1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 unsigned integrity_added:1; 51 52 /* 53 * Indicates the rw permissions for the new logical 54 * device. This should be a combination of FMODE_READ 55 * and FMODE_WRITE. 56 */ 57 fmode_t mode; 58 59 /* a list of devices used by this table */ 60 struct list_head devices; 61 62 /* events get handed up using this callback */ 63 void (*event_fn)(void *); 64 void *event_context; 65 66 struct dm_md_mempools *mempools; 67 68 struct list_head target_callbacks; 69 }; 70 71 /* 72 * Similar to ceiling(log_size(n)) 73 */ 74 static unsigned int int_log(unsigned int n, unsigned int base) 75 { 76 int result = 0; 77 78 while (n > 1) { 79 n = dm_div_up(n, base); 80 result++; 81 } 82 83 return result; 84 } 85 86 /* 87 * Calculate the index of the child node of the n'th node k'th key. 88 */ 89 static inline unsigned int get_child(unsigned int n, unsigned int k) 90 { 91 return (n * CHILDREN_PER_NODE) + k; 92 } 93 94 /* 95 * Return the n'th node of level l from table t. 96 */ 97 static inline sector_t *get_node(struct dm_table *t, 98 unsigned int l, unsigned int n) 99 { 100 return t->index[l] + (n * KEYS_PER_NODE); 101 } 102 103 /* 104 * Return the highest key that you could lookup from the n'th 105 * node on level l of the btree. 106 */ 107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 108 { 109 for (; l < t->depth - 1; l++) 110 n = get_child(n, CHILDREN_PER_NODE - 1); 111 112 if (n >= t->counts[l]) 113 return (sector_t) - 1; 114 115 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 116 } 117 118 /* 119 * Fills in a level of the btree based on the highs of the level 120 * below it. 121 */ 122 static int setup_btree_index(unsigned int l, struct dm_table *t) 123 { 124 unsigned int n, k; 125 sector_t *node; 126 127 for (n = 0U; n < t->counts[l]; n++) { 128 node = get_node(t, l, n); 129 130 for (k = 0U; k < KEYS_PER_NODE; k++) 131 node[k] = high(t, l + 1, get_child(n, k)); 132 } 133 134 return 0; 135 } 136 137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 138 { 139 unsigned long size; 140 void *addr; 141 142 /* 143 * Check that we're not going to overflow. 144 */ 145 if (nmemb > (ULONG_MAX / elem_size)) 146 return NULL; 147 148 size = nmemb * elem_size; 149 addr = vzalloc(size); 150 151 return addr; 152 } 153 EXPORT_SYMBOL(dm_vcalloc); 154 155 /* 156 * highs, and targets are managed as dynamic arrays during a 157 * table load. 158 */ 159 static int alloc_targets(struct dm_table *t, unsigned int num) 160 { 161 sector_t *n_highs; 162 struct dm_target *n_targets; 163 164 /* 165 * Allocate both the target array and offset array at once. 166 */ 167 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 168 sizeof(sector_t)); 169 if (!n_highs) 170 return -ENOMEM; 171 172 n_targets = (struct dm_target *) (n_highs + num); 173 174 memset(n_highs, -1, sizeof(*n_highs) * num); 175 vfree(t->highs); 176 177 t->num_allocated = num; 178 t->highs = n_highs; 179 t->targets = n_targets; 180 181 return 0; 182 } 183 184 int dm_table_create(struct dm_table **result, fmode_t mode, 185 unsigned num_targets, struct mapped_device *md) 186 { 187 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 188 189 if (!t) 190 return -ENOMEM; 191 192 INIT_LIST_HEAD(&t->devices); 193 INIT_LIST_HEAD(&t->target_callbacks); 194 195 if (!num_targets) 196 num_targets = KEYS_PER_NODE; 197 198 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 199 200 if (!num_targets) { 201 kfree(t); 202 return -ENOMEM; 203 } 204 205 if (alloc_targets(t, num_targets)) { 206 kfree(t); 207 return -ENOMEM; 208 } 209 210 t->type = DM_TYPE_NONE; 211 t->mode = mode; 212 t->md = md; 213 *result = t; 214 return 0; 215 } 216 217 static void free_devices(struct list_head *devices, struct mapped_device *md) 218 { 219 struct list_head *tmp, *next; 220 221 list_for_each_safe(tmp, next, devices) { 222 struct dm_dev_internal *dd = 223 list_entry(tmp, struct dm_dev_internal, list); 224 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 225 dm_device_name(md), dd->dm_dev->name); 226 dm_put_table_device(md, dd->dm_dev); 227 kfree(dd); 228 } 229 } 230 231 void dm_table_destroy(struct dm_table *t) 232 { 233 unsigned int i; 234 235 if (!t) 236 return; 237 238 /* free the indexes */ 239 if (t->depth >= 2) 240 vfree(t->index[t->depth - 2]); 241 242 /* free the targets */ 243 for (i = 0; i < t->num_targets; i++) { 244 struct dm_target *tgt = t->targets + i; 245 246 if (tgt->type->dtr) 247 tgt->type->dtr(tgt); 248 249 dm_put_target_type(tgt->type); 250 } 251 252 vfree(t->highs); 253 254 /* free the device list */ 255 free_devices(&t->devices, t->md); 256 257 dm_free_md_mempools(t->mempools); 258 259 kfree(t); 260 } 261 262 /* 263 * See if we've already got a device in the list. 264 */ 265 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 266 { 267 struct dm_dev_internal *dd; 268 269 list_for_each_entry (dd, l, list) 270 if (dd->dm_dev->bdev->bd_dev == dev) 271 return dd; 272 273 return NULL; 274 } 275 276 /* 277 * If possible, this checks an area of a destination device is invalid. 278 */ 279 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 280 sector_t start, sector_t len, void *data) 281 { 282 struct request_queue *q; 283 struct queue_limits *limits = data; 284 struct block_device *bdev = dev->bdev; 285 sector_t dev_size = 286 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 287 unsigned short logical_block_size_sectors = 288 limits->logical_block_size >> SECTOR_SHIFT; 289 char b[BDEVNAME_SIZE]; 290 291 /* 292 * Some devices exist without request functions, 293 * such as loop devices not yet bound to backing files. 294 * Forbid the use of such devices. 295 */ 296 q = bdev_get_queue(bdev); 297 if (!q || !q->make_request_fn) { 298 DMWARN("%s: %s is not yet initialised: " 299 "start=%llu, len=%llu, dev_size=%llu", 300 dm_device_name(ti->table->md), bdevname(bdev, b), 301 (unsigned long long)start, 302 (unsigned long long)len, 303 (unsigned long long)dev_size); 304 return 1; 305 } 306 307 if (!dev_size) 308 return 0; 309 310 if ((start >= dev_size) || (start + len > dev_size)) { 311 DMWARN("%s: %s too small for target: " 312 "start=%llu, len=%llu, dev_size=%llu", 313 dm_device_name(ti->table->md), bdevname(bdev, b), 314 (unsigned long long)start, 315 (unsigned long long)len, 316 (unsigned long long)dev_size); 317 return 1; 318 } 319 320 /* 321 * If the target is mapped to zoned block device(s), check 322 * that the zones are not partially mapped. 323 */ 324 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 325 unsigned int zone_sectors = bdev_zone_sectors(bdev); 326 327 if (start & (zone_sectors - 1)) { 328 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 329 dm_device_name(ti->table->md), 330 (unsigned long long)start, 331 zone_sectors, bdevname(bdev, b)); 332 return 1; 333 } 334 335 /* 336 * Note: The last zone of a zoned block device may be smaller 337 * than other zones. So for a target mapping the end of a 338 * zoned block device with such a zone, len would not be zone 339 * aligned. We do not allow such last smaller zone to be part 340 * of the mapping here to ensure that mappings with multiple 341 * devices do not end up with a smaller zone in the middle of 342 * the sector range. 