xref: /openbmc/linux/drivers/md/dm-table.c (revision 77d84ff8)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 struct dm_table {
30 	struct mapped_device *md;
31 	unsigned type;
32 
33 	/* btree table */
34 	unsigned int depth;
35 	unsigned int counts[MAX_DEPTH];	/* in nodes */
36 	sector_t *index[MAX_DEPTH];
37 
38 	unsigned int num_targets;
39 	unsigned int num_allocated;
40 	sector_t *highs;
41 	struct dm_target *targets;
42 
43 	struct target_type *immutable_target_type;
44 	unsigned integrity_supported:1;
45 	unsigned singleton:1;
46 
47 	/*
48 	 * Indicates the rw permissions for the new logical
49 	 * device.  This should be a combination of FMODE_READ
50 	 * and FMODE_WRITE.
51 	 */
52 	fmode_t mode;
53 
54 	/* a list of devices used by this table */
55 	struct list_head devices;
56 
57 	/* events get handed up using this callback */
58 	void (*event_fn)(void *);
59 	void *event_context;
60 
61 	struct dm_md_mempools *mempools;
62 
63 	struct list_head target_callbacks;
64 };
65 
66 /*
67  * Similar to ceiling(log_size(n))
68  */
69 static unsigned int int_log(unsigned int n, unsigned int base)
70 {
71 	int result = 0;
72 
73 	while (n > 1) {
74 		n = dm_div_up(n, base);
75 		result++;
76 	}
77 
78 	return result;
79 }
80 
81 /*
82  * Calculate the index of the child node of the n'th node k'th key.
83  */
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
85 {
86 	return (n * CHILDREN_PER_NODE) + k;
87 }
88 
89 /*
90  * Return the n'th node of level l from table t.
91  */
92 static inline sector_t *get_node(struct dm_table *t,
93 				 unsigned int l, unsigned int n)
94 {
95 	return t->index[l] + (n * KEYS_PER_NODE);
96 }
97 
98 /*
99  * Return the highest key that you could lookup from the n'th
100  * node on level l of the btree.
101  */
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103 {
104 	for (; l < t->depth - 1; l++)
105 		n = get_child(n, CHILDREN_PER_NODE - 1);
106 
107 	if (n >= t->counts[l])
108 		return (sector_t) - 1;
109 
110 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
111 }
112 
113 /*
114  * Fills in a level of the btree based on the highs of the level
115  * below it.
116  */
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
118 {
119 	unsigned int n, k;
120 	sector_t *node;
121 
122 	for (n = 0U; n < t->counts[l]; n++) {
123 		node = get_node(t, l, n);
124 
125 		for (k = 0U; k < KEYS_PER_NODE; k++)
126 			node[k] = high(t, l + 1, get_child(n, k));
127 	}
128 
129 	return 0;
130 }
131 
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133 {
134 	unsigned long size;
135 	void *addr;
136 
137 	/*
138 	 * Check that we're not going to overflow.
139 	 */
140 	if (nmemb > (ULONG_MAX / elem_size))
141 		return NULL;
142 
143 	size = nmemb * elem_size;
144 	addr = vzalloc(size);
145 
146 	return addr;
147 }
148 EXPORT_SYMBOL(dm_vcalloc);
149 
150 /*
151  * highs, and targets are managed as dynamic arrays during a
152  * table load.
153  */
154 static int alloc_targets(struct dm_table *t, unsigned int num)
155 {
156 	sector_t *n_highs;
157 	struct dm_target *n_targets;
158 	int n = t->num_targets;
159 
160 	/*
161 	 * Allocate both the target array and offset array at once.
162 	 * Append an empty entry to catch sectors beyond the end of
163 	 * the device.
164 	 */
165 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166 					  sizeof(sector_t));
167 	if (!n_highs)
168 		return -ENOMEM;
169 
170 	n_targets = (struct dm_target *) (n_highs + num);
171 
172 	if (n) {
173 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
174 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
175 	}
176 
177 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
178 	vfree(t->highs);
179 
180 	t->num_allocated = num;
181 	t->highs = n_highs;
182 	t->targets = n_targets;
183 
184 	return 0;
185 }
186 
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 		    unsigned num_targets, struct mapped_device *md)
189 {
190 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191 
192 	if (!t)
193 		return -ENOMEM;
194 
195 	INIT_LIST_HEAD(&t->devices);
196 	INIT_LIST_HEAD(&t->target_callbacks);
197 
198 	if (!num_targets)
199 		num_targets = KEYS_PER_NODE;
200 
201 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202 
203 	if (!num_targets) {
204 		kfree(t);
205 		return -ENOMEM;
206 	}
207 
208 	if (alloc_targets(t, num_targets)) {
209 		kfree(t);
210 		return -ENOMEM;
211 	}
212 
213 	t->mode = mode;
214 	t->md = md;
215 	*result = t;
216 	return 0;
217 }
218 
219 static void free_devices(struct list_head *devices)
220 {
221 	struct list_head *tmp, *next;
222 
223 	list_for_each_safe(tmp, next, devices) {
224 		struct dm_dev_internal *dd =
225 		    list_entry(tmp, struct dm_dev_internal, list);
226 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
227 		       dd->dm_dev.name);
228 		kfree(dd);
229 	}
230 }
231 
232 void dm_table_destroy(struct dm_table *t)
233 {
234 	unsigned int i;
235 
236 	if (!t)
237 		return;
238 
239 	/* free the indexes */
240 	if (t->depth >= 2)
241 		vfree(t->index[t->depth - 2]);
242 
243 	/* free the targets */
244 	for (i = 0; i < t->num_targets; i++) {
245 		struct dm_target *tgt = t->targets + i;
246 
247 		if (tgt->type->dtr)
248 			tgt->type->dtr(tgt);
249 
250 		dm_put_target_type(tgt->type);
251 	}
252 
253 	vfree(t->highs);
254 
255 	/* free the device list */
256 	free_devices(&t->devices);
257 
258 	dm_free_md_mempools(t->mempools);
259 
260 	kfree(t);
261 }
262 
263 /*
264  * Checks to see if we need to extend highs or targets.
