1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 /* 32 * Similar to ceiling(log_size(n)) 33 */ 34 static unsigned int int_log(unsigned int n, unsigned int base) 35 { 36 int result = 0; 37 38 while (n > 1) { 39 n = dm_div_up(n, base); 40 result++; 41 } 42 43 return result; 44 } 45 46 /* 47 * Calculate the index of the child node of the n'th node k'th key. 48 */ 49 static inline unsigned int get_child(unsigned int n, unsigned int k) 50 { 51 return (n * CHILDREN_PER_NODE) + k; 52 } 53 54 /* 55 * Return the n'th node of level l from table t. 56 */ 57 static inline sector_t *get_node(struct dm_table *t, 58 unsigned int l, unsigned int n) 59 { 60 return t->index[l] + (n * KEYS_PER_NODE); 61 } 62 63 /* 64 * Return the highest key that you could lookup from the n'th 65 * node on level l of the btree. 66 */ 67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 68 { 69 for (; l < t->depth - 1; l++) 70 n = get_child(n, CHILDREN_PER_NODE - 1); 71 72 if (n >= t->counts[l]) 73 return (sector_t) - 1; 74 75 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 76 } 77 78 /* 79 * Fills in a level of the btree based on the highs of the level 80 * below it. 81 */ 82 static int setup_btree_index(unsigned int l, struct dm_table *t) 83 { 84 unsigned int n, k; 85 sector_t *node; 86 87 for (n = 0U; n < t->counts[l]; n++) { 88 node = get_node(t, l, n); 89 90 for (k = 0U; k < KEYS_PER_NODE; k++) 91 node[k] = high(t, l + 1, get_child(n, k)); 92 } 93 94 return 0; 95 } 96 97 /* 98 * highs, and targets are managed as dynamic arrays during a 99 * table load. 100 */ 101 static int alloc_targets(struct dm_table *t, unsigned int num) 102 { 103 sector_t *n_highs; 104 struct dm_target *n_targets; 105 106 /* 107 * Allocate both the target array and offset array at once. 108 */ 109 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 110 GFP_KERNEL); 111 if (!n_highs) 112 return -ENOMEM; 113 114 n_targets = (struct dm_target *) (n_highs + num); 115 116 memset(n_highs, -1, sizeof(*n_highs) * num); 117 kvfree(t->highs); 118 119 t->num_allocated = num; 120 t->highs = n_highs; 121 t->targets = n_targets; 122 123 return 0; 124 } 125 126 int dm_table_create(struct dm_table **result, fmode_t mode, 127 unsigned num_targets, struct mapped_device *md) 128 { 129 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 130 131 if (!t) 132 return -ENOMEM; 133 134 INIT_LIST_HEAD(&t->devices); 135 136 if (!num_targets) 137 num_targets = KEYS_PER_NODE; 138 139 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 140 141 if (!num_targets) { 142 kfree(t); 143 return -ENOMEM; 144 } 145 146 if (alloc_targets(t, num_targets)) { 147 kfree(t); 148 return -ENOMEM; 149 } 150 151 t->type = DM_TYPE_NONE; 152 t->mode = mode; 153 t->md = md; 154 *result = t; 155 return 0; 156 } 157 158 static void free_devices(struct list_head *devices, struct mapped_device *md) 159 { 160 struct list_head *tmp, *next; 161 162 list_for_each_safe(tmp, next, devices) { 163 struct dm_dev_internal *dd = 164 list_entry(tmp, struct dm_dev_internal, list); 165 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 166 dm_device_name(md), dd->dm_dev->name); 167 dm_put_table_device(md, dd->dm_dev); 168 kfree(dd); 169 } 170 } 171 172 static void dm_table_destroy_keyslot_manager(struct dm_table *t); 173 174 void dm_table_destroy(struct dm_table *t) 175 { 176 unsigned int i; 177 178 if (!t) 179 return; 180 181 /* free the indexes */ 182 if (t->depth >= 2) 183 kvfree(t->index[t->depth - 2]); 184 185 /* free the targets */ 186 for (i = 0; i < t->num_targets; i++) { 187 struct dm_target *tgt = t->targets + i; 188 189 if (tgt->type->dtr) 190 tgt->type->dtr(tgt); 191 192 dm_put_target_type(tgt->type); 193 } 194 195 kvfree(t->highs); 196 197 /* free the device list */ 198 free_devices(&t->devices, t->md); 199 200 dm_free_md_mempools(t->mempools); 201 202 dm_table_destroy_keyslot_manager(t); 203 204 kfree(t); 205 } 206 207 /* 208 * See if we've already got a device in the list. 209 */ 210 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 211 { 212 struct dm_dev_internal *dd; 213 214 list_for_each_entry (dd, l, list) 215 if (dd->dm_dev->bdev->bd_dev == dev) 216 return dd; 217 218 return NULL; 219 } 220 221 /* 222 * If possible, this checks an area of a destination device is invalid. 223 */ 224 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 225 sector_t start, sector_t len, void *data) 226 { 227 struct queue_limits *limits = data; 228 struct block_device *bdev = dev->bdev; 229 sector_t dev_size = 230 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 231 unsigned short logical_block_size_sectors = 232 limits->logical_block_size >> SECTOR_SHIFT; 233 char b[BDEVNAME_SIZE]; 234 235 if (!dev_size) 236 return 0; 237 238 if ((start >= dev_size) || (start + len > dev_size)) { 239 DMWARN("%s: %s too small for target: " 240 "start=%llu, len=%llu, dev_size=%llu", 241 dm_device_name(ti->table->md), bdevname(bdev, b), 242 (unsigned long long)start, 243 (unsigned long long)len, 244 (unsigned long long)dev_size); 245 return 1; 246 } 247 248 /* 249 * If the target is mapped to zoned block device(s), check 250 * that the zones are not partially mapped. 251 */ 252 if (bdev_is_zoned(bdev)) { 253 unsigned int zone_sectors = bdev_zone_sectors(bdev); 254 255 if (start & (zone_sectors - 1)) { 256 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 257 dm_device_name(ti->table->md), 258 (unsigned long long)start, 259 zone_sectors, bdevname(bdev, b)); 260 return 1; 261 } 262 263 /* 264 * Note: The last zone of a zoned block device may be smaller 265 * than other zones. So for a target mapping the end of a 266 * zoned block device with such a zone, len would not be zone 267 * aligned. We do not allow such last smaller zone to be part 268 * of the mapping here to ensure that mappings with multiple 269 * devices do not end up with a smaller zone in the middle of 270 * the sector range. 271 */ 272 if (len & (zone_sectors - 1)) { 273 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 274 dm_device_name(ti->table->md), 275 (unsigned long long)len, 276 zone_sectors, bdevname(bdev, b)); 277 return 1; 278 } 279 } 280 281 if (logical_block_size_sectors <= 1) 282 return 0; 283 284 if (start & (logical_block_size_sectors - 1)) { 285 DMWARN("%s: start=%llu not aligned to h/w " 286 "logical block size %u of %s", 287 dm_device_name(ti->table->md), 288 (unsigned long long)start, 289 limits->logical_block_size, bdevname(bdev, b)); 290 return 1; 291 } 292 293 if (len & (logical_block_size_sectors - 1)) { 294 DMWARN("%s: len=%llu not aligned to h/w " 295 "logical block size %u of %s", 296 dm_device_name(ti->table->md), 297 (unsigned long long)len, 298 limits->logical_block_size, bdevname(bdev, b)); 299 return 1; 300 } 301 302 return 0; 303 } 304 305 /* 306 * This upgrades the mode on an already open dm_dev, being 307 * careful to leave things as they were if we fail to reopen the 308 * device and not to touch the existing bdev field in case 309 * it is accessed concurrently. 