xref: /openbmc/linux/drivers/md/dm-table.c (revision 4da722ca)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 
24 #define DM_MSG_PREFIX "table"
25 
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 struct dm_table {
32 	struct mapped_device *md;
33 	enum dm_queue_mode type;
34 
35 	/* btree table */
36 	unsigned int depth;
37 	unsigned int counts[MAX_DEPTH];	/* in nodes */
38 	sector_t *index[MAX_DEPTH];
39 
40 	unsigned int num_targets;
41 	unsigned int num_allocated;
42 	sector_t *highs;
43 	struct dm_target *targets;
44 
45 	struct target_type *immutable_target_type;
46 
47 	bool integrity_supported:1;
48 	bool singleton:1;
49 	bool all_blk_mq:1;
50 	unsigned integrity_added:1;
51 
52 	/*
53 	 * Indicates the rw permissions for the new logical
54 	 * device.  This should be a combination of FMODE_READ
55 	 * and FMODE_WRITE.
56 	 */
57 	fmode_t mode;
58 
59 	/* a list of devices used by this table */
60 	struct list_head devices;
61 
62 	/* events get handed up using this callback */
63 	void (*event_fn)(void *);
64 	void *event_context;
65 
66 	struct dm_md_mempools *mempools;
67 
68 	struct list_head target_callbacks;
69 };
70 
71 /*
72  * Similar to ceiling(log_size(n))
73  */
74 static unsigned int int_log(unsigned int n, unsigned int base)
75 {
76 	int result = 0;
77 
78 	while (n > 1) {
79 		n = dm_div_up(n, base);
80 		result++;
81 	}
82 
83 	return result;
84 }
85 
86 /*
87  * Calculate the index of the child node of the n'th node k'th key.
88  */
89 static inline unsigned int get_child(unsigned int n, unsigned int k)
90 {
91 	return (n * CHILDREN_PER_NODE) + k;
92 }
93 
94 /*
95  * Return the n'th node of level l from table t.
96  */
97 static inline sector_t *get_node(struct dm_table *t,
98 				 unsigned int l, unsigned int n)
99 {
100 	return t->index[l] + (n * KEYS_PER_NODE);
101 }
102 
103 /*
104  * Return the highest key that you could lookup from the n'th
105  * node on level l of the btree.
106  */
107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108 {
109 	for (; l < t->depth - 1; l++)
110 		n = get_child(n, CHILDREN_PER_NODE - 1);
111 
112 	if (n >= t->counts[l])
113 		return (sector_t) - 1;
114 
115 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 }
117 
118 /*
119  * Fills in a level of the btree based on the highs of the level
120  * below it.
121  */
122 static int setup_btree_index(unsigned int l, struct dm_table *t)
123 {
124 	unsigned int n, k;
125 	sector_t *node;
126 
127 	for (n = 0U; n < t->counts[l]; n++) {
128 		node = get_node(t, l, n);
129 
130 		for (k = 0U; k < KEYS_PER_NODE; k++)
131 			node[k] = high(t, l + 1, get_child(n, k));
132 	}
133 
134 	return 0;
135 }
136 
137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138 {
139 	unsigned long size;
140 	void *addr;
141 
142 	/*
143 	 * Check that we're not going to overflow.
144 	 */
145 	if (nmemb > (ULONG_MAX / elem_size))
146 		return NULL;
147 
148 	size = nmemb * elem_size;
149 	addr = vzalloc(size);
150 
151 	return addr;
152 }
153 EXPORT_SYMBOL(dm_vcalloc);
154 
155 /*
156  * highs, and targets are managed as dynamic arrays during a
157  * table load.
158  */
159 static int alloc_targets(struct dm_table *t, unsigned int num)
160 {
161 	sector_t *n_highs;
162 	struct dm_target *n_targets;
163 
164 	/*
165 	 * Allocate both the target array and offset array at once.
166 	 * Append an empty entry to catch sectors beyond the end of
167 	 * the device.