265  */
266 static inline int check_space(struct dm_table *t)
267 {
268 	if (t->num_targets >= t->num_allocated)
269 		return alloc_targets(t, t->num_allocated * 2);
270 
271 	return 0;
272 }
273 
274 /*
275  * See if we've already got a device in the list.
276  */
277 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
278 {
279 	struct dm_dev_internal *dd;
280 
281 	list_for_each_entry (dd, l, list)
282 		if (dd->dm_dev.bdev->bd_dev == dev)
283 			return dd;
284 
285 	return NULL;
286 }
287 
288 /*
289  * Open a device so we can use it as a map destination.
290  */
291 static int open_dev(struct dm_dev_internal *d, dev_t dev,
292 		    struct mapped_device *md)
293 {
294 	static char *_claim_ptr = "I belong to device-mapper";
295 	struct block_device *bdev;
296 
297 	int r;
298 
299 	BUG_ON(d->dm_dev.bdev);
300 
301 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
302 	if (IS_ERR(bdev))
303 		return PTR_ERR(bdev);
304 
305 	r = bd_link_disk_holder(bdev, dm_disk(md));
306 	if (r) {
307 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
308 		return r;
309 	}
310 
311 	d->dm_dev.bdev = bdev;
312 	return 0;
313 }
314 
315 /*
316  * Close a device that we've been using.
317  */
318 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
319 {
320 	if (!d->dm_dev.bdev)
321 		return;
322 
323 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
324 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
325 	d->dm_dev.bdev = NULL;
326 }
327 
328 /*
329  * If possible, this checks an area of a destination device is invalid.
330  */
331 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
332 				  sector_t start, sector_t len, void *data)
333 {
334 	struct request_queue *q;
335 	struct queue_limits *limits = data;
336 	struct block_device *bdev = dev->bdev;
337 	sector_t dev_size =
338 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
339 	unsigned short logical_block_size_sectors =
340 		limits->logical_block_size >> SECTOR_SHIFT;
341 	char b[BDEVNAME_SIZE];
342 
343 	/*
344 	 * Some devices exist without request functions,
345 	 * such as loop devices not yet bound to backing files.
346 	 * Forbid the use of such devices.
347 	 */
348 	q = bdev_get_queue(bdev);
349 	if (!q || !q->make_request_fn) {
350 		DMWARN("%s: %s is not yet initialised: "
351 		       "start=%llu, len=%llu, dev_size=%llu",
352 		       dm_device_name(ti->table->md), bdevname(bdev, b),
353 		       (unsigned long long)start,
354 		       (unsigned long long)len,
355 		       (unsigned long long)dev_size);
356 		return 1;
357 	}
358 
359 	if (!dev_size)
360 		return 0;
361 
362 	if ((start >= dev_size) || (start + len > dev_size)) {
363 		DMWARN("%s: %s too small for target: "
364 		       "start=%llu, len=%llu, dev_size=%llu",
365 		       dm_device_name(ti->table->md), bdevname(bdev, b),
366 		       (unsigned long long)start,
367 		       (unsigned long long)len,
368 		       (unsigned long long)dev_size);
369 		return 1;
370 	}
371 
372 	if (logical_block_size_sectors <= 1)
373 		return 0;
374 
375 	if (start & (logical_block_size_sectors - 1)) {
376 		DMWARN("%s: start=%llu not aligned to h/w "
377 		       "logical block size %u of %s",
378 		       dm_device_name(ti->table->md),
379 		       (unsigned long long)start,
380 		       limits->logical_block_size, bdevname(bdev, b));
381 		return 1;
382 	}
383 
384 	if (len & (logical_block_size_sectors - 1)) {
385 		DMWARN("%s: len=%llu not aligned to h/w "
386 		       "logical block size %u of %s",
387 		       dm_device_name(ti->table->md),
388 		       (unsigned long long)len,
389 		       limits->logical_block_size, bdevname(bdev, b));
390 		return 1;
391 	}
392 
393 	return 0;
394 }
395 
396 /*
397  * This upgrades the mode on an already open dm_dev, being
398  * careful to leave things as they were if we fail to reopen the
399  * device and not to touch the existing bdev field in case
400  * it is accessed concurrently inside dm_table_any_congested().
401  */
402 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
403 			struct mapped_device *md)
404 {
405 	int r;
406 	struct dm_dev_internal dd_new, dd_old;
407 
408 	dd_new = dd_old = *dd;
409 
410 	dd_new.dm_dev.mode |= new_mode;
411 	dd_new.dm_dev.bdev = NULL;
412 
413 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
414 	if (r)
415 		return r;
416 
417 	dd->dm_dev.mode |= new_mode;
418 	close_dev(&dd_old, md);
419 
420 	return 0;
421 }
422 
423 /*
424  * Add a device to the list, or just increment the usage count if
425  * it's already present.