310 */ 311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 312 struct mapped_device *md) 313 { 314 int r; 315 struct dm_dev *old_dev, *new_dev; 316 317 old_dev = dd->dm_dev; 318 319 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 320 dd->dm_dev->mode | new_mode, &new_dev); 321 if (r) 322 return r; 323 324 dd->dm_dev = new_dev; 325 dm_put_table_device(md, old_dev); 326 327 return 0; 328 } 329 330 /* 331 * Convert the path to a device 332 */ 333 dev_t dm_get_dev_t(const char *path) 334 { 335 dev_t dev; 336 337 if (lookup_bdev(path, &dev)) 338 dev = name_to_dev_t(path); 339 return dev; 340 } 341 EXPORT_SYMBOL_GPL(dm_get_dev_t); 342 343 /* 344 * Add a device to the list, or just increment the usage count if 345 * it's already present. 346 */ 347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 348 struct dm_dev **result) 349 { 350 int r; 351 dev_t dev; 352 unsigned int major, minor; 353 char dummy; 354 struct dm_dev_internal *dd; 355 struct dm_table *t = ti->table; 356 357 BUG_ON(!t); 358 359 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 360 /* Extract the major/minor numbers */ 361 dev = MKDEV(major, minor); 362 if (MAJOR(dev) != major || MINOR(dev) != minor) 363 return -EOVERFLOW; 364 } else { 365 dev = dm_get_dev_t(path); 366 if (!dev) 367 return -ENODEV; 368 } 369 370 dd = find_device(&t->devices, dev); 371 if (!dd) { 372 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 373 if (!dd) 374 return -ENOMEM; 375 376 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 377 kfree(dd); 378 return r; 379 } 380 381 refcount_set(&dd->count, 1); 382 list_add(&dd->list, &t->devices); 383 goto out; 384 385 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 386 r = upgrade_mode(dd, mode, t->md); 387 if (r) 388 return r; 389 } 390 refcount_inc(&dd->count); 391 out: 392 *result = dd->dm_dev; 393 return 0; 394 } 395 EXPORT_SYMBOL(dm_get_device); 396 397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 398 sector_t start, sector_t len, void *data) 399 { 400 struct queue_limits *limits = data; 401 struct block_device *bdev = dev->bdev; 402 struct request_queue *q = bdev_get_queue(bdev); 403 char b[BDEVNAME_SIZE]; 404 405 if (unlikely(!q)) { 406 DMWARN("%s: Cannot set limits for nonexistent device %s", 407 dm_device_name(ti->table->md), bdevname(bdev, b)); 408 return 0; 409 } 410 411 if (blk_stack_limits(limits, &q->limits, 412 get_start_sect(bdev) + start) < 0) 413 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 414 "physical_block_size=%u, logical_block_size=%u, " 415 "alignment_offset=%u, start=%llu", 416 dm_device_name(ti->table->md), bdevname(bdev, b), 417 q->limits.physical_block_size, 418 q->limits.logical_block_size, 419 q->limits.alignment_offset, 420 (unsigned long long) start << SECTOR_SHIFT); 421 return 0; 422 } 423 424 /* 425 * Decrement a device's use count and remove it if necessary. 426 */ 427 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 428 { 429 int found = 0; 430 struct list_head *devices = &ti->table->devices; 431 struct dm_dev_internal *dd; 432 433 list_for_each_entry(dd, devices, list) { 434 if (dd->dm_dev == d) { 435 found = 1; 436 break; 437 } 438 } 439 if (!found) { 440 DMWARN("%s: device %s not in table devices list", 441 dm_device_name(ti->table->md), d->name); 442 return; 443 } 444 if (refcount_dec_and_test(&dd->count)) { 445 dm_put_table_device(ti->table->md, d); 446 list_del(&dd->list); 447 kfree(dd); 448 } 449 } 450 EXPORT_SYMBOL(dm_put_device); 451 452 /* 453 * Checks to see if the target joins onto the end of the table. 454 */ 455 static int adjoin(struct dm_table *table, struct dm_target *ti) 456 { 457 struct dm_target *prev; 458 459 if (!table->num_targets) 460 return !ti->begin; 461 462 prev = &table->targets[table->num_targets - 1]; 463 return (ti->begin == (prev->begin + prev->len)); 464 } 465 466 /* 467 * Used to dynamically allocate the arg array. 468 * 469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 470 * process messages even if some device is suspended. These messages have a 471 * small fixed number of arguments. 472 * 473 * On the other hand, dm-switch needs to process bulk data using messages and 474 * excessive use of GFP_NOIO could cause trouble. 475 */ 476 static char **realloc_argv(unsigned *size, char **old_argv) 477 { 478 char **argv; 479 unsigned new_size; 480 gfp_t gfp; 481 482 if (*size) { 483 new_size = *size * 2; 484 gfp = GFP_KERNEL; 485 } else { 486 new_size = 8; 487 gfp = GFP_NOIO; 488 } 489 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 490 if (argv && old_argv) { 491 memcpy(argv, old_argv, *size * sizeof(*argv)); 492 *size = new_size; 493 } 494 495 kfree(old_argv); 496 return argv; 497 } 498 499 /* 500 * Destructively splits up the argument list to pass to ctr. 501 */ 502 int dm_split_args(int *argc, char ***argvp, char *input) 503 { 504 char *start, *end = input, *out, **argv = NULL; 505 unsigned array_size = 0; 506 507 *argc = 0; 508 509 if (!input) { 510 *argvp = NULL; 511 return 0; 512 } 513 514 argv = realloc_argv(&array_size, argv); 515 if (!argv) 516 return -ENOMEM; 517 518 while (1) { 519 /* Skip whitespace */ 520 start = skip_spaces(end); 521 522 if (!*start) 523 break; /* success, we hit the end */ 524 525 /* 'out' is used to remove any back-quotes */ 526 end = out = start; 527 while (*end) { 528 /* Everything apart from '\0' can be quoted */ 529 if (*end == '\\' && *(end + 1)) { 530 *out++ = *(end + 1); 531 end += 2; 532 continue; 533 } 534 535 if (isspace(*end)) 536 break; /* end of token */ 537 538 *out++ = *end++; 539 } 540 541 /* have we already filled the array ? */ 542 if ((*argc + 1) > array_size) { 543 argv = realloc_argv(&array_size, argv); 544 if (!argv) 545 return -ENOMEM; 546 } 547 548 /* we know this is whitespace */ 549 if (*end) 550 end++; 551 552 /* terminate the string and put it in the array */ 553 *out = '\0'; 554 argv[*argc] = start; 555 (*argc)++; 556 } 557 558 *argvp = argv; 559 return 0; 560 } 561 562 /* 563 * Impose necessary and sufficient conditions on a devices's table such 564 * that any incoming bio which respects its logical_block_size can be 565 * processed successfully. If it falls across the boundary between 566 * two or more targets, the size of each piece it gets split into must 567 * be compatible with the logical_block_size of the target processing it. 568 */ 569 static int validate_hardware_logical_block_alignment(struct dm_table *table, 570 struct queue_limits *limits) 571 { 572 /* 573 * This function uses arithmetic modulo the logical_block_size 574 * (in units of 512-byte sectors). 575 */ 576 unsigned short device_logical_block_size_sects = 577 limits->logical_block_size >> SECTOR_SHIFT; 578 579 /* 580 * Offset of the start of the next table entry, mod logical_block_size. 581 */ 582 unsigned short next_target_start = 0; 583 584 /* 585 * Given an aligned bio that extends beyond the end of a 586 * target, how many sectors must the next target handle? 587 */ 588 unsigned short remaining = 0; 589 590 struct dm_target *ti; 591 struct queue_limits ti_limits; 592 unsigned i; 593 594 /* 595 * Check each entry in the table in turn. 596 */ 597 for (i = 0; i < dm_table_get_num_targets(table); i++) { 598 ti = dm_table_get_target(table, i); 599 600 blk_set_stacking_limits(&ti_limits); 601 602 /* combine all target devices' limits */ 603 if (ti->type->iterate_devices) 604 ti->type->iterate_devices(ti, dm_set_device_limits, 605 &ti_limits); 606 607 /* 608 * If the remaining sectors fall entirely within this 609 * table entry are they compatible with its logical_block_size? 610 */ 611 if (remaining < ti->len && 612 remaining & ((ti_limits.logical_block_size >> 613 SECTOR_SHIFT) - 1)) 614 break; /* Error */ 615 616 next_target_start = 617 (unsigned short) ((next_target_start + ti->len) & 618 (device_logical_block_size_sects - 1)); 619 remaining = next_target_start ? 