1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 24 #define DM_MSG_PREFIX "table" 25 26 #define MAX_DEPTH 16 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 struct dm_table { 32 struct mapped_device *md; 33 enum dm_queue_mode type; 34 35 /* btree table */ 36 unsigned int depth; 37 unsigned int counts[MAX_DEPTH]; /* in nodes */ 38 sector_t *index[MAX_DEPTH]; 39 40 unsigned int num_targets; 41 unsigned int num_allocated; 42 sector_t *highs; 43 struct dm_target *targets; 44 45 struct target_type *immutable_target_type; 46 47 bool integrity_supported:1; 48 bool singleton:1; 49 bool all_blk_mq:1; 50 unsigned integrity_added:1; 51 52 /* 53 * Indicates the rw permissions for the new logical 54 * device. This should be a combination of FMODE_READ 55 * and FMODE_WRITE. 56 */ 57 fmode_t mode; 58 59 /* a list of devices used by this table */ 60 struct list_head devices; 61 62 /* events get handed up using this callback */ 63 void (*event_fn)(void *); 64 void *event_context; 65 66 struct dm_md_mempools *mempools; 67 68 struct list_head target_callbacks; 69 }; 70 71 /* 72 * Similar to ceiling(log_size(n)) 73 */ 74 static unsigned int int_log(unsigned int n, unsigned int base) 75 { 76 int result = 0; 77 78 while (n > 1) { 79 n = dm_div_up(n, base); 80 result++; 81 } 82 83 return result; 84 } 85 86 /* 87 * Calculate the index of the child node of the n'th node k'th key. 88 */ 89 static inline unsigned int get_child(unsigned int n, unsigned int k) 90 { 91 return (n * CHILDREN_PER_NODE) + k; 92 } 93 94 /* 95 * Return the n'th node of level l from table t. 96 */ 97 static inline sector_t *get_node(struct dm_table *t, 98 unsigned int l, unsigned int n) 99 { 100 return t->index[l] + (n * KEYS_PER_NODE); 101 } 102 103 /* 104 * Return the highest key that you could lookup from the n'th 105 * node on level l of the btree. 106 */ 107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 108 { 109 for (; l < t->depth - 1; l++) 110 n = get_child(n, CHILDREN_PER_NODE - 1); 111 112 if (n >= t->counts[l]) 113 return (sector_t) - 1; 114 115 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 116 } 117 118 /* 119 * Fills in a level of the btree based on the highs of the level 120 * below it. 121 */ 122 static int setup_btree_index(unsigned int l, struct dm_table *t) 123 { 124 unsigned int n, k; 125 sector_t *node; 126 127 for (n = 0U; n < t->counts[l]; n++) { 128 node = get_node(t, l, n); 129 130 for (k = 0U; k < KEYS_PER_NODE; k++) 131 node[k] = high(t, l + 1, get_child(n, k)); 132 } 133 134 return 0; 135 } 136 137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 138 { 139 unsigned long size; 140 void *addr; 141 142 /* 143 * Check that we're not going to overflow. 144 */ 145 if (nmemb > (ULONG_MAX / elem_size)) 146 return NULL; 147 148 size = nmemb * elem_size; 149 addr = vzalloc(size); 150 151 return addr; 152 } 153 EXPORT_SYMBOL(dm_vcalloc); 154 155 /* 156 * highs, and targets are managed as dynamic arrays during a 157 * table load. 158 */ 159 static int alloc_targets(struct dm_table *t, unsigned int num) 160 { 161 sector_t *n_highs; 162 struct dm_target *n_targets; 163 164 /* 165 * Allocate both the target array and offset array at once. 166 * Append an empty entry to catch sectors beyond the end of 167 * the device. 168 */ 169 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 170 sizeof(sector_t)); 171 if (!n_highs) 172 return -ENOMEM; 173 174 n_targets = (struct dm_target *) (n_highs + num); 175 176 memset(n_highs, -1, sizeof(*n_highs) * num); 177 vfree(t->highs); 178 179 t->num_allocated = num; 180 t->highs = n_highs; 181 t->targets = n_targets; 182 183 return 0; 184 } 185 186 int dm_table_create(struct dm_table **result, fmode_t mode, 187 unsigned num_targets, struct mapped_device *md) 188 { 189 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 190 191 if (!t) 192 return -ENOMEM; 193 194 INIT_LIST_HEAD(&t->devices); 195 INIT_LIST_HEAD(&t->target_callbacks); 196 197 if (!num_targets) 198 num_targets = KEYS_PER_NODE; 199 200 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 201 202 if (!num_targets) { 203 kfree(t); 204 return -ENOMEM; 205 } 206 207 if (alloc_targets(t, num_targets)) { 208 kfree(t); 209 return -ENOMEM; 210 } 211 212 t->type = DM_TYPE_NONE; 213 t->mode = mode; 214 t->md = md; 215 *result = t; 216 return 0; 217 } 218 219 static void free_devices(struct list_head *devices, struct mapped_device *md) 220 { 221 struct list_head *tmp, *next; 222 223 list_for_each_safe(tmp, next, devices) { 224 struct dm_dev_internal *dd = 225 list_entry(tmp, struct dm_dev_internal, list); 226 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 227 dm_device_name(md), dd->dm_dev->name); 228 dm_put_table_device(md, dd->dm_dev); 229 kfree(dd); 230 } 231 } 232 233 void dm_table_destroy(struct dm_table *t) 234 { 235 unsigned int i; 236 237 if (!t) 238 return; 239 240 /* free the indexes */ 241 if (t->depth >= 2) 242 vfree(t->index[t->depth - 2]); 243 244 /* free the targets */ 245 for (i = 0; i < t->num_targets; i++) { 246 struct dm_target *tgt = t->targets + i; 247 248 if (tgt->type->dtr) 249 tgt->type->dtr(tgt); 250 251 dm_put_target_type(tgt->type); 252 } 253 254 vfree(t->highs); 255 256 /* free the device list */ 257 free_devices(&t->devices, t->md); 258 259 dm_free_md_mempools(t->mempools); 260 261 kfree(t); 262 } 263 264 /* 265 * See if we've already got a device in the list. 266 */ 267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 268 { 269 struct dm_dev_internal *dd; 270 271 list_for_each_entry (dd, l, list) 272 if (dd->dm_dev->bdev->bd_dev == dev) 273 return dd; 274 275 return NULL; 276 } 277 278 /* 279 * If possible, this checks an area of a destination device is invalid. 280 */ 281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 282 sector_t start, sector_t len, void *data) 283 { 284 struct request_queue *q; 285 struct queue_limits *limits = data; 286 struct block_device *bdev = dev->bdev; 287 sector_t dev_size = 288 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 289 unsigned short logical_block_size_sectors = 290 limits->logical_block_size >> SECTOR_SHIFT; 291 char b[BDEVNAME_SIZE]; 292 293 /* 294 * Some devices exist without request functions, 295 * such as loop devices not yet bound to backing files. 296 * Forbid the use of such devices. 