426  */
427 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
428 		  struct dm_dev **result)
429 {
430 	int r;
431 	dev_t uninitialized_var(dev);
432 	struct dm_dev_internal *dd;
433 	unsigned int major, minor;
434 	struct dm_table *t = ti->table;
435 	char dummy;
436 
437 	BUG_ON(!t);
438 
439 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
440 		/* Extract the major/minor numbers */
441 		dev = MKDEV(major, minor);
442 		if (MAJOR(dev) != major || MINOR(dev) != minor)
443 			return -EOVERFLOW;
444 	} else {
445 		/* convert the path to a device */
446 		struct block_device *bdev = lookup_bdev(path);
447 
448 		if (IS_ERR(bdev))
449 			return PTR_ERR(bdev);
450 		dev = bdev->bd_dev;
451 		bdput(bdev);
452 	}
453 
454 	dd = find_device(&t->devices, dev);
455 	if (!dd) {
456 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
457 		if (!dd)
458 			return -ENOMEM;
459 
460 		dd->dm_dev.mode = mode;
461 		dd->dm_dev.bdev = NULL;
462 
463 		if ((r = open_dev(dd, dev, t->md))) {
464 			kfree(dd);
465 			return r;
466 		}
467 
468 		format_dev_t(dd->dm_dev.name, dev);
469 
470 		atomic_set(&dd->count, 0);
471 		list_add(&dd->list, &t->devices);
472 
473 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
474 		r = upgrade_mode(dd, mode, t->md);
475 		if (r)
476 			return r;
477 	}
478 	atomic_inc(&dd->count);
479 
480 	*result = &dd->dm_dev;
481 	return 0;
482 }
483 EXPORT_SYMBOL(dm_get_device);
484 
485 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
486 			 sector_t start, sector_t len, void *data)
487 {
488 	struct queue_limits *limits = data;
489 	struct block_device *bdev = dev->bdev;
490 	struct request_queue *q = bdev_get_queue(bdev);
491 	char b[BDEVNAME_SIZE];
492 
493 	if (unlikely(!q)) {
494 		DMWARN("%s: Cannot set limits for nonexistent device %s",
495 		       dm_device_name(ti->table->md), bdevname(bdev, b));
496 		return 0;
497 	}
498 
499 	if (bdev_stack_limits(limits, bdev, start) < 0)
500 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
501 		       "physical_block_size=%u, logical_block_size=%u, "
502 		       "alignment_offset=%u, start=%llu",
503 		       dm_device_name(ti->table->md), bdevname(bdev, b),
504 		       q->limits.physical_block_size,
505 		       q->limits.logical_block_size,
506 		       q->limits.alignment_offset,
507 		       (unsigned long long) start << SECTOR_SHIFT);
508 
509 	/*
510 	 * Check if merge fn is supported.
511 	 * If not we'll force DM to use PAGE_SIZE or
512 	 * smaller I/O, just to be safe.
513 	 */
514 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
515 		blk_limits_max_hw_sectors(limits,
516 					  (unsigned int) (PAGE_SIZE >> 9));
517 	return 0;
518 }
519 EXPORT_SYMBOL_GPL(dm_set_device_limits);
520 
521 /*
522  * Decrement a device's use count and remove it if necessary.
523  */
524 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
525 {
526 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
527 						  dm_dev);
528 
529 	if (atomic_dec_and_test(&dd->count)) {
530 		close_dev(dd, ti->table->md);
531 		list_del(&dd->list);
532 		kfree(dd);
533 	}
534 }
535 EXPORT_SYMBOL(dm_put_device);
536 
537 /*
538  * Checks to see if the target joins onto the end of the table.
539  */
540 static int adjoin(struct dm_table *table, struct dm_target *ti)
541 {
542 	struct dm_target *prev;
543 
544 	if (!table->num_targets)
545 		return !ti->begin;
546 
547 	prev = &table->targets[table->num_targets - 1];
548 	return (ti->begin == (prev->begin + prev->len));
549 }
550 
551 /*
552  * Used to dynamically allocate the arg array.
553  *
554  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
555  * process messages even if some device is suspended. These messages have a
556  * small fixed number of arguments.
557  *
558  * On the other hand, dm-switch needs to process bulk data using messages and
559  * excessive use of GFP_NOIO could cause trouble.
560  */
561 static char **realloc_argv(unsigned *array_size, char **old_argv)
562 {
563 	char **argv;
564 	unsigned new_size;
565 	gfp_t gfp;
566 
567 	if (*array_size) {
568 		new_size = *array_size * 2;
569 		gfp = GFP_KERNEL;
570 	} else {
571 		new_size = 8;
572 		gfp = GFP_NOIO;
573 	}
574 	argv = kmalloc(new_size * sizeof(*argv), gfp);
575 	if (argv) {
576 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
577 		*array_size = new_size;
578 	}
579 
580 	kfree(old_argv);
581 	return argv;
582 }
583 
584 /*
585  * Destructively splits up the argument list to pass to ctr.
586  */
587 int dm_split_args(int *argc, char ***argvp, char *input)
588 {
589 	char *start, *end = input, *out, **argv = NULL;
590 	unsigned array_size = 0;
591 
592 	*argc = 0;
593 
594 	if (!input) {
595 		*argvp = NULL;
596 		return 0;
597 	}
598 
599 	argv = realloc_argv(&array_size, argv);
600 	if (!argv)
601 		return -ENOMEM;
602 
603 	while (1) {
604 		/* Skip whitespace */
605 		start = skip_spaces(end);
606 
607 		if (!*start)
608 			break;	/* success, we hit the end */
609 
610 		/* 'out' is used to remove any back-quotes */
611 		end = out = start;
612 		while (*end) {
613 			/* Everything apart from '\0' can be quoted */
614 			if (*end == '\\' && *(end + 1)) {
615 				*out++ = *(end + 1);
616 				end += 2;
617 				continue;
618 			}
619 
620 			if (isspace(*end))
621 				break;	/* end of token */
622 
623 			*out++ = *end++;
624 		}
625 
626 		/* have we already filled the array ? */
627 		if ((*argc + 1) > array_size) {
628 			argv = realloc_argv(&array_size, argv);
629 			if (!argv)
630 				return -ENOMEM;
631 		}
632 
633 		/* we know this is whitespace */
634 		if (*end)
635 			end++;
636 
637 		/* terminate the string and put it in the array */
638 		*out = '\0';
639 		argv[*argc] = start;
640 		(*argc)++;
641 	}
642 
643 	*argvp = argv;
644 	return 0;
645 }
646 
647 /*
648  * Impose necessary and sufficient conditions on a devices's table such
649  * that any incoming bio which respects its logical_block_size can be
650  * processed successfully.  If it falls across the boundary between
651  * two or more targets, the size of each piece it gets split into must
652  * be compatible with the logical_block_size of the target processing it.
653  */
654 static int validate_hardware_logical_block_alignment(struct dm_table *table,
655 						 struct queue_limits *limits)
656 {
657 	/*
658 	 * This function uses arithmetic modulo the logical_block_size
659 	 * (in units of 512-byte sectors).
660 	 */
661 	unsigned short device_logical_block_size_sects =
662 		limits->logical_block_size >> SECTOR_SHIFT;
663 
664 	/*
665 	 * Offset of the start of the next table entry, mod logical_block_size.