620 device_logical_block_size_sects - next_target_start : 0; 621 } 622 623 if (remaining) { 624 DMWARN("%s: table line %u (start sect %llu len %llu) " 625 "not aligned to h/w logical block size %u", 626 dm_device_name(table->md), i, 627 (unsigned long long) ti->begin, 628 (unsigned long long) ti->len, 629 limits->logical_block_size); 630 return -EINVAL; 631 } 632 633 return 0; 634 } 635 636 int dm_table_add_target(struct dm_table *t, const char *type, 637 sector_t start, sector_t len, char *params) 638 { 639 int r = -EINVAL, argc; 640 char **argv; 641 struct dm_target *tgt; 642 643 if (t->singleton) { 644 DMERR("%s: target type %s must appear alone in table", 645 dm_device_name(t->md), t->targets->type->name); 646 return -EINVAL; 647 } 648 649 BUG_ON(t->num_targets >= t->num_allocated); 650 651 tgt = t->targets + t->num_targets; 652 memset(tgt, 0, sizeof(*tgt)); 653 654 if (!len) { 655 DMERR("%s: zero-length target", dm_device_name(t->md)); 656 return -EINVAL; 657 } 658 659 tgt->type = dm_get_target_type(type); 660 if (!tgt->type) { 661 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 662 return -EINVAL; 663 } 664 665 if (dm_target_needs_singleton(tgt->type)) { 666 if (t->num_targets) { 667 tgt->error = "singleton target type must appear alone in table"; 668 goto bad; 669 } 670 t->singleton = true; 671 } 672 673 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 674 tgt->error = "target type may not be included in a read-only table"; 675 goto bad; 676 } 677 678 if (t->immutable_target_type) { 679 if (t->immutable_target_type != tgt->type) { 680 tgt->error = "immutable target type cannot be mixed with other target types"; 681 goto bad; 682 } 683 } else if (dm_target_is_immutable(tgt->type)) { 684 if (t->num_targets) { 685 tgt->error = "immutable target type cannot be mixed with other target types"; 686 goto bad; 687 } 688 t->immutable_target_type = tgt->type; 689 } 690 691 if (dm_target_has_integrity(tgt->type)) 692 t->integrity_added = 1; 693 694 tgt->table = t; 695 tgt->begin = start; 696 tgt->len = len; 697 tgt->error = "Unknown error"; 698 699 /* 700 * Does this target adjoin the previous one ? 701 */ 702 if (!adjoin(t, tgt)) { 703 tgt->error = "Gap in table"; 704 goto bad; 705 } 706 707 r = dm_split_args(&argc, &argv, params); 708 if (r) { 709 tgt->error = "couldn't split parameters (insufficient memory)"; 710 goto bad; 711 } 712 713 r = tgt->type->ctr(tgt, argc, argv); 714 kfree(argv); 715 if (r) 716 goto bad; 717 718 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 719 720 if (!tgt->num_discard_bios && tgt->discards_supported) 721 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 722 dm_device_name(t->md), type); 723 724 return 0; 725 726 bad: 727 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 728 dm_put_target_type(tgt->type); 729 return r; 730 } 731 732 /* 733 * Target argument parsing helpers. 734 */ 735 static int validate_next_arg(const struct dm_arg *arg, 736 struct dm_arg_set *arg_set, 737 unsigned *value, char **error, unsigned grouped) 738 { 739 const char *arg_str = dm_shift_arg(arg_set); 740 char dummy; 741 742 if (!arg_str || 743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 744 (*value < arg->min) || 745 (*value > arg->max) || 746 (grouped && arg_set->argc < *value)) { 747 *error = arg->error; 748 return -EINVAL; 749 } 750 751 return 0; 752 } 753 754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 755 unsigned *value, char **error) 756 { 757 return validate_next_arg(arg, arg_set, value, error, 0); 758 } 759 EXPORT_SYMBOL(dm_read_arg); 760 761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 762 unsigned *value, char **error) 763 { 764 return validate_next_arg(arg, arg_set, value, error, 1); 765 } 766 EXPORT_SYMBOL(dm_read_arg_group); 767 768 const char *dm_shift_arg(struct dm_arg_set *as) 769 { 770 char *r; 771 772 if (as->argc) { 773 as->argc--; 774 r = *as->argv; 775 as->argv++; 776 return r; 777 } 778 779 return NULL; 780 } 781 EXPORT_SYMBOL(dm_shift_arg); 782 783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 784 { 785 BUG_ON(as->argc < num_args); 786 as->argc -= num_args; 787 as->argv += num_args; 788 } 789 EXPORT_SYMBOL(dm_consume_args); 790 791 static bool __table_type_bio_based(enum dm_queue_mode table_type) 792 { 793 return (table_type == DM_TYPE_BIO_BASED || 794 table_type == DM_TYPE_DAX_BIO_BASED); 795 } 796 797 static bool __table_type_request_based(enum dm_queue_mode table_type) 798 { 799 return table_type == DM_TYPE_REQUEST_BASED; 800 } 801 802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 803 { 804 t->type = type; 805 } 806 EXPORT_SYMBOL_GPL(dm_table_set_type); 807 808 /* validate the dax capability of the target device span */ 809 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 810 sector_t start, sector_t len, void *data) 811 { 812 int blocksize = *(int *) data; 813 814 return !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len); 815 } 816 817 /* Check devices support synchronous DAX */ 818 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 819 sector_t start, sector_t len, void *data) 820 { 821 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 822 } 823 824 bool dm_table_supports_dax(struct dm_table *t, 825 iterate_devices_callout_fn iterate_fn, int *blocksize) 826 { 827 struct dm_target *ti; 828 unsigned i; 829 830 /* Ensure that all targets support DAX. */ 831 for (i = 0; i < dm_table_get_num_targets(t); i++) { 832 ti = dm_table_get_target(t, i); 833 834 if (!ti->type->direct_access) 835 return false; 836 837 if (!ti->type->iterate_devices || 838 ti->type->iterate_devices(ti, iterate_fn, blocksize)) 839 return false; 840 } 841 842 return true; 843 } 844 845 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 846 sector_t start, sector_t len, void *data) 847 { 848 struct block_device *bdev = dev->bdev; 849 struct request_queue *q = bdev_get_queue(bdev); 850 851 /* request-based cannot stack on partitions! */ 852 if (bdev_is_partition(bdev)) 853 return false; 854 855 return queue_is_mq(q); 856 } 857 858 static int dm_table_determine_type(struct dm_table *t) 859 { 860 unsigned i; 861 unsigned bio_based = 0, request_based = 0, hybrid = 0; 862 struct dm_target *tgt; 863 struct list_head *devices = dm_table_get_devices(t); 864 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 865 int page_size = PAGE_SIZE; 866 867 if (t->type != DM_TYPE_NONE) { 868 /* target already set the table's type */ 869 if (t->type == DM_TYPE_BIO_BASED) { 870 /* possibly upgrade to a variant of bio-based */ 871 goto verify_bio_based; 872 } 873 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 874 goto verify_rq_based; 875 } 876 877 for (i = 0; i < t->num_targets; i++) { 878 tgt = t->targets + i; 879 if (dm_target_hybrid(tgt)) 880 hybrid = 1; 881 else if (dm_target_request_based(tgt)) 882 request_based = 1; 883 else 884 bio_based = 1; 885 886 if (bio_based && request_based) { 887 DMERR("Inconsistent table: different target types" 888 " can't be mixed up"); 889 return -EINVAL; 890 } 891 } 892 893 if (hybrid && !bio_based && !request_based) { 894 /* 895 * The targets can work either way. 896 * Determine the type from the live device. 