1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 struct dm_table { 30 struct mapped_device *md; 31 unsigned type; 32 33 /* btree table */ 34 unsigned int depth; 35 unsigned int counts[MAX_DEPTH]; /* in nodes */ 36 sector_t *index[MAX_DEPTH]; 37 38 unsigned int num_targets; 39 unsigned int num_allocated; 40 sector_t *highs; 41 struct dm_target *targets; 42 43 struct target_type *immutable_target_type; 44 unsigned integrity_supported:1; 45 unsigned singleton:1; 46 47 /* 48 * Indicates the rw permissions for the new logical 49 * device. This should be a combination of FMODE_READ 50 * and FMODE_WRITE. 51 */ 52 fmode_t mode; 53 54 /* a list of devices used by this table */ 55 struct list_head devices; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 61 struct dm_md_mempools *mempools; 62 63 struct list_head target_callbacks; 64 }; 65 66 /* 67 * Similar to ceiling(log_size(n)) 68 */ 69 static unsigned int int_log(unsigned int n, unsigned int base) 70 { 71 int result = 0; 72 73 while (n > 1) { 74 n = dm_div_up(n, base); 75 result++; 76 } 77 78 return result; 79 } 80 81 /* 82 * Calculate the index of the child node of the n'th node k'th key. 83 */ 84 static inline unsigned int get_child(unsigned int n, unsigned int k) 85 { 86 return (n * CHILDREN_PER_NODE) + k; 87 } 88 89 /* 90 * Return the n'th node of level l from table t. 91 */ 92 static inline sector_t *get_node(struct dm_table *t, 93 unsigned int l, unsigned int n) 94 { 95 return t->index[l] + (n * KEYS_PER_NODE); 96 } 97 98 /* 99 * Return the highest key that you could lookup from the n'th 100 * node on level l of the btree. 101 */ 102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 103 { 104 for (; l < t->depth - 1; l++) 105 n = get_child(n, CHILDREN_PER_NODE - 1); 106 107 if (n >= t->counts[l]) 108 return (sector_t) - 1; 109 110 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 111 } 112 113 /* 114 * Fills in a level of the btree based on the highs of the level 115 * below it. 116 */ 117 static int setup_btree_index(unsigned int l, struct dm_table *t) 118 { 119 unsigned int n, k; 120 sector_t *node; 121 122 for (n = 0U; n < t->counts[l]; n++) { 123 node = get_node(t, l, n); 124 125 for (k = 0U; k < KEYS_PER_NODE; k++) 126 node[k] = high(t, l + 1, get_child(n, k)); 127 } 128 129 return 0; 130 } 131 132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 133 { 134 unsigned long size; 135 void *addr; 136 137 /* 138 * Check that we're not going to overflow. 139 */ 140 if (nmemb > (ULONG_MAX / elem_size)) 141 return NULL; 142 143 size = nmemb * elem_size; 144 addr = vzalloc(size); 145 146 return addr; 147 } 148 EXPORT_SYMBOL(dm_vcalloc); 149 150 /* 151 * highs, and targets are managed as dynamic arrays during a 152 * table load. 153 */ 154 static int alloc_targets(struct dm_table *t, unsigned int num) 155 { 156 sector_t *n_highs; 157 struct dm_target *n_targets; 158 int n = t->num_targets; 159 160 /* 161 * Allocate both the target array and offset array at once. 162 * Append an empty entry to catch sectors beyond the end of 163 * the device. 164 */ 165 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 166 sizeof(sector_t)); 167 if (!n_highs) 168 return -ENOMEM; 169 170 n_targets = (struct dm_target *) (n_highs + num); 171 172 if (n) { 173 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 174 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 175 } 176 177 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 178 vfree(t->highs); 179 180 t->num_allocated = num; 181 t->highs = n_highs; 182 t->targets = n_targets; 183 184 return 0; 185 } 186 187 int dm_table_create(struct dm_table **result, fmode_t mode, 188 unsigned num_targets, struct mapped_device *md) 189 { 190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 191 192 if (!t) 193 return -ENOMEM; 194 195 INIT_LIST_HEAD(&t->devices); 196 INIT_LIST_HEAD(&t->target_callbacks); 197 198 if (!num_targets) 199 num_targets = KEYS_PER_NODE; 200 201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 202 203 if (alloc_targets(t, num_targets)) { 204 kfree(t); 205 return -ENOMEM; 206 } 207 208 t->mode = mode; 209 t->md = md; 210 *result = t; 211 return 0; 212 } 213 214 static void free_devices(struct list_head *devices) 215 { 216 struct list_head *tmp, *next; 217 218 list_for_each_safe(tmp, next, devices) { 219 struct dm_dev_internal *dd = 220 list_entry(tmp, struct dm_dev_internal, list); 221 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 222 dd->dm_dev.name); 223 kfree(dd); 224 } 225 } 226 227 void dm_table_destroy(struct dm_table *t) 228 { 229 unsigned int i; 230 231 if (!t) 232 return; 233 234 /* free the indexes */ 235 if (t->depth >= 2) 236 vfree(t->index[t->depth - 2]); 237 238 /* free the targets */ 239 for (i = 0; i < t->num_targets; i++) { 240 struct dm_target *tgt = t->targets + i; 241 242 if (tgt->type->dtr) 243 tgt->type->dtr(tgt); 244 245 dm_put_target_type(tgt->type); 246 } 247 248 vfree(t->highs); 249 250 /* free the device list */ 251 free_devices(&t->devices); 252 253 dm_free_md_mempools(t->mempools); 254 255 kfree(t); 256 } 257 258 /* 259 * Checks to see if we need to extend highs or targets. 