168 	 */
169 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
170 					  sizeof(sector_t));
171 	if (!n_highs)
172 		return -ENOMEM;
173 
174 	n_targets = (struct dm_target *) (n_highs + num);
175 
176 	memset(n_highs, -1, sizeof(*n_highs) * num);
177 	vfree(t->highs);
178 
179 	t->num_allocated = num;
180 	t->highs = n_highs;
181 	t->targets = n_targets;
182 
183 	return 0;
184 }
185 
186 int dm_table_create(struct dm_table **result, fmode_t mode,
187 		    unsigned num_targets, struct mapped_device *md)
188 {
189 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
190 
191 	if (!t)
192 		return -ENOMEM;
193 
194 	INIT_LIST_HEAD(&t->devices);
195 	INIT_LIST_HEAD(&t->target_callbacks);
196 
197 	if (!num_targets)
198 		num_targets = KEYS_PER_NODE;
199 
200 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
201 
202 	if (!num_targets) {
203 		kfree(t);
204 		return -ENOMEM;
205 	}
206 
207 	if (alloc_targets(t, num_targets)) {
208 		kfree(t);
209 		return -ENOMEM;
210 	}
211 
212 	t->type = DM_TYPE_NONE;
213 	t->mode = mode;
214 	t->md = md;
215 	*result = t;
216 	return 0;
217 }
218 
219 static void free_devices(struct list_head *devices, struct mapped_device *md)
220 {
221 	struct list_head *tmp, *next;
222 
223 	list_for_each_safe(tmp, next, devices) {
224 		struct dm_dev_internal *dd =
225 		    list_entry(tmp, struct dm_dev_internal, list);
226 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
227 		       dm_device_name(md), dd->dm_dev->name);
228 		dm_put_table_device(md, dd->dm_dev);
229 		kfree(dd);
230 	}
231 }
232 
233 void dm_table_destroy(struct dm_table *t)
234 {
235 	unsigned int i;
236 
237 	if (!t)
238 		return;
239 
240 	/* free the indexes */
241 	if (t->depth >= 2)
242 		vfree(t->index[t->depth - 2]);
243 
244 	/* free the targets */
245 	for (i = 0; i < t->num_targets; i++) {
246 		struct dm_target *tgt = t->targets + i;
247 
248 		if (tgt->type->dtr)
249 			tgt->type->dtr(tgt);
250 
251 		dm_put_target_type(tgt->type);
252 	}
253 
254 	vfree(t->highs);
255 
256 	/* free the device list */
257 	free_devices(&t->devices, t->md);
258 
259 	dm_free_md_mempools(t->mempools);
260 
261 	kfree(t);
262 }
263 
264 /*
265  * See if we've already got a device in the list.
266  */
267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
268 {
269 	struct dm_dev_internal *dd;
270 
271 	list_for_each_entry (dd, l, list)
272 		if (dd->dm_dev->bdev->bd_dev == dev)
273 			return dd;
274 
275 	return NULL;
276 }
277 
278 /*
279  * If possible, this checks an area of a destination device is invalid.
280  */
281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
282 				  sector_t start, sector_t len, void *data)
283 {
284 	struct request_queue *q;
285 	struct queue_limits *limits = data;
286 	struct block_device *bdev = dev->bdev;
287 	sector_t dev_size =
288 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
289 	unsigned short logical_block_size_sectors =
290 		limits->logical_block_size >> SECTOR_SHIFT;
291 	char b[BDEVNAME_SIZE];
292 
293 	/*
294 	 * Some devices exist without request functions,
295 	 * such as loop devices not yet bound to backing files.
296 	 * Forbid the use of such devices.