897 * Default to bio-based if device is new. 898 */ 899 if (__table_type_request_based(live_md_type)) 900 request_based = 1; 901 else 902 bio_based = 1; 903 } 904 905 if (bio_based) { 906 verify_bio_based: 907 /* We must use this table as bio-based */ 908 t->type = DM_TYPE_BIO_BASED; 909 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) || 910 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 911 t->type = DM_TYPE_DAX_BIO_BASED; 912 } 913 return 0; 914 } 915 916 BUG_ON(!request_based); /* No targets in this table */ 917 918 t->type = DM_TYPE_REQUEST_BASED; 919 920 verify_rq_based: 921 /* 922 * Request-based dm supports only tables that have a single target now. 923 * To support multiple targets, request splitting support is needed, 924 * and that needs lots of changes in the block-layer. 925 * (e.g. request completion process for partial completion.) 926 */ 927 if (t->num_targets > 1) { 928 DMERR("request-based DM doesn't support multiple targets"); 929 return -EINVAL; 930 } 931 932 if (list_empty(devices)) { 933 int srcu_idx; 934 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 935 936 /* inherit live table's type */ 937 if (live_table) 938 t->type = live_table->type; 939 dm_put_live_table(t->md, srcu_idx); 940 return 0; 941 } 942 943 tgt = dm_table_get_immutable_target(t); 944 if (!tgt) { 945 DMERR("table load rejected: immutable target is required"); 946 return -EINVAL; 947 } else if (tgt->max_io_len) { 948 DMERR("table load rejected: immutable target that splits IO is not supported"); 949 return -EINVAL; 950 } 951 952 /* Non-request-stackable devices can't be used for request-based dm */ 953 if (!tgt->type->iterate_devices || 954 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 955 DMERR("table load rejected: including non-request-stackable devices"); 956 return -EINVAL; 957 } 958 959 return 0; 960 } 961 962 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 963 { 964 return t->type; 965 } 966 967 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 968 { 969 return t->immutable_target_type; 970 } 971 972 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 973 { 974 /* Immutable target is implicitly a singleton */ 975 if (t->num_targets > 1 || 976 !dm_target_is_immutable(t->targets[0].type)) 977 return NULL; 978 979 return t->targets; 980 } 981 982 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 983 { 984 struct dm_target *ti; 985 unsigned i; 986 987 for (i = 0; i < dm_table_get_num_targets(t); i++) { 988 ti = dm_table_get_target(t, i); 989 if (dm_target_is_wildcard(ti->type)) 990 return ti; 991 } 992 993 return NULL; 994 } 995 996 bool dm_table_bio_based(struct dm_table *t) 997 { 998 return __table_type_bio_based(dm_table_get_type(t)); 999 } 1000 1001 bool dm_table_request_based(struct dm_table *t) 1002 { 1003 return __table_type_request_based(dm_table_get_type(t)); 1004 } 1005 1006 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1007 { 1008 enum dm_queue_mode type = dm_table_get_type(t); 1009 unsigned per_io_data_size = 0; 1010 unsigned min_pool_size = 0; 1011 struct dm_target *ti; 1012 unsigned i; 1013 1014 if (unlikely(type == DM_TYPE_NONE)) { 1015 DMWARN("no table type is set, can't allocate mempools"); 1016 return -EINVAL; 1017 } 1018 1019 if (__table_type_bio_based(type)) 1020 for (i = 0; i < t->num_targets; i++) { 1021 ti = t->targets + i; 1022 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1023 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1024 } 1025 1026 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1027 per_io_data_size, min_pool_size); 1028 if (!t->mempools) 1029 return -ENOMEM; 1030 1031 return 0; 1032 } 1033 1034 void dm_table_free_md_mempools(struct dm_table *t) 1035 { 1036 dm_free_md_mempools(t->mempools); 1037 t->mempools = NULL; 1038 } 1039 1040 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1041 { 1042 return t->mempools; 1043 } 1044 1045 static int setup_indexes(struct dm_table *t) 1046 { 1047 int i; 1048 unsigned int total = 0; 1049 sector_t *indexes; 1050 1051 /* allocate the space for *all* the indexes */ 1052 for (i = t->depth - 2; i >= 0; i--) { 1053 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1054 total += t->counts[i]; 1055 } 1056 1057 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1058 if (!indexes) 1059 return -ENOMEM; 1060 1061 /* set up internal nodes, bottom-up */ 1062 for (i = t->depth - 2; i >= 0; i--) { 1063 t->index[i] = indexes; 1064 indexes += (KEYS_PER_NODE * t->counts[i]); 1065 setup_btree_index(i, t); 1066 } 1067 1068 return 0; 1069 } 1070 1071 /* 1072 * Builds the btree to index the map. 1073 */ 1074 static int dm_table_build_index(struct dm_table *t) 1075 { 1076 int r = 0; 1077 unsigned int leaf_nodes; 1078 1079 /* how many indexes will the btree have ? */ 1080 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1081 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1082 1083 /* leaf layer has already been set up */ 1084 t->counts[t->depth - 1] = leaf_nodes; 1085 t->index[t->depth - 1] = t->highs; 1086 1087 if (t->depth >= 2) 1088 r = setup_indexes(t); 1089 1090 return r; 1091 } 1092 1093 static bool integrity_profile_exists(struct gendisk *disk) 1094 { 1095 return !!blk_get_integrity(disk); 1096 } 1097 1098 /* 1099 * Get a disk whose integrity profile reflects the table's profile. 1100 * Returns NULL if integrity support was inconsistent or unavailable. 1101 */ 1102 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1103 { 1104 struct list_head *devices = dm_table_get_devices(t); 1105 struct dm_dev_internal *dd = NULL; 1106 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1107 unsigned i; 1108 1109 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1110 struct dm_target *ti = dm_table_get_target(t, i); 1111 if (!dm_target_passes_integrity(ti->type)) 1112 goto no_integrity; 1113 } 1114 1115 list_for_each_entry(dd, devices, list) { 1116 template_disk = dd->dm_dev->bdev->bd_disk; 1117 if (!integrity_profile_exists(template_disk)) 1118 goto no_integrity; 1119 else if (prev_disk && 1120 blk_integrity_compare(prev_disk, template_disk) < 0) 1121 goto no_integrity; 1122 prev_disk = template_disk; 1123 } 1124 1125 return template_disk; 1126 1127 no_integrity: 1128 if (prev_disk) 1129 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1130 dm_device_name(t->md), 1131 prev_disk->disk_name, 1132 template_disk->disk_name); 1133 return NULL; 1134 } 1135 1136 /* 1137 * Register the mapped device for blk_integrity support if the 1138 * underlying devices have an integrity profile. But all devices may 1139 * not have matching profiles (checking all devices isn't reliable 1140 * during table load because this table may use other DM device(s) which 1141 * must be resumed before they will have an initialized integity 1142 * profile). Consequently, stacked DM devices force a 2 stage integrity 1143 * profile validation: First pass during table load, final pass during 1144 * resume. 