297 */ 298 q = bdev_get_queue(bdev); 299 if (!q || !q->make_request_fn) { 300 DMWARN("%s: %s is not yet initialised: " 301 "start=%llu, len=%llu, dev_size=%llu", 302 dm_device_name(ti->table->md), bdevname(bdev, b), 303 (unsigned long long)start, 304 (unsigned long long)len, 305 (unsigned long long)dev_size); 306 return 1; 307 } 308 309 if (!dev_size) 310 return 0; 311 312 if ((start >= dev_size) || (start + len > dev_size)) { 313 DMWARN("%s: %s too small for target: " 314 "start=%llu, len=%llu, dev_size=%llu", 315 dm_device_name(ti->table->md), bdevname(bdev, b), 316 (unsigned long long)start, 317 (unsigned long long)len, 318 (unsigned long long)dev_size); 319 return 1; 320 } 321 322 /* 323 * If the target is mapped to zoned block device(s), check 324 * that the zones are not partially mapped. 325 */ 326 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 327 unsigned int zone_sectors = bdev_zone_sectors(bdev); 328 329 if (start & (zone_sectors - 1)) { 330 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 331 dm_device_name(ti->table->md), 332 (unsigned long long)start, 333 zone_sectors, bdevname(bdev, b)); 334 return 1; 335 } 336 337 /* 338 * Note: The last zone of a zoned block device may be smaller 339 * than other zones. So for a target mapping the end of a 340 * zoned block device with such a zone, len would not be zone 341 * aligned. We do not allow such last smaller zone to be part 342 * of the mapping here to ensure that mappings with multiple 343 * devices do not end up with a smaller zone in the middle of 344 * the sector range. 345 */ 346 if (len & (zone_sectors - 1)) { 347 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 348 dm_device_name(ti->table->md), 349 (unsigned long long)len, 350 zone_sectors, bdevname(bdev, b)); 351 return 1; 352 } 353 } 354 355 if (logical_block_size_sectors <= 1) 356 return 0; 357 358 if (start & (logical_block_size_sectors - 1)) { 359 DMWARN("%s: start=%llu not aligned to h/w " 360 "logical block size %u of %s", 361 dm_device_name(ti->table->md), 362 (unsigned long long)start, 363 limits->logical_block_size, bdevname(bdev, b)); 364 return 1; 365 } 366 367 if (len & (logical_block_size_sectors - 1)) { 368 DMWARN("%s: len=%llu not aligned to h/w " 369 "logical block size %u of %s", 370 dm_device_name(ti->table->md), 371 (unsigned long long)len, 372 limits->logical_block_size, bdevname(bdev, b)); 373 return 1; 374 } 375 376 return 0; 377 } 378 379 /* 380 * This upgrades the mode on an already open dm_dev, being 381 * careful to leave things as they were if we fail to reopen the 382 * device and not to touch the existing bdev field in case 383 * it is accessed concurrently inside dm_table_any_congested(). 384 */ 385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 386 struct mapped_device *md) 387 { 388 int r; 389 struct dm_dev *old_dev, *new_dev; 390 391 old_dev = dd->dm_dev; 392 393 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 394 dd->dm_dev->mode | new_mode, &new_dev); 395 if (r) 396 return r; 397 398 dd->dm_dev = new_dev; 399 dm_put_table_device(md, old_dev); 400 401 return 0; 402 } 403 404 /* 405 * Convert the path to a device 406 */ 407 dev_t dm_get_dev_t(const char *path) 408 { 409 dev_t dev; 410 struct block_device *bdev; 411 412 bdev = lookup_bdev(path); 413 if (IS_ERR(bdev)) 414 dev = name_to_dev_t(path); 415 else { 416 dev = bdev->bd_dev; 417 bdput(bdev); 418 } 419 420 return dev; 421 } 422 EXPORT_SYMBOL_GPL(dm_get_dev_t); 423 424 /* 425 * Add a device to the list, or just increment the usage count if 426 * it's already present. 427 */ 428 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 429 struct dm_dev **result) 430 { 431 int r; 432 dev_t dev; 433 struct dm_dev_internal *dd; 434 struct dm_table *t = ti->table; 435 436 BUG_ON(!t); 437 438 dev = dm_get_dev_t(path); 439 if (!dev) 440 return -ENODEV; 441 442 dd = find_device(&t->devices, dev); 443 if (!dd) { 444 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 445 if (!dd) 446 return -ENOMEM; 447 448 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 449 kfree(dd); 450 return r; 451 } 452 453 atomic_set(&dd->count, 0); 454 list_add(&dd->list, &t->devices); 455 456 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 457 r = upgrade_mode(dd, mode, t->md); 458 if (r) 459 return r; 460 } 461 atomic_inc(&dd->count); 462 463 *result = dd->dm_dev; 464 return 0; 465 } 466 EXPORT_SYMBOL(dm_get_device); 467 468 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 469 sector_t start, sector_t len, void *data) 470 { 471 struct queue_limits *limits = data; 472 struct block_device *bdev = dev->bdev; 473 struct request_queue *q = bdev_get_queue(bdev); 474 char b[BDEVNAME_SIZE]; 475 476 if (unlikely(!q)) { 477 DMWARN("%s: Cannot set limits for nonexistent device %s", 478 dm_device_name(ti->table->md), bdevname(bdev, b)); 479 return 0; 480 } 481 482 if (bdev_stack_limits(limits, bdev, start) < 0) 483 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 484 "physical_block_size=%u, logical_block_size=%u, " 485 "alignment_offset=%u, start=%llu", 486 dm_device_name(ti->table->md), bdevname(bdev, b), 487 q->limits.physical_block_size, 488 q->limits.logical_block_size, 489 q->limits.alignment_offset, 490 (unsigned long long) start << SECTOR_SHIFT); 491 492 limits->zoned = blk_queue_zoned_model(q); 493 494 return 0; 495 } 496 497 /* 498 * Decrement a device's use count and remove it if necessary. 499 */ 500 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 501 { 502 int found = 0; 503 struct list_head *devices = &ti->table->devices; 504 struct dm_dev_internal *dd; 505 506 list_for_each_entry(dd, devices, list) { 507 if (dd->dm_dev == d) { 508 found = 1; 509 break; 510 } 511 } 512 if (!found) { 513 DMWARN("%s: device %s not in table devices list", 514 dm_device_name(ti->table->md), d->name); 515 return; 516 } 517 if (atomic_dec_and_test(&dd->count)) { 518 dm_put_table_device(ti->table->md, d); 519 list_del(&dd->list); 520 kfree(dd); 521 } 522 } 523 EXPORT_SYMBOL(dm_put_device); 524 525 /* 526 * Checks to see if the target joins onto the end of the table. 527 */ 528 static int adjoin(struct dm_table *table, struct dm_target *ti) 529 { 530 struct dm_target *prev; 531 532 if (!table->num_targets) 533 return !ti->begin; 534 535 prev = &table->targets[table->num_targets - 1]; 536 return (ti->begin == (prev->begin + prev->len)); 537 } 538 539 /* 540 * Used to dynamically allocate the arg array. 541 * 542 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 543 * process messages even if some device is suspended. These messages have a 544 * small fixed number of arguments. 