xref: /openbmc/linux/drivers/md/dm-table.c (revision 68198dca)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	bool all_blk_mq:1;
51 	unsigned integrity_added:1;
52 
53 	/*
54 	 * Indicates the rw permissions for the new logical
55 	 * device.  This should be a combination of FMODE_READ
56 	 * and FMODE_WRITE.
57 	 */
58 	fmode_t mode;
59 
60 	/* a list of devices used by this table */
61 	struct list_head devices;
62 
63 	/* events get handed up using this callback */
64 	void (*event_fn)(void *);
65 	void *event_context;
66 
67 	struct dm_md_mempools *mempools;
68 
69 	struct list_head target_callbacks;
70 };
71 
72 /*
73  * Similar to ceiling(log_size(n))
74  */
75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77 	int result = 0;
78 
79 	while (n > 1) {
80 		n = dm_div_up(n, base);
81 		result++;
82 	}
83 
84 	return result;
85 }
86 
87 /*
88  * Calculate the index of the child node of the n'th node k'th key.
89  */
90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92 	return (n * CHILDREN_PER_NODE) + k;
93 }
94 
95 /*
96  * Return the n'th node of level l from table t.
97  */
98 static inline sector_t *get_node(struct dm_table *t,
99 				 unsigned int l, unsigned int n)
100 {
101 	return t->index[l] + (n * KEYS_PER_NODE);
102 }
103 
104 /*
105  * Return the highest key that you could lookup from the n'th
106  * node on level l of the btree.
107  */
108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110 	for (; l < t->depth - 1; l++)
111 		n = get_child(n, CHILDREN_PER_NODE - 1);
112 
113 	if (n >= t->counts[l])
114 		return (sector_t) - 1;
115 
116 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118 
119 /*
120  * Fills in a level of the btree based on the highs of the level
121  * below it.
122  */
123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125 	unsigned int n, k;
126 	sector_t *node;
127 
128 	for (n = 0U; n < t->counts[l]; n++) {
129 		node = get_node(t, l, n);
130 
131 		for (k = 0U; k < KEYS_PER_NODE; k++)
132 			node[k] = high(t, l + 1, get_child(n, k));
133 	}
134 
135 	return 0;
136 }
137 
138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140 	unsigned long size;
141 	void *addr;
142 
143 	/*
144 	 * Check that we're not going to overflow.
145 	 */
146 	if (nmemb > (ULONG_MAX / elem_size))
147 		return NULL;
148 
149 	size = nmemb * elem_size;
150 	addr = vzalloc(size);
151 
152 	return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155 
156 /*
157  * highs, and targets are managed as dynamic arrays during a
158  * table load.
159  */
160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162 	sector_t *n_highs;
163 	struct dm_target *n_targets;
164 
165 	/*
166 	 * Allocate both the target array and offset array at once.
167 	 * Append an empty entry to catch sectors beyond the end of
168 	 * the device.
169 	 */
170 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 					  sizeof(sector_t));
172 	if (!n_highs)
173 		return -ENOMEM;
174 
175 	n_targets = (struct dm_target *) (n_highs + num);
176 
177 	memset(n_highs, -1, sizeof(*n_highs) * num);
178 	vfree(t->highs);
179 
180 	t->num_allocated = num;
181 	t->highs = n_highs;
182 	t->targets = n_targets;
183 
184 	return 0;
185 }
186 
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 		    unsigned num_targets, struct mapped_device *md)
189 {
190 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191 
192 	if (!t)
193 		return -ENOMEM;
194 
195 	INIT_LIST_HEAD(&t->devices);
196 	INIT_LIST_HEAD(&t->target_callbacks);
197 
198 	if (!num_targets)
199 		num_targets = KEYS_PER_NODE;
200 
201 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202 
203 	if (!num_targets) {
204 		kfree(t);
205 		return -ENOMEM;
206 	}
207 
208 	if (alloc_targets(t, num_targets)) {
209 		kfree(t);
210 		return -ENOMEM;
211 	}
212 
213 	t->type = DM_TYPE_NONE;
214 	t->mode = mode;
215 	t->md = md;
216 	*result = t;
217 	return 0;
218 }
219 
220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222 	struct list_head *tmp, *next;
223 
224 	list_for_each_safe(tmp, next, devices) {
225 		struct dm_dev_internal *dd =
226 		    list_entry(tmp, struct dm_dev_internal, list);
227 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 		       dm_device_name(md), dd->dm_dev->name);
229 		dm_put_table_device(md, dd->dm_dev);
230 		kfree(dd);
231 	}
232 }
233 
234 void dm_table_destroy(struct dm_table *t)
235 {
236 	unsigned int i;
237 
238 	if (!t)
239 		return;
240 
241 	/* free the indexes */
242 	if (t->depth >= 2)
243 		vfree(t->index[t->depth - 2]);
244 
245 	/* free the targets */
246 	for (i = 0; i < t->num_targets; i++) {
247 		struct dm_target *tgt = t->targets + i;
248 
249 		if (tgt->type->dtr)
250 			tgt->type->dtr(tgt);
251 
252 		dm_put_target_type(tgt->type);
253 	}
254 
255 	vfree(t->highs);
256 
257 	/* free the device list */
258 	free_devices(&t->devices, t->md);
259 
260 	dm_free_md_mempools(t->mempools);
261 
262 	kfree(t);
263 }
264 
265 /*
266  * See if we've already got a device in the list.
267  */
268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270 	struct dm_dev_internal *dd;
271 
272 	list_for_each_entry (dd, l, list)
273 		if (dd->dm_dev->bdev->bd_dev == dev)
274 			return dd;
275 
276 	return NULL;
277 }
278 
279 /*
280  * If possible, this checks an area of a destination device is invalid.
281  */
282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 				  sector_t start, sector_t len, void *data)
284 {
285 	struct request_queue *q;
286 	struct queue_limits *limits = data;
287 	struct block_device *bdev = dev->bdev;
288 	sector_t dev_size =
289 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 	unsigned short logical_block_size_sectors =
291 		limits->logical_block_size >> SECTOR_SHIFT;
292 	char b[BDEVNAME_SIZE];
293 
294 	/*
295 	 * Some devices exist without request functions,
296 	 * such as loop devices not yet bound to backing files.
297 	 * Forbid the use of such devices.
298 	 */
299 	q = bdev_get_queue(bdev);
300 	if (!q || !q->make_request_fn) {
301 		DMWARN("%s: %s is not yet initialised: "
302 		       "start=%llu, len=%llu, dev_size=%llu",
303 		       dm_device_name(ti->table->md), bdevname(bdev, b),
304 		       (unsigned long long)start,
305 		       (unsigned long long)len,
306 		       (unsigned long long)dev_size);
307 		return 1;
308 	}
309 
310 	if (!dev_size)
311 		return 0;
312 
313 	if ((start >= dev_size) || (start + len > dev_size)) {
314 		DMWARN("%s: %s too small for target: "
315 		       "start=%llu, len=%llu, dev_size=%llu",
316 		       dm_device_name(ti->table->md), bdevname(bdev, b),
317 		       (unsigned long long)start,
318 		       (unsigned long long)len,
319 		       (unsigned long long)dev_size);
320 		return 1;
321 	}
322 
323 	/*
324 	 * If the target is mapped to zoned block device(s), check
325 	 * that the zones are not partially mapped.