1145 */ 1146 static int dm_table_register_integrity(struct dm_table *t) 1147 { 1148 struct mapped_device *md = t->md; 1149 struct gendisk *template_disk = NULL; 1150 1151 /* If target handles integrity itself do not register it here. */ 1152 if (t->integrity_added) 1153 return 0; 1154 1155 template_disk = dm_table_get_integrity_disk(t); 1156 if (!template_disk) 1157 return 0; 1158 1159 if (!integrity_profile_exists(dm_disk(md))) { 1160 t->integrity_supported = true; 1161 /* 1162 * Register integrity profile during table load; we can do 1163 * this because the final profile must match during resume. 1164 */ 1165 blk_integrity_register(dm_disk(md), 1166 blk_get_integrity(template_disk)); 1167 return 0; 1168 } 1169 1170 /* 1171 * If DM device already has an initialized integrity 1172 * profile the new profile should not conflict. 1173 */ 1174 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1175 DMWARN("%s: conflict with existing integrity profile: " 1176 "%s profile mismatch", 1177 dm_device_name(t->md), 1178 template_disk->disk_name); 1179 return 1; 1180 } 1181 1182 /* Preserve existing integrity profile */ 1183 t->integrity_supported = true; 1184 return 0; 1185 } 1186 1187 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1188 1189 struct dm_keyslot_manager { 1190 struct blk_keyslot_manager ksm; 1191 struct mapped_device *md; 1192 }; 1193 1194 struct dm_keyslot_evict_args { 1195 const struct blk_crypto_key *key; 1196 int err; 1197 }; 1198 1199 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1200 sector_t start, sector_t len, void *data) 1201 { 1202 struct dm_keyslot_evict_args *args = data; 1203 int err; 1204 1205 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key); 1206 if (!args->err) 1207 args->err = err; 1208 /* Always try to evict the key from all devices. */ 1209 return 0; 1210 } 1211 1212 /* 1213 * When an inline encryption key is evicted from a device-mapper device, evict 1214 * it from all the underlying devices. 1215 */ 1216 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm, 1217 const struct blk_crypto_key *key, unsigned int slot) 1218 { 1219 struct dm_keyslot_manager *dksm = container_of(ksm, 1220 struct dm_keyslot_manager, 1221 ksm); 1222 struct mapped_device *md = dksm->md; 1223 struct dm_keyslot_evict_args args = { key }; 1224 struct dm_table *t; 1225 int srcu_idx; 1226 int i; 1227 struct dm_target *ti; 1228 1229 t = dm_get_live_table(md, &srcu_idx); 1230 if (!t) 1231 return 0; 1232 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1233 ti = dm_table_get_target(t, i); 1234 if (!ti->type->iterate_devices) 1235 continue; 1236 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args); 1237 } 1238 dm_put_live_table(md, srcu_idx); 1239 return args.err; 1240 } 1241 1242 static const struct blk_ksm_ll_ops dm_ksm_ll_ops = { 1243 .keyslot_evict = dm_keyslot_evict, 1244 }; 1245 1246 static int device_intersect_crypto_modes(struct dm_target *ti, 1247 struct dm_dev *dev, sector_t start, 1248 sector_t len, void *data) 1249 { 1250 struct blk_keyslot_manager *parent = data; 1251 struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm; 1252 1253 blk_ksm_intersect_modes(parent, child); 1254 return 0; 1255 } 1256 1257 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm) 1258 { 1259 struct dm_keyslot_manager *dksm = container_of(ksm, 1260 struct dm_keyslot_manager, 1261 ksm); 1262 1263 if (!ksm) 1264 return; 1265 1266 blk_ksm_destroy(ksm); 1267 kfree(dksm); 1268 } 1269 1270 static void dm_table_destroy_keyslot_manager(struct dm_table *t) 1271 { 1272 dm_destroy_keyslot_manager(t->ksm); 1273 t->ksm = NULL; 1274 } 1275 1276 /* 1277 * Constructs and initializes t->ksm with a keyslot manager that 1278 * represents the common set of crypto capabilities of the devices 1279 * described by the dm_table. However, if the constructed keyslot 1280 * manager does not support a superset of the crypto capabilities 1281 * supported by the current keyslot manager of the mapped_device, 1282 * it returns an error instead, since we don't support restricting 1283 * crypto capabilities on table changes. Finally, if the constructed 1284 * keyslot manager doesn't actually support any crypto modes at all, 1285 * it just returns NULL. 1286 */ 1287 static int dm_table_construct_keyslot_manager(struct dm_table *t) 1288 { 1289 struct dm_keyslot_manager *dksm; 1290 struct blk_keyslot_manager *ksm; 1291 struct dm_target *ti; 1292 unsigned int i; 1293 bool ksm_is_empty = true; 1294 1295 dksm = kmalloc(sizeof(*dksm), GFP_KERNEL); 1296 if (!dksm) 1297 return -ENOMEM; 1298 dksm->md = t->md; 1299 1300 ksm = &dksm->ksm; 1301 blk_ksm_init_passthrough(ksm); 1302 ksm->ksm_ll_ops = dm_ksm_ll_ops; 1303 ksm->max_dun_bytes_supported = UINT_MAX; 1304 memset(ksm->crypto_modes_supported, 0xFF, 1305 sizeof(ksm->crypto_modes_supported)); 1306 1307 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1308 ti = dm_table_get_target(t, i); 1309 1310 if (!dm_target_passes_crypto(ti->type)) { 1311 blk_ksm_intersect_modes(ksm, NULL); 1312 break; 1313 } 1314 if (!ti->type->iterate_devices) 1315 continue; 1316 ti->type->iterate_devices(ti, device_intersect_crypto_modes, 1317 ksm); 1318 } 1319 1320 if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) { 1321 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1322 dm_destroy_keyslot_manager(ksm); 1323 return -EINVAL; 1324 } 1325 1326 /* 1327 * If the new KSM doesn't actually support any crypto modes, we may as 1328 * well represent it with a NULL ksm. 1329 */ 1330 ksm_is_empty = true; 1331 for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) { 1332 if (ksm->crypto_modes_supported[i]) { 1333 ksm_is_empty = false; 1334 break; 1335 } 1336 } 1337 1338 if (ksm_is_empty) { 1339 dm_destroy_keyslot_manager(ksm); 1340 ksm = NULL; 1341 } 1342 1343 /* 1344 * t->ksm is only set temporarily while the table is being set 1345 * up, and it gets set to NULL after the capabilities have 1346 * been transferred to the request_queue. 1347 */ 1348 t->ksm = ksm; 1349 1350 return 0; 1351 } 1352 1353 static void dm_update_keyslot_manager(struct request_queue *q, 1354 struct dm_table *t) 1355 { 1356 if (!t->ksm) 1357 return; 1358 1359 /* Make the ksm less restrictive */ 1360 if (!q->ksm) { 1361 blk_ksm_register(t->ksm, q); 1362 } else { 1363 blk_ksm_update_capabilities(q->ksm, t->ksm); 1364 dm_destroy_keyslot_manager(t->ksm); 1365 } 1366 t->ksm = NULL; 1367 } 1368 1369 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1370 1371 static int dm_table_construct_keyslot_manager(struct dm_table *t) 1372 { 1373 return 0; 1374 } 1375 1376 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm) 1377 { 1378 } 1379 1380 static void dm_table_destroy_keyslot_manager(struct dm_table *t) 1381 { 1382 } 1383 1384 static void dm_update_keyslot_manager(struct request_queue *q, 1385 struct dm_table *t) 1386 { 1387 } 1388 1389 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1390 1391 /* 1392 * Prepares the table for use by building the indices, 1393 * setting the type, and allocating mempools. 