297 	 */
298 	q = bdev_get_queue(bdev);
299 	if (!q || !q->make_request_fn) {
300 		DMWARN("%s: %s is not yet initialised: "
301 		       "start=%llu, len=%llu, dev_size=%llu",
302 		       dm_device_name(ti->table->md), bdevname(bdev, b),
303 		       (unsigned long long)start,
304 		       (unsigned long long)len,
305 		       (unsigned long long)dev_size);
306 		return 1;
307 	}
308 
309 	if (!dev_size)
310 		return 0;
311 
312 	if ((start >= dev_size) || (start + len > dev_size)) {
313 		DMWARN("%s: %s too small for target: "
314 		       "start=%llu, len=%llu, dev_size=%llu",
315 		       dm_device_name(ti->table->md), bdevname(bdev, b),
316 		       (unsigned long long)start,
317 		       (unsigned long long)len,
318 		       (unsigned long long)dev_size);
319 		return 1;
320 	}
321 
322 	/*
323 	 * If the target is mapped to zoned block device(s), check
324 	 * that the zones are not partially mapped.
325 	 */
326 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
327 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
328 
329 		if (start & (zone_sectors - 1)) {
330 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
331 			       dm_device_name(ti->table->md),
332 			       (unsigned long long)start,
333 			       zone_sectors, bdevname(bdev, b));
334 			return 1;
335 		}
336 
337 		/*
338 		 * Note: The last zone of a zoned block device may be smaller
339 		 * than other zones. So for a target mapping the end of a
340 		 * zoned block device with such a zone, len would not be zone
341 		 * aligned. We do not allow such last smaller zone to be part
342 		 * of the mapping here to ensure that mappings with multiple
343 		 * devices do not end up with a smaller zone in the middle of
344 		 * the sector range.
345 		 */
346 		if (len & (zone_sectors - 1)) {
347 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
348 			       dm_device_name(ti->table->md),
349 			       (unsigned long long)len,
350 			       zone_sectors, bdevname(bdev, b));
351 			return 1;
352 		}
353 	}
354 
355 	if (logical_block_size_sectors <= 1)
356 		return 0;
357 
358 	if (start & (logical_block_size_sectors - 1)) {
359 		DMWARN("%s: start=%llu not aligned to h/w "
360 		       "logical block size %u of %s",
361 		       dm_device_name(ti->table->md),
362 		       (unsigned long long)start,
363 		       limits->logical_block_size, bdevname(bdev, b));
364 		return 1;
365 	}
366 
367 	if (len & (logical_block_size_sectors - 1)) {
368 		DMWARN("%s: len=%llu not aligned to h/w "
369 		       "logical block size %u of %s",
370 		       dm_device_name(ti->table->md),
371 		       (unsigned long long)len,
372 		       limits->logical_block_size, bdevname(bdev, b));
373 		return 1;
374 	}
375 
376 	return 0;
377 }
378 
379 /*
380  * This upgrades the mode on an already open dm_dev, being
381  * careful to leave things as they were if we fail to reopen the
382  * device and not to touch the existing bdev field in case
383  * it is accessed concurrently inside dm_table_any_congested().
384  */
385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
386 			struct mapped_device *md)
387 {
388 	int r;
389 	struct dm_dev *old_dev, *new_dev;
390 
391 	old_dev = dd->dm_dev;
392 
393 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
394 				dd->dm_dev->mode | new_mode, &new_dev);
395 	if (r)
396 		return r;
397 
398 	dd->dm_dev = new_dev;
399 	dm_put_table_device(md, old_dev);
400 
401 	return 0;
402 }
403 
404 /*
405  * Convert the path to a device
406  */
407 dev_t dm_get_dev_t(const char *path)
408 {
409 	dev_t dev;
410 	struct block_device *bdev;
411 
412 	bdev = lookup_bdev(path);
413 	if (IS_ERR(bdev))
414 		dev = name_to_dev_t(path);
415 	else {
416 		dev = bdev->bd_dev;
417 		bdput(bdev);
418 	}
419 
420 	return dev;
421 }
422 EXPORT_SYMBOL_GPL(dm_get_dev_t);
423 
424 /*
425  * Add a device to the list, or just increment the usage count if
426  * it's already present.