326 	 */
327 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
329 
330 		if (start & (zone_sectors - 1)) {
331 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 			       dm_device_name(ti->table->md),
333 			       (unsigned long long)start,
334 			       zone_sectors, bdevname(bdev, b));
335 			return 1;
336 		}
337 
338 		/*
339 		 * Note: The last zone of a zoned block device may be smaller
340 		 * than other zones. So for a target mapping the end of a
341 		 * zoned block device with such a zone, len would not be zone
342 		 * aligned. We do not allow such last smaller zone to be part
343 		 * of the mapping here to ensure that mappings with multiple
344 		 * devices do not end up with a smaller zone in the middle of
345 		 * the sector range.
346 		 */
347 		if (len & (zone_sectors - 1)) {
348 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 			       dm_device_name(ti->table->md),
350 			       (unsigned long long)len,
351 			       zone_sectors, bdevname(bdev, b));
352 			return 1;
353 		}
354 	}
355 
356 	if (logical_block_size_sectors <= 1)
357 		return 0;
358 
359 	if (start & (logical_block_size_sectors - 1)) {
360 		DMWARN("%s: start=%llu not aligned to h/w "
361 		       "logical block size %u of %s",
362 		       dm_device_name(ti->table->md),
363 		       (unsigned long long)start,
364 		       limits->logical_block_size, bdevname(bdev, b));
365 		return 1;
366 	}
367 
368 	if (len & (logical_block_size_sectors - 1)) {
369 		DMWARN("%s: len=%llu not aligned to h/w "
370 		       "logical block size %u of %s",
371 		       dm_device_name(ti->table->md),
372 		       (unsigned long long)len,
373 		       limits->logical_block_size, bdevname(bdev, b));
374 		return 1;
375 	}
376 
377 	return 0;
378 }
379 
380 /*
381  * This upgrades the mode on an already open dm_dev, being
382  * careful to leave things as they were if we fail to reopen the
383  * device and not to touch the existing bdev field in case
384  * it is accessed concurrently inside dm_table_any_congested().
385  */
386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 			struct mapped_device *md)
388 {
389 	int r;
390 	struct dm_dev *old_dev, *new_dev;
391 
392 	old_dev = dd->dm_dev;
393 
394 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 				dd->dm_dev->mode | new_mode, &new_dev);
396 	if (r)
397 		return r;
398 
399 	dd->dm_dev = new_dev;
400 	dm_put_table_device(md, old_dev);
401 
402 	return 0;
403 }
404 
405 /*
406  * Convert the path to a device
407  */
408 dev_t dm_get_dev_t(const char *path)
409 {
410 	dev_t dev;
411 	struct block_device *bdev;
412 
413 	bdev = lookup_bdev(path);
414 	if (IS_ERR(bdev))
415 		dev = name_to_dev_t(path);
416 	else {
417 		dev = bdev->bd_dev;
418 		bdput(bdev);
419 	}
420 
421 	return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424 
425 /*
426  * Add a device to the list, or just increment the usage count if
427  * it's already present.
428  */
429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 		  struct dm_dev **result)
431 {
432 	int r;
433 	dev_t dev;
434 	struct dm_dev_internal *dd;
435 	struct dm_table *t = ti->table;
436 
437 	BUG_ON(!t);
438 
439 	dev = dm_get_dev_t(path);
440 	if (!dev)
441 		return -ENODEV;
442 
443 	dd = find_device(&t->devices, dev);
444 	if (!dd) {
445 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 		if (!dd)
447 			return -ENOMEM;
448 
449 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 			kfree(dd);
451 			return r;
452 		}
453 
454 		refcount_set(&dd->count, 1);
455 		list_add(&dd->list, &t->devices);
456 		goto out;
457 
458 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 		r = upgrade_mode(dd, mode, t->md);
460 		if (r)
461 			return r;
462 	}
463 	refcount_inc(&dd->count);
464 out:
465 	*result = dd->dm_dev;
466 	return 0;
467 }
468 EXPORT_SYMBOL(dm_get_device);
469 
470 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 				sector_t start, sector_t len, void *data)
472 {
473 	struct queue_limits *limits = data;
474 	struct block_device *bdev = dev->bdev;
475 	struct request_queue *q = bdev_get_queue(bdev);
476 	char b[BDEVNAME_SIZE];
477 
478 	if (unlikely(!q)) {
479 		DMWARN("%s: Cannot set limits for nonexistent device %s",
480 		       dm_device_name(ti->table->md), bdevname(bdev, b));
481 		return 0;
482 	}
483 
484 	if (bdev_stack_limits(limits, bdev, start) < 0)
485 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 		       "physical_block_size=%u, logical_block_size=%u, "
487 		       "alignment_offset=%u, start=%llu",
488 		       dm_device_name(ti->table->md), bdevname(bdev, b),
489 		       q->limits.physical_block_size,
490 		       q->limits.logical_block_size,
491 		       q->limits.alignment_offset,
492 		       (unsigned long long) start << SECTOR_SHIFT);
493 
494 	limits->zoned = blk_queue_zoned_model(q);
495 
496 	return 0;
497 }
498 
499 /*
500  * Decrement a device's use count and remove it if necessary.
501  */
502 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503 {
504 	int found = 0;
505 	struct list_head *devices = &ti->table->devices;
506 	struct dm_dev_internal *dd;
507 
508 	list_for_each_entry(dd, devices, list) {
509 		if (dd->dm_dev == d) {
510 			found = 1;
511 			break;
512 		}
513 	}
514 	if (!found) {
515 		DMWARN("%s: device %s not in table devices list",
516 		       dm_device_name(ti->table->md), d->name);
517 		return;
518 	}
519 	if (refcount_dec_and_test(&dd->count)) {
520 		dm_put_table_device(ti->table->md, d);
521 		list_del(&dd->list);
522 		kfree(dd);
523 	}
524 }
525 EXPORT_SYMBOL(dm_put_device);
526 
527 /*
528  * Checks to see if the target joins onto the end of the table.
529  */
530 static int adjoin(struct dm_table *table, struct dm_target *ti)
531 {
532 	struct dm_target *prev;
533 
534 	if (!table->num_targets)
535 		return !ti->begin;
536 
537 	prev = &table->targets[table->num_targets - 1];
538 	return (ti->begin == (prev->begin + prev->len));
539 }
540 
541 /*
542  * Used to dynamically allocate the arg array.
543  *
544  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545  * process messages even if some device is suspended. These messages have a
546  * small fixed number of arguments.
547  *
548  * On the other hand, dm-switch needs to process bulk data using messages and
549  * excessive use of GFP_NOIO could cause trouble.