666 	 */
667 	unsigned short next_target_start = 0;
668 
669 	/*
670 	 * Given an aligned bio that extends beyond the end of a
671 	 * target, how many sectors must the next target handle?
672 	 */
673 	unsigned short remaining = 0;
674 
675 	struct dm_target *uninitialized_var(ti);
676 	struct queue_limits ti_limits;
677 	unsigned i = 0;
678 
679 	/*
680 	 * Check each entry in the table in turn.
681 	 */
682 	while (i < dm_table_get_num_targets(table)) {
683 		ti = dm_table_get_target(table, i++);
684 
685 		blk_set_stacking_limits(&ti_limits);
686 
687 		/* combine all target devices' limits */
688 		if (ti->type->iterate_devices)
689 			ti->type->iterate_devices(ti, dm_set_device_limits,
690 						  &ti_limits);
691 
692 		/*
693 		 * If the remaining sectors fall entirely within this
694 		 * table entry are they compatible with its logical_block_size?
695 		 */
696 		if (remaining < ti->len &&
697 		    remaining & ((ti_limits.logical_block_size >>
698 				  SECTOR_SHIFT) - 1))
699 			break;	/* Error */
700 
701 		next_target_start =
702 		    (unsigned short) ((next_target_start + ti->len) &
703 				      (device_logical_block_size_sects - 1));
704 		remaining = next_target_start ?
705 		    device_logical_block_size_sects - next_target_start : 0;
706 	}
707 
708 	if (remaining) {
709 		DMWARN("%s: table line %u (start sect %llu len %llu) "
710 		       "not aligned to h/w logical block size %u",
711 		       dm_device_name(table->md), i,
712 		       (unsigned long long) ti->begin,
713 		       (unsigned long long) ti->len,
714 		       limits->logical_block_size);
715 		return -EINVAL;
716 	}
717 
718 	return 0;
719 }
720 
721 int dm_table_add_target(struct dm_table *t, const char *type,
722 			sector_t start, sector_t len, char *params)
723 {
724 	int r = -EINVAL, argc;
725 	char **argv;
726 	struct dm_target *tgt;
727 
728 	if (t->singleton) {
729 		DMERR("%s: target type %s must appear alone in table",
730 		      dm_device_name(t->md), t->targets->type->name);
731 		return -EINVAL;
732 	}
733 
734 	if ((r = check_space(t)))
735 		return r;
736 
737 	tgt = t->targets + t->num_targets;
738 	memset(tgt, 0, sizeof(*tgt));
739 
740 	if (!len) {
741 		DMERR("%s: zero-length target", dm_device_name(t->md));
742 		return -EINVAL;
743 	}
744 
745 	tgt->type = dm_get_target_type(type);
746 	if (!tgt->type) {
747 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
748 		      type);
749 		return -EINVAL;
750 	}
751 
752 	if (dm_target_needs_singleton(tgt->type)) {
753 		if (t->num_targets) {
754 			DMERR("%s: target type %s must appear alone in table",
755 			      dm_device_name(t->md), type);
756 			return -EINVAL;
757 		}
758 		t->singleton = 1;
759 	}
760 
761 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
762 		DMERR("%s: target type %s may not be included in read-only tables",
763 		      dm_device_name(t->md), type);
764 		return -EINVAL;
765 	}
766 
767 	if (t->immutable_target_type) {
768 		if (t->immutable_target_type != tgt->type) {
769 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
770 			      dm_device_name(t->md), t->immutable_target_type->name);
771 			return -EINVAL;
772 		}
773 	} else if (dm_target_is_immutable(tgt->type)) {
774 		if (t->num_targets) {
775 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
776 			      dm_device_name(t->md), tgt->type->name);
777 			return -EINVAL;
778 		}
779 		t->immutable_target_type = tgt->type;
780 	}
781 
782 	tgt->table = t;
783 	tgt->begin = start;
784 	tgt->len = len;
785 	tgt->error = "Unknown error";
786 
787 	/*
788 	 * Does this target adjoin the previous one ?
789 	 */
790 	if (!adjoin(t, tgt)) {
791 		tgt->error = "Gap in table";
792 		r = -EINVAL;
793 		goto bad;
794 	}
795 
796 	r = dm_split_args(&argc, &argv, params);
797 	if (r) {
798 		tgt->error = "couldn't split parameters (insufficient memory)";
799 		goto bad;
800 	}
801 
802 	r = tgt->type->ctr(tgt, argc, argv);
803 	kfree(argv);
804 	if (r)
805 		goto bad;
806 
807 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
808 
809 	if (!tgt->num_discard_bios && tgt->discards_supported)
810 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
811 		       dm_device_name(t->md), type);
812 
813 	return 0;
814 
815  bad:
816 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
817 	dm_put_target_type(tgt->type);
818 	return r;
819 }
820 
821 /*
822  * Target argument parsing helpers.