343 */ 344 if (len & (zone_sectors - 1)) { 345 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 346 dm_device_name(ti->table->md), 347 (unsigned long long)len, 348 zone_sectors, bdevname(bdev, b)); 349 return 1; 350 } 351 } 352 353 if (logical_block_size_sectors <= 1) 354 return 0; 355 356 if (start & (logical_block_size_sectors - 1)) { 357 DMWARN("%s: start=%llu not aligned to h/w " 358 "logical block size %u of %s", 359 dm_device_name(ti->table->md), 360 (unsigned long long)start, 361 limits->logical_block_size, bdevname(bdev, b)); 362 return 1; 363 } 364 365 if (len & (logical_block_size_sectors - 1)) { 366 DMWARN("%s: len=%llu not aligned to h/w " 367 "logical block size %u of %s", 368 dm_device_name(ti->table->md), 369 (unsigned long long)len, 370 limits->logical_block_size, bdevname(bdev, b)); 371 return 1; 372 } 373 374 return 0; 375 } 376 377 /* 378 * This upgrades the mode on an already open dm_dev, being 379 * careful to leave things as they were if we fail to reopen the 380 * device and not to touch the existing bdev field in case 381 * it is accessed concurrently inside dm_table_any_congested(). 382 */ 383 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 384 struct mapped_device *md) 385 { 386 int r; 387 struct dm_dev *old_dev, *new_dev; 388 389 old_dev = dd->dm_dev; 390 391 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 392 dd->dm_dev->mode | new_mode, &new_dev); 393 if (r) 394 return r; 395 396 dd->dm_dev = new_dev; 397 dm_put_table_device(md, old_dev); 398 399 return 0; 400 } 401 402 /* 403 * Convert the path to a device 404 */ 405 dev_t dm_get_dev_t(const char *path) 406 { 407 dev_t dev; 408 struct block_device *bdev; 409 410 bdev = lookup_bdev(path); 411 if (IS_ERR(bdev)) 412 dev = name_to_dev_t(path); 413 else { 414 dev = bdev->bd_dev; 415 bdput(bdev); 416 } 417 418 return dev; 419 } 420 EXPORT_SYMBOL_GPL(dm_get_dev_t); 421 422 /* 423 * Add a device to the list, or just increment the usage count if 424 * it's already present. 425 */ 426 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 427 struct dm_dev **result) 428 { 429 int r; 430 dev_t dev; 431 struct dm_dev_internal *dd; 432 struct dm_table *t = ti->table; 433 434 BUG_ON(!t); 435 436 dev = dm_get_dev_t(path); 437 if (!dev) 438 return -ENODEV; 439 440 dd = find_device(&t->devices, dev); 441 if (!dd) { 442 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 443 if (!dd) 444 return -ENOMEM; 445 446 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 447 kfree(dd); 448 return r; 449 } 450 451 refcount_set(&dd->count, 1); 452 list_add(&dd->list, &t->devices); 453 goto out; 454 455 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 456 r = upgrade_mode(dd, mode, t->md); 457 if (r) 458 return r; 459 } 460 refcount_inc(&dd->count); 461 out: 462 *result = dd->dm_dev; 463 return 0; 464 } 465 EXPORT_SYMBOL(dm_get_device); 466 467 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 468 sector_t start, sector_t len, void *data) 469 { 470 struct queue_limits *limits = data; 471 struct block_device *bdev = dev->bdev; 472 struct request_queue *q = bdev_get_queue(bdev); 473 char b[BDEVNAME_SIZE]; 474 475 if (unlikely(!q)) { 476 DMWARN("%s: Cannot set limits for nonexistent device %s", 477 dm_device_name(ti->table->md), bdevname(bdev, b)); 478 return 0; 479 } 480 481 if (bdev_stack_limits(limits, bdev, start) < 0) 482 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 483 "physical_block_size=%u, logical_block_size=%u, " 484 "alignment_offset=%u, start=%llu", 485 dm_device_name(ti->table->md), bdevname(bdev, b), 486 q->limits.physical_block_size, 487 q->limits.logical_block_size, 488 q->limits.alignment_offset, 489 (unsigned long long) start << SECTOR_SHIFT); 490 491 limits->zoned = blk_queue_zoned_model(q); 492 493 return 0; 494 } 495 496 /* 497 * Decrement a device's use count and remove it if necessary. 498 */ 499 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 500 { 501 int found = 0; 502 struct list_head *devices = &ti->table->devices; 503 struct dm_dev_internal *dd; 504 505 list_for_each_entry(dd, devices, list) { 506 if (dd->dm_dev == d) { 507 found = 1; 508 break; 509 } 510 } 511 if (!found) { 512 DMWARN("%s: device %s not in table devices list", 513 dm_device_name(ti->table->md), d->name); 514 return; 515 } 516 if (refcount_dec_and_test(&dd->count)) { 517 dm_put_table_device(ti->table->md, d); 518 list_del(&dd->list); 519 kfree(dd); 520 } 521 } 522 EXPORT_SYMBOL(dm_put_device); 523 524 /* 525 * Checks to see if the target joins onto the end of the table. 526 */ 527 static int adjoin(struct dm_table *table, struct dm_target *ti) 528 { 529 struct dm_target *prev; 530 531 if (!table->num_targets) 532 return !ti->begin; 533 534 prev = &table->targets[table->num_targets - 1]; 535 return (ti->begin == (prev->begin + prev->len)); 536 } 537 538 /* 539 * Used to dynamically allocate the arg array. 540 * 541 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 542 * process messages even if some device is suspended. These messages have a 543 * small fixed number of arguments. 544 * 545 * On the other hand, dm-switch needs to process bulk data using messages and 546 * excessive use of GFP_NOIO could cause trouble. 547 */ 548 static char **realloc_argv(unsigned *size, char **old_argv) 549 { 550 char **argv; 551 unsigned new_size; 552 gfp_t gfp; 553 554 if (*size) { 555 new_size = *size * 2; 556 gfp = GFP_KERNEL; 557 } else { 558 new_size = 8; 559 gfp = GFP_NOIO; 560 } 561 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 562 if (argv && old_argv) { 563 memcpy(argv, old_argv, *size * sizeof(*argv)); 564 *size = new_size; 565 } 566 567 kfree(old_argv); 568 return argv; 569 } 570 571 /* 572 * Destructively splits up the argument list to pass to ctr. 573 */ 574 int dm_split_args(int *argc, char ***argvp, char *input) 575 { 576 char *start, *end = input, *out, **argv = NULL; 577 unsigned array_size = 0; 578 579 *argc = 0; 580 581 if (!input) { 582 *argvp = NULL; 583 return 0; 584 } 585 586 argv = realloc_argv(&array_size, argv); 587 if (!argv) 588 return -ENOMEM; 589 590 while (1) { 591 /* Skip whitespace */ 592 start = skip_spaces(end); 593 594 if (!