550  */
551 static char **realloc_argv(unsigned *array_size, char **old_argv)
552 {
553 	char **argv;
554 	unsigned new_size;
555 	gfp_t gfp;
556 
557 	if (*array_size) {
558 		new_size = *array_size * 2;
559 		gfp = GFP_KERNEL;
560 	} else {
561 		new_size = 8;
562 		gfp = GFP_NOIO;
563 	}
564 	argv = kmalloc(new_size * sizeof(*argv), gfp);
565 	if (argv) {
566 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
567 		*array_size = new_size;
568 	}
569 
570 	kfree(old_argv);
571 	return argv;
572 }
573 
574 /*
575  * Destructively splits up the argument list to pass to ctr.
576  */
577 int dm_split_args(int *argc, char ***argvp, char *input)
578 {
579 	char *start, *end = input, *out, **argv = NULL;
580 	unsigned array_size = 0;
581 
582 	*argc = 0;
583 
584 	if (!input) {
585 		*argvp = NULL;
586 		return 0;
587 	}
588 
589 	argv = realloc_argv(&array_size, argv);
590 	if (!argv)
591 		return -ENOMEM;
592 
593 	while (1) {
594 		/* Skip whitespace */
595 		start = skip_spaces(end);
596 
597 		if (!*start)
598 			break;	/* success, we hit the end */
599 
600 		/* 'out' is used to remove any back-quotes */
601 		end = out = start;
602 		while (*end) {
603 			/* Everything apart from '\0' can be quoted */
604 			if (*end == '\\' && *(end + 1)) {
605 				*out++ = *(end + 1);
606 				end += 2;
607 				continue;
608 			}
609 
610 			if (isspace(*end))
611 				break;	/* end of token */
612 
613 			*out++ = *end++;
614 		}
615 
616 		/* have we already filled the array ? */
617 		if ((*argc + 1) > array_size) {
618 			argv = realloc_argv(&array_size, argv);
619 			if (!argv)
620 				return -ENOMEM;
621 		}
622 
623 		/* we know this is whitespace */
624 		if (*end)
625 			end++;
626 
627 		/* terminate the string and put it in the array */
628 		*out = '\0';
629 		argv[*argc] = start;
630 		(*argc)++;
631 	}
632 
633 	*argvp = argv;
634 	return 0;
635 }
636 
637 /*
638  * Impose necessary and sufficient conditions on a devices's table such
639  * that any incoming bio which respects its logical_block_size can be
640  * processed successfully.  If it falls across the boundary between
641  * two or more targets, the size of each piece it gets split into must
642  * be compatible with the logical_block_size of the target processing it.
643  */
644 static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 						 struct queue_limits *limits)
646 {
647 	/*
648 	 * This function uses arithmetic modulo the logical_block_size
649 	 * (in units of 512-byte sectors).
650 	 */
651 	unsigned short device_logical_block_size_sects =
652 		limits->logical_block_size >> SECTOR_SHIFT;
653 
654 	/*
655 	 * Offset of the start of the next table entry, mod logical_block_size.
656 	 */
657 	unsigned short next_target_start = 0;
658 
659 	/*
660 	 * Given an aligned bio that extends beyond the end of a
661 	 * target, how many sectors must the next target handle?
662 	 */
663 	unsigned short remaining = 0;
664 
665 	struct dm_target *uninitialized_var(ti);
666 	struct queue_limits ti_limits;
667 	unsigned i;
668 
669 	/*
670 	 * Check each entry in the table in turn.
671 	 */
672 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 		ti = dm_table_get_target(table, i);
674 
675 		blk_set_stacking_limits(&ti_limits);
676 
677 		/* combine all target devices' limits */
678 		if (ti->type->iterate_devices)
679 			ti->type->iterate_devices(ti, dm_set_device_limits,
680 						  &ti_limits);
681 
682 		/*
683 		 * If the remaining sectors fall entirely within this
684 		 * table entry are they compatible with its logical_block_size?
685 		 */
686 		if (remaining < ti->len &&
687 		    remaining & ((ti_limits.logical_block_size >>
688 				  SECTOR_SHIFT) - 1))
689 			break;	/* Error */
690 
691 		next_target_start =
692 		    (unsigned short) ((next_target_start + ti->len) &
693 				      (device_logical_block_size_sects - 1));
694 		remaining = next_target_start ?
695 		    device_logical_block_size_sects - next_target_start : 0;
696 	}
697 
698 	if (remaining) {
699 		DMWARN("%s: table line %u (start sect %llu len %llu) "
700 		       "not aligned to h/w logical block size %u",
701 		       dm_device_name(table->md), i,
702 		       (unsigned long long) ti->begin,
703 		       (unsigned long long) ti->len,
704 		       limits->logical_block_size);
705 		return -EINVAL;
706 	}
707 
708 	return 0;
709 }
710 
711 int dm_table_add_target(struct dm_table *t, const char *type,
712 			sector_t start, sector_t len, char *params)
713 {
714 	int r = -EINVAL, argc;
715 	char **argv;
716 	struct dm_target *tgt;
717 
718 	if (t->singleton) {
719 		DMERR("%s: target type %s must appear alone in table",
720 		      dm_device_name(t->md), t->targets->type->name);
721 		return -EINVAL;
722 	}
723 
724 	BUG_ON(t->num_targets >= t->num_allocated);
725 
726 	tgt = t->targets + t->num_targets;
727 	memset(tgt, 0, sizeof(*tgt));
728 
729 	if (!len) {
730 		DMERR("%s: zero-length target", dm_device_name(t->md));
731 		return -EINVAL;
732 	}
733 
734 	tgt->type = dm_get_target_type(type);
735 	if (!tgt->type) {
736 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 		return -EINVAL;
738 	}
739 
740 	if (dm_target_needs_singleton(tgt->type)) {
741 		if (t->num_targets) {
742 			tgt->error = "singleton target type must appear alone in table";
743 			goto bad;
744 		}
745 		t->singleton = true;
746 	}
747 
748 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 		tgt->error = "target type may not be included in a read-only table";
750 		goto bad;
751 	}
752 
753 	if (t->immutable_target_type) {
754 		if (t->immutable_target_type != tgt->type) {
755 			tgt->error = "immutable target type cannot be mixed with other target types";
756 			goto bad;
757 		}
758 	} else if (dm_target_is_immutable(tgt->type)) {
759 		if (t->num_targets) {
760 			tgt->error = "immutable target type cannot be mixed with other target types";
761 			goto bad;
762 		}
763 		t->immutable_target_type = tgt->type;
764 	}
765 
766 	if (dm_target_has_integrity(tgt->type))
767 		t->integrity_added = 1;
768 
769 	tgt->table = t;
770 	tgt->begin = start;
771 	tgt->len = len;
772 	tgt->error = "Unknown error";
773 
774 	/*
775 	 * Does this target adjoin the previous one ?