260 */ 261 static inline int check_space(struct dm_table *t) 262 { 263 if (t->num_targets >= t->num_allocated) 264 return alloc_targets(t, t->num_allocated * 2); 265 266 return 0; 267 } 268 269 /* 270 * See if we've already got a device in the list. 271 */ 272 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 273 { 274 struct dm_dev_internal *dd; 275 276 list_for_each_entry (dd, l, list) 277 if (dd->dm_dev.bdev->bd_dev == dev) 278 return dd; 279 280 return NULL; 281 } 282 283 /* 284 * Open a device so we can use it as a map destination. 285 */ 286 static int open_dev(struct dm_dev_internal *d, dev_t dev, 287 struct mapped_device *md) 288 { 289 static char *_claim_ptr = "I belong to device-mapper"; 290 struct block_device *bdev; 291 292 int r; 293 294 BUG_ON(d->dm_dev.bdev); 295 296 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 297 if (IS_ERR(bdev)) 298 return PTR_ERR(bdev); 299 300 r = bd_link_disk_holder(bdev, dm_disk(md)); 301 if (r) { 302 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 303 return r; 304 } 305 306 d->dm_dev.bdev = bdev; 307 return 0; 308 } 309 310 /* 311 * Close a device that we've been using. 312 */ 313 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 314 { 315 if (!d->dm_dev.bdev) 316 return; 317 318 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 319 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 320 d->dm_dev.bdev = NULL; 321 } 322 323 /* 324 * If possible, this checks an area of a destination device is invalid. 325 */ 326 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 327 sector_t start, sector_t len, void *data) 328 { 329 struct request_queue *q; 330 struct queue_limits *limits = data; 331 struct block_device *bdev = dev->bdev; 332 sector_t dev_size = 333 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 334 unsigned short logical_block_size_sectors = 335 limits->logical_block_size >> SECTOR_SHIFT; 336 char b[BDEVNAME_SIZE]; 337 338 /* 339 * Some devices exist without request functions, 340 * such as loop devices not yet bound to backing files. 341 * Forbid the use of such devices. 342 */ 343 q = bdev_get_queue(bdev); 344 if (!q || !q->make_request_fn) { 345 DMWARN("%s: %s is not yet initialised: " 346 "start=%llu, len=%llu, dev_size=%llu", 347 dm_device_name(ti->table->md), bdevname(bdev, b), 348 (unsigned long long)start, 349 (unsigned long long)len, 350 (unsigned long long)dev_size); 351 return 1; 352 } 353 354 if (!dev_size) 355 return 0; 356 357 if ((start >= dev_size) || (start + len > dev_size)) { 358 DMWARN("%s: %s too small for target: " 359 "start=%llu, len=%llu, dev_size=%llu", 360 dm_device_name(ti->table->md), bdevname(bdev, b), 361 (unsigned long long)start, 362 (unsigned long long)len, 363 (unsigned long long)dev_size); 364 return 1; 365 } 366 367 if (logical_block_size_sectors <= 1) 368 return 0; 369 370 if (start & (logical_block_size_sectors - 1)) { 371 DMWARN("%s: start=%llu not aligned to h/w " 372 "logical block size %u of %s", 373 dm_device_name(ti->table->md), 374 (unsigned long long)start, 375 limits->logical_block_size, bdevname(bdev, b)); 376 return 1; 377 } 378 379 if (len & (logical_block_size_sectors - 1)) { 380 DMWARN("%s: len=%llu not aligned to h/w " 381 "logical block size %u of %s", 382 dm_device_name(ti->table->md), 383 (unsigned long long)len, 384 limits->logical_block_size, bdevname(bdev, b)); 385 return 1; 386 } 387 388 return 0; 389 } 390 391 /* 392 * This upgrades the mode on an already open dm_dev, being 393 * careful to leave things as they were if we fail to reopen the 394 * device and not to touch the existing bdev field in case 395 * it is accessed concurrently inside dm_table_any_congested(). 396 */ 397 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 398 struct mapped_device *md) 399 { 400 int r; 401 struct dm_dev_internal dd_new, dd_old; 402 403 dd_new = dd_old = *dd; 404 405 dd_new.dm_dev.mode |= new_mode; 406 dd_new.dm_dev.bdev = NULL; 407 408 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 409 if (r) 410 return r; 411 412 dd->dm_dev.mode |= new_mode; 413 close_dev(&dd_old, md); 414 415 return 0; 416 } 417 418 /* 419 * Add a device to the list, or just increment the usage count if 420 * it's already present. 421 */ 422 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 423 struct dm_dev **result) 424 { 425 int r; 426 dev_t uninitialized_var(dev); 427 struct dm_dev_internal *dd; 428 unsigned int major, minor; 429 struct dm_table *t = ti->table; 430 char dummy; 431 432 BUG_ON(!t); 433 434 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 435 /* Extract the major/minor numbers */ 436 dev = MKDEV(major, minor); 437 if (MAJOR(dev) != major || MINOR(dev) != minor) 438 return -EOVERFLOW; 439 } else { 440 /* convert the path to a device */ 441 struct block_device *bdev = lookup_bdev(path); 442 443 if (IS_ERR(bdev)) 444 return PTR_ERR(bdev); 445 dev = bdev->bd_dev; 446 bdput(bdev); 447 } 448 449 dd = find_device(&t->devices, dev); 450 if (!dd) { 451 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 452 if (!dd) 453 return -ENOMEM; 454 455 dd->dm_dev.mode = mode; 456 dd->dm_dev.bdev = NULL; 457 458 if ((r = open_dev(dd, dev, t->md))) { 459 kfree(dd); 460 return r; 461 } 462 463 format_dev_t(dd->dm_dev.name, dev); 464 465 atomic_set(&dd->count, 0); 466 list_add(&dd->list, &t->devices); 467 468 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 