545 * 546 * On the other hand, dm-switch needs to process bulk data using messages and 547 * excessive use of GFP_NOIO could cause trouble. 548 */ 549 static char **realloc_argv(unsigned *array_size, char **old_argv) 550 { 551 char **argv; 552 unsigned new_size; 553 gfp_t gfp; 554 555 if (*array_size) { 556 new_size = *array_size * 2; 557 gfp = GFP_KERNEL; 558 } else { 559 new_size = 8; 560 gfp = GFP_NOIO; 561 } 562 argv = kmalloc(new_size * sizeof(*argv), gfp); 563 if (argv) { 564 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 565 *array_size = new_size; 566 } 567 568 kfree(old_argv); 569 return argv; 570 } 571 572 /* 573 * Destructively splits up the argument list to pass to ctr. 574 */ 575 int dm_split_args(int *argc, char ***argvp, char *input) 576 { 577 char *start, *end = input, *out, **argv = NULL; 578 unsigned array_size = 0; 579 580 *argc = 0; 581 582 if (!input) { 583 *argvp = NULL; 584 return 0; 585 } 586 587 argv = realloc_argv(&array_size, argv); 588 if (!argv) 589 return -ENOMEM; 590 591 while (1) { 592 /* Skip whitespace */ 593 start = skip_spaces(end); 594 595 if (!*start) 596 break; /* success, we hit the end */ 597 598 /* 'out' is used to remove any back-quotes */ 599 end = out = start; 600 while (*end) { 601 /* Everything apart from '\0' can be quoted */ 602 if (*end == '\\' && *(end + 1)) { 603 *out++ = *(end + 1); 604 end += 2; 605 continue; 606 } 607 608 if (isspace(*end)) 609 break; /* end of token */ 610 611 *out++ = *end++; 612 } 613 614 /* have we already filled the array ? */ 615 if ((*argc + 1) > array_size) { 616 argv = realloc_argv(&array_size, argv); 617 if (!argv) 618 return -ENOMEM; 619 } 620 621 /* we know this is whitespace */ 622 if (*end) 623 end++; 624 625 /* terminate the string and put it in the array */ 626 *out = '\0'; 627 argv[*argc] = start; 628 (*argc)++; 629 } 630 631 *argvp = argv; 632 return 0; 633 } 634 635 /* 636 * Impose necessary and sufficient conditions on a devices's table such 637 * that any incoming bio which respects its logical_block_size can be 638 * processed successfully. If it falls across the boundary between 639 * two or more targets, the size of each piece it gets split into must 640 * be compatible with the logical_block_size of the target processing it. 641 */ 642 static int validate_hardware_logical_block_alignment(struct dm_table *table, 643 struct queue_limits *limits) 644 { 645 /* 646 * This function uses arithmetic modulo the logical_block_size 647 * (in units of 512-byte sectors). 648 */ 649 unsigned short device_logical_block_size_sects = 650 limits->logical_block_size >> SECTOR_SHIFT; 651 652 /* 653 * Offset of the start of the next table entry, mod logical_block_size. 654 */ 655 unsigned short next_target_start = 0; 656 657 /* 658 * Given an aligned bio that extends beyond the end of a 659 * target, how many sectors must the next target handle? 660 */ 661 unsigned short remaining = 0; 662 663 struct dm_target *uninitialized_var(ti); 664 struct queue_limits ti_limits; 665 unsigned i; 666 667 /* 668 * Check each entry in the table in turn. 669 */ 670 for (i = 0; i < dm_table_get_num_targets(table); i++) { 671 ti = dm_table_get_target(table, i); 672 673 blk_set_stacking_limits(&ti_limits); 674 675 /* combine all target devices' limits */ 676 if (ti->type->iterate_devices) 677 ti->type->iterate_devices(ti, dm_set_device_limits, 678 &ti_limits); 679 680 /* 681 * If the remaining sectors fall entirely within this 682 * table entry are they compatible with its logical_block_size? 683 */ 684 if (remaining < ti->len && 685 remaining & ((ti_limits.logical_block_size >> 686 SECTOR_SHIFT) - 1)) 687 break; /* Error */ 688 689 next_target_start = 690 (unsigned short) ((next_target_start + ti->len) & 691 (device_logical_block_size_sects - 1)); 692 remaining = next_target_start ? 693 device_logical_block_size_sects - next_target_start : 0; 694 } 695 696 if (remaining) { 697 DMWARN("%s: table line %u (start sect %llu len %llu) " 698 "not aligned to h/w logical block size %u", 699 dm_device_name(table->md), i, 700 (unsigned long long) ti->begin, 701 (unsigned long long) ti->len, 702 limits->logical_block_size); 703 return -EINVAL; 704 } 705 706 return 0; 707 } 708 709 int dm_table_add_target(struct dm_table *t, const char *type, 710 sector_t start, sector_t len, char *params) 711 { 712 int r = -EINVAL, argc; 713 char **argv; 714 struct dm_target *tgt; 715 716 if (t->singleton) { 717 DMERR("%s: target type %s must appear alone in table", 718 dm_device_name(t->md), t->targets->type->name); 719 return -EINVAL; 720 } 721 722 BUG_ON(t->num_targets >= t->num_allocated); 723 724 tgt = t->targets + t->num_targets; 725 memset(tgt, 0, sizeof(*tgt)); 726 727 if (!len) { 728 DMERR("%s: zero-length target", dm_device_name(t->md)); 729 return -EINVAL; 730 } 731 732 tgt->type = dm_get_target_type(type); 733 if (!tgt->type) { 734 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 735 return -EINVAL; 736 } 737 738 if (dm_target_needs_singleton(tgt->type)) { 739 if (t->num_targets) { 740 tgt->error = "singleton target type must appear alone in table"; 741 goto bad; 742 } 743 t->singleton = true; 744 } 745 746 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 747 tgt->error = "target type may not be included in a read-only table"; 748 goto bad; 749 } 750 751 if (t->immutable_target_type) { 752 if (t->immutable_target_type != tgt->type) { 753 tgt->error = "immutable target type cannot be mixed with other target types"; 754 goto bad; 755 } 756 } else if (dm_target_is_immutable(tgt->type)) { 757 if (t->num_targets) { 758 tgt->error = "immutable target type cannot be mixed with other target types"; 759 goto bad; 760 } 761 t->immutable_target_type = tgt->type; 762 } 763 764 if (dm_target_has_integrity(tgt->type)) 765 t->integrity_added = 1; 766 767 tgt->table = t; 768 tgt->begin = start; 769 tgt->len = len; 770 tgt->error = "Unknown error"; 771 772 /* 773 * Does this target adjoin the previous one ? 774 */ 775 if (!adjoin(t, tgt)) { 776 tgt->error = "Gap in table"; 777 goto bad; 778 } 779 780 r = dm_split_args(&argc, &argv, params); 781 if (r) { 782 tgt->error = "couldn't split parameters (insufficient memory)"; 783 goto bad; 784 } 785 786 r = tgt->type->ctr(tgt, argc, argv); 787 kfree(argv); 788 if (r) 789 goto bad; 790 791 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 792 793 if (!tgt->num_discard_bios && tgt->discards_supported) 794 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 795 dm_device_name(t->md), type); 796 797 return 0; 798 799 bad: 800 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 801 dm_put_target_type(tgt->type); 802 return r; 803 } 804 805 /* 806 * Target argument parsing helpers. 