427  */
428 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
429 		  struct dm_dev **result)
430 {
431 	int r;
432 	dev_t dev;
433 	struct dm_dev_internal *dd;
434 	struct dm_table *t = ti->table;
435 
436 	BUG_ON(!t);
437 
438 	dev = dm_get_dev_t(path);
439 	if (!dev)
440 		return -ENODEV;
441 
442 	dd = find_device(&t->devices, dev);
443 	if (!dd) {
444 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
445 		if (!dd)
446 			return -ENOMEM;
447 
448 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
449 			kfree(dd);
450 			return r;
451 		}
452 
453 		atomic_set(&dd->count, 0);
454 		list_add(&dd->list, &t->devices);
455 
456 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
457 		r = upgrade_mode(dd, mode, t->md);
458 		if (r)
459 			return r;
460 	}
461 	atomic_inc(&dd->count);
462 
463 	*result = dd->dm_dev;
464 	return 0;
465 }
466 EXPORT_SYMBOL(dm_get_device);
467 
468 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
469 				sector_t start, sector_t len, void *data)
470 {
471 	struct queue_limits *limits = data;
472 	struct block_device *bdev = dev->bdev;
473 	struct request_queue *q = bdev_get_queue(bdev);
474 	char b[BDEVNAME_SIZE];
475 
476 	if (unlikely(!q)) {
477 		DMWARN("%s: Cannot set limits for nonexistent device %s",
478 		       dm_device_name(ti->table->md), bdevname(bdev, b));
479 		return 0;
480 	}
481 
482 	if (bdev_stack_limits(limits, bdev, start) < 0)
483 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
484 		       "physical_block_size=%u, logical_block_size=%u, "
485 		       "alignment_offset=%u, start=%llu",
486 		       dm_device_name(ti->table->md), bdevname(bdev, b),
487 		       q->limits.physical_block_size,
488 		       q->limits.logical_block_size,
489 		       q->limits.alignment_offset,
490 		       (unsigned long long) start << SECTOR_SHIFT);
491 
492 	limits->zoned = blk_queue_zoned_model(q);
493 
494 	return 0;
495 }
496 
497 /*
498  * Decrement a device's use count and remove it if necessary.
499  */
500 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
501 {
502 	int found = 0;
503 	struct list_head *devices = &ti->table->devices;
504 	struct dm_dev_internal *dd;
505 
506 	list_for_each_entry(dd, devices, list) {
507 		if (dd->dm_dev == d) {
508 			found = 1;
509 			break;
510 		}
511 	}
512 	if (!found) {
513 		DMWARN("%s: device %s not in table devices list",
514 		       dm_device_name(ti->table->md), d->name);
515 		return;
516 	}
517 	if (atomic_dec_and_test(&dd->count)) {
518 		dm_put_table_device(ti->table->md, d);
519 		list_del(&dd->list);
520 		kfree(dd);
521 	}
522 }
523 EXPORT_SYMBOL(dm_put_device);
524 
525 /*
526  * Checks to see if the target joins onto the end of the table.
527  */
528 static int adjoin(struct dm_table *table, struct dm_target *ti)
529 {
530 	struct dm_target *prev;
531 
532 	if (!table->num_targets)
533 		return !ti->begin;
534 
535 	prev = &table->targets[table->num_targets - 1];
536 	return (ti->begin == (prev->begin + prev->len));
537 }
538 
539 /*
540  * Used to dynamically allocate the arg array.
541  *
542  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
543  * process messages even if some device is suspended. These messages have a
544  * small fixed number of arguments.
545  *
546  * On the other hand, dm-switch needs to process bulk data using messages and
547  * excessive use of GFP_NOIO could cause trouble.
548  */
549 static char **realloc_argv(unsigned *array_size, char **old_argv)
550 {
551 	char **argv;
552 	unsigned new_size;
553 	gfp_t gfp;
554 
555 	if (*array_size) {
556 		new_size = *array_size * 2;
557 		gfp = GFP_KERNEL;
558 	} else {
559 		new_size = 8;
560 		gfp = GFP_NOIO;
561 	}
562 	argv = kmalloc(new_size * sizeof(*argv), gfp);
563 	if (argv) {
564 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
565 		*array_size = new_size;
566 	}
567 
568 	kfree(old_argv);
569 	return argv;
570 }
571 
572 /*
573  * Destructively splits up the argument list to pass to ctr.