469 r = upgrade_mode(dd, mode, t->md); 470 if (r) 471 return r; 472 } 473 atomic_inc(&dd->count); 474 475 *result = &dd->dm_dev; 476 return 0; 477 } 478 EXPORT_SYMBOL(dm_get_device); 479 480 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 481 sector_t start, sector_t len, void *data) 482 { 483 struct queue_limits *limits = data; 484 struct block_device *bdev = dev->bdev; 485 struct request_queue *q = bdev_get_queue(bdev); 486 char b[BDEVNAME_SIZE]; 487 488 if (unlikely(!q)) { 489 DMWARN("%s: Cannot set limits for nonexistent device %s", 490 dm_device_name(ti->table->md), bdevname(bdev, b)); 491 return 0; 492 } 493 494 if (bdev_stack_limits(limits, bdev, start) < 0) 495 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 496 "physical_block_size=%u, logical_block_size=%u, " 497 "alignment_offset=%u, start=%llu", 498 dm_device_name(ti->table->md), bdevname(bdev, b), 499 q->limits.physical_block_size, 500 q->limits.logical_block_size, 501 q->limits.alignment_offset, 502 (unsigned long long) start << SECTOR_SHIFT); 503 504 /* 505 * Check if merge fn is supported. 506 * If not we'll force DM to use PAGE_SIZE or 507 * smaller I/O, just to be safe. 508 */ 509 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge) 510 blk_limits_max_hw_sectors(limits, 511 (unsigned int) (PAGE_SIZE >> 9)); 512 return 0; 513 } 514 EXPORT_SYMBOL_GPL(dm_set_device_limits); 515 516 /* 517 * Decrement a device's use count and remove it if necessary. 518 */ 519 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 520 { 521 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 522 dm_dev); 523 524 if (atomic_dec_and_test(&dd->count)) { 525 close_dev(dd, ti->table->md); 526 list_del(&dd->list); 527 kfree(dd); 528 } 529 } 530 EXPORT_SYMBOL(dm_put_device); 531 532 /* 533 * Checks to see if the target joins onto the end of the table. 534 */ 535 static int adjoin(struct dm_table *table, struct dm_target *ti) 536 { 537 struct dm_target *prev; 538 539 if (!table->num_targets) 540 return !ti->begin; 541 542 prev = &table->targets[table->num_targets - 1]; 543 return (ti->begin == (prev->begin + prev->len)); 544 } 545 546 /* 547 * Used to dynamically allocate the arg array. 548 */ 549 static char **realloc_argv(unsigned *array_size, char **old_argv) 550 { 551 char **argv; 552 unsigned new_size; 553 554 new_size = *array_size ? *array_size * 2 : 64; 555 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 556 if (argv) { 557 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 558 *array_size = new_size; 559 } 560 561 kfree(old_argv); 562 return argv; 563 } 564 565 /* 566 * Destructively splits up the argument list to pass to ctr. 567 */ 568 int dm_split_args(int *argc, char ***argvp, char *input) 569 { 570 char *start, *end = input, *out, **argv = NULL; 571 unsigned array_size = 0; 572 573 *argc = 0; 574 575 if (!input) { 576 *argvp = NULL; 577 return 0; 578 } 579 580 argv = realloc_argv(&array_size, argv); 581 if (!argv) 582 return -ENOMEM; 583 584 while (1) { 585 /* Skip whitespace */ 586 start = skip_spaces(end); 587 588 if (!*start) 589 break; /* success, we hit the end */ 590 591 /* 'out' is used to remove any back-quotes */ 592 end = out = start; 593 while (*end) { 594 /* Everything apart from '\0' can be quoted */ 595 if (*end == '\\' && *(end + 1)) { 596 *out++ = *(end + 1); 597 end += 2; 598 continue; 599 } 600 601 if (isspace(*end)) 602 break; /* end of token */ 603 604 *out++ = *end++; 605 } 606 607 /* have we already filled the array ? */ 608 if ((*argc + 1) > array_size) { 609 argv = realloc_argv(&array_size, argv); 610 if (!argv) 611 return -ENOMEM; 612 } 613 614 /* we know this is whitespace */ 615 if (*end) 616 end++; 617 618 /* terminate the string and put it in the array */ 619 *out = '\0'; 620 argv[*argc] = start; 621 (*argc)++; 622 } 623 624 *argvp = argv; 625 return 0; 626 } 627 628 /* 629 * Impose necessary and sufficient conditions on a devices's table such 630 * that any incoming bio which respects its logical_block_size can be 631 * processed successfully. If it falls across the boundary between 632 * two or more targets, the size of each piece it gets split into must 633 * be compatible with the logical_block_size of the target processing it. 634 */ 635 static int validate_hardware_logical_block_alignment(struct dm_table *table, 636 struct queue_limits *limits) 637 { 638 /* 639 * This function uses arithmetic modulo the logical_block_size 640 * (in units of 512-byte sectors). 641 */ 642 unsigned short device_logical_block_size_sects = 643 limits->logical_block_size >> SECTOR_SHIFT; 644 645 /* 646 * Offset of the start of the next table entry, mod logical_block_size. 647 */ 648 unsigned short next_target_start = 0; 649 650 /* 651 * Given an aligned bio that extends beyond the end of a 652 * target, how many sectors must the next target handle? 