823  */
824 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
825 			     unsigned *value, char **error, unsigned grouped)
826 {
827 	const char *arg_str = dm_shift_arg(arg_set);
828 	char dummy;
829 
830 	if (!arg_str ||
831 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
832 	    (*value < arg->min) ||
833 	    (*value > arg->max) ||
834 	    (grouped && arg_set->argc < *value)) {
835 		*error = arg->error;
836 		return -EINVAL;
837 	}
838 
839 	return 0;
840 }
841 
842 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
843 		unsigned *value, char **error)
844 {
845 	return validate_next_arg(arg, arg_set, value, error, 0);
846 }
847 EXPORT_SYMBOL(dm_read_arg);
848 
849 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
850 		      unsigned *value, char **error)
851 {
852 	return validate_next_arg(arg, arg_set, value, error, 1);
853 }
854 EXPORT_SYMBOL(dm_read_arg_group);
855 
856 const char *dm_shift_arg(struct dm_arg_set *as)
857 {
858 	char *r;
859 
860 	if (as->argc) {
861 		as->argc--;
862 		r = *as->argv;
863 		as->argv++;
864 		return r;
865 	}
866 
867 	return NULL;
868 }
869 EXPORT_SYMBOL(dm_shift_arg);
870 
871 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
872 {
873 	BUG_ON(as->argc < num_args);
874 	as->argc -= num_args;
875 	as->argv += num_args;
876 }
877 EXPORT_SYMBOL(dm_consume_args);
878 
879 static int dm_table_set_type(struct dm_table *t)
880 {
881 	unsigned i;
882 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
883 	struct dm_target *tgt;
884 	struct dm_dev_internal *dd;
885 	struct list_head *devices;
886 	unsigned live_md_type;
887 
888 	for (i = 0; i < t->num_targets; i++) {
889 		tgt = t->targets + i;
890 		if (dm_target_hybrid(tgt))
891 			hybrid = 1;
892 		else if (dm_target_request_based(tgt))
893 			request_based = 1;
894 		else
895 			bio_based = 1;
896 
897 		if (bio_based && request_based) {
898 			DMWARN("Inconsistent table: different target types"
899 			       " can't be mixed up");
900 			return -EINVAL;
901 		}
902 	}
903 
904 	if (hybrid && !bio_based && !request_based) {
905 		/*
906 		 * The targets can work either way.
907 		 * Determine the type from the live device.
908 		 * Default to bio-based if device is new.
909 		 */
910 		live_md_type = dm_get_md_type(t->md);
911 		if (live_md_type == DM_TYPE_REQUEST_BASED)
912 			request_based = 1;
913 		else
914 			bio_based = 1;
915 	}
916 
917 	if (bio_based) {
918 		/* We must use this table as bio-based */
919 		t->type = DM_TYPE_BIO_BASED;
920 		return 0;
921 	}
922 
923 	BUG_ON(!request_based); /* No targets in this table */
924 
925 	/* Non-request-stackable devices can't be used for request-based dm */
926 	devices = dm_table_get_devices(t);
927 	list_for_each_entry(dd, devices, list) {
928 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
929 			DMWARN("table load rejected: including"
930 			       " non-request-stackable devices");
931 			return -EINVAL;
932 		}
933 	}
934 
935 	/*
936 	 * Request-based dm supports only tables that have a single target now.
937 	 * To support multiple targets, request splitting support is needed,
938 	 * and that needs lots of changes in the block-layer.
939 	 * (e.g. request completion process for partial completion.)
940 	 */
941 	if (t->num_targets > 1) {
942 		DMWARN("Request-based dm doesn't support multiple targets yet");
943 		return -EINVAL;
944 	}
945 
946 	t->type = DM_TYPE_REQUEST_BASED;
947 
948 	return 0;
949 }
950 
951 unsigned dm_table_get_type(struct dm_table *t)
952 {
953 	return t->type;
954 }
955 
956 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
957 {
958 	return t->immutable_target_type;
959 }
960 
961 bool dm_table_request_based(struct dm_table *t)
962 {
963 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
964 }
965 
966 int dm_table_alloc_md_mempools(struct dm_table *t)
967 {
968 	unsigned type = dm_table_get_type(t);
969 	unsigned per_bio_data_size = 0;
970 	struct dm_target *tgt;
971 	unsigned i;
972 
973 	if (unlikely(type == DM_TYPE_NONE)) {
974 		DMWARN("no table type is set, can't allocate mempools");
975 		return -EINVAL;
976 	}
977 
978 	if (type == DM_TYPE_BIO_BASED)
979 		for (i = 0; i < t->num_targets; i++) {
980 			tgt = t->targets + i;
981 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
982 		}
983 
984 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
985 	if (!t->mempools)
986 		return -ENOMEM;
987 
988 	return 0;
989 }
990 
991 void dm_table_free_md_mempools(struct dm_table *t)
992 {
993 	dm_free_md_mempools(t->mempools);
994 	t->mempools = NULL;
995 }
996 
997 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
998 {
999 	return t->mempools;
1000 }
1001 
1002 static int setup_indexes(struct dm_table *t)
1003 {
1004 	int i;
1005 	unsigned int total = 0;
1006 	sector_t *indexes;
1007 
1008 	/* allocate the space for *all* the indexes */
1009 	for (i = t->depth - 2; i >= 0; i--) {
1010 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1011 		total += t->counts[i];
1012 	}
1013 
1014 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1015 	if (!indexes)
1016 		return -ENOMEM;
1017 
1018 	/* set up internal nodes, bottom-up */
1019 	for (i = t->depth - 2; i >= 0; i--) {
1020 		t->index[i] = indexes;
1021 		indexes += (KEYS_PER_NODE * t->counts[i]);
1022 		setup_btree_index(i, t);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 /*
1029  * Builds the btree to index the map.
1030  */
1031 static int dm_table_build_index(struct dm_table *t)
1032 {
1033 	int r = 0;
1034 	unsigned int leaf_nodes;
1035 
1036 	/* how many indexes will the btree have ? */
1037 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1038 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1039 
1040 	/* leaf layer has already been set up */
1041 	t->counts[t->depth - 1] = leaf_nodes;
1042 	t->index[t->depth - 1] = t->highs;
1043 
1044 	if (t->depth >= 2)
1045 		r = setup_indexes(t);
1046 
1047 	return r;
1048 }
1049 
1050 /*
1051  * Get a disk whose integrity profile reflects the table's profile.
1052  * If %match_all is true, all devices' profiles must match.
1053  * If %match_all is false, all devices must at least have an
1054  * allocated integrity profile; but uninitialized is ok.
1055  * Returns NULL if integrity support was inconsistent or unavailable.