776 	 */
777 	if (!adjoin(t, tgt)) {
778 		tgt->error = "Gap in table";
779 		goto bad;
780 	}
781 
782 	r = dm_split_args(&argc, &argv, params);
783 	if (r) {
784 		tgt->error = "couldn't split parameters (insufficient memory)";
785 		goto bad;
786 	}
787 
788 	r = tgt->type->ctr(tgt, argc, argv);
789 	kfree(argv);
790 	if (r)
791 		goto bad;
792 
793 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794 
795 	if (!tgt->num_discard_bios && tgt->discards_supported)
796 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 		       dm_device_name(t->md), type);
798 
799 	return 0;
800 
801  bad:
802 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 	dm_put_target_type(tgt->type);
804 	return r;
805 }
806 
807 /*
808  * Target argument parsing helpers.
809  */
810 static int validate_next_arg(const struct dm_arg *arg,
811 			     struct dm_arg_set *arg_set,
812 			     unsigned *value, char **error, unsigned grouped)
813 {
814 	const char *arg_str = dm_shift_arg(arg_set);
815 	char dummy;
816 
817 	if (!arg_str ||
818 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 	    (*value < arg->min) ||
820 	    (*value > arg->max) ||
821 	    (grouped && arg_set->argc < *value)) {
822 		*error = arg->error;
823 		return -EINVAL;
824 	}
825 
826 	return 0;
827 }
828 
829 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 		unsigned *value, char **error)
831 {
832 	return validate_next_arg(arg, arg_set, value, error, 0);
833 }
834 EXPORT_SYMBOL(dm_read_arg);
835 
836 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 		      unsigned *value, char **error)
838 {
839 	return validate_next_arg(arg, arg_set, value, error, 1);
840 }
841 EXPORT_SYMBOL(dm_read_arg_group);
842 
843 const char *dm_shift_arg(struct dm_arg_set *as)
844 {
845 	char *r;
846 
847 	if (as->argc) {
848 		as->argc--;
849 		r = *as->argv;
850 		as->argv++;
851 		return r;
852 	}
853 
854 	return NULL;
855 }
856 EXPORT_SYMBOL(dm_shift_arg);
857 
858 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859 {
860 	BUG_ON(as->argc < num_args);
861 	as->argc -= num_args;
862 	as->argv += num_args;
863 }
864 EXPORT_SYMBOL(dm_consume_args);
865 
866 static bool __table_type_bio_based(enum dm_queue_mode table_type)
867 {
868 	return (table_type == DM_TYPE_BIO_BASED ||
869 		table_type == DM_TYPE_DAX_BIO_BASED);
870 }
871 
872 static bool __table_type_request_based(enum dm_queue_mode table_type)
873 {
874 	return (table_type == DM_TYPE_REQUEST_BASED ||
875 		table_type == DM_TYPE_MQ_REQUEST_BASED);
876 }
877 
878 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
879 {
880 	t->type = type;
881 }
882 EXPORT_SYMBOL_GPL(dm_table_set_type);
883 
884 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
885 			       sector_t start, sector_t len, void *data)
886 {
887 	struct request_queue *q = bdev_get_queue(dev->bdev);
888 
889 	return q && blk_queue_dax(q);
890 }
891 
892 static bool dm_table_supports_dax(struct dm_table *t)
893 {
894 	struct dm_target *ti;
895 	unsigned i;
896 
897 	/* Ensure that all targets support DAX. */
898 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
899 		ti = dm_table_get_target(t, i);
900 
901 		if (!ti->type->direct_access)
902 			return false;
903 
904 		if (!ti->type->iterate_devices ||
905 		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
906 			return false;
907 	}
908 
909 	return true;
910 }
911 
912 static int dm_table_determine_type(struct dm_table *t)
913 {
914 	unsigned i;
915 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
916 	unsigned sq_count = 0, mq_count = 0;
917 	struct dm_target *tgt;
918 	struct dm_dev_internal *dd;
919 	struct list_head *devices = dm_table_get_devices(t);
920 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
921 
922 	if (t->type != DM_TYPE_NONE) {
923 		/* target already set the table's type */
924 		if (t->type == DM_TYPE_BIO_BASED)
925 			return 0;
926 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
927 		goto verify_rq_based;
928 	}
929 
930 	for (i = 0; i < t->num_targets; i++) {
931 		tgt = t->targets + i;
932 		if (dm_target_hybrid(tgt))
933 			hybrid = 1;
934 		else if (dm_target_request_based(tgt))
935 			request_based = 1;
936 		else
937 			bio_based = 1;
938 
939 		if (bio_based && request_based) {
940 			DMWARN("Inconsistent table: different target types"
941 			       " can't be mixed up");
942 			return -EINVAL;
943 		}
944 	}
945 
946 	if (hybrid && !bio_based && !request_based) {
947 		/*
948 		 * The targets can work either way.
949 		 * Determine the type from the live device.
950 		 * Default to bio-based if device is new.
951 		 */
952 		if (__table_type_request_based(live_md_type))
953 			request_based = 1;
954 		else
955 			bio_based = 1;
956 	}
957 
958 	if (bio_based) {
959 		/* We must use this table as bio-based */
960 		t->type = DM_TYPE_BIO_BASED;
961 		if (dm_table_supports_dax(t) ||
962 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
963 			t->type = DM_TYPE_DAX_BIO_BASED;
964 		return 0;
965 	}
966 
967 	BUG_ON(!request_based); /* No targets in this table */
968 
969 	/*
970 	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
971 	 * having a compatible target use dm_table_set_type.
972 	 */
973 	t->type = DM_TYPE_REQUEST_BASED;
974 
975 verify_rq_based:
976 	/*
977 	 * Request-based dm supports only tables that have a single target now.
978 	 * To support multiple targets, request splitting support is needed,
979 	 * and that needs lots of changes in the block-layer.
980 	 * (e.g. request completion process for partial completion.)