807 */ 808 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 809 unsigned *value, char **error, unsigned grouped) 810 { 811 const char *arg_str = dm_shift_arg(arg_set); 812 char dummy; 813 814 if (!arg_str || 815 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 816 (*value < arg->min) || 817 (*value > arg->max) || 818 (grouped && arg_set->argc < *value)) { 819 *error = arg->error; 820 return -EINVAL; 821 } 822 823 return 0; 824 } 825 826 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 827 unsigned *value, char **error) 828 { 829 return validate_next_arg(arg, arg_set, value, error, 0); 830 } 831 EXPORT_SYMBOL(dm_read_arg); 832 833 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 834 unsigned *value, char **error) 835 { 836 return validate_next_arg(arg, arg_set, value, error, 1); 837 } 838 EXPORT_SYMBOL(dm_read_arg_group); 839 840 const char *dm_shift_arg(struct dm_arg_set *as) 841 { 842 char *r; 843 844 if (as->argc) { 845 as->argc--; 846 r = *as->argv; 847 as->argv++; 848 return r; 849 } 850 851 return NULL; 852 } 853 EXPORT_SYMBOL(dm_shift_arg); 854 855 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 856 { 857 BUG_ON(as->argc < num_args); 858 as->argc -= num_args; 859 as->argv += num_args; 860 } 861 EXPORT_SYMBOL(dm_consume_args); 862 863 static bool __table_type_bio_based(enum dm_queue_mode table_type) 864 { 865 return (table_type == DM_TYPE_BIO_BASED || 866 table_type == DM_TYPE_DAX_BIO_BASED); 867 } 868 869 static bool __table_type_request_based(enum dm_queue_mode table_type) 870 { 871 return (table_type == DM_TYPE_REQUEST_BASED || 872 table_type == DM_TYPE_MQ_REQUEST_BASED); 873 } 874 875 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 876 { 877 t->type = type; 878 } 879 EXPORT_SYMBOL_GPL(dm_table_set_type); 880 881 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 882 sector_t start, sector_t len, void *data) 883 { 884 struct request_queue *q = bdev_get_queue(dev->bdev); 885 886 return q && blk_queue_dax(q); 887 } 888 889 static bool dm_table_supports_dax(struct dm_table *t) 890 { 891 struct dm_target *ti; 892 unsigned i; 893 894 /* Ensure that all targets support DAX. */ 895 for (i = 0; i < dm_table_get_num_targets(t); i++) { 896 ti = dm_table_get_target(t, i); 897 898 if (!ti->type->direct_access) 899 return false; 900 901 if (!ti->type->iterate_devices || 902 !ti->type->iterate_devices(ti, device_supports_dax, NULL)) 903 return false; 904 } 905 906 return true; 907 } 908 909 static int dm_table_determine_type(struct dm_table *t) 910 { 911 unsigned i; 912 unsigned bio_based = 0, request_based = 0, hybrid = 0; 913 unsigned sq_count = 0, mq_count = 0; 914 struct dm_target *tgt; 915 struct dm_dev_internal *dd; 916 struct list_head *devices = dm_table_get_devices(t); 917 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 918 919 if (t->type != DM_TYPE_NONE) { 920 /* target already set the table's type */ 921 if (t->type == DM_TYPE_BIO_BASED) 922 return 0; 923 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 924 goto verify_rq_based; 925 } 926 927 for (i = 0; i < t->num_targets; i++) { 928 tgt = t->targets + i; 929 if (dm_target_hybrid(tgt)) 930 hybrid = 1; 931 else if (dm_target_request_based(tgt)) 932 request_based = 1; 933 else 934 bio_based = 1; 935 936 if (bio_based && request_based) { 937 DMWARN("Inconsistent table: different target types" 938 " can't be mixed up"); 939 return -EINVAL; 940 } 941 } 942 943 if (hybrid && !bio_based && !request_based) { 944 /* 945 * The targets can work either way. 946 * Determine the type from the live device. 947 * Default to bio-based if device is new. 948 */ 949 if (__table_type_request_based(live_md_type)) 950 request_based = 1; 951 else 952 bio_based = 1; 953 } 954 955 if (bio_based) { 956 /* We must use this table as bio-based */ 957 t->type = DM_TYPE_BIO_BASED; 958 if (dm_table_supports_dax(t) || 959 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) 960 t->type = DM_TYPE_DAX_BIO_BASED; 961 return 0; 962 } 963 964 BUG_ON(!request_based); /* No targets in this table */ 965 966 /* 967 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by 968 * having a compatible target use dm_table_set_type. 969 */ 970 t->type = DM_TYPE_REQUEST_BASED; 971 972 verify_rq_based: 973 /* 974 * Request-based dm supports only tables that have a single target now. 975 * To support multiple targets, request splitting support is needed, 976 * and that needs lots of changes in the block-layer. 977 * (e.g. request completion process for partial completion.) 978 */ 979 if (t->num_targets > 1) { 980 DMWARN("Request-based dm doesn't support multiple targets yet"); 981 return -EINVAL; 982 } 983 984 if (list_empty(devices)) { 985 int srcu_idx; 986 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 987 988 /* inherit live table's type and all_blk_mq */ 989 if (live_table) { 990 t->type = live_table->type; 991 t->all_blk_mq = live_table->all_blk_mq; 992 } 993 dm_put_live_table(t->md, srcu_idx); 994 return 0; 995 } 996 997 /* Non-request-stackable devices can't be used for request-based dm */ 998 list_for_each_entry(dd, devices, list) { 999 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1000 1001 if (!blk_queue_stackable(q)) { 1002 DMERR("table load rejected: including" 1003 " non-request-stackable devices"); 1004 return -EINVAL; 1005 } 1006 1007 if (q->mq_ops) 1008 mq_count++; 1009 else 1010 sq_count++; 1011 } 1012 if (sq_count && mq_count) { 1013 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 1014 return -EINVAL; 1015 } 1016 t->all_blk_mq = mq_count > 0; 1017 1018 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) { 1019 DMERR("table load rejected: all devices are not blk-mq request-stackable"); 1020 return -EINVAL; 1021 } 1022 1023 return 0; 1024 } 1025 1026 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1027 { 1028 return t->type; 1029 } 1030 1031 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1032 { 1033 return t->immutable_target_type; 1034 } 1035 1036 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1037 { 1038 /* Immutable target is implicitly a singleton */ 1039 if (t->num_targets > 1 || 1040 !dm_target_is_immutable(t->targets[0].type)) 1041 return NULL; 1042 1043 return