1056  */
1057 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1058 						    bool match_all)
1059 {
1060 	struct list_head *devices = dm_table_get_devices(t);
1061 	struct dm_dev_internal *dd = NULL;
1062 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1063 
1064 	list_for_each_entry(dd, devices, list) {
1065 		template_disk = dd->dm_dev.bdev->bd_disk;
1066 		if (!blk_get_integrity(template_disk))
1067 			goto no_integrity;
1068 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1069 			continue; /* skip uninitialized profiles */
1070 		else if (prev_disk &&
1071 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1072 			goto no_integrity;
1073 		prev_disk = template_disk;
1074 	}
1075 
1076 	return template_disk;
1077 
1078 no_integrity:
1079 	if (prev_disk)
1080 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1081 		       dm_device_name(t->md),
1082 		       prev_disk->disk_name,
1083 		       template_disk->disk_name);
1084 	return NULL;
1085 }
1086 
1087 /*
1088  * Register the mapped device for blk_integrity support if
1089  * the underlying devices have an integrity profile.  But all devices
1090  * may not have matching profiles (checking all devices isn't reliable
1091  * during table load because this table may use other DM device(s) which
1092  * must be resumed before they will have an initialized integity profile).
1093  * Stacked DM devices force a 2 stage integrity profile validation:
1094  * 1 - during load, validate all initialized integrity profiles match
1095  * 2 - during resume, validate all integrity profiles match
1096  */
1097 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1098 {
1099 	struct gendisk *template_disk = NULL;
1100 
1101 	template_disk = dm_table_get_integrity_disk(t, false);
1102 	if (!template_disk)
1103 		return 0;
1104 
1105 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1106 		t->integrity_supported = 1;
1107 		return blk_integrity_register(dm_disk(md), NULL);
1108 	}
1109 
1110 	/*
1111 	 * If DM device already has an initalized integrity
1112 	 * profile the new profile should not conflict.
1113 	 */
1114 	if (blk_integrity_is_initialized(template_disk) &&
1115 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1116 		DMWARN("%s: conflict with existing integrity profile: "
1117 		       "%s profile mismatch",
1118 		       dm_device_name(t->md),
1119 		       template_disk->disk_name);
1120 		return 1;
1121 	}
1122 
1123 	/* Preserve existing initialized integrity profile */
1124 	t->integrity_supported = 1;
1125 	return 0;
1126 }
1127 
1128 /*
1129  * Prepares the table for use by building the indices,
1130  * setting the type, and allocating mempools.
1131  */
1132 int dm_table_complete(struct dm_table *t)
1133 {
1134 	int r;
1135 
1136 	r = dm_table_set_type(t);
1137 	if (r) {
1138 		DMERR("unable to set table type");
1139 		return r;
1140 	}
1141 
1142 	r = dm_table_build_index(t);
1143 	if (r) {
1144 		DMERR("unable to build btrees");
1145 		return r;
1146 	}
1147 
1148 	r = dm_table_prealloc_integrity(t, t->md);
1149 	if (r) {
1150 		DMERR("could not register integrity profile.");
1151 		return r;
1152 	}
1153 
1154 	r = dm_table_alloc_md_mempools(t);
1155 	if (r)
1156 		DMERR("unable to allocate mempools");
1157 
1158 	return r;
1159 }
1160 
1161 static DEFINE_MUTEX(_event_lock);
1162 void dm_table_event_callback(struct dm_table *t,
1163 			     void (*fn)(void *), void *context)
1164 {
1165 	mutex_lock(&_event_lock);
1166 	t->event_fn = fn;
1167 	t->event_context = context;
1168 	mutex_unlock(&_event_lock);
1169 }
1170 
1171 void dm_table_event(struct dm_table *t)
1172 {
1173 	/*
1174 	 * You can no longer call dm_table_event() from interrupt
1175 	 * context, use a bottom half instead.
1176 	 */
1177 	BUG_ON(in_interrupt());
1178 
1179 	mutex_lock(&_event_lock);
1180 	if (t->event_fn)
1181 		t->event_fn(t->event_context);
1182 	mutex_unlock(&_event_lock);
1183 }
1184 EXPORT_SYMBOL(dm_table_event);
1185 
1186 sector_t dm_table_get_size(struct dm_table *t)
1187 {
1188 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1189 }
1190 EXPORT_SYMBOL(dm_table_get_size);
1191 
1192 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1193 {
1194 	if (index >= t->num_targets)
1195 		return NULL;
1196 
1197 	return t->targets + index;
1198 }
1199 
1200 /*
1201  * Search the btree for the correct target.
1202  *
1203  * Caller should check returned pointer with dm_target_is_valid()
1204  * to trap I/O beyond end of device.
1205  */
1206 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1207 {
1208 	unsigned int l, n = 0, k = 0;
1209 	sector_t *node;
1210 
1211 	for (l = 0; l < t->depth; l++) {
1212 		n = get_child(n, k);
1213 		node = get_node(t, l, n);
1214 
1215 		for (k = 0; k < KEYS_PER_NODE; k++)
1216 			if (node[k] >= sector)
1217 				break;
1218 	}
1219 
1220 	return &t->targets[(KEYS_PER_NODE * n) + k];
1221 }
1222 
1223 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1224 			sector_t start, sector_t len, void *data)
1225 {
1226 	unsigned *num_devices = data;
1227 
1228 	(*num_devices)++;
1229 
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Check whether a table has no data devices attached using each
1235  * target's iterate_devices method.
1236  * Returns false if the result is unknown because a target doesn't
1237  * support iterate_devices.
1238  */
1239 bool dm_table_has_no_data_devices(struct dm_table *table)
1240 {
1241 	struct dm_target *uninitialized_var(ti);
1242 	unsigned i = 0, num_devices = 0;
1243 
1244 	while (i < dm_table_get_num_targets(table)) {
1245 		ti = dm_table_get_target(table, i++);
1246 
1247 		if (!ti->type->iterate_devices)
1248 			return false;
1249 
1250 		ti->type->iterate_devices(ti, count_device, &num_devices);
1251 		if (num_devices)
1252 			return false;
1253 	}
1254 
1255 	return true;
1256 }
1257 
1258 /*
1259  * Establish the new table's queue_limits and validate them.
1260  */
1261 int dm_calculate_queue_limits(struct dm_table *table,
1262 			      struct queue_limits *limits)
1263 {
1264 	struct dm_target *uninitialized_var(ti);
1265 	struct queue_limits ti_limits;
1266 	unsigned i = 0;
1267 
1268 	blk_set_stacking_limits(limits);
1269 
1270 	while (i < dm_table_get_num_targets(table)) {
1271 		blk_set_stacking_limits(&ti_limits);
1272 
1273 		ti = dm_table_get_target(table, i++);
1274 
1275 		if (!ti->type->iterate_devices)
1276 			goto combine_limits;
1277 
1278 		/*
1279 		 * Combine queue limits of all the devices this target uses.
