 struct gendisk *template_disk = NULL; 1155 1156 /* If target handles integrity itself do not register it here. */ 1157 if (t->integrity_added) 1158 return 0; 1159 1160 template_disk = dm_table_get_integrity_disk(t); 1161 if (!template_disk) 1162 return 0; 1163 1164 if (!integrity_profile_exists(dm_disk(md))) { 1165 t->integrity_supported = true; 1166 /* 1167 * Register integrity profile during table load; we can do 1168 * this because the final profile must match during resume. 1169 */ 1170 blk_integrity_register(dm_disk(md), 1171 blk_get_integrity(template_disk)); 1172 return 0; 1173 } 1174 1175 /* 1176 * If DM device already has an initialized integrity 1177 * profile the new profile should not conflict. 1178 */ 1179 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1180 DMWARN("%s: conflict with existing integrity profile: " 1181 "%s profile mismatch", 1182 dm_device_name(t->md), 1183 template_disk->disk_name); 1184 return 1; 1185 } 1186 1187 /* Preserve existing integrity profile */ 1188 t->integrity_supported = true; 1189 return 0; 1190 } 1191 1192 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1193 1194 struct dm_keyslot_manager { 1195 struct blk_keyslot_manager ksm; 1196 struct mapped_device *md; 1197 }; 1198 1199 struct dm_keyslot_evict_args { 1200 const struct blk_crypto_key *key; 1201 int err; 1202 }; 1203 1204 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1205 sector_t start, sector_t len, void *data) 1206 { 1207 struct dm_keyslot_evict_args *args = data; 1208 int err; 1209 1210 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key); 1211 if (!args->err) 1212 args->err = err; 1213 /* Always try to evict the key from all devices. */ 1214 return 0; 1215 } 1216 1217 /* 1218 * When an inline encryption key is evicted from a device-mapper device, evict 1219 * it from all the underlying devices. 1220 */ 1221 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm, 1222 const struct blk_crypto_key *key, unsigned int slot) 1223 { 1224 struct dm_keyslot_manager *dksm = container_of(ksm, 1225 struct dm_keyslot_manager, 1226 ksm); 1227 struct mapped_device *md = dksm->md; 1228 struct dm_keyslot_evict_args args = { key }; 1229 struct dm_table *t; 1230 int srcu_idx; 1231 int i; 1232 struct dm_target *ti; 1233 1234 t = dm_get_live_table(md, &srcu_idx); 1235 if (!t) 1236 return 0; 1237 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1238 ti = dm_table_get_target(t, i); 1239 if (!ti->type->iterate_devices) 1240 continue; 1241 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args); 1242 } 1243 dm_put_live_table(md, srcu_idx); 1244 return args.err; 1245 } 1246 1247 static struct blk_ksm_ll_ops dm_ksm_ll_ops = { 1248 .keyslot_evict = dm_keyslot_evict, 1249 }; 1250 1251 static int device_intersect_crypto_modes(struct dm_target *ti, 1252 struct dm_dev *dev, sector_t start, 1253 sector_t len, void *data) 1254 { 1255 struct blk_keyslot_manager *parent = data; 1256 struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm; 1257 1258 blk_ksm_intersect_modes(parent, child); 1259 return 0; 1260 } 1261 1262 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm) 1263 { 1264 struct dm_keyslot_manager *dksm = container_of(ksm, 1265 struct dm_keyslot_manager, 1266 ksm); 1267 1268 if (!ksm) 1269 return; 1270 1271 blk_ksm_destroy(ksm); 1272 kfree(dksm); 1273 } 1274 1275 static void dm_table_destroy_keyslot_manager(struct dm_table *t) 1276 { 1277 dm_destroy_keyslot_manager(t->ksm); 1278 t->ksm = NULL; 1279 } 1280 1281 /* 1282 * Constructs and initializes t->ksm with a keyslot manager that 1283 * represents the common set of crypto capabilities of the devices 1284 * described by the dm_table. However, if the constructed keyslot 1285 * manager does not support a superset of the crypto capabilities 1286 * supported by the current keyslot manager of the mapped_device, 1287 * it returns an error instead, since we don't support restricting 1288 * crypto capabilities on table changes. Finally, if the constructed 1289 * keyslot manager doesn't actually support any crypto modes at all, 1290 * it just returns NULL. 1291 */ 1292 static int dm_table_construct_keyslot_manager(struct dm_table *t) 1293 { 1294 struct dm_keyslot_manager *dksm; 1295 struct blk_keyslot_manager *ksm; 1296 struct dm_target *ti; 1297 unsigned int i; 1298 bool ksm_is_empty = true; 1299 1300 dksm = kmalloc(sizeof(*dksm), GFP_KERNEL); 1301 if (!dksm) 1302 return -ENOMEM; 1303 dksm->md = t->md; 1304 1305 ksm = &dksm->ksm; 1306 blk_ksm_init_passthrough(ksm); 1307 ksm->ksm_ll_ops = dm_ksm_ll_ops; 1308 ksm->max_dun_bytes_supported = UINT_MAX; 1309 memset(ksm->crypto_modes_supported, 0xFF, 1310 sizeof(ksm->crypto_modes_supported)); 1311 1312 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1313 ti = dm_table_get_target(t, i); 1314 1315 if (!dm_target_passes_crypto(ti->type)) { 1316 blk_ksm_intersect_modes(ksm, NULL); 1317 break; 1318 } 1319 if (!ti->type->iterate_devices) 1320 continue; 1321 ti->type->iterate_devices(ti, device_intersect_crypto_modes, 1322 ksm); 1323 } 1324 1325 if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) { 1326 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1327 dm_destroy_keyslot_manager(ksm); 1328 return -EINVAL; 1329 } 1330 1331 /* 1332 * If the new KSM doesn't actually support any crypto modes, we may as 1333 * well represent it with a NULL ksm. 1334 */ 1335 ksm_is_empty = true; 1336 for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) { 1337 if (ksm->crypto_modes_supported[i]) { 1338 ksm_is_empty = false; 1339 break; 1340 } 1341 } 1342 1343 if (ksm_is_empty) { 1344 dm_destroy_keyslot_manager(ksm); 1345 ksm = NULL; 1346 } 1347 1348 /* 1349 * t->ksm is only set temporarily while the table is being set 1350 * up, and it gets set to NULL after the capabilities have 1351 * been transferred to the request_queue. 1352 */ 1353 t->ksm = ksm; 1354 1355 return 0; 1356 } 1357 1358 static void dm_update_keyslot_manager(struct request_queue *q, 1359 struct dm_table *t) 1360 { 1361 if (!t->ksm) 1362 return; 1363 1364 /* Make the ksm less restrictive */ 1365 if (!q->ksm) { 1366 blk_ksm_register(t->ksm, q); 1367 } else { 1368 blk_ksm_update_capabilities(q->ksm, t->ksm); 1369 dm_destroy_keyslot_manager(t->ksm); 1370 } 1371 t->ksm = NULL; 1372 } 1373 1374 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1375 1376 static int dm_table_construct_keyslot_manager(struct dm_table *t) 1377 { 1378 return 0; 1379 } 1380 1381 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm) 1382 { 1383 } 1384 1385 static void dm_table_destroy_keyslot_manager(struct dm_table *t) 1386 { 1387 } 1388 1389 static void dm_update_keyslot_manager(struct request_queue *q, 1390 struct dm_table *t) 1391 { 1392 } 1393 1394 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1395 1396 /* 1397 * Prepares the table for use by building the indices, 1398 * setting the type, and allocating mempools. 1399 */ 1400 int dm_table_complete(struct dm_table *t) 1401 { 1402 int r; 1403 1404 r = dm_table_determine_type(t); 1405 if (r) { 1406 DMERR("unable to determine table type"); 1407 return r; 1408 } 1409 1410 r = dm_table_build_index(t); 1411 if (r) { 1412 DMERR("unable to build btrees"); 1413 return r; 1414 } 1415 1416 r = dm_table_register_integrity(t); 1417 if (r) { 1418 DMERR("could not register integrity profile."); 1419 return r; 1420 } 1421 1422 r = dm_table_construct_keyslot_manager(t); 1423 if (r) { 1424 DMERR("could not construct keyslot manager."); 1425 return r; 1426 } 1427 1428 r = dm_table_alloc_md_mempools(t, t->md); 1429 if (r) 1430 DMERR("unable to allocate mempools"); 1431 1432 return r; 1433 } 1434 1435 static DEFINE_MUTEX(_event_lock); 1436 void dm_table_event_callback(struct dm_table *t, 1437 void (*fn)(void *), void *context) 1438 { 1439 mutex_lock(&_event_lock); 1440 t->event_fn = fn; 1441 t->event_context = context; 1442 mutex_unlock(&_event_lock); 1443 } 1444 1445 void dm_table_event(struct dm_table *t) 1446 { 1447 mutex_lock(&_event_lock); 1448 if (t->event_fn) 1449 t->event_fn(t->event_context); 1450 mutex_unlock(&_event_lock); 1451 } 1452 EXPORT_SYMBOL(dm_table_event); 1453 1454 inline sector_t dm_table_get_size(struct dm_table *t) 1455 { 1456 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1457 } 1458 EXPORT_SYMBOL(dm_table_get_size); 1459 1460 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1461 { 1462 if (index >= t->num_targets) 1463 return NULL; 1464 1465 return t->targets + index; 1466 } 1467 1468 /* 1469 * Search the btree for the correct target. 