*start) 595 break; /* success, we hit the end */ 596 597 /* 'out' is used to remove any back-quotes */ 598 end = out = start; 599 while (*end) { 600 /* Everything apart from '\0' can be quoted */ 601 if (*end == '\\' && *(end + 1)) { 602 *out++ = *(end + 1); 603 end += 2; 604 continue; 605 } 606 607 if (isspace(*end)) 608 break; /* end of token */ 609 610 *out++ = *end++; 611 } 612 613 /* have we already filled the array ? */ 614 if ((*argc + 1) > array_size) { 615 argv = realloc_argv(&array_size, argv); 616 if (!argv) 617 return -ENOMEM; 618 } 619 620 /* we know this is whitespace */ 621 if (*end) 622 end++; 623 624 /* terminate the string and put it in the array */ 625 *out = '\0'; 626 argv[*argc] = start; 627 (*argc)++; 628 } 629 630 *argvp = argv; 631 return 0; 632 } 633 634 /* 635 * Impose necessary and sufficient conditions on a devices's table such 636 * that any incoming bio which respects its logical_block_size can be 637 * processed successfully. If it falls across the boundary between 638 * two or more targets, the size of each piece it gets split into must 639 * be compatible with the logical_block_size of the target processing it. 640 */ 641 static int validate_hardware_logical_block_alignment(struct dm_table *table, 642 struct queue_limits *limits) 643 { 644 /* 645 * This function uses arithmetic modulo the logical_block_size 646 * (in units of 512-byte sectors). 647 */ 648 unsigned short device_logical_block_size_sects = 649 limits->logical_block_size >> SECTOR_SHIFT; 650 651 /* 652 * Offset of the start of the next table entry, mod logical_block_size. 653 */ 654 unsigned short next_target_start = 0; 655 656 /* 657 * Given an aligned bio that extends beyond the end of a 658 * target, how many sectors must the next target handle? 659 */ 660 unsigned short remaining = 0; 661 662 struct dm_target *uninitialized_var(ti); 663 struct queue_limits ti_limits; 664 unsigned i; 665 666 /* 667 * Check each entry in the table in turn. 668 */ 669 for (i = 0; i < dm_table_get_num_targets(table); i++) { 670 ti = dm_table_get_target(table, i); 671 672 blk_set_stacking_limits(&ti_limits); 673 674 /* combine all target devices' limits */ 675 if (ti->type->iterate_devices) 676 ti->type->iterate_devices(ti, dm_set_device_limits, 677 &ti_limits); 678 679 /* 680 * If the remaining sectors fall entirely within this 681 * table entry are they compatible with its logical_block_size? 682 */ 683 if (remaining < ti->len && 684 remaining & ((ti_limits.logical_block_size >> 685 SECTOR_SHIFT) - 1)) 686 break; /* Error */ 687 688 next_target_start = 689 (unsigned short) ((next_target_start + ti->len) & 690 (device_logical_block_size_sects - 1)); 691 remaining = next_target_start ? 692 device_logical_block_size_sects - next_target_start : 0; 693 } 694 695 if (remaining) { 696 DMWARN("%s: table line %u (start sect %llu len %llu) " 697 "not aligned to h/w logical block size %u", 698 dm_device_name(table->md), i, 699 (unsigned long long) ti->begin, 700 (unsigned long long) ti->len, 701 limits->logical_block_size); 702 return -EINVAL; 703 } 704 705 return 0; 706 } 707 708 int dm_table_add_target(struct dm_table *t, const char *type, 709 sector_t start, sector_t len, char *params) 710 { 711 int r = -EINVAL, argc; 712 char **argv; 713 struct dm_target *tgt; 714 715 if (t->singleton) { 716 DMERR("%s: target type %s must appear alone in table", 717 dm_device_name(t->md), t->targets->type->name); 718 return -EINVAL; 719 } 720 721 BUG_ON(t->num_targets >= t->num_allocated); 722 723 tgt = t->targets + t->num_targets; 724 memset(tgt, 0, sizeof(*tgt)); 725 726 if (!len) { 727 DMERR("%s: zero-length target", dm_device_name(t->md)); 728 return -EINVAL; 729 } 730 731 tgt->type = dm_get_target_type(type); 732 if (!tgt->type) { 733 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 734 return -EINVAL; 735 } 736 737 if (dm_target_needs_singleton(tgt->type)) { 738 if (t->num_targets) { 739 tgt->error = "singleton target type must appear alone in table"; 740 goto bad; 741 } 742 t->singleton = true; 743 } 744 745 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 746 tgt->error = "target type may not be included in a read-only table"; 747 goto bad; 748 } 749 750 if (t->immutable_target_type) { 751 if (t->immutable_target_type != tgt->type) { 752 tgt->error = "immutable target type cannot be mixed with other target types"; 753 goto bad; 754 } 755 } else if (dm_target_is_immutable(tgt->type)) { 756 if (t->num_targets) { 757 tgt->error = "immutable target type cannot be mixed with other target types"; 758 goto bad; 759 } 760 t->immutable_target_type = tgt->type; 761 } 762 763 if (dm_target_has_integrity(tgt->type)) 764 t->integrity_added = 1; 765 766 tgt->table = t; 767 tgt->begin = start; 768 tgt->len = len; 769 tgt->error = "Unknown error"; 770 771 /* 772 * Does this target adjoin the previous one ? 773 */ 774 if (!adjoin(t, tgt)) { 775 tgt->error = "Gap in table"; 776 goto bad; 777 } 778 779 r = dm_split_args(&argc, &argv, params); 780 if (r) { 781 tgt->error = "couldn't split parameters (insufficient memory)"; 782 goto bad; 783 } 784 785 r = tgt->type->ctr(tgt, argc, argv); 786 kfree(argv); 787 if (r) 788 goto bad; 789 790 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 791 792 if (!tgt->num_discard_bios && tgt->discards_supported) 793 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 794 dm_device_name(t->md), type); 795 796 return 0; 797 798 bad: 799 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 800 dm_put_target_type(tgt->type); 801 return r; 802 } 803 804 /* 805 * Target argument parsing helpers. 806 */ 807 static int validate_next_arg(const struct dm_arg *arg, 808 struct dm_arg_set *arg_set, 809 unsigned *value, char **error, unsigned grouped) 810 { 811 const char *arg_str = dm_shift_arg(arg_set); 812 char dummy; 813 814 if (!arg_str || 815 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 816 (*value < arg->min) || 817 (*value > arg->max) || 818 (grouped && arg_set->argc < *value)) { 819 *error = arg->error; 820 return -EINVAL; 821 } 822 823 return 0; 824 } 825 826 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 827 unsigned *value, char **error) 828 { 829 return validate_next_arg(arg, arg_set, value, error, 0); 830 } 831 EXPORT_SYMBOL(dm_read_arg); 832 833 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 834 unsigned *value, char **error) 835 { 836 return validate_next_arg(arg, arg_set, value, error, 1); 837 } 838 EXPORT_SYMBOL(dm_read_arg_group); 839 840 const char *dm_shift_arg(struct dm_arg_set *as) 841 { 842 char *r; 843 844 if (as->argc) { 845 as->argc--; 846 r = *as->argv; 847 as->argv++; 848 return r; 849 } 850 851 return NULL; 852 } 853 EXPORT_SYMBOL(dm_shift_arg); 854 855 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 856 { 857 BUG_ON(as->argc < num_args); 858 as->argc -= num_args; 859 as->argv += num_args; 860 } 861 EXPORT_SYMBOL(dm_consume_args); 862 863 static bool __table_type_bio_based(enum dm_queue_mode table_type) 864 { 865 return (table_type == DM_TYPE_BIO_BASED || 866 table_type == DM_TYPE_DAX_BIO_BASED || 867 table_type == DM_TYPE_NVME_BIO_BASED); 868 } 869 870 static bool __table_type_request_based(enum dm_queue_mode table_type) 871 { 872 return table_type == DM_TYPE_REQUEST_BASED; 873 } 874 875 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 876 { 877 t->type = type; 878 } 879 EXPORT_SYMBOL_GPL(dm_table_set_type); 880 881 /* validate the dax capability of the target device span */ 882 