653 */ 654 unsigned short remaining = 0; 655 656 struct dm_target *uninitialized_var(ti); 657 struct queue_limits ti_limits; 658 unsigned i = 0; 659 660 /* 661 * Check each entry in the table in turn. 662 */ 663 while (i < dm_table_get_num_targets(table)) { 664 ti = dm_table_get_target(table, i++); 665 666 blk_set_stacking_limits(&ti_limits); 667 668 /* combine all target devices' limits */ 669 if (ti->type->iterate_devices) 670 ti->type->iterate_devices(ti, dm_set_device_limits, 671 &ti_limits); 672 673 /* 674 * If the remaining sectors fall entirely within this 675 * table entry are they compatible with its logical_block_size? 676 */ 677 if (remaining < ti->len && 678 remaining & ((ti_limits.logical_block_size >> 679 SECTOR_SHIFT) - 1)) 680 break; /* Error */ 681 682 next_target_start = 683 (unsigned short) ((next_target_start + ti->len) & 684 (device_logical_block_size_sects - 1)); 685 remaining = next_target_start ? 686 device_logical_block_size_sects - next_target_start : 0; 687 } 688 689 if (remaining) { 690 DMWARN("%s: table line %u (start sect %llu len %llu) " 691 "not aligned to h/w logical block size %u", 692 dm_device_name(table->md), i, 693 (unsigned long long) ti->begin, 694 (unsigned long long) ti->len, 695 limits->logical_block_size); 696 return -EINVAL; 697 } 698 699 return 0; 700 } 701 702 int dm_table_add_target(struct dm_table *t, const char *type, 703 sector_t start, sector_t len, char *params) 704 { 705 int r = -EINVAL, argc; 706 char **argv; 707 struct dm_target *tgt; 708 709 if (t->singleton) { 710 DMERR("%s: target type %s must appear alone in table", 711 dm_device_name(t->md), t->targets->type->name); 712 return -EINVAL; 713 } 714 715 if ((r = check_space(t))) 716 return r; 717 718 tgt = t->targets + t->num_targets; 719 memset(tgt, 0, sizeof(*tgt)); 720 721 if (!len) { 722 DMERR("%s: zero-length target", dm_device_name(t->md)); 723 return -EINVAL; 724 } 725 726 tgt->type = dm_get_target_type(type); 727 if (!tgt->type) { 728 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 729 type); 730 return -EINVAL; 731 } 732 733 if (dm_target_needs_singleton(tgt->type)) { 734 if (t->num_targets) { 735 DMERR("%s: target type %s must appear alone in table", 736 dm_device_name(t->md), type); 737 return -EINVAL; 738 } 739 t->singleton = 1; 740 } 741 742 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 743 DMERR("%s: target type %s may not be included in read-only tables", 744 dm_device_name(t->md), type); 745 return -EINVAL; 746 } 747 748 if (t->immutable_target_type) { 749 if (t->immutable_target_type != tgt->type) { 750 DMERR("%s: immutable target type %s cannot be mixed with other target types", 751 dm_device_name(t->md), t->immutable_target_type->name); 752 return -EINVAL; 753 } 754 } else if (dm_target_is_immutable(tgt->type)) { 755 if (t->num_targets) { 756 DMERR("%s: immutable target type %s cannot be mixed with other target types", 757 dm_device_name(t->md), tgt->type->name); 758 return -EINVAL; 759 } 760 t->immutable_target_type = tgt->type; 761 } 762 763 tgt->table = t; 764 tgt->begin = start; 765 tgt->len = len; 766 tgt->error = "Unknown error"; 767 768 /* 769 * Does this target adjoin the previous one ? 770 */ 771 if (!adjoin(t, tgt)) { 772 tgt->error = "Gap in table"; 773 r = -EINVAL; 774 goto bad; 775 } 776 777 r = dm_split_args(&argc, &argv, params); 778 if (r) { 779 tgt->error = "couldn't split parameters (insufficient memory)"; 780 goto bad; 781 } 782 783 r = tgt->type->ctr(tgt, argc, argv); 784 kfree(argv); 785 if (r) 786 goto bad; 787 788 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 789 790 if (!tgt->num_discard_bios && tgt->discards_supported) 791 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 792 dm_device_name(t->md), type); 793 794 return 0; 795 796 bad: 797 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 798 dm_put_target_type(tgt->type); 799 return r; 800 } 801 802 /* 803 * Target argument parsing helpers. 804 */ 805 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 806 unsigned *value, char **error, unsigned grouped) 807 { 808 const char *arg_str = dm_shift_arg(arg_set); 809 char dummy; 810 811 if (!arg_str || 812 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 813 (*value < arg->min) || 814 (*value > arg->max) || 815 (grouped && arg_set->argc < *value)) { 816 *error = arg->error; 817 return -EINVAL; 818 } 819 820 return 0; 821 } 822 823 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 824 unsigned *value, char **error) 825 { 826 return validate_next_arg(arg, arg_set, value, error, 0); 827 } 828 EXPORT_SYMBOL(dm_read_arg); 829 830 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 831 unsigned *value, char **error) 832 { 833 return validate_next_arg(arg, arg_set, value, error, 1); 834 } 835 EXPORT_SYMBOL(dm_read_arg_group); 836 837 const char *dm_shift_arg(struct dm_arg_set *as) 838 { 839 char *r; 840 841 if (as->argc) { 842 as->argc--; 843 r = *as->argv; 844 as->argv++; 845 return r; 846 } 847 848 return NULL; 849 } 850 EXPORT_SYMBOL(dm_shift_arg); 851 852 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 853 { 854 BUG_ON(as->argc < num_args); 855 as->argc -= num_args; 856 as->argv += num_args; 857 } 858 EXPORT_SYMBOL(dm_consume_args); 859 860 static int dm_table_set_type(struct dm_table *t) 861 { 862 unsigned i; 863 unsigned bio_based = 0, request_based = 0, hybrid = 0; 864 struct dm_target *tgt; 865 struct dm_dev_internal *dd; 866 struct list_head *devices; 867 unsigned live_md_type; 868 869 for (i = 0; i < t->num_targets; i++) { 870 tgt = t->targets + i; 871 if (dm_target_hybrid(tgt)) 872 hybrid = 1; 873 else if (dm_target_request_based(tgt)) 874 request_based = 1; 875 else 876 bio_based = 1; 877 878 if (bio_based && request_based) { 879 DMWARN("Inconsistent table: different target types" 880 " can't be mixed up"); 881 return -EINVAL; 882 } 883 } 884 885 if (hybrid && !bio_based && !request_based) { 886 /* 887 * The targets can work either way. 888 * Determine the type from the live device. 