1470 * 1471 * Caller should check returned pointer for NULL 1472 * to trap I/O beyond end of device. 1473 */ 1474 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1475 { 1476 unsigned int l, n = 0, k = 0; 1477 sector_t *node; 1478 1479 if (unlikely(sector >= dm_table_get_size(t))) 1480 return NULL; 1481 1482 for (l = 0; l < t->depth; l++) { 1483 n = get_child(n, k); 1484 node = get_node(t, l, n); 1485 1486 for (k = 0; k < KEYS_PER_NODE; k++) 1487 if (node[k] >= sector) 1488 break; 1489 } 1490 1491 return &t->targets[(KEYS_PER_NODE * n) + k]; 1492 } 1493 1494 /* 1495 * type->iterate_devices() should be called when the sanity check needs to 1496 * iterate and check all underlying data devices. iterate_devices() will 1497 * iterate all underlying data devices until it encounters a non-zero return 1498 * code, returned by whether the input iterate_devices_callout_fn, or 1499 * iterate_devices() itself internally. 1500 * 1501 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1502 * iterate multiple underlying devices internally, in which case a non-zero 1503 * return code returned by iterate_devices_callout_fn will stop the iteration 1504 * in advance. 1505 * 1506 * Cases requiring _any_ underlying device supporting some kind of attribute, 1507 * should use the iteration structure like dm_table_any_dev_attr(), or call 1508 * it directly. @func should handle semantics of positive examples, e.g. 1509 * capable of something. 1510 * 1511 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1512 * should use the iteration structure like dm_table_supports_nowait() or 1513 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1514 * uses an @anti_func that handle semantics of counter examples, e.g. not 1515 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1516 */ 1517 static bool dm_table_any_dev_attr(struct dm_table *t, 1518 iterate_devices_callout_fn func, void *data) 1519 { 1520 struct dm_target *ti; 1521 unsigned int i; 1522 1523 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1524 ti = dm_table_get_target(t, i); 1525 1526 if (ti->type->iterate_devices && 1527 ti->type->iterate_devices(ti, func, data)) 1528 return true; 1529 } 1530 1531 return false; 1532 } 1533 1534 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1535 sector_t start, sector_t len, void *data) 1536 { 1537 unsigned *num_devices = data; 1538 1539 (*num_devices)++; 1540 1541 return 0; 1542 } 1543 1544 /* 1545 * Check whether a table has no data devices attached using each 1546 * target's iterate_devices method. 1547 * Returns false if the result is unknown because a target doesn't 1548 * support iterate_devices. 1549 */ 1550 bool dm_table_has_no_data_devices(struct dm_table *table) 1551 { 1552 struct dm_target *ti; 1553 unsigned i, num_devices; 1554 1555 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1556 ti = dm_table_get_target(table, i); 1557 1558 if (!ti->type->iterate_devices) 1559 return false; 1560 1561 num_devices = 0; 1562 ti->type->iterate_devices(ti, count_device, &num_devices); 1563 if (num_devices) 1564 return false; 1565 } 1566 1567 return true; 1568 } 1569 1570 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1571 sector_t start, sector_t len, void *data) 1572 { 1573 struct request_queue *q = bdev_get_queue(dev->bdev); 1574 enum blk_zoned_model *zoned_model = data; 1575 1576 return blk_queue_zoned_model(q) != *zoned_model; 1577 } 1578 1579 /* 1580 * Check the device zoned model based on the target feature flag. If the target 1581 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1582 * also accepted but all devices must have the same zoned model. If the target 1583 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1584 * zoned model with all zoned devices having the same zone size. 1585 */ 1586 static bool dm_table_supports_zoned_model(struct dm_table *t, 1587 enum blk_zoned_model zoned_model) 1588 { 1589 struct dm_target *ti; 1590 unsigned i; 1591 1592 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1593 ti = dm_table_get_target(t, i); 1594 1595 if (dm_target_supports_zoned_hm(ti->type)) { 1596 if (!ti->type->iterate_devices || 1597 ti->type->iterate_devices(ti, device_not_zoned_model, 1598 &zoned_model)) 1599 return false; 1600 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1601 if (zoned_model == BLK_ZONED_HM) 1602 return false; 1603 } 1604 } 1605 1606 return true; 1607 } 1608 1609 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1610 sector_t start, sector_t len, void *data) 1611 { 1612 struct request_queue *q = bdev_get_queue(dev->bdev); 1613 unsigned int *zone_sectors = data; 1614 1615 if (!blk_queue_is_zoned(q)) 1616 return 0; 1617 1618 return blk_queue_zone_sectors(q) != *zone_sectors; 1619 } 1620 1621 /* 1622 * Check consistency of zoned model and zone sectors across all targets. For 1623 * zone sectors, if the destination device is a zoned block device, it shall 1624 * have the specified zone_sectors. 1625 */ 1626 static int validate_hardware_zoned_model(struct dm_table *table, 1627 enum blk_zoned_model zoned_model, 1628 unsigned int zone_sectors) 1629 { 1630 if (zoned_model == BLK_ZONED_NONE) 1631 return 0; 1632 1633 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1634 DMERR("%s: zoned model is not consistent across all devices", 1635 dm_device_name(table->md)); 1636 return -EINVAL; 1637 } 1638 1639 /* Check zone size validity and compatibility */ 1640 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1641 return -EINVAL; 1642 1643 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { 1644 DMERR("%s: zone sectors is not consistent across all zoned devices", 1645 dm_device_name(table->md)); 1646 return -EINVAL; 1647 } 1648 1649 return 0; 1650 } 1651 1652 /* 1653 * Establish the new table's queue_limits and validate them. 1654 */ 1655 int dm_calculate_queue_limits(struct dm_table *table, 1656 struct queue_limits *limits) 1657 { 1658 struct dm_target *ti; 1659 struct queue_limits ti_limits; 1660 unsigned i; 1661 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1662 unsigned int zone_sectors = 0; 1663 1664 blk_set_stacking_limits(limits); 1665 1666 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1667 blk_set_stacking_limits(&ti_limits); 1668 1669 ti = dm_table_get_target(table, i); 1670 1671 if (!ti->type->iterate_devices) 1672 goto combine_limits; 1673 1674 /* 1675 * Combine queue limits of all the devices this target uses. 1676 */ 1677 ti->type->iterate_devices(ti, dm_set_device_limits, 1678 &ti_limits); 1679 1680 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1681 /* 1682 * After stacking all limits, validate all devices 1683 * in table support this zoned model and zone sectors. 1684 */ 1685 zoned_model = ti_limits.zoned; 1686 zone_sectors = ti_limits.chunk_sectors; 1687 } 1688 1689 /* Set I/O hints portion of queue limits */ 1690 if (ti->type->io_hints) 1691 ti->type->io_hints(ti, &ti_limits); 1692 1693 /* 1694 * Check each device area is consistent with the target's 1695 * overall queue limits. 1696 */ 1697 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1698 &ti_limits)) 1699 return -EINVAL; 1700 1701 combine_limits: 1702 /* 1703 * Merge this target's queue limits into the overall limits 1704 * for the table. 1705 */ 1706 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1707 DMWARN("%s: adding target device " 1708 "(start sect %llu len %llu) " 1709 "caused an alignment inconsistency", 1710 dm_device_name(table->md), 1711 (unsigned long long) ti->begin, 1712 (unsigned long long) ti->len); 1713 } 1714 1715 /* 1716 * Verify that the zoned model and zone sectors, as determined before 1717 * any .io_hints override, are the same across all devices in the table. 1718 * - this is especially relevant if .io_hints is emulating a disk-managed 1719 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1720 * BUT... 1721 */ 1722 if (limits->zoned != BLK_ZONED_NONE) { 1723 /* 1724 * ...IF the above limits stacking determined a zoned model 1725 * validate that all of the table's devices conform to it. 1726 */ 1727 zoned_model = limits->zoned; 1728 zone_sectors = limits->chunk_sectors; 1729 } 1730 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1731 return -EINVAL; 1732 1733 return validate_hardware_logical_block_alignment(table, limits); 1734 } 1735 1736 /* 1737 * Verify that all devices have an integrity profile that matches the 1738 * DM device's registered integrity profile. If the profiles don't 1739 * match then unregister the DM device's integrity profile. 