t->targets; 1044 } 1045 1046 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1047 { 1048 struct dm_target *ti; 1049 unsigned i; 1050 1051 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1052 ti = dm_table_get_target(t, i); 1053 if (dm_target_is_wildcard(ti->type)) 1054 return ti; 1055 } 1056 1057 return NULL; 1058 } 1059 1060 bool dm_table_bio_based(struct dm_table *t) 1061 { 1062 return __table_type_bio_based(dm_table_get_type(t)); 1063 } 1064 1065 bool dm_table_request_based(struct dm_table *t) 1066 { 1067 return __table_type_request_based(dm_table_get_type(t)); 1068 } 1069 1070 bool dm_table_all_blk_mq_devices(struct dm_table *t) 1071 { 1072 return t->all_blk_mq; 1073 } 1074 1075 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1076 { 1077 enum dm_queue_mode type = dm_table_get_type(t); 1078 unsigned per_io_data_size = 0; 1079 struct dm_target *tgt; 1080 unsigned i; 1081 1082 if (unlikely(type == DM_TYPE_NONE)) { 1083 DMWARN("no table type is set, can't allocate mempools"); 1084 return -EINVAL; 1085 } 1086 1087 if (__table_type_bio_based(type)) 1088 for (i = 0; i < t->num_targets; i++) { 1089 tgt = t->targets + i; 1090 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size); 1091 } 1092 1093 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size); 1094 if (!t->mempools) 1095 return -ENOMEM; 1096 1097 return 0; 1098 } 1099 1100 void dm_table_free_md_mempools(struct dm_table *t) 1101 { 1102 dm_free_md_mempools(t->mempools); 1103 t->mempools = NULL; 1104 } 1105 1106 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1107 { 1108 return t->mempools; 1109 } 1110 1111 static int setup_indexes(struct dm_table *t) 1112 { 1113 int i; 1114 unsigned int total = 0; 1115 sector_t *indexes; 1116 1117 /* allocate the space for *all* the indexes */ 1118 for (i = t->depth - 2; i >= 0; i--) { 1119 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1120 total += t->counts[i]; 1121 } 1122 1123 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1124 if (!indexes) 1125 return -ENOMEM; 1126 1127 /* set up internal nodes, bottom-up */ 1128 for (i = t->depth - 2; i >= 0; i--) { 1129 t->index[i] = indexes; 1130 indexes += (KEYS_PER_NODE * t->counts[i]); 1131 setup_btree_index(i, t); 1132 } 1133 1134 return 0; 1135 } 1136 1137 /* 1138 * Builds the btree to index the map. 1139 */ 1140 static int dm_table_build_index(struct dm_table *t) 1141 { 1142 int r = 0; 1143 unsigned int leaf_nodes; 1144 1145 /* how many indexes will the btree have ? */ 1146 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1147 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1148 1149 /* leaf layer has already been set up */ 1150 t->counts[t->depth - 1] = leaf_nodes; 1151 t->index[t->depth - 1] = t->highs; 1152 1153 if (t->depth >= 2) 1154 r = setup_indexes(t); 1155 1156 return r; 1157 } 1158 1159 static bool integrity_profile_exists(struct gendisk *disk) 1160 { 1161 return !!blk_get_integrity(disk); 1162 } 1163 1164 /* 1165 * Get a disk whose integrity profile reflects the table's profile. 1166 * Returns NULL if integrity support was inconsistent or unavailable. 1167 */ 1168 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1169 { 1170 struct list_head *devices = dm_table_get_devices(t); 1171 struct dm_dev_internal *dd = NULL; 1172 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1173 unsigned i; 1174 1175 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1176 struct dm_target *ti = dm_table_get_target(t, i); 1177 if (!dm_target_passes_integrity(ti->type)) 1178 goto no_integrity; 1179 } 1180 1181 list_for_each_entry(dd, devices, list) { 1182 template_disk = dd->dm_dev->bdev->bd_disk; 1183 if (!integrity_profile_exists(template_disk)) 1184 goto no_integrity; 1185 else if (prev_disk && 1186 blk_integrity_compare(prev_disk, template_disk) < 0) 1187 goto no_integrity; 1188 prev_disk = template_disk; 1189 } 1190 1191 return template_disk; 1192 1193 no_integrity: 1194 if (prev_disk) 1195 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1196 dm_device_name(t->md), 1197 prev_disk->disk_name, 1198 template_disk->disk_name); 1199 return NULL; 1200 } 1201 1202 /* 1203 * Register the mapped device for blk_integrity support if the 1204 * underlying devices have an integrity profile. But all devices may 1205 * not have matching profiles (checking all devices isn't reliable 1206 * during table load because this table may use other DM device(s) which 1207 * must be resumed before they will have an initialized integity 1208 * profile). Consequently, stacked DM devices force a 2 stage integrity 1209 * profile validation: First pass during table load, final pass during 1210 * resume. 1211 */ 1212 static int dm_table_register_integrity(struct dm_table *t) 1213 { 1214 struct mapped_device *md = t->md; 1215 struct gendisk *template_disk = NULL; 1216 1217 /* If target handles integrity itself do not register it here. */ 1218 if (t->integrity_added) 1219 return 0; 1220 1221 template_disk = dm_table_get_integrity_disk(t); 1222 if (!template_disk) 1223 return 0; 1224 1225 if (!integrity_profile_exists(dm_disk(md))) { 1226 t->integrity_supported = true; 1227 /* 1228 * Register integrity profile during table load; we can do 1229 * this because the final profile must match during resume. 1230 */ 1231 blk_integrity_register(dm_disk(md), 1232 blk_get_integrity(template_disk)); 1233 return 0; 1234 } 1235 1236 /* 1237 * If DM device already has an initialized integrity 1238 * profile the new profile should not conflict. 1239 */ 1240 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1241 DMWARN("%s: conflict with existing integrity profile: " 1242 "%s profile mismatch", 1243 dm_device_name(t->md), 1244 template_disk->disk_name); 1245 return 1; 1246 } 1247 1248 /* Preserve existing integrity profile */ 1249 t->integrity_supported = true; 1250 return 0; 1251 } 1252 1253 /* 1254 * Prepares the table for use by building the indices, 1255 * setting the type, and allocating mempools. 