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 883 sector_t start, sector_t len, void *data) 884 { 885 int blocksize = *(int *) data; 886 887 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize, 888 start, len); 889 } 890 891 /* Check devices support synchronous DAX */ 892 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev, 893 sector_t start, sector_t len, void *data) 894 { 895 return dev->dax_dev && dax_synchronous(dev->dax_dev); 896 } 897 898 bool dm_table_supports_dax(struct dm_table *t, 899 iterate_devices_callout_fn iterate_fn, int *blocksize) 900 { 901 struct dm_target *ti; 902 unsigned i; 903 904 /* Ensure that all targets support DAX. */ 905 for (i = 0; i < dm_table_get_num_targets(t); i++) { 906 ti = dm_table_get_target(t, i); 907 908 if (!ti->type->direct_access) 909 return false; 910 911 if (!ti->type->iterate_devices || 912 !ti->type->iterate_devices(ti, iterate_fn, blocksize)) 913 return false; 914 } 915 916 return true; 917 } 918 919 static bool dm_table_does_not_support_partial_completion(struct dm_table *t); 920 921 struct verify_rq_based_data { 922 unsigned sq_count; 923 unsigned mq_count; 924 }; 925 926 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev, 927 sector_t start, sector_t len, void *data) 928 { 929 struct request_queue *q = bdev_get_queue(dev->bdev); 930 struct verify_rq_based_data *v = data; 931 932 if (queue_is_mq(q)) 933 v->mq_count++; 934 else 935 v->sq_count++; 936 937 return queue_is_mq(q); 938 } 939 940 static int dm_table_determine_type(struct dm_table *t) 941 { 942 unsigned i; 943 unsigned bio_based = 0, request_based = 0, hybrid = 0; 944 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0}; 945 struct dm_target *tgt; 946 struct list_head *devices = dm_table_get_devices(t); 947 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 948 int page_size = PAGE_SIZE; 949 950 if (t->type != DM_TYPE_NONE) { 951 /* target already set the table's type */ 952 if (t->type == DM_TYPE_BIO_BASED) { 953 /* possibly upgrade to a variant of bio-based */ 954 goto verify_bio_based; 955 } 956 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 957 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED); 958 goto verify_rq_based; 959 } 960 961 for (i = 0; i < t->num_targets; i++) { 962 tgt = t->targets + i; 963 if (dm_target_hybrid(tgt)) 964 hybrid = 1; 965 else if (dm_target_request_based(tgt)) 966 request_based = 1; 967 else 968 bio_based = 1; 969 970 if (bio_based && request_based) { 971 DMERR("Inconsistent table: different target types" 972 " can't be mixed up"); 973 return -EINVAL; 974 } 975 } 976 977 if (hybrid && !bio_based && !request_based) { 978 /* 979 * The targets can work either way. 980 * Determine the type from the live device. 981 * Default to bio-based if device is new. 982 */ 983 if (__table_type_request_based(live_md_type)) 984 request_based = 1; 985 else 986 bio_based = 1; 987 } 988 989 if (bio_based) { 990 verify_bio_based: 991 /* We must use this table as bio-based */ 992 t->type = DM_TYPE_BIO_BASED; 993 if (dm_table_supports_dax(t, device_supports_dax, &page_size) || 994 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 995 t->type = DM_TYPE_DAX_BIO_BASED; 996 } else { 997 /* Check if upgrading to NVMe bio-based is valid or required */ 998 tgt = dm_table_get_immutable_target(t); 999 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) { 1000 t->type = DM_TYPE_NVME_BIO_BASED; 1001 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */ 1002 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) { 1003 t->type = DM_TYPE_NVME_BIO_BASED; 1004 } 1005 } 1006 return 0; 1007 } 1008 1009 BUG_ON(!request_based); /* No targets in this table */ 1010 1011 t->type = DM_TYPE_REQUEST_BASED; 1012 1013 verify_rq_based: 1014 /* 1015 * Request-based dm supports only tables that have a single target now. 1016 * To support multiple targets, request splitting support is needed, 1017 * and that needs lots of changes in the block-layer. 1018 * (e.g. request completion process for partial completion.) 1019 */ 1020 if (t->num_targets > 1) { 1021 DMERR("%s DM doesn't support multiple targets", 1022 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based"); 1023 return -EINVAL; 1024 } 1025 1026 if (list_empty(devices)) { 1027 int srcu_idx; 1028 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 1029 1030 /* inherit live table's type */ 1031 if (live_table) 1032 t->type = live_table->type; 1033 dm_put_live_table(t->md, srcu_idx); 1034 return 0; 1035 } 1036 1037 tgt = dm_table_get_immutable_target(t); 1038 if (!tgt) { 1039 DMERR("table load rejected: immutable target is required"); 1040 return -EINVAL; 1041 } else if (tgt->max_io_len) { 1042 DMERR("table load rejected: immutable target that splits IO is not supported"); 1043 return -EINVAL; 1044 } 1045 1046 /* Non-request-stackable devices can't be used for request-based dm */ 1047 if (!tgt->type->iterate_devices || 1048 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) { 1049 DMERR("table load rejected: including non-request-stackable devices"); 1050 return -EINVAL; 1051 } 1052 if (v.sq_count > 0) { 1053 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 1054 return -EINVAL; 1055 } 1056 1057 return 0; 1058 } 1059 1060 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1061 { 1062 return t->type; 1063 } 1064 1065 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1066 { 1067 return t->immutable_target_type; 1068 } 1069 1070 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1071 { 1072 /* Immutable target is implicitly a singleton */ 1073 if (t->num_targets > 1 || 1074 !dm_target_is_immutable(t->targets[0].type)) 1075 return NULL; 1076 1077 return t->targets; 1078 } 1079 1080 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1081 { 1082 struct dm_target *ti; 1083 unsigned i; 1084 1085 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1086 ti = dm_table_get_target(t, i); 1087 if (dm_target_is_wildcard(ti->type)) 1088 return ti; 1089 } 1090 1091 return NULL; 1092 } 1093 1094 bool dm_table_bio_based(struct dm_table *t) 1095 { 1096 return __table_type_bio_based(dm_table_get_type(t)); 1097 } 1098 1099 bool dm_table_request_based(struct dm_table *t) 1100 { 1101 return __table_type_request_based(dm_table_get_type(t)); 1102 } 1103 1104 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1105 { 1106 enum dm_queue_mode type = dm_table_get_type(t); 1107 unsigned per_io_data_size = 0; 1108 unsigned min_pool_size = 0; 1109 struct dm_target *ti; 1110 unsigned i; 1111 1112 if (unlikely(type == DM_TYPE_NONE)) { 1113 DMWARN("no table type is set, can't allocate mempools"); 1114 return -EINVAL; 1115 } 1116 1117 if (__table_type_bio_based(type)) 1118 for (i = 0; i < t->num_targets; i++) { 1119 ti = t->targets + i; 1120 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1121 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1122 } 1123 1124 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1125 per_io_data_size, min_pool_size); 