1740 */ 1741 static void dm_table_verify_integrity(struct dm_table *t) 1742 { 1743 struct gendisk *template_disk = NULL; 1744 1745 if (t->integrity_added) 1746 return; 1747 1748 if (t->integrity_supported) { 1749 /* 1750 * Verify that the original integrity profile 1751 * matches all the devices in this table. 1752 */ 1753 template_disk = dm_table_get_integrity_disk(t); 1754 if (template_disk && 1755 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1756 return; 1757 } 1758 1759 if (integrity_profile_exists(dm_disk(t->md))) { 1760 DMWARN("%s: unable to establish an integrity profile", 1761 dm_device_name(t->md)); 1762 blk_integrity_unregister(dm_disk(t->md)); 1763 } 1764 } 1765 1766 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1767 sector_t start, sector_t len, void *data) 1768 { 1769 unsigned long flush = (unsigned long) data; 1770 struct request_queue *q = bdev_get_queue(dev->bdev); 1771 1772 return (q->queue_flags & flush); 1773 } 1774 1775 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1776 { 1777 struct dm_target *ti; 1778 unsigned i; 1779 1780 /* 1781 * Require at least one underlying device to support flushes. 1782 * t->devices includes internal dm devices such as mirror logs 1783 * so we need to use iterate_devices here, which targets 1784 * supporting flushes must provide. 1785 */ 1786 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1787 ti = dm_table_get_target(t, i); 1788 1789 if (!ti->num_flush_bios) 1790 continue; 1791 1792 if (ti->flush_supported) 1793 return true; 1794 1795 if (ti->type->iterate_devices && 1796 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1797 return true; 1798 } 1799 1800 return false; 1801 } 1802 1803 static int device_dax_write_cache_enabled(struct dm_target *ti, 1804 struct dm_dev *dev, sector_t start, 1805 sector_t len, void *data) 1806 { 1807 struct dax_device *dax_dev = dev->dax_dev; 1808 1809 if (!dax_dev) 1810 return false; 1811 1812 if (dax_write_cache_enabled(dax_dev)) 1813 return true; 1814 return false; 1815 } 1816 1817 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1818 sector_t start, sector_t len, void *data) 1819 { 1820 struct request_queue *q = bdev_get_queue(dev->bdev); 1821 1822 return !blk_queue_nonrot(q); 1823 } 1824 1825 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1826 sector_t start, sector_t len, void *data) 1827 { 1828 struct request_queue *q = bdev_get_queue(dev->bdev); 1829 1830 return !blk_queue_add_random(q); 1831 } 1832 1833 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1834 sector_t start, sector_t len, void *data) 1835 { 1836 struct request_queue *q = bdev_get_queue(dev->bdev); 1837 1838 return !q->limits.max_write_same_sectors; 1839 } 1840 1841 static bool dm_table_supports_write_same(struct dm_table *t) 1842 { 1843 struct dm_target *ti; 1844 unsigned i; 1845 1846 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1847 ti = dm_table_get_target(t, i); 1848 1849 if (!ti->num_write_same_bios) 1850 return false; 1851 1852 if (!ti->type->iterate_devices || 1853 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1854 return false; 1855 } 1856 1857 return true; 1858 } 1859 1860 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1861 sector_t start, sector_t len, void *data) 1862 { 1863 struct request_queue *q = bdev_get_queue(dev->bdev); 1864 1865 return !q->limits.max_write_zeroes_sectors; 1866 } 1867 1868 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1869 { 1870 struct dm_target *ti; 1871 unsigned i = 0; 1872 1873 while (i < dm_table_get_num_targets(t)) { 1874 ti = dm_table_get_target(t, i++); 1875 1876 if (!ti->num_write_zeroes_bios) 1877 return false; 1878 1879 if (!ti->type->iterate_devices || 1880 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1881 return false; 1882 } 1883 1884 return true; 1885 } 1886 1887 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1888 sector_t start, sector_t len, void *data) 1889 { 1890 struct request_queue *q = bdev_get_queue(dev->bdev); 1891 1892 return !blk_queue_nowait(q); 1893 } 1894 