1280 		 */
1281 		ti->type->iterate_devices(ti, dm_set_device_limits,
1282 					  &ti_limits);
1283 
1284 		/* Set I/O hints portion of queue limits */
1285 		if (ti->type->io_hints)
1286 			ti->type->io_hints(ti, &ti_limits);
1287 
1288 		/*
1289 		 * Check each device area is consistent with the target's
1290 		 * overall queue limits.
1291 		 */
1292 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1293 					      &ti_limits))
1294 			return -EINVAL;
1295 
1296 combine_limits:
1297 		/*
1298 		 * Merge this target's queue limits into the overall limits
1299 		 * for the table.
1300 		 */
1301 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1302 			DMWARN("%s: adding target device "
1303 			       "(start sect %llu len %llu) "
1304 			       "caused an alignment inconsistency",
1305 			       dm_device_name(table->md),
1306 			       (unsigned long long) ti->begin,
1307 			       (unsigned long long) ti->len);
1308 	}
1309 
1310 	return validate_hardware_logical_block_alignment(table, limits);
1311 }
1312 
1313 /*
1314  * Set the integrity profile for this device if all devices used have
1315  * matching profiles.  We're quite deep in the resume path but still
1316  * don't know if all devices (particularly DM devices this device
1317  * may be stacked on) have matching profiles.  Even if the profiles
1318  * don't match we have no way to fail (to resume) at this point.
1319  */
1320 static void dm_table_set_integrity(struct dm_table *t)
1321 {
1322 	struct gendisk *template_disk = NULL;
1323 
1324 	if (!blk_get_integrity(dm_disk(t->md)))
1325 		return;
1326 
1327 	template_disk = dm_table_get_integrity_disk(t, true);
1328 	if (template_disk)
1329 		blk_integrity_register(dm_disk(t->md),
1330 				       blk_get_integrity(template_disk));
1331 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1332 		DMWARN("%s: device no longer has a valid integrity profile",
1333 		       dm_device_name(t->md));
1334 	else
1335 		DMWARN("%s: unable to establish an integrity profile",
1336 		       dm_device_name(t->md));
1337 }
1338 
1339 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1340 				sector_t start, sector_t len, void *data)
1341 {
1342 	unsigned flush = (*(unsigned *)data);
1343 	struct request_queue *q = bdev_get_queue(dev->bdev);
1344 
1345 	return q && (q->flush_flags & flush);
1346 }
1347 
1348 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1349 {
1350 	struct dm_target *ti;
1351 	unsigned i = 0;
1352 
1353 	/*
1354 	 * Require at least one underlying device to support flushes.
1355 	 * t->devices includes internal dm devices such as mirror logs
1356 	 * so we need to use iterate_devices here, which targets
1357 	 * supporting flushes must provide.
1358 	 */
1359 	while (i < dm_table_get_num_targets(t)) {
1360 		ti = dm_table_get_target(t, i++);
1361 
1362 		if (!ti->num_flush_bios)
1363 			continue;
1364 
1365 		if (ti->flush_supported)
1366 			return 1;
1367 
1368 		if (ti->type->iterate_devices &&
1369 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1370 			return 1;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1377 {
1378 	struct dm_target *ti;
1379 	unsigned i = 0;
1380 
1381 	/* Ensure that all targets supports discard_zeroes_data. */
1382 	while (i < dm_table_get_num_targets(t)) {
1383 		ti = dm_table_get_target(t, i++);
1384 
1385 		if (ti->discard_zeroes_data_unsupported)
1386 			return 0;
1387 	}
1388 
1389 	return 1;
1390 }
1391 
1392 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1393 			    sector_t start, sector_t len, void *data)
1394 {
1395 	struct request_queue *q = bdev_get_queue(dev->bdev);
1396 
1397 	return q && blk_queue_nonrot(q);
1398 }
1399 
1400 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1401 			     sector_t start, sector_t len, void *data)
1402 {
1403 	struct request_queue *q = bdev_get_queue(dev->bdev);
1404 
1405 	return q && !blk_queue_add_random(q);
1406 }
1407 
1408 static bool dm_table_all_devices_attribute(struct dm_table *t,
1409 					   iterate_devices_callout_fn func)
1410 {
1411 	struct dm_target *ti;
1412 	unsigned i = 0;
1413 
1414 	while (i < dm_table_get_num_targets(t)) {
1415 		ti = dm_table_get_target(t, i++);
1416 
1417 		if (!ti->type->iterate_devices ||
1418 		    !ti->type->iterate_devices(ti, func, NULL))
1419 			return 0;
1420 	}
1421 
1422 	return 1;
1423 }
1424 
1425 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1426 					 sector_t start, sector_t len, void *data)
1427 {
1428 	struct request_queue *q = bdev_get_queue(dev->bdev);
1429 
1430 	return q && !q->limits.max_write_same_sectors;
1431 }
1432 
1433 static bool dm_table_supports_write_same(struct dm_table *t)
1434 {
1435 	struct dm_target *ti;
1436 	unsigned i = 0;
1437 
1438 	while (i < dm_table_get_num_targets(t)) {
1439 		ti = dm_table_get_target(t, i++);
1440 
1441 		if (!ti->num_write_same_bios)
1442 			return false;
1443 
1444 		if (!ti->type->iterate_devices ||
1445 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1446 			return false;
1447 	}
1448 
1449 	return true;
1450 }
1451 
1452 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1453 			       struct queue_limits *limits)
1454 {
1455 	unsigned flush = 0;
1456 
1457 	/*
1458 	 * Copy table's limits to the DM device's request_queue
1459 	 */
1460 	q->limits = *limits;
1461 
1462 	if (!dm_table_supports_discards(t))
1463 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1464 	else
1465 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1466 
1467 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1468 		flush |= REQ_FLUSH;
1469 		if (dm_table_supports_flush(t, REQ_FUA))
1470 			flush |= REQ_FUA;
1471 	}
1472 	blk_queue_flush(q, flush);
1473 
1474 	if (!dm_table_discard_zeroes_data(t))
1475 		q->limits.discard_zeroes_data = 0;
1476 
1477 	/* Ensure that all underlying devices are non-rotational. */
1478 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1479 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1480 	else
1481 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1482 
1483 	if (!dm_table_supports_write_same(t))
1484 		q->limits.max_write_same_sectors = 0;
1485 
1486 	dm_table_set_integrity(t);
1487 
1488 	/*
1489 	 * Determine whether or not this queue's I/O timings contribute
1490 	 * to the entropy pool, Only request-based targets use this.