1126 if (!t->mempools) 1127 return -ENOMEM; 1128 1129 return 0; 1130 } 1131 1132 void dm_table_free_md_mempools(struct dm_table *t) 1133 { 1134 dm_free_md_mempools(t->mempools); 1135 t->mempools = NULL; 1136 } 1137 1138 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1139 { 1140 return t->mempools; 1141 } 1142 1143 static int setup_indexes(struct dm_table *t) 1144 { 1145 int i; 1146 unsigned int total = 0; 1147 sector_t *indexes; 1148 1149 /* allocate the space for *all* the indexes */ 1150 for (i = t->depth - 2; i >= 0; i--) { 1151 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1152 total += t->counts[i]; 1153 } 1154 1155 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1156 if (!indexes) 1157 return -ENOMEM; 1158 1159 /* set up internal nodes, bottom-up */ 1160 for (i = t->depth - 2; i >= 0; i--) { 1161 t->index[i] = indexes; 1162 indexes += (KEYS_PER_NODE * t->counts[i]); 1163 setup_btree_index(i, t); 1164 } 1165 1166 return 0; 1167 } 1168 1169 /* 1170 * Builds the btree to index the map. 1171 */ 1172 static int dm_table_build_index(struct dm_table *t) 1173 { 1174 int r = 0; 1175 unsigned int leaf_nodes; 1176 1177 /* how many indexes will the btree have ? */ 1178 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1179 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1180 1181 /* leaf layer has already been set up */ 1182 t->counts[t->depth - 1] = leaf_nodes; 1183 t->index[t->depth - 1] = t->highs; 1184 1185 if (t->depth >= 2) 1186 r = setup_indexes(t); 1187 1188 return r; 1189 } 1190 1191 static bool integrity_profile_exists(struct gendisk *disk) 1192 { 1193 return !!blk_get_integrity(disk); 1194 } 1195 1196 /* 1197 * Get a disk whose integrity profile reflects the table's profile. 1198 * Returns NULL if integrity support was inconsistent or unavailable. 1199 */ 1200 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1201 { 1202 struct list_head *devices = dm_table_get_devices(t); 1203 struct dm_dev_internal *dd = NULL; 1204 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1205 unsigned i; 1206 1207 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1208 struct dm_target *ti = dm_table_get_target(t, i); 1209 if (!dm_target_passes_integrity(ti->type)) 1210 goto no_integrity; 1211 } 1212 1213 list_for_each_entry(dd, devices, list) { 1214 template_disk = dd->dm_dev->bdev->bd_disk; 1215 if (!integrity_profile_exists(template_disk)) 1216 goto no_integrity; 1217 else if (prev_disk && 1218 blk_integrity_compare(prev_disk, template_disk) < 0) 1219 goto no_integrity; 1220 prev_disk = template_disk; 1221 } 1222 1223 return template_disk; 1224 1225 no_integrity: 1226 if (prev_disk) 1227 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1228 dm_device_name(t->md), 1229 prev_disk->disk_name, 1230 template_disk->disk_name); 1231 return NULL; 1232 } 1233 1234 /* 1235 * Register the mapped device for blk_integrity support if the 1236 * underlying devices have an integrity profile. But all devices may 1237 * not have matching profiles (checking all devices isn't reliable 1238 * during table load because this table may use other DM device(s) which 1239 * must be resumed before they will have an initialized integity 1240 * profile). Consequently, stacked DM devices force a 2 stage integrity 1241 * profile validation: First pass during table load, final pass during 1242 * resume. 1243 */ 1244 static int dm_table_register_integrity(struct dm_table *t) 1245 { 1246 struct mapped_device *md = t->md; 1247 struct gendisk *template_disk = NULL; 1248 1249 /* If target handles integrity itself do not register it here. */ 1250 if (t->integrity_added) 1251 return 0; 1252 1253 template_disk = dm_table_get_integrity_disk(t); 1254 if (!template_disk) 1255 return 0; 1256 1257 if (!integrity_profile_exists(dm_disk(md))) { 1258 t->integrity_supported = true; 1259 /* 1260 * Register integrity profile during table load; we can do 1261 * this because the final profile must match during resume. 1262 */ 1263 blk_integrity_register(dm_disk(md), 1264 blk_get_integrity(template_disk)); 1265 return 0; 1266 } 1267 1268 /* 1269 * If DM device already has an initialized integrity 1270 * profile the new profile should not conflict. 1271 */ 1272 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1273 DMWARN("%s: conflict with existing integrity profile: " 1274 "%s profile mismatch", 1275 dm_device_name(t->md), 1276 template_disk->disk_name); 1277 return 1; 1278 } 1279 1280 /* Preserve existing integrity profile */ 1281 t->integrity_supported = true; 1282 return 0; 1283 } 1284 1285 /* 1286 * Prepares the table for use by building the indices, 1287 * setting the type, and allocating mempools. 1288 */ 1289 int dm_table_complete(struct dm_table *t) 1290 { 1291 int r; 1292 1293 r = dm_table_determine_type(t); 1294 if (r) { 1295 DMERR("unable to determine table type"); 1296 return r; 1297 } 1298 1299 r = dm_table_build_index(t); 1300 if (r) { 1301 DMERR("unable to build btrees"); 1302 return r; 1303 } 1304 1305 r = dm_table_register_integrity(t); 1306 if (r) { 1307 DMERR("could not register integrity profile."); 1308 return r; 1309 } 1310 1311 r = dm_table_alloc_md_mempools(t, t->md); 1312 if (r) 1313 DMERR("unable to allocate mempools"); 1314 1315 return r; 1316 } 1317 1318 static DEFINE_MUTEX(_event_lock); 1319 void dm_table_event_callback(struct dm_table *t, 1320 void (*fn)(void *), void *context) 1321 { 1322 mutex_lock(&_event_lock); 1323 t->event_fn = fn; 1324 t->event_context = context; 1325 mutex_unlock(&_event_lock); 1326 } 1327 1328 void dm_table_event(struct dm_table *t) 1329 { 1330 /* 1331 * You can no longer call dm_table_event() from interrupt 1332 * context, use a bottom half instead. 1333 */ 1334 BUG_ON(in_interrupt()); 1335 1336 mutex_lock(&_event_lock); 1337 if (t->event_fn) 1338 t->event_fn(t->event_context); 1339 mutex_unlock(&_event_lock); 1340 } 1341 EXPORT_SYMBOL(dm_table_event); 1342 1343 inline sector_t dm_table_get_size(struct dm_table *t) 1344 { 1345 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1346 } 1347 EXPORT_SYMBOL(dm_table_get_size); 1348 1349 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1350 { 1351 if (index >= t->num_targets) 1352 return NULL; 1353 1354 return t->targets + index; 1355 } 1356 1357 /* 1358 * Search the btree for the correct target. 1359 * 1360 * Caller should check returned pointer for NULL 1361 * to trap I/O beyond end of device. 1362 */ 1363 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1364 { 1365 unsigned int l, n = 0, k = 0; 1366 sector_t *node; 1367 1368 if (unlikely(sector >= dm_table_get_size(t))) 1369 return NULL; 1370 1371 for (l = 0; l < t->depth; l++) { 1372 n = get_child(n, k); 1373 node = get_node(t, l, n); 1374 1375 for (k = 0; k < KEYS_PER_NODE; k++) 1376 if (node[k] >= sector) 1377 break; 1378 } 1379 1380 return &t->targets[(KEYS_PER_NODE * n) + k]; 1381 } 1382 1383 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1384 sector_t start, sector_t len, void *data) 1385 { 1386 unsigned *num_devices = data; 1387 1388 (*num_devices)++; 1389 1390 return 0; 1391 } 1392 1393 /* 1394 * Check whether a table has no data devices attached using each 1395 * target's iterate_devices method. 