574  */
575 int dm_split_args(int *argc, char ***argvp, char *input)
576 {
577 	char *start, *end = input, *out, **argv = NULL;
578 	unsigned array_size = 0;
579 
580 	*argc = 0;
581 
582 	if (!input) {
583 		*argvp = NULL;
584 		return 0;
585 	}
586 
587 	argv = realloc_argv(&array_size, argv);
588 	if (!argv)
589 		return -ENOMEM;
590 
591 	while (1) {
592 		/* Skip whitespace */
593 		start = skip_spaces(end);
594 
595 		if (!*start)
596 			break;	/* success, we hit the end */
597 
598 		/* 'out' is used to remove any back-quotes */
599 		end = out = start;
600 		while (*end) {
601 			/* Everything apart from '\0' can be quoted */
602 			if (*end == '\\' && *(end + 1)) {
603 				*out++ = *(end + 1);
604 				end += 2;
605 				continue;
606 			}
607 
608 			if (isspace(*end))
609 				break;	/* end of token */
610 
611 			*out++ = *end++;
612 		}
613 
614 		/* have we already filled the array ? */
615 		if ((*argc + 1) > array_size) {
616 			argv = realloc_argv(&array_size, argv);
617 			if (!argv)
618 				return -ENOMEM;
619 		}
620 
621 		/* we know this is whitespace */
622 		if (*end)
623 			end++;
624 
625 		/* terminate the string and put it in the array */
626 		*out = '\0';
627 		argv[*argc] = start;
628 		(*argc)++;
629 	}
630 
631 	*argvp = argv;
632 	return 0;
633 }
634 
635 /*
636  * Impose necessary and sufficient conditions on a devices's table such
637  * that any incoming bio which respects its logical_block_size can be
638  * processed successfully.  If it falls across the boundary between
639  * two or more targets, the size of each piece it gets split into must
640  * be compatible with the logical_block_size of the target processing it.
641  */
642 static int validate_hardware_logical_block_alignment(struct dm_table *table,
643 						 struct queue_limits *limits)
644 {
645 	/*
646 	 * This function uses arithmetic modulo the logical_block_size
647 	 * (in units of 512-byte sectors).
648 	 */
649 	unsigned short device_logical_block_size_sects =
650 		limits->logical_block_size >> SECTOR_SHIFT;
651 
652 	/*
653 	 * Offset of the start of the next table entry, mod logical_block_size.
654 	 */
655 	unsigned short next_target_start = 0;
656 
657 	/*
658 	 * Given an aligned bio that extends beyond the end of a
659 	 * target, how many sectors must the next target handle?
660 	 */
661 	unsigned short remaining = 0;
662 
663 	struct dm_target *uninitialized_var(ti);
664 	struct queue_limits ti_limits;
665 	unsigned i;
666 
667 	/*
668 	 * Check each entry in the table in turn.
669 	 */
670 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
671 		ti = dm_table_get_target(table, i);
672 
673 		blk_set_stacking_limits(&ti_limits);
674 
675 		/* combine all target devices' limits */
676 		if (ti->type->iterate_devices)
677 			ti->type->iterate_devices(ti, dm_set_device_limits,
678 						  &ti_limits);
679 
680 		/*
681 		 * If the remaining sectors fall entirely within this
682 		 * table entry are they compatible with its logical_block_size?
683 		 */
684 		if (remaining < ti->len &&
685 		    remaining & ((ti_limits.logical_block_size >>
686 				  SECTOR_SHIFT) - 1))
687 			break;	/* Error */
688 
689 		next_target_start =
690 		    (unsigned short) ((next_target_start + ti->len) &
691 				      (device_logical_block_size_sects - 1));
692 		remaining = next_target_start ?