889 * Default to bio-based if device is new. 890 */ 891 live_md_type = dm_get_md_type(t->md); 892 if (live_md_type == DM_TYPE_REQUEST_BASED) 893 request_based = 1; 894 else 895 bio_based = 1; 896 } 897 898 if (bio_based) { 899 /* We must use this table as bio-based */ 900 t->type = DM_TYPE_BIO_BASED; 901 return 0; 902 } 903 904 BUG_ON(!request_based); /* No targets in this table */ 905 906 /* Non-request-stackable devices can't be used for request-based dm */ 907 devices = dm_table_get_devices(t); 908 list_for_each_entry(dd, devices, list) { 909 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 910 DMWARN("table load rejected: including" 911 " non-request-stackable devices"); 912 return -EINVAL; 913 } 914 } 915 916 /* 917 * Request-based dm supports only tables that have a single target now. 918 * To support multiple targets, request splitting support is needed, 919 * and that needs lots of changes in the block-layer. 920 * (e.g. request completion process for partial completion.) 921 */ 922 if (t->num_targets > 1) { 923 DMWARN("Request-based dm doesn't support multiple targets yet"); 924 return -EINVAL; 925 } 926 927 t->type = DM_TYPE_REQUEST_BASED; 928 929 return 0; 930 } 931 932 unsigned dm_table_get_type(struct dm_table *t) 933 { 934 return t->type; 935 } 936 937 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 938 { 939 return t->immutable_target_type; 940 } 941 942 bool dm_table_request_based(struct dm_table *t) 943 { 944 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 945 } 946 947 int dm_table_alloc_md_mempools(struct dm_table *t) 948 { 949 unsigned type = dm_table_get_type(t); 950 unsigned per_bio_data_size = 0; 951 struct dm_target *tgt; 952 unsigned i; 953 954 if (unlikely(type == DM_TYPE_NONE)) { 955 DMWARN("no table type is set, can't allocate mempools"); 956 return -EINVAL; 957 } 958 959 if (type == DM_TYPE_BIO_BASED) 960 for (i = 0; i < t->num_targets; i++) { 961 tgt = t->targets + i; 962 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size); 963 } 964 965 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size); 966 if (!t->mempools) 967 return -ENOMEM; 968 969 return 0; 970 } 971 972 void dm_table_free_md_mempools(struct dm_table *t) 973 { 974 dm_free_md_mempools(t->mempools); 975 t->mempools = NULL; 976 } 977 978 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 979 { 980 return t->mempools; 981 } 982 983 static int setup_indexes(struct dm_table *t) 984 { 985 int i; 986 unsigned int total = 0; 987 sector_t *indexes; 988 989 /* allocate the space for *all* the indexes */ 990 for (i = t->depth - 2; i >= 0; i--) { 991 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 992 total += t->counts[i]; 993 } 994 995 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 996 if (!indexes) 997 return -ENOMEM; 998 999 /* set up internal nodes, bottom-up */ 1000 for (i = t->depth - 2; i >= 0; i--) { 1001 t->index[i] = indexes; 1002 indexes += (KEYS_PER_NODE * t->counts[i]); 1003 setup_btree_index(i, t); 1004 } 1005 1006 return 0; 1007 } 1008 1009 /* 1010 * Builds the btree to index the map. 1011 */ 1012 static int dm_table_build_index(struct dm_table *t) 1013 { 1014 int r = 0; 1015 unsigned int leaf_nodes; 1016 1017 /* how many indexes will the btree have ? */ 1018 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1019 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1020 1021 /* leaf layer has already been set up */ 1022 t->counts[t->depth - 1] = leaf_nodes; 1023 t->index[t->depth - 1] = t->highs; 1024 1025 if (t->depth >= 2) 1026 r = setup_indexes(t); 1027 1028 return r; 1029 } 1030 1031 /* 1032 * Get a disk whose integrity profile reflects the table's profile. 1033 * If %match_all is true, all devices' profiles must match. 1034 * If %match_all is false, all devices must at least have an 1035 * allocated integrity profile; but uninitialized is ok. 1036 * Returns NULL if integrity support was inconsistent or unavailable. 1037 */ 1038 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 1039 bool match_all) 1040 { 1041 struct list_head *devices = dm_table_get_devices(t); 1042 struct dm_dev_internal *dd = NULL; 1043 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1044 1045 list_for_each_entry(dd, devices, list) { 1046 template_disk = dd->dm_dev.bdev->bd_disk; 1047 if (!blk_get_integrity(template_disk)) 1048 goto no_integrity; 1049 if (!match_all && !blk_integrity_is_initialized(template_disk)) 1050 continue; /* skip uninitialized profiles */ 1051 else if (prev_disk && 1052 blk_integrity_compare(prev_disk, template_disk) < 0) 1053 goto no_integrity; 1054 prev_disk = template_disk; 1055 } 1056 1057 return template_disk; 1058 1059 no_integrity: 1060 if (prev_disk) 1061 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1062 dm_device_name(t->md), 1063 prev_disk->disk_name, 1064 template_disk->disk_name); 1065 return NULL; 1066 } 1067 1068 /* 1069 * Register the mapped device for blk_integrity support if 1070 * the underlying devices have an integrity profile. But all devices 1071 * may not have matching profiles (checking all devices isn't reliable 1072 * during table load because this table may use other DM device(s) which 1073 * must be resumed before they will have an initialized integity profile). 