1256 */ 1257 int dm_table_complete(struct dm_table *t) 1258 { 1259 int r; 1260 1261 r = dm_table_determine_type(t); 1262 if (r) { 1263 DMERR("unable to determine table type"); 1264 return r; 1265 } 1266 1267 r = dm_table_build_index(t); 1268 if (r) { 1269 DMERR("unable to build btrees"); 1270 return r; 1271 } 1272 1273 r = dm_table_register_integrity(t); 1274 if (r) { 1275 DMERR("could not register integrity profile."); 1276 return r; 1277 } 1278 1279 r = dm_table_alloc_md_mempools(t, t->md); 1280 if (r) 1281 DMERR("unable to allocate mempools"); 1282 1283 return r; 1284 } 1285 1286 static DEFINE_MUTEX(_event_lock); 1287 void dm_table_event_callback(struct dm_table *t, 1288 void (*fn)(void *), void *context) 1289 { 1290 mutex_lock(&_event_lock); 1291 t->event_fn = fn; 1292 t->event_context = context; 1293 mutex_unlock(&_event_lock); 1294 } 1295 1296 void dm_table_event(struct dm_table *t) 1297 { 1298 /* 1299 * You can no longer call dm_table_event() from interrupt 1300 * context, use a bottom half instead. 1301 */ 1302 BUG_ON(in_interrupt()); 1303 1304 mutex_lock(&_event_lock); 1305 if (t->event_fn) 1306 t->event_fn(t->event_context); 1307 mutex_unlock(&_event_lock); 1308 } 1309 EXPORT_SYMBOL(dm_table_event); 1310 1311 sector_t dm_table_get_size(struct dm_table *t) 1312 { 1313 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1314 } 1315 EXPORT_SYMBOL(dm_table_get_size); 1316 1317 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1318 { 1319 if (index >= t->num_targets) 1320 return NULL; 1321 1322 return t->targets + index; 1323 } 1324 1325 /* 1326 * Search the btree for the correct target. 1327 * 1328 * Caller should check returned pointer with dm_target_is_valid() 1329 * to trap I/O beyond end of device. 1330 */ 1331 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1332 { 1333 unsigned int l, n = 0, k = 0; 1334 sector_t *node; 1335 1336 for (l = 0; l < t->depth; l++) { 1337 n = get_child(n, k); 1338 node = get_node(t, l, n); 1339 1340 for (k = 0; k < KEYS_PER_NODE; k++) 1341 if (node[k] >= sector) 1342 break; 1343 } 1344 1345 return &t->targets[(KEYS_PER_NODE * n) + k]; 1346 } 1347 1348 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1349 sector_t start, sector_t len, void *data) 1350 { 1351 unsigned *num_devices = data; 1352 1353 (*num_devices)++; 1354 1355 return 0; 1356 } 1357 1358 /* 1359 * Check whether a table has no data devices attached using each 1360 * target's iterate_devices method. 1361 * Returns false if the result is unknown because a target doesn't 1362 * support iterate_devices. 1363 */ 1364 bool dm_table_has_no_data_devices(struct dm_table *table) 1365 { 1366 struct dm_target *ti; 1367 unsigned i, num_devices; 1368 1369 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1370 ti = dm_table_get_target(table, i); 1371 1372 if (!ti->type->iterate_devices) 1373 return false; 1374 1375 num_devices = 0; 1376 ti->type->iterate_devices(ti, count_device, &num_devices); 1377 if (num_devices) 1378 return false; 1379 } 1380 1381 return true; 1382 } 1383 1384 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1385 sector_t start, sector_t len, void *data) 1386 { 1387 struct request_queue *q = bdev_get_queue(dev->bdev); 1388 enum blk_zoned_model *zoned_model = data; 1389 1390 return q && blk_queue_zoned_model(q) == *zoned_model; 1391 } 1392 1393 static bool dm_table_supports_zoned_model(struct dm_table *t, 1394 enum blk_zoned_model zoned_model) 1395 { 1396 struct dm_target *ti; 1397 unsigned i; 1398 1399 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1400 ti = dm_table_get_target(t, i); 1401 1402 if (zoned_model == BLK_ZONED_HM && 1403 !dm_target_supports_zoned_hm(ti->type)) 1404 return false; 1405 1406 if (!ti->type->iterate_devices || 1407 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1408 return false; 1409 } 1410 1411 return true; 1412 } 1413 1414 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1415 sector_t start, sector_t len, void *data) 1416 { 1417 struct request_queue *q = bdev_get_queue(dev->bdev); 1418 unsigned int *zone_sectors = data; 1419 1420 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1421 } 1422 1423 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1424 unsigned int zone_sectors) 1425 { 1426 struct dm_target *ti; 1427 unsigned i; 1428 1429 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1430 ti = dm_table_get_target(t, i); 1431 1432 if (!ti->type->iterate_devices || 1433 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1434 return false; 1435 } 1436 1437 return true; 1438 } 1439 1440 static int validate_hardware_zoned_model(struct dm_table *table, 1441 enum blk_zoned_model zoned_model, 1442 unsigned int zone_sectors) 1443 { 1444 if (zoned_model == BLK_ZONED_NONE) 1445 return 0; 1446 1447 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1448 DMERR("%s: zoned model is not consistent across all devices", 1449 dm_device_name(table->md)); 1450 return -EINVAL; 1451 } 1452 1453 /* Check zone size validity and compatibility */ 1454 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1455 return -EINVAL; 1456 1457 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1458 DMERR("%s: zone sectors is not consistent across all devices", 1459 dm_device_name(table->md)); 1460 return -EINVAL; 1461 } 1462 1463 return 0; 1464 } 1465 1466 /* 1467 * Establish the new table's queue_limits and validate them. 1468 */ 1469 int dm_calculate_queue_limits(struct dm_table *table, 1470 struct queue_limits *limits) 1471 { 1472 struct dm_target *ti; 1473 struct queue_limits ti_limits; 1474 unsigned i; 1475 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1476 unsigned int zone_sectors = 0; 1477 1478 blk_set_stacking_limits(limits); 1479 1480 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1481 blk_set_stacking_limits(&ti_limits); 1482 1483 ti = dm_table_get_target(table, i); 1484 1485 if (!ti->type->iterate_devices) 1486 goto combine_limits; 1487 1488 /* 1489 * Combine queue limits of all the devices this target uses. 1490 */ 1491 ti->type->iterate_devices(ti, dm_set_device_limits, 1492 &ti_limits); 1493 1494 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1495 /* 1496 * After stacking all limits, validate all devices 1497 * in table support this zoned model and zone sectors. 1498 */ 1499 zoned_model = ti_limits.zoned; 1500 zone_sectors = ti_limits.chunk_sectors; 1501 } 1502 1503 /* Set I/O hints portion of queue limits */ 1504 if (ti->type->io_hints) 1505 ti->type->io_hints(ti, &ti_limits); 1506 1507 /* 1508 * Check each device area is consistent with the target's 1509 * overall queue limits. 1510 */ 1511 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1512 &ti_limits)) 1513 return -EINVAL; 1514 1515 combine_limits: 1516 /* 1517 * Merge this target's queue limits into the overall limits 1518 * for the table. 