1396 * Returns false if the result is unknown because a target doesn't 1397 * support iterate_devices. 1398 */ 1399 bool dm_table_has_no_data_devices(struct dm_table *table) 1400 { 1401 struct dm_target *ti; 1402 unsigned i, num_devices; 1403 1404 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1405 ti = dm_table_get_target(table, i); 1406 1407 if (!ti->type->iterate_devices) 1408 return false; 1409 1410 num_devices = 0; 1411 ti->type->iterate_devices(ti, count_device, &num_devices); 1412 if (num_devices) 1413 return false; 1414 } 1415 1416 return true; 1417 } 1418 1419 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1420 sector_t start, sector_t len, void *data) 1421 { 1422 struct request_queue *q = bdev_get_queue(dev->bdev); 1423 enum blk_zoned_model *zoned_model = data; 1424 1425 return q && blk_queue_zoned_model(q) == *zoned_model; 1426 } 1427 1428 static bool dm_table_supports_zoned_model(struct dm_table *t, 1429 enum blk_zoned_model zoned_model) 1430 { 1431 struct dm_target *ti; 1432 unsigned i; 1433 1434 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1435 ti = dm_table_get_target(t, i); 1436 1437 if (zoned_model == BLK_ZONED_HM && 1438 !dm_target_supports_zoned_hm(ti->type)) 1439 return false; 1440 1441 if (!ti->type->iterate_devices || 1442 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1443 return false; 1444 } 1445 1446 return true; 1447 } 1448 1449 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1450 sector_t start, sector_t len, void *data) 1451 { 1452 struct request_queue *q = bdev_get_queue(dev->bdev); 1453 unsigned int *zone_sectors = data; 1454 1455 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1456 } 1457 1458 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1459 unsigned int zone_sectors) 1460 { 1461 struct dm_target *ti; 1462 unsigned i; 1463 1464 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1465 ti = dm_table_get_target(t, i); 1466 1467 if (!ti->type->iterate_devices || 1468 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1469 return false; 1470 } 1471 1472 return true; 1473 } 1474 1475 static int validate_hardware_zoned_model(struct dm_table *table, 1476 enum blk_zoned_model zoned_model, 1477 unsigned int zone_sectors) 1478 { 1479 if (zoned_model == BLK_ZONED_NONE) 1480 return 0; 1481 1482 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1483 DMERR("%s: zoned model is not consistent across all devices", 1484 dm_device_name(table->md)); 1485 return -EINVAL; 1486 } 1487 1488 /* Check zone size validity and compatibility */ 1489 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1490 return -EINVAL; 1491 1492 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1493 DMERR("%s: zone sectors is not consistent across all devices", 1494 dm_device_name(table->md)); 1495 return -EINVAL; 1496 } 1497 1498 return 0; 1499 } 1500 1501 /* 1502 * Establish the new table's queue_limits and validate them. 1503 */ 1504 int dm_calculate_queue_limits(struct dm_table *table, 1505 struct queue_limits *limits) 1506 { 1507 struct dm_target *ti; 1508 struct queue_limits ti_limits; 1509 unsigned i; 1510 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1511 unsigned int zone_sectors = 0; 1512 1513 blk_set_stacking_limits(limits); 1514 1515 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1516 blk_set_stacking_limits(&ti_limits); 1517 1518 ti = dm_table_get_target(table, i); 1519 1520 if (!ti->type->iterate_devices) 1521 goto combine_limits; 1522 1523 /* 1524 * Combine queue limits of all the devices this target uses. 1525 */ 1526 ti->type->iterate_devices(ti, dm_set_device_limits, 1527 &ti_limits); 1528 1529 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1530 /* 1531 * After stacking all limits, validate all devices 1532 * in table support this zoned model and zone sectors. 1533 */ 1534 zoned_model = ti_limits.zoned; 1535 zone_sectors = ti_limits.chunk_sectors; 1536 } 1537 1538 /* Set I/O hints portion of queue limits */ 1539 if (ti->type->io_hints) 1540 ti->type->io_hints(ti, &ti_limits); 1541 1542 /* 1543 * Check each device area is consistent with the target's 1544 * overall queue limits. 1545 */ 1546 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1547 &ti_limits)) 1548 return -EINVAL; 1549 1550 combine_limits: 1551 /* 1552 * Merge this target's queue limits into the overall limits 1553 * for the table. 1554 */ 1555 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1556 DMWARN("%s: adding target device " 1557 "(start sect %llu len %llu) " 1558 "caused an alignment inconsistency", 1559 dm_device_name(table->md), 1560 (unsigned long long) ti->begin, 1561 (unsigned long long) ti->len); 1562 1563 /* 1564 * FIXME: this should likely be moved to blk_stack_limits(), would 1565 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1566 */ 1567 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1568 /* 1569 * By default, the stacked limits zoned model is set to 1570 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1571 * this model using the first target model reported 1572 * that is not BLK_ZONED_NONE. This will be either the 1573 * first target device zoned model or the model reported 1574 * by the target .io_hints. 1575 */ 1576 limits->zoned = ti_limits.zoned; 1577 } 1578 } 1579 1580 /* 1581 * Verify that the zoned model and zone sectors, as determined before 1582 * any .io_hints override, are the same across all devices in the table. 1583 * - this is especially relevant if .io_hints is emulating a disk-managed 1584 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1585 * BUT... 1586 */ 1587 if (limits->zoned != BLK_ZONED_NONE) { 1588 /* 1589 * ...IF the above limits stacking determined a zoned model 1590 * validate that all of the table's devices conform to it. 1591 */ 1592 zoned_model = limits->zoned; 1593 zone_sectors = limits->chunk_sectors; 1594 } 1595 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1596 return -EINVAL; 1597 1598 return validate_hardware_logical_block_alignment(table, limits); 1599 } 1600 1601 /* 1602 * Verify that all devices have an integrity profile that matches the 1603 * DM device's registered integrity profile. If the profiles don't 1604 * match then unregister the DM device's integrity profile. 1605 */ 1606 static void dm_table_verify_integrity(struct dm_table *t) 1607 { 1608 struct gendisk *template_disk = NULL; 1609 1610 if (t->integrity_added) 1611 return; 1612 1613 if (t->integrity_supported) { 1614 /* 1615 * Verify that the original integrity profile 1616 * matches all the devices in this table. 