1074 * Stacked DM devices force a 2 stage integrity profile validation: 1075 * 1 - during load, validate all initialized integrity profiles match 1076 * 2 - during resume, validate all integrity profiles match 1077 */ 1078 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 1079 { 1080 struct gendisk *template_disk = NULL; 1081 1082 template_disk = dm_table_get_integrity_disk(t, false); 1083 if (!template_disk) 1084 return 0; 1085 1086 if (!blk_integrity_is_initialized(dm_disk(md))) { 1087 t->integrity_supported = 1; 1088 return blk_integrity_register(dm_disk(md), NULL); 1089 } 1090 1091 /* 1092 * If DM device already has an initalized integrity 1093 * profile the new profile should not conflict. 1094 */ 1095 if (blk_integrity_is_initialized(template_disk) && 1096 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1097 DMWARN("%s: conflict with existing integrity profile: " 1098 "%s profile mismatch", 1099 dm_device_name(t->md), 1100 template_disk->disk_name); 1101 return 1; 1102 } 1103 1104 /* Preserve existing initialized integrity profile */ 1105 t->integrity_supported = 1; 1106 return 0; 1107 } 1108 1109 /* 1110 * Prepares the table for use by building the indices, 1111 * setting the type, and allocating mempools. 1112 */ 1113 int dm_table_complete(struct dm_table *t) 1114 { 1115 int r; 1116 1117 r = dm_table_set_type(t); 1118 if (r) { 1119 DMERR("unable to set table type"); 1120 return r; 1121 } 1122 1123 r = dm_table_build_index(t); 1124 if (r) { 1125 DMERR("unable to build btrees"); 1126 return r; 1127 } 1128 1129 r = dm_table_prealloc_integrity(t, t->md); 1130 if (r) { 1131 DMERR("could not register integrity profile."); 1132 return r; 1133 } 1134 1135 r = dm_table_alloc_md_mempools(t); 1136 if (r) 1137 DMERR("unable to allocate mempools"); 1138 1139 return r; 1140 } 1141 1142 static DEFINE_MUTEX(_event_lock); 1143 void dm_table_event_callback(struct dm_table *t, 1144 void (*fn)(void *), void *context) 1145 { 1146 mutex_lock(&_event_lock); 1147 t->event_fn = fn; 1148 t->event_context = context; 1149 mutex_unlock(&_event_lock); 1150 } 1151 1152 void dm_table_event(struct dm_table *t) 1153 { 1154 /* 1155 * You can no longer call dm_table_event() from interrupt 1156 * context, use a bottom half instead. 1157 */ 1158 BUG_ON(in_interrupt()); 1159 1160 mutex_lock(&_event_lock); 1161 if (t->event_fn) 1162 t->event_fn(t->event_context); 1163 mutex_unlock(&_event_lock); 1164 } 1165 EXPORT_SYMBOL(dm_table_event); 1166 1167 sector_t dm_table_get_size(struct dm_table *t) 1168 { 1169 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1170 } 1171 EXPORT_SYMBOL(dm_table_get_size); 1172 1173 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1174 { 1175 if (index >= t->num_targets) 1176 return NULL; 1177 1178 return t->targets + index; 1179 } 1180 1181 /* 1182 * Search the btree for the correct target. 1183 * 1184 * Caller should check returned pointer with dm_target_is_valid() 1185 * to trap I/O beyond end of device. 1186 */ 1187 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1188 { 1189 unsigned int l, n = 0, k = 0; 1190 sector_t *node; 1191 1192 for (l = 0; l < t->depth; l++) { 1193 n = get_child(n, k); 1194 node = get_node(t, l, n); 1195 1196 for (k = 0; k < KEYS_PER_NODE; k++) 1197 if (node[k] >= sector) 1198 break; 1199 } 1200 1201 return &t->targets[(KEYS_PER_NODE * n) + k]; 1202 } 1203 1204 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1205 sector_t start, sector_t len, void *data) 1206 { 1207 unsigned *num_devices = data; 1208 1209 (*num_devices)++; 1210 1211 return 0; 1212 } 1213 1214 /* 1215 * Check whether a table has no data devices attached using each 1216 * target's iterate_devices method. 1217 * Returns false if the result is unknown because a target doesn't 1218 * support iterate_devices. 1219 */ 1220 bool dm_table_has_no_data_devices(struct dm_table *table) 1221 { 1222 struct dm_target *uninitialized_var(ti); 1223 unsigned i = 0, num_devices = 0; 1224 1225 while (i < dm_table_get_num_targets(table)) { 1226 ti = dm_table_get_target(table, i++); 1227 1228 if (!ti->type->iterate_devices) 1229 return false; 1230 1231 ti->type->iterate_devices(ti, count_device, &num_devices); 1232 if (num_devices) 1233 return false; 1234 } 1235 1236 return true; 1237 } 1238 1239 /* 1240 * Establish the new table's queue_limits and validate them. 1241 */ 1242 int dm_calculate_queue_limits(struct dm_table *table, 1243 struct queue_limits *limits) 1244 { 1245 struct dm_target *uninitialized_var(ti); 1246 struct queue_limits ti_limits; 1247 unsigned i = 0; 1248 1249 blk_set_stacking_limits(limits); 1250 1251 while (i < dm_table_get_num_targets(table)) { 1252 blk_set_stacking_limits(&ti_limits); 1253 1254 ti = dm_table_get_target(table, i++); 1255 1256 if (!ti->type->iterate_devices) 1257 goto combine_limits; 1258 1259 /* 1260 * Combine queue limits of all the devices this target uses. 1261 */ 1262 ti->type->iterate_devices(ti, dm_set_device_limits, 1263 &ti_limits); 1264 1265 /* Set I/O hints portion of queue limits */ 1266 if (ti->type->io_hints) 1267 ti->type->io_hints(ti, &ti_limits); 1268 1269 /* 1270 * Check each device area is consistent with the target's 1271 * overall queue limits. 