1519 */ 1520 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1521 DMWARN("%s: adding target device " 1522 "(start sect %llu len %llu) " 1523 "caused an alignment inconsistency", 1524 dm_device_name(table->md), 1525 (unsigned long long) ti->begin, 1526 (unsigned long long) ti->len); 1527 1528 /* 1529 * FIXME: this should likely be moved to blk_stack_limits(), would 1530 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1531 */ 1532 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1533 /* 1534 * By default, the stacked limits zoned model is set to 1535 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1536 * this model using the first target model reported 1537 * that is not BLK_ZONED_NONE. This will be either the 1538 * first target device zoned model or the model reported 1539 * by the target .io_hints. 1540 */ 1541 limits->zoned = ti_limits.zoned; 1542 } 1543 } 1544 1545 /* 1546 * Verify that the zoned model and zone sectors, as determined before 1547 * any .io_hints override, are the same across all devices in the table. 1548 * - this is especially relevant if .io_hints is emulating a disk-managed 1549 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1550 * BUT... 1551 */ 1552 if (limits->zoned != BLK_ZONED_NONE) { 1553 /* 1554 * ...IF the above limits stacking determined a zoned model 1555 * validate that all of the table's devices conform to it. 1556 */ 1557 zoned_model = limits->zoned; 1558 zone_sectors = limits->chunk_sectors; 1559 } 1560 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1561 return -EINVAL; 1562 1563 return validate_hardware_logical_block_alignment(table, limits); 1564 } 1565 1566 /* 1567 * Verify that all devices have an integrity profile that matches the 1568 * DM device's registered integrity profile. If the profiles don't 1569 * match then unregister the DM device's integrity profile. 1570 */ 1571 static void dm_table_verify_integrity(struct dm_table *t) 1572 { 1573 struct gendisk *template_disk = NULL; 1574 1575 if (t->integrity_added) 1576 return; 1577 1578 if (t->integrity_supported) { 1579 /* 1580 * Verify that the original integrity profile 1581 * matches all the devices in this table. 1582 */ 1583 template_disk = dm_table_get_integrity_disk(t); 1584 if (template_disk && 1585 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1586 return; 1587 } 1588 1589 if (integrity_profile_exists(dm_disk(t->md))) { 1590 DMWARN("%s: unable to establish an integrity profile", 1591 dm_device_name(t->md)); 1592 blk_integrity_unregister(dm_disk(t->md)); 1593 } 1594 } 1595 1596 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1597 sector_t start, sector_t len, void *data) 1598 { 1599 unsigned long flush = (unsigned long) data; 1600 struct request_queue *q = bdev_get_queue(dev->bdev); 1601 1602 return q && (q->queue_flags & flush); 1603 } 1604 1605 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1606 { 1607 struct dm_target *ti; 1608 unsigned i; 1609 1610 /* 1611 * Require at least one underlying device to support flushes. 1612 * t->devices includes internal dm devices such as mirror logs 1613 * so we need to use iterate_devices here, which targets 1614 * supporting flushes must provide. 1615 */ 1616 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1617 ti = dm_table_get_target(t, i); 1618 1619 if (!ti->num_flush_bios) 1620 continue; 1621 1622 if (ti->flush_supported) 1623 return true; 1624 1625 if (ti->type->iterate_devices && 1626 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1627 return true; 1628 } 1629 1630 return false; 1631 } 1632 1633 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1634 sector_t start, sector_t len, void *data) 1635 { 1636 struct request_queue *q = bdev_get_queue(dev->bdev); 1637 1638 return q && blk_queue_nonrot(q); 1639 } 1640 1641 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1642 sector_t start, sector_t len, void *data) 1643 { 1644 struct request_queue *q = bdev_get_queue(dev->bdev); 1645 1646 return q && !blk_queue_add_random(q); 1647 } 1648 1649 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1650 sector_t start, sector_t len, void *data) 1651 { 1652 struct request_queue *q = bdev_get_queue(dev->bdev); 1653 1654 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1655 } 1656 1657 static bool dm_table_all_devices_attribute(struct dm_table *t, 1658 iterate_devices_callout_fn func) 1659 { 1660 struct dm_target *ti; 1661 unsigned i; 1662 1663 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1664 ti = dm_table_get_target(t, i); 1665 1666 if (!ti->type->iterate_devices || 1667 !ti->type->iterate_devices(ti, func, NULL)) 1668 return false; 1669 } 1670 1671 return true; 1672 } 1673 1674 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1675 sector_t start, sector_t len, void *data) 1676 { 1677 struct request_queue *q = bdev_get_queue(dev->bdev); 1678 1679 return q && !q->limits.max_write_same_sectors; 1680 } 1681 1682 static bool dm_table_supports_write_same(struct dm_table *t) 1683 { 1684 struct dm_target *ti; 1685 unsigned i; 1686 1687 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1688 ti = dm_table_get_target(t, i); 1689 1690 if (!ti->num_write_same_bios) 1691 return false; 1692 1693 if (!ti->type->iterate_devices || 1694 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1695 return false; 1696 } 1697 1698 return true; 1699 } 1700 1701 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1702 sector_t start, sector_t len, void *data) 1703 { 1704 struct request_queue *q = bdev_get_queue(dev->bdev); 1705 1706 return q && !q->limits.max_write_zeroes_sectors; 1707 } 1708 1709 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1710 { 1711 struct dm_target *ti; 1712 unsigned i = 0; 1713 1714 while (i < dm_table_get_num_targets(t)) { 1715 ti = dm_table_get_target(t, i++); 1716 1717 if (!ti->num_write_zeroes_bios) 1718 return false; 1719 1720 if (!ti->type->iterate_devices || 1721 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1722 return false; 1723 } 1724 1725 return true; 1726 } 1727 1728 1729 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1730 sector_t start, sector_t len, void *data) 1731 { 1732 struct request_queue *q = bdev_get_queue(dev->bdev); 1733 1734 return q && blk_queue_discard(q); 1735 } 1736 1737 static bool dm_table_supports_discards(struct dm_table *t) 1738 { 1739 struct dm_target *ti; 1740 unsigned i; 1741 1742 /* 1743 * Unless any target used by the table set discards_supported, 1744 * require at least one underlying device to support discards. 