693 		    device_logical_block_size_sects - next_target_start : 0;
694 	}
695 
696 	if (remaining) {
697 		DMWARN("%s: table line %u (start sect %llu len %llu) "
698 		       "not aligned to h/w logical block size %u",
699 		       dm_device_name(table->md), i,
700 		       (unsigned long long) ti->begin,
701 		       (unsigned long long) ti->len,
702 		       limits->logical_block_size);
703 		return -EINVAL;
704 	}
705 
706 	return 0;
707 }
708 
709 int dm_table_add_target(struct dm_table *t, const char *type,
710 			sector_t start, sector_t len, char *params)
711 {
712 	int r = -EINVAL, argc;
713 	char **argv;
714 	struct dm_target *tgt;
715 
716 	if (t->singleton) {
717 		DMERR("%s: target type %s must appear alone in table",
718 		      dm_device_name(t->md), t->targets->type->name);
719 		return -EINVAL;
720 	}
721 
722 	BUG_ON(t->num_targets >= t->num_allocated);
723 
724 	tgt = t->targets + t->num_targets;
725 	memset(tgt, 0, sizeof(*tgt));
726 
727 	if (!len) {
728 		DMERR("%s: zero-length target", dm_device_name(t->md));
729 		return -EINVAL;
730 	}
731 
732 	tgt->type = dm_get_target_type(type);
733 	if (!tgt->type) {
734 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
735 		return -EINVAL;
736 	}
737 
738 	if (dm_target_needs_singleton(tgt->type)) {
739 		if (t->num_targets) {
740 			tgt->error = "singleton target type must appear alone in table";
741 			goto bad;
742 		}
743 		t->singleton = true;
744 	}
745 
746 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
747 		tgt->error = "target type may not be included in a read-only table";
748 		goto bad;
749 	}
750 
751 	if (t->immutable_target_type) {
752 		if (t->immutable_target_type != tgt->type) {
753 			tgt->error = "immutable target type cannot be mixed with other target types";
754 			goto bad;
755 		}
756 	} else if (dm_target_is_immutable(tgt->type)) {
757 		if (t->num_targets) {
758 			tgt->error = "immutable target type cannot be mixed with other target types";
759 			goto bad;
760 		}
761 		t->immutable_target_type = tgt->type;
762 	}
763 
764 	if (dm_target_has_integrity(tgt->type))
765 		t->integrity_added = 1;
766 
767 	tgt->table = t;
768 	tgt->begin = start;
769 	tgt->len = len;
770 	tgt->error = "Unknown error";
771 
772 	/*
773 	 * Does this target adjoin the previous one ?
774 	 */
775 	if (!adjoin(t, tgt)) {
776 		tgt->error = "Gap in table";
777 		goto bad;
778 	}
779 
780 	r = dm_split_args(&argc, &argv, params);
781 	if (r) {
782 		tgt->error = "couldn't split parameters (insufficient memory)";
783 		goto bad;
784 	}
785 
786 	r = tgt->type->ctr(tgt, argc, argv);
787 	kfree(argv);
788 	if (r)
789 		goto bad;
790 
791 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
792 
793 	if (!tgt->num_discard_bios && tgt->discards_supported)
794 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
795 		       dm_device_name(t->md), type);
796 
797 	return 0;
798 
799  bad:
800 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
801 	dm_put_target_type(tgt->type);
802 	return r;
803 }
804 
805 /*
806  * Target argument parsing helpers.