1394 */ 1395 int dm_table_complete(struct dm_table *t) 1396 { 1397 int r; 1398 1399 r = dm_table_determine_type(t); 1400 if (r) { 1401 DMERR("unable to determine table type"); 1402 return r; 1403 } 1404 1405 r = dm_table_build_index(t); 1406 if (r) { 1407 DMERR("unable to build btrees"); 1408 return r; 1409 } 1410 1411 r = dm_table_register_integrity(t); 1412 if (r) { 1413 DMERR("could not register integrity profile."); 1414 return r; 1415 } 1416 1417 r = dm_table_construct_keyslot_manager(t); 1418 if (r) { 1419 DMERR("could not construct keyslot manager."); 1420 return r; 1421 } 1422 1423 r = dm_table_alloc_md_mempools(t, t->md); 1424 if (r) 1425 DMERR("unable to allocate mempools"); 1426 1427 return r; 1428 } 1429 1430 static DEFINE_MUTEX(_event_lock); 1431 void dm_table_event_callback(struct dm_table *t, 1432 void (*fn)(void *), void *context) 1433 { 1434 mutex_lock(&_event_lock); 1435 t->event_fn = fn; 1436 t->event_context = context; 1437 mutex_unlock(&_event_lock); 1438 } 1439 1440 void dm_table_event(struct dm_table *t) 1441 { 1442 mutex_lock(&_event_lock); 1443 if (t->event_fn) 1444 t->event_fn(t->event_context); 1445 mutex_unlock(&_event_lock); 1446 } 1447 EXPORT_SYMBOL(dm_table_event); 1448 1449 inline sector_t dm_table_get_size(struct dm_table *t) 1450 { 1451 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1452 } 1453 EXPORT_SYMBOL(dm_table_get_size); 1454 1455 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1456 { 1457 if (index >= t->num_targets) 1458 return NULL; 1459 1460 return t->targets + index; 1461 } 1462 1463 /* 1464 * Search the btree for the correct target. 1465 * 1466 * Caller should check returned pointer for NULL 1467 * to trap I/O beyond end of device. 1468 */ 1469 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1470 { 1471 unsigned int l, n = 0, k = 0; 1472 sector_t *node; 1473 1474 if (unlikely(sector >= dm_table_get_size(t))) 1475 return NULL; 1476 1477 for (l = 0; l < t->depth; l++) { 1478 n = get_child(n, k); 1479 node = get_node(t, l, n); 1480 1481 for (k = 0; k < KEYS_PER_NODE; k++) 1482 if (node[k] >= sector) 1483 break; 1484 } 1485 1486 return &t->targets[(KEYS_PER_NODE * n) + k]; 1487 } 1488 1489 /* 1490 * type->iterate_devices() should be called when the sanity check needs to 1491 * iterate and check all underlying data devices. iterate_devices() will 1492 * iterate all underlying data devices until it encounters a non-zero return 1493 * code, returned by whether the input iterate_devices_callout_fn, or 1494 * iterate_devices() itself internally. 1495 * 1496 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1497 * iterate multiple underlying devices internally, in which case a non-zero 1498 * return code returned by iterate_devices_callout_fn will stop the iteration 1499 * in advance. 1500 * 1501 * Cases requiring _any_ underlying device supporting some kind of attribute, 1502 * should use the iteration structure like dm_table_any_dev_attr(), or call 1503 * it directly. @func should handle semantics of positive examples, e.g. 1504 * capable of something. 1505 * 1506 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1507 * should use the iteration structure like dm_table_supports_nowait() or 1508 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1509 * uses an @anti_func that handle semantics of counter examples, e.g. not 1510 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1511 */ 1512 static bool dm_table_any_dev_attr(struct dm_table *t, 1513 iterate_devices_callout_fn func, void *data) 1514 { 1515 struct dm_target *ti; 1516 unsigned int i; 1517 1518 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1519 ti = dm_table_get_target(t, i); 1520 1521 if (ti->type->iterate_devices && 1522 ti->type->iterate_devices(ti, func, data)) 1523 return true; 1524 } 1525 1526 return false; 1527 } 1528 1529 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1530 sector_t start, sector_t len, void *data) 1531 { 1532 unsigned *num_devices = data; 1533 1534 (*num_devices)++; 1535 1536 return 0; 1537 } 1538 1539 /* 1540 * Check whether a table has no data devices attached using each 1541 * target's iterate_devices method. 1542 * Returns false if the result is unknown because a target doesn't 1543 * support iterate_devices. 1544 */ 1545 bool dm_table_has_no_data_devices(struct dm_table *table) 1546 { 1547 struct dm_target *ti; 1548 unsigned i, num_devices; 1549 1550 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1551 ti = dm_table_get_target(table, i); 1552 1553 if (!ti->type->iterate_devices) 1554 return false; 1555 1556 num_devices = 0; 1557 ti->type->iterate_devices(ti, count_device, &num_devices); 1558 if (num_devices) 1559 return false; 1560 } 1561 1562 return true; 1563 } 1564 1565 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1566 sector_t start, sector_t len, void *data) 1567 { 1568 struct request_queue *q = bdev_get_queue(dev->bdev); 1569 enum blk_zoned_model *zoned_model = data; 1570 1571 return blk_queue_zoned_model(q) != *zoned_model; 1572 } 1573 1574 /* 1575 * Check the device zoned model based on the target feature flag. If the target 1576 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1577 * also accepted but all devices must have the same zoned model. If the target 1578 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1579 * zoned model with all zoned devices having the same zone size. 1580 */ 1581 static bool dm_table_supports_zoned_model(struct dm_table *t, 1582 enum blk_zoned_model zoned_model) 1583 { 1584 struct dm_target *ti; 1585 unsigned i; 1586 1587 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1588 ti = dm_table_get_target(t, i); 1589 1590 if (dm_target_supports_zoned_hm(ti->type)) { 1591 if (!ti->type->iterate_devices || 1592 ti->type->iterate_devices(ti, device_not_zoned_model, 1593 &zoned_model)) 1594 return false; 1595 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1596 if (zoned_model == BLK_ZONED_HM) 1597 return false; 1598 } 1599 } 1600 1601 return true; 1602 } 1603 1604 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1605 sector_t start, sector_t len, void *data) 1606 { 1607 struct request_queue *q = bdev_get_queue(dev->bdev); 1608 unsigned int *zone_sectors = data; 1609 1610 if (!blk_queue_is_zoned(q)) 1611 return 0; 1612 1613 return blk_queue_zone_sectors(q) != *zone_sectors; 1614 } 1615 1616 /* 1617 * Check consistency of zoned model and zone sectors across all targets. For 1618 * zone sectors, if the destination device is a zoned block device, it shall 1619 * have the specified zone_sectors. 1620 */ 1621 static int validate_hardware_zoned_model(struct dm_table *table, 1622 enum blk_zoned_model zoned_model, 1623 unsigned int zone_sectors) 1624 { 1625 if (zoned_model == BLK_ZONED_NONE) 1626 return 0; 1627 1628 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1629 DMERR("%s: zoned model is not consistent across all devices", 1630 dm_device_name(table->md)); 1631 return -EINVAL; 1632 } 1633 1634 /* Check zone size validity and compatibility */ 1635 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1636 return -EINVAL; 1637 1638 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { 1639 DMERR("%s: zone sectors is not consistent across all zoned devices", 1640 dm_device_name(table->md)); 1641 return -EINVAL; 1642 } 1643 1644 return 0; 1645 } 1646 1647 /* 1648 * Establish the new table's queue_limits and validate them. 1649 */ 1650 int dm_calculate_queue_limits(struct dm_table *table, 1651 struct queue_limits *limits) 1652 { 1653 struct dm_target *ti; 1654 struct queue_limits ti_limits; 1655 unsigned i; 1656 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1657 unsigned int zone_sectors = 0; 1658 1659 blk_set_stacking_limits(limits); 1660 1661 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1662 blk_set_stacking_limits(&ti_limits); 1663 1664 ti = dm_table_get_target(table, i); 1665 1666 if (!ti->type->iterate_devices) 1667 goto combine_limits; 1668 1669 /* 1670 * Combine queue limits of all the devices this target uses. 1671 */ 1672 ti->type->iterate_devices(ti, dm_set_device_limits, 1673 &ti_limits); 1674 1675 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1676 /* 1677 * After stacking all limits, validate all devices 1678 * in table support this zoned model and zone sectors. 