1272 */ 1273 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1274 &ti_limits)) 1275 return -EINVAL; 1276 1277 combine_limits: 1278 /* 1279 * Merge this target's queue limits into the overall limits 1280 * for the table. 1281 */ 1282 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1283 DMWARN("%s: adding target device " 1284 "(start sect %llu len %llu) " 1285 "caused an alignment inconsistency", 1286 dm_device_name(table->md), 1287 (unsigned long long) ti->begin, 1288 (unsigned long long) ti->len); 1289 } 1290 1291 return validate_hardware_logical_block_alignment(table, limits); 1292 } 1293 1294 /* 1295 * Set the integrity profile for this device if all devices used have 1296 * matching profiles. We're quite deep in the resume path but still 1297 * don't know if all devices (particularly DM devices this device 1298 * may be stacked on) have matching profiles. Even if the profiles 1299 * don't match we have no way to fail (to resume) at this point. 1300 */ 1301 static void dm_table_set_integrity(struct dm_table *t) 1302 { 1303 struct gendisk *template_disk = NULL; 1304 1305 if (!blk_get_integrity(dm_disk(t->md))) 1306 return; 1307 1308 template_disk = dm_table_get_integrity_disk(t, true); 1309 if (template_disk) 1310 blk_integrity_register(dm_disk(t->md), 1311 blk_get_integrity(template_disk)); 1312 else if (blk_integrity_is_initialized(dm_disk(t->md))) 1313 DMWARN("%s: device no longer has a valid integrity profile", 1314 dm_device_name(t->md)); 1315 else 1316 DMWARN("%s: unable to establish an integrity profile", 1317 dm_device_name(t->md)); 1318 } 1319 1320 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1321 sector_t start, sector_t len, void *data) 1322 { 1323 unsigned flush = (*(unsigned *)data); 1324 struct request_queue *q = bdev_get_queue(dev->bdev); 1325 1326 return q && (q->flush_flags & flush); 1327 } 1328 1329 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1330 { 1331 struct dm_target *ti; 1332 unsigned i = 0; 1333 1334 /* 1335 * Require at least one underlying device to support flushes. 1336 * t->devices includes internal dm devices such as mirror logs 1337 * so we need to use iterate_devices here, which targets 1338 * supporting flushes must provide. 1339 */ 1340 while (i < dm_table_get_num_targets(t)) { 1341 ti = dm_table_get_target(t, i++); 1342 1343 if (!ti->num_flush_bios) 1344 continue; 1345 1346 if (ti->flush_supported) 1347 return 1; 1348 1349 if (ti->type->iterate_devices && 1350 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1351 return 1; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1358 { 1359 struct dm_target *ti; 1360 unsigned i = 0; 1361 1362 /* Ensure that all targets supports discard_zeroes_data. */ 1363 while (i < dm_table_get_num_targets(t)) { 1364 ti = dm_table_get_target(t, i++); 1365 1366 if (ti->discard_zeroes_data_unsupported) 1367 return 0; 1368 } 1369 1370 return 1; 1371 } 1372 1373 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1374 sector_t start, sector_t len, void *data) 1375 { 1376 struct request_queue *q = bdev_get_queue(dev->bdev); 1377 1378 return q && blk_queue_nonrot(q); 1379 } 1380 1381 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1382 sector_t start, sector_t len, void *data) 1383 { 1384 struct request_queue *q = bdev_get_queue(dev->bdev); 1385 1386 return q && !blk_queue_add_random(q); 1387 } 1388 1389 static bool dm_table_all_devices_attribute(struct dm_table *t, 1390 iterate_devices_callout_fn func) 1391 { 1392 struct dm_target *ti; 1393 unsigned i = 0; 1394 1395 while (i < dm_table_get_num_targets(t)) { 1396 ti = dm_table_get_target(t, i++); 1397 1398 if (!ti->type->iterate_devices || 1399 !ti->type->iterate_devices(ti, func, NULL)) 1400 return 0; 1401 } 1402 1403 return 1; 1404 } 1405 1406 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1407 sector_t start, sector_t len, void *data) 1408 { 1409 struct request_queue *q = bdev_get_queue(dev->bdev); 1410 1411 return q && !q->limits.max_write_same_sectors; 1412 } 1413 1414 static bool dm_table_supports_write_same(struct dm_table *t) 1415 { 1416 struct dm_target *ti; 1417 unsigned i = 0; 1418 1419 while (i < dm_table_get_num_targets(t)) { 1420 ti = dm_table_get_target(t, i++); 1421 1422 if (!ti->num_write_same_bios) 1423 return false; 1424 1425 if (!ti->type->iterate_devices || 1426 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1427 return false; 1428 } 1429 1430 return true; 1431 } 1432 1433 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1434 struct queue_limits *limits) 1435 { 1436 unsigned flush = 0; 1437 1438 /* 1439 * Copy table's limits to the DM device's request_queue 1440 */ 1441 q->limits = *limits; 1442 1443 if (!dm_table_supports_discards(t)) 1444 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1445 else 1446 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1447 1448 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1449 flush |= REQ_FLUSH; 1450 if (dm_table_supports_flush(t, REQ_FUA)) 1451 