981 	 */
982 	if (t->num_targets > 1) {
983 		DMWARN("Request-based dm doesn't support multiple targets yet");
984 		return -EINVAL;
985 	}
986 
987 	if (list_empty(devices)) {
988 		int srcu_idx;
989 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
990 
991 		/* inherit live table's type and all_blk_mq */
992 		if (live_table) {
993 			t->type = live_table->type;
994 			t->all_blk_mq = live_table->all_blk_mq;
995 		}
996 		dm_put_live_table(t->md, srcu_idx);
997 		return 0;
998 	}
999 
1000 	/* Non-request-stackable devices can't be used for request-based dm */
1001 	list_for_each_entry(dd, devices, list) {
1002 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1003 
1004 		if (!queue_is_rq_based(q)) {
1005 			DMERR("table load rejected: including"
1006 			      " non-request-stackable devices");
1007 			return -EINVAL;
1008 		}
1009 
1010 		if (q->mq_ops)
1011 			mq_count++;
1012 		else
1013 			sq_count++;
1014 	}
1015 	if (sq_count && mq_count) {
1016 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1017 		return -EINVAL;
1018 	}
1019 	t->all_blk_mq = mq_count > 0;
1020 
1021 	if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1022 		DMERR("table load rejected: all devices are not blk-mq request-stackable");
1023 		return -EINVAL;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1030 {
1031 	return t->type;
1032 }
1033 
1034 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1035 {
1036 	return t->immutable_target_type;
1037 }
1038 
1039 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1040 {
1041 	/* Immutable target is implicitly a singleton */
1042 	if (t->num_targets > 1 ||
1043 	    !dm_target_is_immutable(t->targets[0].type))
1044 		return NULL;
1045 
1046 	return t->targets;
1047 }
1048 
1049 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1050 {
1051 	struct dm_target *ti;
1052 	unsigned i;
1053 
1054 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1055 		ti = dm_table_get_target(t, i);
1056 		if (dm_target_is_wildcard(ti->type))
1057 			return ti;
1058 	}
1059 
1060 	return NULL;
1061 }
1062 
1063 bool dm_table_bio_based(struct dm_table *t)
1064 {
1065 	return __table_type_bio_based(dm_table_get_type(t));
1066 }
1067 
1068 bool dm_table_request_based(struct dm_table *t)
1069 {
1070 	return __table_type_request_based(dm_table_get_type(t));
1071 }
1072 
1073 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1074 {
1075 	return t->all_blk_mq;
1076 }
1077 
1078 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1079 {
1080 	enum dm_queue_mode type = dm_table_get_type(t);
1081 	unsigned per_io_data_size = 0;
1082 	struct dm_target *tgt;
1083 	unsigned i;
1084 
1085 	if (unlikely(type == DM_TYPE_NONE)) {
1086 		DMWARN("no table type is set, can't allocate mempools");
1087 		return -EINVAL;
1088 	}
1089 
1090 	if (__table_type_bio_based(type))
1091 		for (i = 0; i < t->num_targets; i++) {
1092 			tgt = t->targets + i;
1093 			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1094 		}
1095 
1096 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1097 	if (!t->mempools)
1098 		return -ENOMEM;
1099 
1100 	return 0;
1101 }
1102 
1103 void dm_table_free_md_mempools(struct dm_table *t)
1104 {
1105 	dm_free_md_mempools(t->mempools);
1106 	t->mempools = NULL;
1107 }
1108 
1109 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1110 {
1111 	return t->mempools;
1112 }
1113 
1114 static int setup_indexes(struct dm_table *t)
1115 {
1116 	int i;
1117 	unsigned int total = 0;
1118 	sector_t *indexes;
1119 
1120 	/* allocate the space for *all* the indexes */
1121 	for (i = t->depth - 2; i >= 0; i--) {
1122 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1123 		total += t->counts[i];
1124 	}
1125 
1126 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1127 	if (!indexes)
1128 		return -ENOMEM;
1129 
1130 	/* set up internal nodes, bottom-up */
1131 	for (i = t->depth - 2; i >= 0; i--) {
1132 		t->index[i] = indexes;
1133 		indexes += (KEYS_PER_NODE * t->counts[i]);
1134 		setup_btree_index(i, t);
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Builds the btree to index the map.
1142  */
1143 static int dm_table_build_index(struct dm_table *t)
1144 {
1145 	int r = 0;
1146 	unsigned int leaf_nodes;
1147 
1148 	/* how many indexes will the btree have ? */
1149 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1150 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1151 
1152 	/* leaf layer has already been set up */
1153 	t->counts[t->depth - 1] = leaf_nodes;
1154 	t->index[t->depth - 1] = t->highs;
1155 
1156 	if (t->depth >= 2)
1157 		r = setup_indexes(t);
1158 
1159 	return r;
1160 }
1161 
1162 static bool integrity_profile_exists(struct gendisk *disk)
1163 {
1164 	return !!blk_get_integrity(disk);
1165 }
1166 
1167 /*
1168  * Get a disk whose integrity profile reflects the table's profile.
1169  * Returns NULL if integrity support was inconsistent or unavailable.
1170  */
1171 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1172 {
1173 	struct list_head *devices = dm_table_get_devices(t);
1174 	struct dm_dev_internal *dd = NULL;
1175 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1176 	unsigned i;
1177 
1178 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1179 		struct dm_target *ti = dm_table_get_target(t, i);
1180 		if (!dm_target_passes_integrity(ti->type))
1181 			goto no_integrity;
1182 	}
1183 
1184 	list_for_each_entry(dd, devices, list) {
1185 		template_disk = dd->dm_dev->bdev->bd_disk;
1186 		if (!integrity_profile_exists(template_disk))
1187 			goto no_integrity;
1188 		else if (prev_disk &&
1189 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1190 			goto no_integrity;
1191 		prev_disk = template_disk;
1192 	}
1193 
1194 	return template_disk;
1195 
1196 no_integrity:
1197 	if (prev_disk)
1198 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1199 		       dm_device_name(t->md),
1200 		       prev_disk->disk_name,
1201 		       template_disk->disk_name);
1202 	return NULL;
1203 }
1204 
1205 /*
1206  * Register the mapped device for blk_integrity support if the
1207  * underlying devices have an integrity profile.  But all devices may
1208  * not have matching profiles (checking all devices isn't reliable
1209  * during table load because this table may use other DM device(s) which
1210  * must be resumed before they will have an initialized integity
1211  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1212  * profile validation: First pass during table load, final pass during
1213  * resume.
1214  */
1215 static int dm_table_register_integrity(struct dm_table *t)
1216 {
1217 	struct mapped_device *md = t->md;
1218 	struct gendisk *template_disk = NULL;
1219 
1220 	/* If target handles integrity itself do not register it here. */
1221 	if (t->integrity_added)
1222 		return 0;
1223 
1224 	template_disk = dm_table_get_integrity_disk(t);
1225 	if (!template_disk)
1226 		return 0;
1227 
1228 	if (!integrity_profile_exists(dm_disk(md))) {
1229 		t->integrity_supported = true;
1230 		/*
1231 		 * Register integrity profile during table load; we can do
1232 		 * this because the final profile must match during resume.
1233 		 */
1234 		blk_integrity_register(dm_disk(md),
1235 				       blk_get_integrity(template_disk));
1236 		return 0;
1237 	}
1238 
1239 	/*
1240 	 * If DM device already has an initialized integrity
1241 	 * profile the new profile should not conflict.
1242 	 */
1243 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1244 		DMWARN("%s: conflict with existing integrity profile: "
1245 		       "%s profile mismatch",
1246 		       dm_device_name(t->md),
1247 		       template_disk->disk_name);
1248 		return 1;
1249 	}
1250 
1251 	/* Preserve existing integrity profile */
1252 	t->integrity_supported = true;
1253 	return 0;
1254 }
1255 
1256 /*
1257  * Prepares the table for use by building the indices,
1258  * setting the type, and allocating mempools.
1259  */
1260 int dm_table_complete(struct dm_table *t)
1261 {
1262 	int r;
1263 
1264 	r = dm_table_determine_type(t);
1265 	if (r) {
1266 		DMERR("unable to determine table type");
1267 		return r;
1268 	}
1269 
1270 	r = dm_table_build_index(t);
1271 	if (r) {
1272 		DMERR("unable to build btrees");
1273 		return r;
1274 	}
1275 
1276 	r = dm_table_register_integrity(t);
1277 	if (r) {
1278 		DMERR("could not register integrity profile.");
1279 		return r;
1280 	}
1281 
1282 	r = dm_table_alloc_md_mempools(t, t->md);
1283 	if (r)
1284 		DMERR("unable to allocate mempools");
1285 
1286 	return r;
1287 }
1288 
1289 static DEFINE_MUTEX(_event_lock);
1290 void dm_table_event_callback(struct dm_table *t,
1291 			     void (*fn)(void *), void *context)
1292 {
1293 	mutex_lock(&_event_lock);
1294 	t->event_fn = fn;
1295 	t->event_context = context;
1296 	mutex_unlock(&_event_lock);
1297 }
1298 
1299 void dm_table_event(struct dm_table *t)
1300 {
1301 	/*
1302 	 * You can no longer call dm_table_event() from interrupt
1303 	 * context, use a bottom half instead.