807  */
808 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
809 			     unsigned *value, char **error, unsigned grouped)
810 {
811 	const char *arg_str = dm_shift_arg(arg_set);
812 	char dummy;
813 
814 	if (!arg_str ||
815 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
816 	    (*value < arg->min) ||
817 	    (*value > arg->max) ||
818 	    (grouped && arg_set->argc < *value)) {
819 		*error = arg->error;
820 		return -EINVAL;
821 	}
822 
823 	return 0;
824 }
825 
826 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
827 		unsigned *value, char **error)
828 {
829 	return validate_next_arg(arg, arg_set, value, error, 0);
830 }
831 EXPORT_SYMBOL(dm_read_arg);
832 
833 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
834 		      unsigned *value, char **error)
835 {
836 	return validate_next_arg(arg, arg_set, value, error, 1);
837 }
838 EXPORT_SYMBOL(dm_read_arg_group);
839 
840 const char *dm_shift_arg(struct dm_arg_set *as)
841 {
842 	char *r;
843 
844 	if (as->argc) {
845 		as->argc--;
846 		r = *as->argv;
847 		as->argv++;
848 		return r;
849 	}
850 
851 	return NULL;
852 }
853 EXPORT_SYMBOL(dm_shift_arg);
854 
855 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
856 {
857 	BUG_ON(as->argc < num_args);
858 	as->argc -= num_args;
859 	as->argv += num_args;
860 }
861 EXPORT_SYMBOL(dm_consume_args);
862 
863 static bool __table_type_bio_based(enum dm_queue_mode table_type)
864 {
865 	return (table_type == DM_TYPE_BIO_BASED ||
866 		table_type == DM_TYPE_DAX_BIO_BASED);
867 }
868 
869 static bool __table_type_request_based(enum dm_queue_mode table_type)
870 {
871 	return (table_type == DM_TYPE_REQUEST_BASED ||
872 		table_type == DM_TYPE_MQ_REQUEST_BASED);
873 }
874 
875 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
876 {
877 	t->type = type;
878 }
879 EXPORT_SYMBOL_GPL(dm_table_set_type);
880 
881 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
882 			       sector_t start, sector_t len, void *data)
883 {
884 	struct request_queue *q = bdev_get_queue(dev->bdev);
885 
886 	return q && blk_queue_dax(q);
887 }
888 
889 static bool dm_table_supports_dax(struct dm_table *t)
890 {
891 	struct dm_target *ti;
892 	unsigned i;
893 
894 	/* Ensure that all targets support DAX. */
895 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
896 		ti = dm_table_get_target(t, i);
897 
898 		if (!ti->type->direct_access)
899 			return false;
900 
901 		if (!ti->type->iterate_devices ||
902 		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
903 			return false;
904 	}
905 
906 	return true;
907 }
908 
909 static int dm_table_determine_type(struct dm_table *t)
910 {
911 	unsigned i;
912 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
913 	unsigned sq_count = 0, mq_count = 0;
914 	struct dm_target *tgt;
915 	struct dm_dev_internal *dd;
916 	struct list_head *devices = dm_table_get_devices(t);
917 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
918 
919 	if (t->type != DM_TYPE_NONE) {
920 		/* target already set the table's type */
921 		if (t->type == DM_TYPE_BIO_BASED)
922 			return 0;
923 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
924 		goto verify_rq_based;
925 	}
926 
927 	for (i = 0; i < t->num_targets; i++) {
928 		tgt = t->targets + i;
929 		if (dm_target_hybrid(tgt))
930 			hybrid = 1;
931 		else if (dm_target_request_based(tgt))
932 			request_based = 1;
933 		else
934 			bio_based = 1;
935 
936 		if (bio_based && request_based) {
937 			DMWARN("Inconsistent table: different target types"
938 			       " can't be mixed up");
939 			return -EINVAL;
940 		}
941 	}
942 
943 	if (hybrid && !bio_based && !request_based) {
944 		/*
945 		 * The targets can work either way.
946 		 * Determine the type from the live device.
947 		 * Default to bio-based if device is new.
948 		 */
949 		if (__table_type_request_based(live_md_type))
950 			request_based = 1;
951 		else
952 			bio_based = 1;
953 	}
954 
955 	if (bio_based) {
956 		/* We must use this table as bio-based */
957 		t->type = DM_TYPE_BIO_BASED;
958 		if (dm_table_supports_dax(t) ||
959 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
960 			t->type = DM_TYPE_DAX_BIO_BASED;
961 		return 0;
962 	}
963 
964 	BUG_ON(!request_based); /* No targets in this table */
965 
966 	/*
967 	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
968 	 * having a compatible target use dm_table_set_type.