1491 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1492 	 * have it set.
1493 	 */
1494 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1495 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1496 
1497 	/*
1498 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1499 	 * visible to other CPUs because, once the flag is set, incoming bios
1500 	 * are processed by request-based dm, which refers to the queue
1501 	 * settings.
1502 	 * Until the flag set, bios are passed to bio-based dm and queued to
1503 	 * md->deferred where queue settings are not needed yet.
1504 	 * Those bios are passed to request-based dm at the resume time.
1505 	 */
1506 	smp_mb();
1507 	if (dm_table_request_based(t))
1508 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1509 }
1510 
1511 unsigned int dm_table_get_num_targets(struct dm_table *t)
1512 {
1513 	return t->num_targets;
1514 }
1515 
1516 struct list_head *dm_table_get_devices(struct dm_table *t)
1517 {
1518 	return &t->devices;
1519 }
1520 
1521 fmode_t dm_table_get_mode(struct dm_table *t)
1522 {
1523 	return t->mode;
1524 }
1525 EXPORT_SYMBOL(dm_table_get_mode);
1526 
1527 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1528 {
1529 	int i = t->num_targets;
1530 	struct dm_target *ti = t->targets;
1531 
1532 	while (i--) {
1533 		if (postsuspend) {
1534 			if (ti->type->postsuspend)
1535 				ti->type->postsuspend(ti);
1536 		} else if (ti->type->presuspend)
1537 			ti->type->presuspend(ti);
1538 
1539 		ti++;
1540 	}
1541 }
1542 
1543 void dm_table_presuspend_targets(struct dm_table *t)
1544 {
1545 	if (!t)
1546 		return;
1547 
1548 	suspend_targets(t, 0);
1549 }
1550 
1551 void dm_table_postsuspend_targets(struct dm_table *t)
1552 {
1553 	if (!t)
1554 		return;
1555 
1556 	suspend_targets(t, 1);
1557 }
1558 
1559 int dm_table_resume_targets(struct dm_table *t)
1560 {
1561 	int i, r = 0;
1562 
1563 	for (i = 0; i < t->num_targets; i++) {
1564 		struct dm_target *ti = t->targets + i;
1565 
1566 		if (!ti->type->preresume)
1567 			continue;
1568 
1569 		r = ti->type->preresume(ti);
1570 		if (r) {
1571 			DMERR("%s: %s: preresume failed, error = %d",
1572 			      dm_device_name(t->md), ti->type->name, r);
1573 			return r;
1574 		}
1575 	}
1576 
1577 	for (i = 0; i < t->num_targets; i++) {
1578 		struct dm_target *ti = t->targets + i;
1579 
1580 		if (ti->type->resume)
1581 			ti->type->resume(ti);
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1588 {
1589 	list_add(&cb->list, &t->target_callbacks);
1590 }
1591 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1592 
1593 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1594 {
1595 	struct dm_dev_internal *dd;
1596 	struct list_head *devices = dm_table_get_devices(t);
1597 	struct dm_target_callbacks *cb;
1598 	int r = 0;
1599 
1600 	list_for_each_entry(dd, devices, list) {
1601 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1602 		char b[BDEVNAME_SIZE];
1603 
1604 		if (likely(q))
1605 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1606 		else
1607 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1608 				     dm_device_name(t->md),
1609 				     bdevname(dd->dm_dev.bdev, b));
1610 	}
1611 
1612 	list_for_each_entry(cb, &t->target_callbacks, list)
1613 		if (cb->congested_fn)
1614 			r |= cb->congested_fn(cb, bdi_bits);
1615 
1616 	return r;
1617 }
1618 
1619 int dm_table_any_busy_target(struct dm_table *t)
1620 {
1621 	unsigned i;
1622 	struct dm_target *ti;
1623 
1624 	for (i = 0; i < t->num_targets; i++) {
1625 		ti = t->targets + i;
1626 		if (ti->type->busy && ti->type->busy(ti))
1627 			return 1;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 struct mapped_device *dm_table_get_md(struct dm_table *t)
1634 {
1635 	return t->md;
1636 }
1637 EXPORT_SYMBOL(dm_table_get_md);
1638 
1639 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1640 				  sector_t start, sector_t len, void *data)
1641 {
1642 	struct request_queue *q = bdev_get_queue(dev->bdev);
1643 
1644 	return q && blk_queue_discard(q);
1645 }
1646 
1647 bool dm_table_supports_discards(struct dm_table *t)
1648 {
1649 	struct dm_target *ti;
1650 	unsigned i = 0;
1651 
1652 	/*
1653 	 * Unless any target used by the table set discards_supported,
1654 	 * require at least one underlying device to support discards.
1655 	 * t->devices includes internal dm devices such as mirror logs
1656 	 * so we need to use iterate_devices here, which targets
1657 	 * supporting discard selectively must provide.
1658 	 */
1659 	while (i < dm_table_get_num_targets(t)) {
1660 		ti = dm_table_get_target(t, i++);
1661 
1662 		if (!ti->num_discard_bios)
1663 			continue;
1664 
1665 		if (ti->discards_supported)
1666 			return 1;
1667 
1668 		if (ti->type->iterate_devices &&
1669 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1670 			return 1;
1671 	}
1672 
1673 	return 0;
1674 }
1675