1304 	 */
1305 	BUG_ON(in_interrupt());
1306 
1307 	mutex_lock(&_event_lock);
1308 	if (t->event_fn)
1309 		t->event_fn(t->event_context);
1310 	mutex_unlock(&_event_lock);
1311 }
1312 EXPORT_SYMBOL(dm_table_event);
1313 
1314 sector_t dm_table_get_size(struct dm_table *t)
1315 {
1316 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1317 }
1318 EXPORT_SYMBOL(dm_table_get_size);
1319 
1320 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1321 {
1322 	if (index >= t->num_targets)
1323 		return NULL;
1324 
1325 	return t->targets + index;
1326 }
1327 
1328 /*
1329  * Search the btree for the correct target.
1330  *
1331  * Caller should check returned pointer with dm_target_is_valid()
1332  * to trap I/O beyond end of device.
1333  */
1334 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1335 {
1336 	unsigned int l, n = 0, k = 0;
1337 	sector_t *node;
1338 
1339 	for (l = 0; l < t->depth; l++) {
1340 		n = get_child(n, k);
1341 		node = get_node(t, l, n);
1342 
1343 		for (k = 0; k < KEYS_PER_NODE; k++)
1344 			if (node[k] >= sector)
1345 				break;
1346 	}
1347 
1348 	return &t->targets[(KEYS_PER_NODE * n) + k];
1349 }
1350 
1351 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1352 			sector_t start, sector_t len, void *data)
1353 {
1354 	unsigned *num_devices = data;
1355 
1356 	(*num_devices)++;
1357 
1358 	return 0;
1359 }
1360 
1361 /*
1362  * Check whether a table has no data devices attached using each
1363  * target's iterate_devices method.
1364  * Returns false if the result is unknown because a target doesn't
1365  * support iterate_devices.
1366  */
1367 bool dm_table_has_no_data_devices(struct dm_table *table)
1368 {
1369 	struct dm_target *ti;
1370 	unsigned i, num_devices;
1371 
1372 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1373 		ti = dm_table_get_target(table, i);
1374 
1375 		if (!ti->type->iterate_devices)
1376 			return false;
1377 
1378 		num_devices = 0;
1379 		ti->type->iterate_devices(ti, count_device, &num_devices);
1380 		if (num_devices)
1381 			return false;
1382 	}
1383 
1384 	return true;
1385 }
1386 
1387 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1388 				 sector_t start, sector_t len, void *data)
1389 {
1390 	struct request_queue *q = bdev_get_queue(dev->bdev);
1391 	enum blk_zoned_model *zoned_model = data;
1392 
1393 	return q && blk_queue_zoned_model(q) == *zoned_model;
1394 }
1395 
1396 static bool dm_table_supports_zoned_model(struct dm_table *t,
1397 					  enum blk_zoned_model zoned_model)
1398 {
1399 	struct dm_target *ti;
1400 	unsigned i;
1401 
1402 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1403 		ti = dm_table_get_target(t, i);
1404 
1405 		if (zoned_model == BLK_ZONED_HM &&
1406 		    !dm_target_supports_zoned_hm(ti->type))
1407 			return false;
1408 
1409 		if (!ti->type->iterate_devices ||
1410 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1411 			return false;
1412 	}
1413 
1414 	return true;
1415 }
1416 
1417 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1418 				       sector_t start, sector_t len, void *data)
1419 {
1420 	struct request_queue *q = bdev_get_queue(dev->bdev);
1421 	unsigned int *zone_sectors = data;
1422 
1423 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1424 }
1425 
1426 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1427 					  unsigned int zone_sectors)
1428 {
1429 	struct dm_target *ti;
1430 	unsigned i;
1431 
1432 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1433 		ti = dm_table_get_target(t, i);
1434 
1435 		if (!ti->type->iterate_devices ||
1436 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1437 			return false;
1438 	}
1439 
1440 	return true;
1441 }
1442 
1443 static int validate_hardware_zoned_model(struct dm_table *table,
1444 					 enum blk_zoned_model zoned_model,
1445 					 unsigned int zone_sectors)
1446 {
1447 	if (zoned_model == BLK_ZONED_NONE)
1448 		return 0;
1449 
1450 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1451 		DMERR("%s: zoned model is not consistent across all devices",
1452 		      dm_device_name(table->md));
1453 		return -EINVAL;
1454 	}
1455 
1456 	/* Check zone size validity and compatibility */
1457 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1458 		return -EINVAL;
1459 
1460 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1461 		DMERR("%s: zone sectors is not consistent across all devices",
1462 		      dm_device_name(table->md));
1463 		return -EINVAL;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 /*
1470  * Establish the new table's queue_limits and validate them.
1471  */
1472 int dm_calculate_queue_limits(struct dm_table *table,
1473 			      struct queue_limits *limits)
1474 {
1475 	struct dm_target *ti;
1476 	struct queue_limits ti_limits;
1477 	unsigned i;
1478 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1479 	unsigned int zone_sectors = 0;
1480 
1481 	blk_set_stacking_limits(limits);
1482 
1483 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1484 		blk_set_stacking_limits(&ti_limits);
1485 
1486 		ti = dm_table_get_target(table, i);
1487 
1488 		if (!ti->type->iterate_devices)
1489 			goto combine_limits;
1490 
1491 		/*
1492 		 * Combine queue limits of all the devices this target uses.
1493 		 */
1494 		ti->type->iterate_devices(ti, dm_set_device_limits,
1495 					  &ti_limits);
1496 
1497 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1498 			/*
1499 			 * After stacking all limits, validate all devices
1500 			 * in table support this zoned model and zone sectors.
1501 			 */
1502 			zoned_model = ti_limits.zoned;
1503 			zone_sectors = ti_limits.chunk_sectors;
1504 		}
1505 
1506 		/* Set I/O hints portion of queue limits */
1507 		if (ti->type->io_hints)
1508 			ti->type->io_hints(ti, &ti_limits);
1509 
1510 		/*
1511 		 * Check each device area is consistent with the target's
1512 		 * overall queue limits.
1513 		 */
1514 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1515 					      &ti_limits))
1516 			return -EINVAL;
1517 
1518 combine_limits:
1519 		/*
1520 		 * Merge this target's queue limits into the overall limits
1521 		 * for the table.