1679 */ 1680 zoned_model = ti_limits.zoned; 1681 zone_sectors = ti_limits.chunk_sectors; 1682 } 1683 1684 /* Set I/O hints portion of queue limits */ 1685 if (ti->type->io_hints) 1686 ti->type->io_hints(ti, &ti_limits); 1687 1688 /* 1689 * Check each device area is consistent with the target's 1690 * overall queue limits. 1691 */ 1692 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1693 &ti_limits)) 1694 return -EINVAL; 1695 1696 combine_limits: 1697 /* 1698 * Merge this target's queue limits into the overall limits 1699 * for the table. 1700 */ 1701 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1702 DMWARN("%s: adding target device " 1703 "(start sect %llu len %llu) " 1704 "caused an alignment inconsistency", 1705 dm_device_name(table->md), 1706 (unsigned long long) ti->begin, 1707 (unsigned long long) ti->len); 1708 } 1709 1710 /* 1711 * Verify that the zoned model and zone sectors, as determined before 1712 * any .io_hints override, are the same across all devices in the table. 1713 * - this is especially relevant if .io_hints is emulating a disk-managed 1714 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1715 * BUT... 1716 */ 1717 if (limits->zoned != BLK_ZONED_NONE) { 1718 /* 1719 * ...IF the above limits stacking determined a zoned model 1720 * validate that all of the table's devices conform to it. 1721 */ 1722 zoned_model = limits->zoned; 1723 zone_sectors = limits->chunk_sectors; 1724 } 1725 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1726 return -EINVAL; 1727 1728 return validate_hardware_logical_block_alignment(table, limits); 1729 } 1730 1731 /* 1732 * Verify that all devices have an integrity profile that matches the 1733 * DM device's registered integrity profile. If the profiles don't 1734 * match then unregister the DM device's integrity profile. 1735 */ 1736 static void dm_table_verify_integrity(struct dm_table *t) 1737 { 1738 struct gendisk *template_disk = NULL; 1739 1740 if (t->integrity_added) 1741 return; 1742 1743 if (t->integrity_supported) { 1744 /* 1745 * Verify that the original integrity profile 1746 * matches all the devices in this table. 1747 */ 1748 template_disk = dm_table_get_integrity_disk(t); 1749 if (template_disk && 1750 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1751 return; 1752 } 1753 1754 if (integrity_profile_exists(dm_disk(t->md))) { 1755 DMWARN("%s: unable to establish an integrity profile", 1756 dm_device_name(t->md)); 1757 blk_integrity_unregister(dm_disk(t->md)); 1758 } 1759 } 1760 1761 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1762 sector_t start, sector_t len, void *data) 1763 { 1764 unsigned long flush = (unsigned long) data; 1765 struct request_queue *q = bdev_get_queue(dev->bdev); 1766 1767 return (q->queue_flags & flush); 1768 } 1769 1770 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1771 { 1772 struct dm_target *ti; 1773 unsigned i; 1774 1775 /* 1776 * Require at least one underlying device to support flushes. 1777 * t->devices includes internal dm devices such as mirror logs 1778 * so we need to use iterate_devices here, which targets 1779 * supporting flushes must provide. 1780 */ 1781 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1782 ti = dm_table_get_target(t, i); 1783 1784 if (!ti->num_flush_bios) 1785 continue; 1786 1787 if (ti->flush_supported) 1788 return true; 1789 1790 if (ti->type->iterate_devices && 1791 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1792 return true; 1793 } 1794 1795 return false; 1796 } 1797 1798 static int device_dax_write_cache_enabled(struct dm_target *ti, 1799 struct dm_dev *dev, sector_t start, 1800 sector_t len, void *data) 1801 { 1802 struct dax_device *dax_dev = dev->dax_dev; 1803 1804 if (!dax_dev) 1805 return false; 1806 1807 if (dax_write_cache_enabled(dax_dev)) 1808 return true; 1809 return false; 1810 } 1811 1812 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1813 sector_t start, sector_t len, void *data) 1814 { 1815 struct request_queue *q = bdev_get_queue(dev->bdev); 1816 1817 return !blk_queue_nonrot(q); 1818 } 1819 1820 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1821 sector_t start, sector_t len, void *data) 1822 { 1823 struct request_queue *q = bdev_get_queue(dev->bdev); 1824 1825 return !blk_queue_add_random(q); 1826 } 1827 1828 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1829 sector_t start, sector_t len, void *data) 1830 { 1831 struct request_queue *q = bdev_get_queue(dev->bdev); 1832 1833 return !q->limits.max_write_same_sectors; 1834 } 1835 1836 static bool dm_table_supports_write_same(struct dm_table *t) 1837 { 1838 struct dm_target *ti; 1839 unsigned i; 1840 1841 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1842 ti = dm_table_get_target(t, i); 1843 1844 if (!ti->num_write_same_bios) 1845 return false; 1846 1847 if (!ti->type->iterate_devices || 1848 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1849 return false; 1850 } 1851 1852 return true; 1853 } 1854 1855 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1856 sector_t start, sector_t len, void *data) 1857 { 1858 struct request_queue *q = bdev_get_queue(dev->bdev); 1859 1860 return !q->limits.max_write_zeroes_sectors; 1861 } 1862 1863 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1864 { 1865 struct dm_target *ti; 1866 unsigned i = 0; 1867 1868 while (i < dm_table_get_num_targets(t)) { 1869 ti = dm_table_get_target(t, i++); 1870 1871 if (!ti->num_write_zeroes_bios) 1872 return false; 1873 1874 if (!ti->type->iterate_devices || 1875 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1876 return false; 1877 } 1878 1879 return true; 1880 } 1881 1882 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1883 sector_t start, sector_t len, void *data) 1884 { 1885 struct request_queue *q = bdev_get_queue(dev->bdev); 1886 1887 return !blk_queue_nowait(q); 1888 } 1889 1890 static bool dm_table_supports_nowait(struct dm_table *t) 1891 { 1892 struct dm_target *ti; 1893 unsigned i = 0; 1894 1895 while (i < dm_table_get_num_targets(t)) { 1896 ti = dm_table_get_target(t, i++); 1897 1898 if (!dm_target_supports_nowait(ti->type)) 1899 return false; 1900 1901 if (!ti->type->iterate_devices || 1902 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1903 return false; 1904 } 1905 1906 return true; 1907 } 1908 1909 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1910 sector_t start, sector_t len, void *data) 1911 { 1912 struct request_queue *q = bdev_get_queue(dev->bdev); 1913 1914 return !blk_queue_discard(q); 1915 } 1916 1917 static bool dm_table_supports_discards(struct dm_table *t) 1918 { 1919 struct dm_target *ti; 1920 unsigned i; 1921 1922 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1923 ti = dm_table_get_target(t, i); 1924 1925 if (!ti->num_discard_bios) 1926 return false; 1927 1928 /* 1929 * Either the target provides discard support (as implied by setting 1930 * 'discards_supported') or it relies on _all_ data devices having 1931 * discard support. 