1745 * t->devices includes internal dm devices such as mirror logs 1746 * so we need to use iterate_devices here, which targets 1747 * supporting discard selectively must provide. 1748 */ 1749 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1750 ti = dm_table_get_target(t, i); 1751 1752 if (!ti->num_discard_bios) 1753 continue; 1754 1755 if (ti->discards_supported) 1756 return true; 1757 1758 if (ti->type->iterate_devices && 1759 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1760 return true; 1761 } 1762 1763 return false; 1764 } 1765 1766 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1767 struct queue_limits *limits) 1768 { 1769 bool wc = false, fua = false; 1770 1771 /* 1772 * Copy table's limits to the DM device's request_queue 1773 */ 1774 q->limits = *limits; 1775 1776 if (!dm_table_supports_discards(t)) 1777 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1778 else 1779 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1780 1781 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1782 wc = true; 1783 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1784 fua = true; 1785 } 1786 blk_queue_write_cache(q, wc, fua); 1787 1788 /* Ensure that all underlying devices are non-rotational. */ 1789 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1790 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1791 else 1792 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1793 1794 if (!dm_table_supports_write_same(t)) 1795 q->limits.max_write_same_sectors = 0; 1796 if (!dm_table_supports_write_zeroes(t)) 1797 q->limits.max_write_zeroes_sectors = 0; 1798 1799 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1800 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1801 else 1802 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1803 1804 dm_table_verify_integrity(t); 1805 1806 /* 1807 * Determine whether or not this queue's I/O timings contribute 1808 * to the entropy pool, Only request-based targets use this. 1809 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1810 * have it set. 1811 */ 1812 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1813 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1814 1815 /* 1816 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1817 * visible to other CPUs because, once the flag is set, incoming bios 1818 * are processed by request-based dm, which refers to the queue 1819 * settings. 1820 * Until the flag set, bios are passed to bio-based dm and queued to 1821 * md->deferred where queue settings are not needed yet. 1822 * Those bios are passed to request-based dm at the resume time. 1823 */ 1824 smp_mb(); 1825 if (dm_table_request_based(t)) 1826 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1827 } 1828 1829 unsigned int dm_table_get_num_targets(struct dm_table *t) 1830 { 1831 return t->num_targets; 1832 } 1833 1834 struct list_head *dm_table_get_devices(struct dm_table *t) 1835 { 1836 return &t->devices; 1837 } 1838 1839 fmode_t dm_table_get_mode(struct dm_table *t) 1840 { 1841 return t->mode; 1842 } 1843 EXPORT_SYMBOL(dm_table_get_mode); 1844 1845 enum suspend_mode { 1846 PRESUSPEND, 1847 PRESUSPEND_UNDO, 1848 POSTSUSPEND, 1849 }; 1850 1851 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1852 { 1853 int i = t->num_targets; 1854 struct dm_target *ti = t->targets; 1855 1856 lockdep_assert_held(&t->md->suspend_lock); 1857 1858 while (i--) { 1859 switch (mode) { 1860 case PRESUSPEND: 1861 if (ti->type->presuspend) 1862 ti->type->presuspend(ti); 1863 break; 1864 case PRESUSPEND_UNDO: 1865 if (ti->type->presuspend_undo) 1866 ti->type->presuspend_undo(ti); 1867 break; 1868 case POSTSUSPEND: 1869 if (ti->type->postsuspend) 1870 ti->type->postsuspend(ti); 1871 break; 1872 } 1873 ti++; 1874 } 1875 } 1876 1877 void dm_table_presuspend_targets(struct dm_table *t) 1878 { 1879 if (!t) 1880 return; 1881 1882 suspend_targets(t, PRESUSPEND); 1883 } 1884 1885 void dm_table_presuspend_undo_targets(struct dm_table *t) 1886 { 1887 if (!t) 1888 return; 1889 1890 suspend_targets(t, PRESUSPEND_UNDO); 1891 } 1892 1893 void dm_table_postsuspend_targets(struct dm_table *t) 1894 { 1895 if (!t) 1896 return; 1897 1898 suspend_targets(t, POSTSUSPEND); 1899 } 1900 1901 int dm_table_resume_targets(struct dm_table *t) 1902 { 1903 int i, r = 0; 1904 1905 lockdep_assert_held(&t->md->suspend_lock); 1906 1907 for (i = 0; i < t->num_targets; i++) { 1908 struct dm_target *ti = t->targets + i; 1909 1910 if (!ti->type->preresume) 1911 continue; 1912 1913 r = ti->type->preresume(ti); 1914 if (r) { 1915 DMERR("%s: %s: preresume failed, error = %d", 1916 dm_device_name(t->md), ti->type->name, r); 1917 return r; 1918 } 1919 } 1920 1921 for (i = 0; i < t->num_targets; i++) { 1922 struct dm_target *ti = t->targets + i; 1923 1924 if (ti->type->resume) 1925 ti->type->resume(ti); 1926 } 1927 1928 return 0; 1929 } 1930 1931 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1932 { 1933 list_add(&cb->list, &t->target_callbacks); 1934 } 1935 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1936 1937 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1938 { 1939 struct dm_dev_internal *dd; 1940 struct list_head *devices = dm_table_get_devices(t); 1941 struct dm_target_callbacks *cb; 1942 int r = 0; 1943 1944 list_for_each_entry(dd, devices, list) { 1945 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1946 char b[BDEVNAME_SIZE]; 1947 1948 if (likely(q)) 1949 r |= bdi_congested(q->backing_dev_info, bdi_bits); 1950 else 1951 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1952 dm_device_name(t->md), 1953 bdevname(dd->dm_dev->bdev, b)); 1954 } 1955 1956 list_for_each_entry(cb, &t->target_callbacks, list) 1957 if (cb->congested_fn) 1958 r |= cb->congested_fn(cb, bdi_bits); 1959 1960 return r; 1961 } 1962 1963 struct mapped_device *dm_table_get_md(struct dm_table *t) 1964 { 1965 return t->md; 1966 } 1967 EXPORT_SYMBOL(dm_table_get_md); 1968 1969 void dm_table_run_md_queue_async(struct dm_table *t) 1970 { 1971 struct mapped_device *md; 1972 struct request_queue *queue; 1973 unsigned long flags; 1974 1975 if (!dm_table_request_based(t)) 1976 return; 1977 1978 md = dm_table_get_md(t); 1979 queue = dm_get_md_queue(md); 1980 if (queue) { 1981 if (queue->mq_ops) 1982 blk_mq_run_hw_queues(queue, true); 1983 else { 1984 spin_lock_irqsave(queue->queue_lock, flags); 1985 blk_run_queue_async(queue); 1986 spin_unlock_irqrestore(queue->queue_lock, flags); 1987 } 1988 } 1989 } 1990 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1991 1992