1617 */ 1618 template_disk = dm_table_get_integrity_disk(t); 1619 if (template_disk && 1620 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1621 return; 1622 } 1623 1624 if (integrity_profile_exists(dm_disk(t->md))) { 1625 DMWARN("%s: unable to establish an integrity profile", 1626 dm_device_name(t->md)); 1627 blk_integrity_unregister(dm_disk(t->md)); 1628 } 1629 } 1630 1631 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1632 sector_t start, sector_t len, void *data) 1633 { 1634 unsigned long flush = (unsigned long) data; 1635 struct request_queue *q = bdev_get_queue(dev->bdev); 1636 1637 return q && (q->queue_flags & flush); 1638 } 1639 1640 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1641 { 1642 struct dm_target *ti; 1643 unsigned i; 1644 1645 /* 1646 * Require at least one underlying device to support flushes. 1647 * t->devices includes internal dm devices such as mirror logs 1648 * so we need to use iterate_devices here, which targets 1649 * supporting flushes must provide. 1650 */ 1651 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1652 ti = dm_table_get_target(t, i); 1653 1654 if (!ti->num_flush_bios) 1655 continue; 1656 1657 if (ti->flush_supported) 1658 return true; 1659 1660 if (ti->type->iterate_devices && 1661 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1662 return true; 1663 } 1664 1665 return false; 1666 } 1667 1668 static int device_dax_write_cache_enabled(struct dm_target *ti, 1669 struct dm_dev *dev, sector_t start, 1670 sector_t len, void *data) 1671 { 1672 struct dax_device *dax_dev = dev->dax_dev; 1673 1674 if (!dax_dev) 1675 return false; 1676 1677 if (dax_write_cache_enabled(dax_dev)) 1678 return true; 1679 return false; 1680 } 1681 1682 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1683 { 1684 struct dm_target *ti; 1685 unsigned i; 1686 1687 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1688 ti = dm_table_get_target(t, i); 1689 1690 if (ti->type->iterate_devices && 1691 ti->type->iterate_devices(ti, 1692 device_dax_write_cache_enabled, NULL)) 1693 return true; 1694 } 1695 1696 return false; 1697 } 1698 1699 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1700 sector_t start, sector_t len, void *data) 1701 { 1702 struct request_queue *q = bdev_get_queue(dev->bdev); 1703 1704 return q && blk_queue_nonrot(q); 1705 } 1706 1707 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1708 sector_t start, sector_t len, void *data) 1709 { 1710 struct request_queue *q = bdev_get_queue(dev->bdev); 1711 1712 return q && !blk_queue_add_random(q); 1713 } 1714 1715 static bool dm_table_all_devices_attribute(struct dm_table *t, 1716 iterate_devices_callout_fn func) 1717 { 1718 struct dm_target *ti; 1719 unsigned i; 1720 1721 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1722 ti = dm_table_get_target(t, i); 1723 1724 if (!ti->type->iterate_devices || 1725 !ti->type->iterate_devices(ti, func, NULL)) 1726 return false; 1727 } 1728 1729 return true; 1730 } 1731 1732 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev, 1733 sector_t start, sector_t len, void *data) 1734 { 1735 char b[BDEVNAME_SIZE]; 1736 1737 /* For now, NVMe devices are the only devices of this class */ 1738 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0); 1739 } 1740 1741 static bool dm_table_does_not_support_partial_completion(struct dm_table *t) 1742 { 1743 return dm_table_all_devices_attribute(t, device_no_partial_completion); 1744 } 1745 1746 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1747 sector_t start, sector_t len, void *data) 1748 { 1749 struct request_queue *q = bdev_get_queue(dev->bdev); 1750 1751 return q && !q->limits.max_write_same_sectors; 1752 } 1753 1754 static bool dm_table_supports_write_same(struct dm_table *t) 1755 { 1756 struct dm_target *ti; 1757 unsigned i; 1758 1759 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1760 ti = dm_table_get_target(t, i); 1761 1762 if (!ti->num_write_same_bios) 1763 return false; 1764 1765 if (!ti->type->iterate_devices || 1766 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1767 return false; 1768 } 1769 1770 return true; 1771 } 1772 1773 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1774 sector_t start, sector_t len, void *data) 1775 { 1776 struct request_queue *q = bdev_get_queue(dev->bdev); 1777 1778 return q && !q->limits.max_write_zeroes_sectors; 1779 } 1780 1781 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1782 { 1783 struct dm_target *ti; 1784 unsigned i = 0; 1785 1786 while (i < dm_table_get_num_targets(t)) { 1787 ti = dm_table_get_target(t, i++); 1788 1789 if (!ti->num_write_zeroes_bios) 1790 return false; 1791 1792 if (!ti->type->iterate_devices || 1793 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1794 return false; 1795 } 1796 1797 return true; 1798 } 1799 1800 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1801 sector_t start, sector_t len, void *data) 1802 { 1803 struct request_queue *q = bdev_get_queue(dev->bdev); 1804 1805 return q && !blk_queue_discard(q); 1806 } 1807 1808 static bool dm_table_supports_discards(struct dm_table *t) 1809 { 1810 struct dm_target *ti; 1811 unsigned i; 1812 1813 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1814 ti = dm_table_get_target(t, i); 1815 1816 if (!ti->num_discard_bios) 1817 return false; 1818 1819 /* 1820 * Either the target provides discard support (as implied by setting 1821 * 'discards_supported') or it relies on _all_ data devices having 1822 * discard support. 1823 */ 1824 if (!ti->discards_supported && 1825 (!ti->type->iterate_devices || 1826 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1827 return false; 1828 } 1829 1830 return true; 1831 } 1832 1833 static int device_not_secure_erase_capable(struct dm_target *ti, 1834 struct dm_dev *dev, sector_t start, 1835 sector_t len, void *data) 1836 { 1837 struct request_queue *q = bdev_get_queue(dev->bdev); 1838 1839 return q && !blk_queue_secure_erase(q); 1840 } 1841 1842 static bool dm_table_supports_secure_erase(struct dm_table *t) 1843 { 1844 struct dm_target *ti; 1845 unsigned int i; 1846 1847 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1848 ti = dm_table_get_target(t, i); 1849 1850 if (!ti->num_secure_erase_bios) 1851 return false; 1852 1853 if (!ti->type->iterate_devices || 1854 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1855 return false; 1856 } 1857 1858 return true; 1859 } 1860 1861 static int device_requires_stable_pages(struct dm_target *ti, 1862 struct dm_dev *dev, sector_t start, 1863 sector_t len, void *data) 1864 { 1865 struct request_queue *q = bdev_get_queue(dev->bdev); 1866 1867 return q && bdi_cap_stable_pages_required(q->backing_dev_info); 1868 } 1869 1870 /* 1871 * If any underlying device requires stable pages, a table must require 1872 * them as well. Only targets that support iterate_devices are considered: 1873 * don't want error, zero, etc to require stable pages. 