1932 */ 1933 if (!ti->discards_supported && 1934 (!ti->type->iterate_devices || 1935 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1936 return false; 1937 } 1938 1939 return true; 1940 } 1941 1942 static int device_not_secure_erase_capable(struct dm_target *ti, 1943 struct dm_dev *dev, sector_t start, 1944 sector_t len, void *data) 1945 { 1946 struct request_queue *q = bdev_get_queue(dev->bdev); 1947 1948 return !blk_queue_secure_erase(q); 1949 } 1950 1951 static bool dm_table_supports_secure_erase(struct dm_table *t) 1952 { 1953 struct dm_target *ti; 1954 unsigned int i; 1955 1956 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1957 ti = dm_table_get_target(t, i); 1958 1959 if (!ti->num_secure_erase_bios) 1960 return false; 1961 1962 if (!ti->type->iterate_devices || 1963 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1964 return false; 1965 } 1966 1967 return true; 1968 } 1969 1970 static int device_requires_stable_pages(struct dm_target *ti, 1971 struct dm_dev *dev, sector_t start, 1972 sector_t len, void *data) 1973 { 1974 struct request_queue *q = bdev_get_queue(dev->bdev); 1975 1976 return blk_queue_stable_writes(q); 1977 } 1978 1979 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1980 struct queue_limits *limits) 1981 { 1982 bool wc = false, fua = false; 1983 int page_size = PAGE_SIZE; 1984 int r; 1985 1986 /* 1987 * Copy table's limits to the DM device's request_queue 1988 */ 1989 q->limits = *limits; 1990 1991 if (dm_table_supports_nowait(t)) 1992 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1993 else 1994 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1995 1996 if (!dm_table_supports_discards(t)) { 1997 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1998 /* Must also clear discard limits... */ 1999 q->limits.max_discard_sectors = 0; 2000 q->limits.max_hw_discard_sectors = 0; 2001 q->limits.discard_granularity = 0; 2002 q->limits.discard_alignment = 0; 2003 q->limits.discard_misaligned = 0; 2004 } else 2005 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 2006 2007 if (dm_table_supports_secure_erase(t)) 2008 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 2009 2010 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 2011 wc = true; 2012 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 2013 fua = true; 2014 } 2015 blk_queue_write_cache(q, wc, fua); 2016 2017 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) { 2018 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 2019 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL)) 2020 set_dax_synchronous(t->md->dax_dev); 2021 } 2022 else 2023 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 2024 2025 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2026 dax_write_cache(t->md->dax_dev, true); 2027 2028 /* Ensure that all underlying devices are non-rotational. */ 2029 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 2030 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2031 else 2032 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2033 2034 if (!dm_table_supports_write_same(t)) 2035 q->limits.max_write_same_sectors = 0; 2036 if (!dm_table_supports_write_zeroes(t)) 2037 q->limits.max_write_zeroes_sectors = 0; 2038 2039 dm_table_verify_integrity(t); 2040 2041 /* 2042 * Some devices don't use blk_integrity but still want stable pages 2043 * because they do their own checksumming. 2044 * If any underlying device requires stable pages, a table must require 2045 * them as well. Only targets that support iterate_devices are considered: 2046 * don't want error, zero, etc to require stable pages. 2047 */ 2048 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2049 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2050 else 2051 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2052 2053 /* 2054 * Determine whether or not this queue's I/O timings contribute 2055 * to the entropy pool, Only request-based targets use this. 2056 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2057 * have it set. 2058 */ 2059 if (blk_queue_add_random(q) && 2060 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2061 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2062 2063 /* 2064 * For a zoned target, setup the zones related queue attributes 2065 * and resources necessary for zone append emulation if necessary. 2066 */ 2067 if (blk_queue_is_zoned(q)) { 2068 r = dm_set_zones_restrictions(t, q); 2069 if (r) 2070 return r; 2071 } 2072 2073 dm_update_keyslot_manager(q, t); 2074 disk_update_readahead(t->md->disk); 2075 2076 return 0; 2077 } 2078 2079 unsigned int dm_table_get_num_targets(struct dm_table *t) 2080 { 2081 return t->num_targets; 2082 } 2083 2084 struct list_head *dm_table_get_devices(struct dm_table *t) 2085 { 2086 return &t->devices; 2087 } 2088 2089 fmode_t dm_table_get_mode(struct dm_table *t) 2090 { 2091 return t->mode; 2092 } 2093 EXPORT_SYMBOL(dm_table_get_mode); 2094 2095 enum suspend_mode { 2096 PRESUSPEND, 2097 PRESUSPEND_UNDO, 2098 POSTSUSPEND, 2099 }; 2100 2101 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2102 { 2103 int i = t->num_targets; 2104 struct dm_target *ti = t->targets; 2105 2106 lockdep_assert_held(&t->md->suspend_lock); 2107 2108 while (i--) { 2109 switch (mode) { 2110 case PRESUSPEND: 2111 if (ti->type->presuspend) 2112 ti->type->presuspend(ti); 2113 break; 2114 case PRESUSPEND_UNDO: 2115 if (ti->type->presuspend_undo) 2116 ti->type->presuspend_undo(ti); 2117 break; 2118 case POSTSUSPEND: 2119 if (ti->type->postsuspend) 2120 ti->type->postsuspend(ti); 2121 break; 2122 } 2123 ti++; 2124 } 2125 } 2126 2127 void dm_table_presuspend_targets(struct dm_table *t) 2128 { 2129 if (!t) 2130 return; 2131 2132 suspend_targets(t, PRESUSPEND); 2133 } 2134 2135 void dm_table_presuspend_undo_targets(struct dm_table *t) 2136 { 2137 if (!t) 2138 return; 2139 2140 suspend_targets(t, PRESUSPEND_UNDO); 2141 } 2142 2143 void dm_table_postsuspend_targets(struct dm_table *t) 2144 { 2145 if (!t) 2146 return; 2147 2148 suspend_targets(t, POSTSUSPEND); 2149 } 2150 2151 int dm_table_resume_targets(struct dm_table *t) 2152 { 2153 int i, r = 0; 2154 2155 lockdep_assert_held(&t->md->suspend_lock); 2156 2157 for (i = 0; i < t->num_targets; i++) { 2158 struct dm_target *ti = t->targets + i; 2159 2160 if (!ti->type->preresume) 2161 continue; 2162 2163 r = ti->type->preresume(ti); 2164 if (r) { 2165 DMERR("%s: %s: preresume failed, error = %d", 2166 dm_device_name(t->md), ti->type->name, r); 2167 return r; 2168 } 2169 } 2170 2171 for (i = 0; i < t->num_targets; i++) { 2172 struct dm_target *ti = t->targets + i; 2173 2174 if (ti->type->resume) 2175 ti->type->resume(ti); 2176 } 2177 2178 return 0; 2179 } 2180 2181 struct mapped_device *dm_table_get_md(struct dm_table *t) 2182 { 2183 return t->md; 2184 } 2185 EXPORT_SYMBOL(dm_table_get_md); 2186 2187 const char *dm_table_device_name(struct dm_table *t) 2188 { 2189 return dm_device_name(t->md); 2190 } 2191 EXPORT_SYMBOL_GPL(dm_table_device_name); 2192 2193 void dm_table_run_md_queue_async(struct dm_table *t) 2194 { 2195 if (!dm_table_request_based(t)) 2196 return; 2197 2198 if (t->md->queue) 2199 blk_mq_run_hw_queues(t->md->queue, true); 2200 } 2201 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2202 2203