1522 		 */
1523 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1524 			DMWARN("%s: adding target device "
1525 			       "(start sect %llu len %llu) "
1526 			       "caused an alignment inconsistency",
1527 			       dm_device_name(table->md),
1528 			       (unsigned long long) ti->begin,
1529 			       (unsigned long long) ti->len);
1530 
1531 		/*
1532 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1533 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1534 		 */
1535 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1536 			/*
1537 			 * By default, the stacked limits zoned model is set to
1538 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1539 			 * this model using the first target model reported
1540 			 * that is not BLK_ZONED_NONE. This will be either the
1541 			 * first target device zoned model or the model reported
1542 			 * by the target .io_hints.
1543 			 */
1544 			limits->zoned = ti_limits.zoned;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Verify that the zoned model and zone sectors, as determined before
1550 	 * any .io_hints override, are the same across all devices in the table.
1551 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1552 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1553 	 * BUT...
1554 	 */
1555 	if (limits->zoned != BLK_ZONED_NONE) {
1556 		/*
1557 		 * ...IF the above limits stacking determined a zoned model
1558 		 * validate that all of the table's devices conform to it.
1559 		 */
1560 		zoned_model = limits->zoned;
1561 		zone_sectors = limits->chunk_sectors;
1562 	}
1563 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1564 		return -EINVAL;
1565 
1566 	return validate_hardware_logical_block_alignment(table, limits);
1567 }
1568 
1569 /*
1570  * Verify that all devices have an integrity profile that matches the
1571  * DM device's registered integrity profile.  If the profiles don't
1572  * match then unregister the DM device's integrity profile.
1573  */
1574 static void dm_table_verify_integrity(struct dm_table *t)
1575 {
1576 	struct gendisk *template_disk = NULL;
1577 
1578 	if (t->integrity_added)
1579 		return;
1580 
1581 	if (t->integrity_supported) {
1582 		/*
1583 		 * Verify that the original integrity profile
1584 		 * matches all the devices in this table.
1585 		 */
1586 		template_disk = dm_table_get_integrity_disk(t);
1587 		if (template_disk &&
1588 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1589 			return;
1590 	}
1591 
1592 	if (integrity_profile_exists(dm_disk(t->md))) {
1593 		DMWARN("%s: unable to establish an integrity profile",
1594 		       dm_device_name(t->md));
1595 		blk_integrity_unregister(dm_disk(t->md));
1596 	}
1597 }
1598 
1599 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1600 				sector_t start, sector_t len, void *data)
1601 {
1602 	unsigned long flush = (unsigned long) data;
1603 	struct request_queue *q = bdev_get_queue(dev->bdev);
1604 
1605 	return q && (q->queue_flags & flush);
1606 }
1607 
1608 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1609 {
1610 	struct dm_target *ti;
1611 	unsigned i;
1612 
1613 	/*
1614 	 * Require at least one underlying device to support flushes.
1615 	 * t->devices includes internal dm devices such as mirror logs
1616 	 * so we need to use iterate_devices here, which targets
1617 	 * supporting flushes must provide.
1618 	 */
1619 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1620 		ti = dm_table_get_target(t, i);
1621 
1622 		if (!ti->num_flush_bios)
1623 			continue;
1624 
1625 		if (ti->flush_supported)
1626 			return true;
1627 
1628 		if (ti->type->iterate_devices &&
1629 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1630 			return true;
1631 	}
1632 
1633 	return false;
1634 }
1635 
1636 static int device_dax_write_cache_enabled(struct dm_target *ti,
1637 					  struct dm_dev *dev, sector_t start,
1638 					  sector_t len, void *data)
1639 {
1640 	struct dax_device *dax_dev = dev->dax_dev;
1641 
1642 	if (!dax_dev)
1643 		return false;
1644 
1645 	if (dax_write_cache_enabled(dax_dev))
1646 		return true;
1647 	return false;
1648 }
1649 
1650 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1651 {
1652 	struct dm_target *ti;
1653 	unsigned i;
1654 
1655 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1656 		ti = dm_table_get_target(t, i);
1657 
1658 		if (ti->type->iterate_devices &&
1659 		    ti->type->iterate_devices(ti,
1660 				device_dax_write_cache_enabled, NULL))
1661 			return true;
1662 	}
1663 
1664 	return false;
1665 }
1666 
1667 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1668 			    sector_t start, sector_t len, void *data)
1669 {
1670 	struct request_queue *q = bdev_get_queue(dev->bdev);
1671 
1672 	return q && blk_queue_nonrot(q);
1673 }
1674 
1675 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1676 			     sector_t start, sector_t len, void *data)
1677 {
1678 	struct request_queue *q = bdev_get_queue(dev->bdev);
1679 
1680 	return q && !blk_queue_add_random(q);
1681 }
1682 
1683 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1684 				   sector_t start, sector_t len, void *data)
1685 {
1686 	struct request_queue *q = bdev_get_queue(dev->bdev);
1687 
1688 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1689 }
1690 
1691 static bool dm_table_all_devices_attribute(struct dm_table *t,
1692 					   iterate_devices_callout_fn func)
1693 {
1694 	struct dm_target *ti;
1695 	unsigned i;
1696 
1697 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1698 		ti = dm_table_get_target(t, i);
1699 
1700 		if (!ti->type->iterate_devices ||
1701 		    !ti->type->iterate_devices(ti, func, NULL))
1702 			return false;
1703 	}
1704 
1705 	return true;
1706 }
1707 
1708 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1709 					 sector_t start, sector_t len, void *data)
1710 {
1711 	struct request_queue *q = bdev_get_queue(dev->bdev);
1712 
1713 	return q && !q->limits.max_write_same_sectors;
1714 }
1715 
1716 static bool dm_table_supports_write_same(struct dm_table *t)
1717 {
1718 	struct dm_target *ti;
1719 	unsigned i;
1720 
1721 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722 		ti = dm_table_get_target(t, i);
1723 
1724 		if (!ti->num_write_same_bios)
1725 			return false;
1726 
1727 		if (!ti->type->iterate_devices ||
1728 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1729 			return false;
1730 	}
1731 
1732 	return true;
1733 }
1734 
1735 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1736 					   sector_t start, sector_t len, void *data)
1737 {
1738 	struct request_queue *q = bdev_get_queue(dev->bdev);
1739 
1740 	return q && !q->limits.max_write_zeroes_sectors;
1741 }
1742 
1743 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1744 {
1745 	struct dm_target *ti;
1746 	unsigned i = 0;
1747 
1748 	while (i < dm_table_get_num_targets(t)) {
1749 		ti = dm_table_get_target(t, i++);
1750 
1751 		if (!ti->num_write_zeroes_bios)
1752 			return false;
1753 
1754 		if (!ti->type->iterate_devices ||
1755 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1756 			return false;
1757 	}
1758 
1759 	return true;
1760 }
1761 
1762 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1763 				      sector_t start, sector_t len, void *data)
1764 {
1765 	struct request_queue *q = bdev_get_queue(dev->bdev);
1766 
1767 	return q && !blk_queue_discard(q);
1768 }
1769 
1770 static bool dm_table_supports_discards(struct dm_table *t)
1771 {
1772 	struct dm_target *ti;
1773 	unsigned i;
1774 
1775 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 		ti = dm_table_get_target(t, i);
1777 
1778 		if (!ti->num_discard_bios)
1779 			return false;
1780 
1781 		/*
1782 		 * Either the target provides discard support (as implied by setting
1783 		 * 'discards_supported') or it relies on _all_ data devices having
1784 		 * discard support.