1895 static bool dm_table_supports_nowait(struct dm_table *t) 1896 { 1897 struct dm_target *ti; 1898 unsigned i = 0; 1899 1900 while (i < dm_table_get_num_targets(t)) { 1901 ti = dm_table_get_target(t, i++); 1902 1903 if (!dm_target_supports_nowait(ti->type)) 1904 return false; 1905 1906 if (!ti->type->iterate_devices || 1907 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1908 return false; 1909 } 1910 1911 return true; 1912 } 1913 1914 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1915 sector_t start, sector_t len, void *data) 1916 { 1917 struct request_queue *q = bdev_get_queue(dev->bdev); 1918 1919 return !blk_queue_discard(q); 1920 } 1921 1922 static bool dm_table_supports_discards(struct dm_table *t) 1923 { 1924 struct dm_target *ti; 1925 unsigned i; 1926 1927 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1928 ti = dm_table_get_target(t, i); 1929 1930 if (!ti->num_discard_bios) 1931 return false; 1932 1933 /* 1934 * Either the target provides discard support (as implied by setting 1935 * 'discards_supported') or it relies on _all_ data devices having 1936 * discard support. 1937 */ 1938 if (!ti->discards_supported && 1939 (!ti->type->iterate_devices || 1940 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1941 return false; 1942 } 1943 1944 return true; 1945 } 1946 1947 static int device_not_secure_erase_capable(struct dm_target *ti, 1948 struct dm_dev *dev, sector_t start, 1949 sector_t len, void *data) 1950 { 1951 struct request_queue *q = bdev_get_queue(dev->bdev); 1952 1953 return !blk_queue_secure_erase(q); 1954 } 1955 1956 static bool dm_table_supports_secure_erase(struct dm_table *t) 1957 { 1958 struct dm_target *ti; 1959 unsigned int i; 1960 1961 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1962 ti = dm_table_get_target(t, i); 1963 1964 if (!ti->num_secure_erase_bios) 1965 return false; 1966 1967 if (!ti->type->iterate_devices || 1968 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1969 return false; 1970 } 1971 1972 return true; 1973 } 1974 1975 static int device_requires_stable_pages(struct dm_target *ti, 1976 struct dm_dev *dev, sector_t start, 1977 sector_t len, void *data) 1978 { 1979 struct request_queue *q = bdev_get_queue(dev->bdev); 1980 1981 return blk_queue_stable_writes(q); 1982 } 1983 1984 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1985 struct queue_limits *limits) 1986 { 1987 bool wc = false, fua = false; 1988 int page_size = PAGE_SIZE; 1989 1990 /* 1991 * Copy table's limits to the DM device's request_queue 1992 */ 1993 q->limits = *limits; 1994 1995 if (dm_table_supports_nowait(t)) 1996 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1997 else 1998 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1999 2000 if (!dm_table_supports_discards(t)) { 2001 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 2002 /* Must also clear discard limits... */ 2003 q->limits.max_discard_sectors = 0; 2004 q->limits.max_hw_discard_sectors = 0; 2005 q->limits.discard_granularity = 0; 2006 q->limits.discard_alignment = 0; 2007 q->limits.discard_misaligned = 0; 2008 } else 2009 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 2010 2011 if (dm_table_supports_secure_erase(t)) 2012 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 2013 2014 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 2015 wc = true; 2016 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 2017 fua = true; 2018 } 2019 blk_queue_write_cache(q, wc, fua); 2020 2021 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) { 2022 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 2023 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL)) 2024 set_dax_synchronous(t->md->dax_dev); 2025 } 2026 else 2027 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 2028 2029 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2030 dax_write_cache(t->md->dax_dev, true); 2031 2032 /* Ensure that all underlying devices are non-rotational. */ 2033 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 2034 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2035 else 2036 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2037 2038 if (!dm_table_supports_write_same(t)) 2039 q->limits.max_write_same_sectors = 0; 2040 if (!dm_table_supports_write_zeroes(t)) 2041 q->limits.max_write_zeroes_sectors = 0; 2042 2043 dm_table_verify_integrity(t); 2044 2045 /* 2046 * Some devices don't use blk_integrity but still want stable pages 2047 * because they do their own checksumming. 