1874 */ 1875 static bool dm_table_requires_stable_pages(struct dm_table *t) 1876 { 1877 struct dm_target *ti; 1878 unsigned i; 1879 1880 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1881 ti = dm_table_get_target(t, i); 1882 1883 if (ti->type->iterate_devices && 1884 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL)) 1885 return true; 1886 } 1887 1888 return false; 1889 } 1890 1891 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1892 struct queue_limits *limits) 1893 { 1894 bool wc = false, fua = false; 1895 int page_size = PAGE_SIZE; 1896 1897 /* 1898 * Copy table's limits to the DM device's request_queue 1899 */ 1900 q->limits = *limits; 1901 1902 if (!dm_table_supports_discards(t)) { 1903 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1904 /* Must also clear discard limits... */ 1905 q->limits.max_discard_sectors = 0; 1906 q->limits.max_hw_discard_sectors = 0; 1907 q->limits.discard_granularity = 0; 1908 q->limits.discard_alignment = 0; 1909 q->limits.discard_misaligned = 0; 1910 } else 1911 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1912 1913 if (dm_table_supports_secure_erase(t)) 1914 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1915 1916 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1917 wc = true; 1918 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1919 fua = true; 1920 } 1921 blk_queue_write_cache(q, wc, fua); 1922 1923 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) { 1924 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1925 if (dm_table_supports_dax(t, device_dax_synchronous, NULL)) 1926 set_dax_synchronous(t->md->dax_dev); 1927 } 1928 else 1929 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1930 1931 if (dm_table_supports_dax_write_cache(t)) 1932 dax_write_cache(t->md->dax_dev, true); 1933 1934 /* Ensure that all underlying devices are non-rotational. */ 1935 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1936 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1937 else 1938 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1939 1940 if (!dm_table_supports_write_same(t)) 1941 q->limits.max_write_same_sectors = 0; 1942 if (!dm_table_supports_write_zeroes(t)) 1943 q->limits.max_write_zeroes_sectors = 0; 1944 1945 dm_table_verify_integrity(t); 1946 1947 /* 1948 * Some devices don't use blk_integrity but still want stable pages 1949 * because they do their own checksumming. 1950 */ 1951 if (dm_table_requires_stable_pages(t)) 1952 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 1953 else 1954 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES; 1955 1956 /* 1957 * Determine whether or not this queue's I/O timings contribute 1958 * to the entropy pool, Only request-based targets use this. 1959 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1960 * have it set. 1961 */ 1962 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1963 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1964 1965 /* 1966 * For a zoned target, the number of zones should be updated for the 1967 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 1968 * target, this is all that is needed. For a request based target, the 1969 * queue zone bitmaps must also be updated. 1970 * Use blk_revalidate_disk_zones() to handle this. 1971 */ 1972 if (blk_queue_is_zoned(q)) 1973 blk_revalidate_disk_zones(t->md->disk); 1974 1975 /* Allow reads to exceed readahead limits */ 1976 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9); 1977 } 1978 1979 unsigned int dm_table_get_num_targets(struct dm_table *t) 1980 { 1981 return t->num_targets; 1982 } 1983 1984 struct list_head *dm_table_get_devices(struct dm_table *t) 1985 { 1986 return &t->devices; 1987 } 1988 1989 fmode_t dm_table_get_mode(struct dm_table *t) 1990 { 1991 return t->mode; 1992 } 1993 EXPORT_SYMBOL(dm_table_get_mode); 1994 1995 enum suspend_mode { 1996 PRESUSPEND, 1997 PRESUSPEND_UNDO, 1998 POSTSUSPEND, 1999 }; 2000 2001 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2002 { 2003 int i = t->num_targets; 2004 struct dm_target *ti = t->targets; 2005 2006 lockdep_assert_held(&t->md->suspend_lock); 2007 2008 while (i--) { 2009 switch (mode) { 2010 case PRESUSPEND: 2011 if (ti->type->presuspend) 2012 ti->type->presuspend(ti); 2013 break; 2014 case PRESUSPEND_UNDO: 2015 if (ti->type->presuspend_undo) 2016 ti->type->presuspend_undo(ti); 2017 break; 2018 case POSTSUSPEND: 2019 if (ti->type->postsuspend) 2020 ti->type->postsuspend(ti); 2021 break; 2022 } 2023 ti++; 2024 } 2025 } 2026 2027 void dm_table_presuspend_targets(struct dm_table *t) 2028 { 2029 if (!t) 2030 return; 2031 2032 suspend_targets(t, PRESUSPEND); 2033 } 2034 2035 void dm_table_presuspend_undo_targets(struct dm_table *t) 2036 { 2037 if (!t) 2038 return; 2039 2040 suspend_targets(t, PRESUSPEND_UNDO); 2041 } 2042 2043 void dm_table_postsuspend_targets(struct dm_table *t) 2044 { 2045 if (!t) 2046 return; 2047 2048 suspend_targets(t, POSTSUSPEND); 2049 } 2050 2051 int dm_table_resume_targets(struct dm_table *t) 2052 { 2053 int i, r = 0; 2054 2055 lockdep_assert_held(&t->md->suspend_lock); 2056 2057 for (i = 0; i < t->num_targets; i++) { 2058 struct dm_target *ti = t->targets + i; 2059 2060 if (!ti->type->preresume) 2061 continue; 2062 2063 r = ti->type->preresume(ti); 2064 if (r) { 2065 DMERR("%s: %s: preresume failed, error = %d", 2066 dm_device_name(t->md), ti->type->name, r); 2067 return r; 2068 } 2069 } 2070 2071 for (i = 0; i < t->num_targets; i++) { 2072 struct dm_target *ti = t->targets + i; 2073 2074 if (ti->type->resume) 2075 ti->type->resume(ti); 2076 } 2077 2078 return 0; 2079 } 2080 2081 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 2082 { 2083 list_add(&cb->list, &t->target_callbacks); 2084 } 2085 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 2086 2087 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 2088 { 2089 struct dm_dev_internal *dd; 2090 struct list_head *devices = dm_table_get_devices(t); 2091 struct dm_target_callbacks *cb; 2092 int r = 0; 2093 2094 list_for_each_entry(dd, devices, list) { 2095 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 2096 char b[BDEVNAME_SIZE]; 2097 2098 if (likely(q)) 2099 r |= bdi_congested(q->backing_dev_info, bdi_bits); 2100 else 2101 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 2102 dm_device_name(t->md), 2103 bdevname(dd->dm_dev->bdev, b)); 2104 } 2105 2106 list_for_each_entry(cb, &t->target_callbacks, list) 2107 if (cb->congested_fn) 2108 r |= cb->congested_fn(cb, bdi_bits); 2109 2110 return r; 2111 } 2112 2113 struct mapped_device *dm_table_get_md(struct dm_table *t) 2114 { 2115 return t->md; 2116 } 2117 EXPORT_SYMBOL(dm_table_get_md); 2118 2119 const char *dm_table_device_name(struct dm_table *t) 2120 { 2121 return dm_device_name(t->md); 2122 } 2123 EXPORT_SYMBOL_GPL(dm_table_device_name); 2124 2125 void dm_table_run_md_queue_async(struct dm_table *t) 2126 { 2127 struct mapped_device *md; 2128 struct request_queue *queue; 2129 2130 if (!dm_table_request_based(t)) 2131 return; 2132 2133 md = dm_table_get_md(t); 2134 queue = dm_get_md_queue(md); 2135 if (queue) 2136 blk_mq_run_hw_queues(queue, true); 2137 } 2138 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2139 2140