1785 		 */
1786 		if (!ti->discards_supported &&
1787 		    (!ti->type->iterate_devices ||
1788 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1789 			return false;
1790 	}
1791 
1792 	return true;
1793 }
1794 
1795 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1796 			       struct queue_limits *limits)
1797 {
1798 	bool wc = false, fua = false;
1799 
1800 	/*
1801 	 * Copy table's limits to the DM device's request_queue
1802 	 */
1803 	q->limits = *limits;
1804 
1805 	if (!dm_table_supports_discards(t)) {
1806 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1807 		/* Must also clear discard limits... */
1808 		q->limits.max_discard_sectors = 0;
1809 		q->limits.max_hw_discard_sectors = 0;
1810 		q->limits.discard_granularity = 0;
1811 		q->limits.discard_alignment = 0;
1812 		q->limits.discard_misaligned = 0;
1813 	} else
1814 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1815 
1816 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1817 		wc = true;
1818 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1819 			fua = true;
1820 	}
1821 	blk_queue_write_cache(q, wc, fua);
1822 
1823 	if (dm_table_supports_dax_write_cache(t))
1824 		dax_write_cache(t->md->dax_dev, true);
1825 
1826 	/* Ensure that all underlying devices are non-rotational. */
1827 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1828 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1829 	else
1830 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1831 
1832 	if (!dm_table_supports_write_same(t))
1833 		q->limits.max_write_same_sectors = 0;
1834 	if (!dm_table_supports_write_zeroes(t))
1835 		q->limits.max_write_zeroes_sectors = 0;
1836 
1837 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1838 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1839 	else
1840 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1841 
1842 	dm_table_verify_integrity(t);
1843 
1844 	/*
1845 	 * Determine whether or not this queue's I/O timings contribute
1846 	 * to the entropy pool, Only request-based targets use this.
1847 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1848 	 * have it set.
1849 	 */
1850 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1851 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1852 }
1853 
1854 unsigned int dm_table_get_num_targets(struct dm_table *t)
1855 {
1856 	return t->num_targets;
1857 }
1858 
1859 struct list_head *dm_table_get_devices(struct dm_table *t)
1860 {
1861 	return &t->devices;
1862 }
1863 
1864 fmode_t dm_table_get_mode(struct dm_table *t)
1865 {
1866 	return t->mode;
1867 }
1868 EXPORT_SYMBOL(dm_table_get_mode);
1869 
1870 enum suspend_mode {
1871 	PRESUSPEND,
1872 	PRESUSPEND_UNDO,
1873 	POSTSUSPEND,
1874 };
1875 
1876 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1877 {
1878 	int i = t->num_targets;
1879 	struct dm_target *ti = t->targets;
1880 
1881 	lockdep_assert_held(&t->md->suspend_lock);
1882 
1883 	while (i--) {
1884 		switch (mode) {
1885 		case PRESUSPEND:
1886 			if (ti->type->presuspend)
1887 				ti->type->presuspend(ti);
1888 			break;
1889 		case PRESUSPEND_UNDO:
1890 			if (ti->type->presuspend_undo)
1891 				ti->type->presuspend_undo(ti);
1892 			break;
1893 		case POSTSUSPEND:
1894 			if (ti->type->postsuspend)
1895 				ti->type->postsuspend(ti);
1896 			break;
1897 		}
1898 		ti++;
1899 	}
1900 }
1901 
1902 void dm_table_presuspend_targets(struct dm_table *t)
1903 {
1904 	if (!t)
1905 		return;
1906 
1907 	suspend_targets(t, PRESUSPEND);
1908 }
1909 
1910 void dm_table_presuspend_undo_targets(struct dm_table *t)
1911 {
1912 	if (!t)
1913 		return;
1914 
1915 	suspend_targets(t, PRESUSPEND_UNDO);
1916 }
1917 
1918 void dm_table_postsuspend_targets(struct dm_table *t)
1919 {
1920 	if (!t)
1921 		return;
1922 
1923 	suspend_targets(t, POSTSUSPEND);
1924 }
1925 
1926 int dm_table_resume_targets(struct dm_table *t)
1927 {
1928 	int i, r = 0;
1929 
1930 	lockdep_assert_held(&t->md->suspend_lock);
1931 
1932 	for (i = 0; i < t->num_targets; i++) {
1933 		struct dm_target *ti = t->targets + i;
1934 
1935 		if (!ti->type->preresume)
1936 			continue;
1937 
1938 		r = ti->type->preresume(ti);
1939 		if (r) {
1940 			DMERR("%s: %s: preresume failed, error = %d",
1941 			      dm_device_name(t->md), ti->type->name, r);
1942 			return r;
1943 		}
1944 	}
1945 
1946 	for (i = 0; i < t->num_targets; i++) {
1947 		struct dm_target *ti = t->targets + i;
1948 
1949 		if (ti->type->resume)
1950 			ti->type->resume(ti);
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1957 {
1958 	list_add(&cb->list, &t->target_callbacks);
1959 }
1960 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1961 
1962 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1963 {
1964 	struct dm_dev_internal *dd;
1965 	struct list_head *devices = dm_table_get_devices(t);
1966 	struct dm_target_callbacks *cb;
1967 	int r = 0;
1968 
1969 	list_for_each_entry(dd, devices, list) {
1970 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1971 		char b[BDEVNAME_SIZE];
1972 
1973 		if (likely(q))
1974 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
1975 		else
1976 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1977 				     dm_device_name(t->md),
1978 				     bdevname(dd->dm_dev->bdev, b));
1979 	}
1980 
1981 	list_for_each_entry(cb, &t->target_callbacks, list)
1982 		if (cb->congested_fn)
1983 			r |= cb->congested_fn(cb, bdi_bits);
1984 
1985 	return r;
1986 }
1987 
1988 struct mapped_device *dm_table_get_md(struct dm_table *t)
1989 {
1990 	return t->md;
1991 }
1992 EXPORT_SYMBOL(dm_table_get_md);
1993 
1994 void dm_table_run_md_queue_async(struct dm_table *t)
1995 {
1996 	struct mapped_device *md;
1997 	struct request_queue *queue;
1998 	unsigned long flags;
1999 
2000 	if (!dm_table_request_based(t))
2001 		return;
2002 
2003 	md = dm_table_get_md(t);
2004 	queue = dm_get_md_queue(md);
2005 	if (queue) {
2006 		if (queue->mq_ops)
2007 			blk_mq_run_hw_queues(queue, true);
2008 		else {
2009 			spin_lock_irqsave(queue->queue_lock, flags);
2010 			blk_run_queue_async(queue);
2011 			spin_unlock_irqrestore(queue->queue_lock, flags);
2012 		}
2013 	}
2014 }
2015 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2016 
2017