2048 * If any underlying device requires stable pages, a table must require 2049 * them as well. Only targets that support iterate_devices are considered: 2050 * don't want error, zero, etc to require stable pages. 2051 */ 2052 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2053 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2054 else 2055 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2056 2057 /* 2058 * Determine whether or not this queue's I/O timings contribute 2059 * to the entropy pool, Only request-based targets use this. 2060 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2061 * have it set. 2062 */ 2063 if (blk_queue_add_random(q) && 2064 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2065 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2066 2067 /* 2068 * For a zoned target, the number of zones should be updated for the 2069 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 2070 * target, this is all that is needed. 2071 */ 2072 #ifdef CONFIG_BLK_DEV_ZONED 2073 if (blk_queue_is_zoned(q)) { 2074 WARN_ON_ONCE(queue_is_mq(q)); 2075 q->nr_zones = blkdev_nr_zones(t->md->disk); 2076 } 2077 #endif 2078 2079 dm_update_keyslot_manager(q, t); 2080 blk_queue_update_readahead(q); 2081 } 2082 2083 unsigned int dm_table_get_num_targets(struct dm_table *t) 2084 { 2085 return t->num_targets; 2086 } 2087 2088 struct list_head *dm_table_get_devices(struct dm_table *t) 2089 { 2090 return &t->devices; 2091 } 2092 2093 fmode_t dm_table_get_mode(struct dm_table *t) 2094 { 2095 return t->mode; 2096 } 2097 EXPORT_SYMBOL(dm_table_get_mode); 2098 2099 enum suspend_mode { 2100 PRESUSPEND, 2101 PRESUSPEND_UNDO, 2102 POSTSUSPEND, 2103 }; 2104 2105 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2106 { 2107 int i = t->num_targets; 2108 struct dm_target *ti = t->targets; 2109 2110 lockdep_assert_held(&t->md->suspend_lock); 2111 2112 while (i--) { 2113 switch (mode) { 2114 case PRESUSPEND: 2115 if (ti->type->presuspend) 2116 ti->type->presuspend(ti); 2117 break; 2118 case PRESUSPEND_UNDO: 2119 if (ti->type->presuspend_undo) 2120 ti->type->presuspend_undo(ti); 2121 break; 2122 case POSTSUSPEND: 2123 if (ti->type->postsuspend) 2124 ti->type->postsuspend(ti); 2125 break; 2126 } 2127 ti++; 2128 } 2129 } 2130 2131 void dm_table_presuspend_targets(struct dm_table *t) 2132 { 2133 if (!t) 2134 return; 2135 2136 suspend_targets(t, PRESUSPEND); 2137 } 2138 2139 void dm_table_presuspend_undo_targets(struct dm_table *t) 2140 { 2141 if (!t) 2142 return; 2143 2144 suspend_targets(t, PRESUSPEND_UNDO); 2145 } 2146 2147 void dm_table_postsuspend_targets(struct dm_table *t) 2148 { 2149 if (!t) 2150 return; 2151 2152 suspend_targets(t, POSTSUSPEND); 2153 } 2154 2155 int dm_table_resume_targets(struct dm_table *t) 2156 { 2157 int i, r = 0; 2158 2159 lockdep_assert_held(&t->md->suspend_lock); 2160 2161 for (i = 0; i < t->num_targets; i++) { 2162 struct dm_target *ti = t->targets + i; 2163 2164 if (!ti->type->preresume) 2165 continue; 2166 2167 r = ti->type->preresume(ti); 2168 if (r) { 2169 DMERR("%s: %s: preresume failed, error = %d", 2170 dm_device_name(t->md), ti->type->name, r); 2171 return r; 2172 } 2173 } 2174 2175 for (i = 0; i < t->num_targets; i++) { 2176 struct dm_target *ti = t->targets + i; 2177 2178 if (ti->type->resume) 2179 ti->type->resume(ti); 2180 } 2181 2182 return 0; 2183 } 2184 2185 struct mapped_device *dm_table_get_md(struct dm_table *t) 2186 { 2187 return t->md; 2188 } 2189 EXPORT_SYMBOL(dm_table_get_md); 2190 2191 const char *dm_table_device_name(struct dm_table *t) 2192 { 2193 return dm_device_name(t->md); 2194 } 2195 EXPORT_SYMBOL_GPL(dm_table_device_name); 2196 2197 void dm_table_run_md_queue_async(struct dm_table *t) 2198 { 2199 if (!dm_table_request_based(t)) 2200 return; 2201 2202 if (t->md->queue) 2203 blk_mq_run_hw_queues(t->md->queue, true); 2204 } 2205 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2206 2207