flush |= REQ_FUA; 1452 } 1453 blk_queue_flush(q, flush); 1454 1455 if (!dm_table_discard_zeroes_data(t)) 1456 q->limits.discard_zeroes_data = 0; 1457 1458 /* Ensure that all underlying devices are non-rotational. */ 1459 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1460 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1461 else 1462 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1463 1464 if (!dm_table_supports_write_same(t)) 1465 q->limits.max_write_same_sectors = 0; 1466 1467 dm_table_set_integrity(t); 1468 1469 /* 1470 * Determine whether or not this queue's I/O timings contribute 1471 * to the entropy pool, Only request-based targets use this. 1472 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1473 * have it set. 1474 */ 1475 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1476 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1477 1478 /* 1479 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1480 * visible to other CPUs because, once the flag is set, incoming bios 1481 * are processed by request-based dm, which refers to the queue 1482 * settings. 1483 * Until the flag set, bios are passed to bio-based dm and queued to 1484 * md->deferred where queue settings are not needed yet. 1485 * Those bios are passed to request-based dm at the resume time. 1486 */ 1487 smp_mb(); 1488 if (dm_table_request_based(t)) 1489 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1490 } 1491 1492 unsigned int dm_table_get_num_targets(struct dm_table *t) 1493 { 1494 return t->num_targets; 1495 } 1496 1497 struct list_head *dm_table_get_devices(struct dm_table *t) 1498 { 1499 return &t->devices; 1500 } 1501 1502 fmode_t dm_table_get_mode(struct dm_table *t) 1503 { 1504 return t->mode; 1505 } 1506 EXPORT_SYMBOL(dm_table_get_mode); 1507 1508 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1509 { 1510 int i = t->num_targets; 1511 struct dm_target *ti = t->targets; 1512 1513 while (i--) { 1514 if (postsuspend) { 1515 if (ti->type->postsuspend) 1516 ti->type->postsuspend(ti); 1517 } else if (ti->type->presuspend) 1518 ti->type->presuspend(ti); 1519 1520 ti++; 1521 } 1522 } 1523 1524 void dm_table_presuspend_targets(struct dm_table *t) 1525 { 1526 if (!t) 1527 return; 1528 1529 suspend_targets(t, 0); 1530 } 1531 1532 void dm_table_postsuspend_targets(struct dm_table *t) 1533 { 1534 if (!t) 1535 return; 1536 1537 suspend_targets(t, 1); 1538 } 1539 1540 int dm_table_resume_targets(struct dm_table *t) 1541 { 1542 int i, r = 0; 1543 1544 for (i = 0; i < t->num_targets; i++) { 1545 struct dm_target *ti = t->targets + i; 1546 1547 if (!ti->type->preresume) 1548 continue; 1549 1550 r = ti->type->preresume(ti); 1551 if (r) 1552 return r; 1553 } 1554 1555 for (i = 0; i < t->num_targets; i++) { 1556 struct dm_target *ti = t->targets + i; 1557 1558 if (ti->type->resume) 1559 ti->type->resume(ti); 1560 } 1561 1562 return 0; 1563 } 1564 1565 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1566 { 1567 list_add(&cb->list, &t->target_callbacks); 1568 } 1569 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1570 1571 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1572 { 1573 struct dm_dev_internal *dd; 1574 struct list_head *devices = dm_table_get_devices(t); 1575 struct dm_target_callbacks *cb; 1576 int r = 0; 1577 1578 list_for_each_entry(dd, devices, list) { 1579 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1580 char b[BDEVNAME_SIZE]; 1581 1582 if (likely(q)) 1583 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1584 else 1585 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1586 dm_device_name(t->md), 1587 bdevname(dd->dm_dev.bdev, b)); 1588 } 1589 1590 list_for_each_entry(cb, &t->target_callbacks, list) 1591 if (cb->congested_fn) 1592 r |= cb->congested_fn(cb, bdi_bits); 1593 1594 return r; 1595 } 1596 1597 int dm_table_any_busy_target(struct dm_table *t) 1598 { 1599 unsigned i; 1600 struct dm_target *ti; 1601 1602 for (i = 0; i < t->num_targets; i++) { 1603 ti = t->targets + i; 1604 if (ti->type->busy && ti->type->busy(ti)) 1605 return 1; 1606 } 1607 1608 return 0; 1609 } 1610 1611 struct mapped_device *dm_table_get_md(struct dm_table *t) 1612 { 1613 return t->md; 1614 } 1615 EXPORT_SYMBOL(dm_table_get_md); 1616 1617 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1618 sector_t start, sector_t len, void *data) 1619 { 1620 struct request_queue *q = bdev_get_queue(dev->bdev); 1621 1622 return q && blk_queue_discard(q); 1623 } 1624 1625 bool dm_table_supports_discards(struct dm_table *t) 1626 { 1627 struct dm_target *ti; 1628 unsigned i = 0; 1629 1630 /* 1631 * Unless any target used by the table set discards_supported, 1632 * require at least one underlying device to support discards. 1633 * t->devices includes internal dm devices such as mirror logs 1634 * so we need to use iterate_devices here, which targets 1635 * supporting discard selectively must provide. 1636 */ 1637 while (i < dm_table_get_num_targets(t)) { 1638 ti = dm_table_get_target(t, i++); 1639 1640 if (!ti->num_discard_bios) 1641 continue; 1642 1643 if (ti->discards_supported) 1644 return 1; 1645 1646 if (ti->type->iterate_devices && 1647 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1648 return 1; 1649 } 1650 1651 return 0; 1652 } 1653