969 	 */
970 	t->type = DM_TYPE_REQUEST_BASED;
971 
972 verify_rq_based:
973 	/*
974 	 * Request-based dm supports only tables that have a single target now.
975 	 * To support multiple targets, request splitting support is needed,
976 	 * and that needs lots of changes in the block-layer.
977 	 * (e.g. request completion process for partial completion.)
978 	 */
979 	if (t->num_targets > 1) {
980 		DMWARN("Request-based dm doesn't support multiple targets yet");
981 		return -EINVAL;
982 	}
983 
984 	if (list_empty(devices)) {
985 		int srcu_idx;
986 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
987 
988 		/* inherit live table's type and all_blk_mq */
989 		if (live_table) {
990 			t->type = live_table->type;
991 			t->all_blk_mq = live_table->all_blk_mq;
992 		}
993 		dm_put_live_table(t->md, srcu_idx);
994 		return 0;
995 	}
996 
997 	/* Non-request-stackable devices can't be used for request-based dm */
998 	list_for_each_entry(dd, devices, list) {
999 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1000 
1001 		if (!blk_queue_stackable(q)) {
1002 			DMERR("table load rejected: including"
1003 			      " non-request-stackable devices");
1004 			return -EINVAL;
1005 		}
1006 
1007 		if (q->mq_ops)
1008 			mq_count++;
1009 		else
1010 			sq_count++;
1011 	}
1012 	if (sq_count && mq_count) {
1013 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1014 		return -EINVAL;
1015 	}
1016 	t->all_blk_mq = mq_count > 0;
1017 
1018 	if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1019 		DMERR("table load rejected: all devices are not blk-mq request-stackable");
1020 		return -EINVAL;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1027 {
1028 	return t->type;
1029 }
1030 
1031 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1032 {
1033 	return t->immutable_target_type;
1034 }
1035 
1036 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1037 {
1038 	/* Immutable target is implicitly a singleton */
1039 	if (t->num_targets > 1 ||
1040 	    !dm_target_is_immutable(t->targets[0].type))
1041 		return NULL;
1042 
1043 	return t->targets;
1044 }
1045 
1046 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1047 {
1048 	struct dm_target *ti;
1049 	unsigned i;
1050 
1051 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1052 		ti = dm_table_get_target(t, i);
1053 		if (dm_target_is_wildcard(ti->type))
1054 			return ti;
1055 	}
1056 
1057 	return NULL;
1058 }
1059 
1060 bool dm_table_bio_based(struct dm_table *t)
1061 {
1062 	return __table_type_bio_based(dm_table_get_type(t));
1063 }
1064 
1065 bool dm_table_request_based(struct dm_table *t)
1066 {
1067 	return __table_type_request_based(dm_table_get_type(t));
1068 }
1069 
1070 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1071 {
1072 	return t->all_blk_mq;
1073 }
1074 
1075 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1076 {
1077 	enum dm_queue_mode type = dm_table_get_type(t);
1078 	unsigned per_io_data_size = 0;
1079 	struct dm_target *tgt;
1080 	unsigned i;
1081 
1082 	if (unlikely(type == DM_TYPE_NONE)) {
1083 		DMWARN("no table type is set, can't allocate mempools");
1084 		return -EINVAL;
1085 	}
1086 
1087 	if (__table_type_bio_based(type))
1088 		for (i = 0; i < t->num_targets; i++) {
1089 			tgt = t->targets + i;
1090 			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1091 		}
1092 
1093 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1094 	if (!t->mempools)
1095 		return -ENOMEM;
1096 
1097 	return 0;
1098 }
1099 
1100 void dm_table_free_md_mempools(struct dm_table *t)
1101 {
1102 	dm_free_md_mempools(t->mempools);
1103 	t->mempools = NULL;
1104 }
1105 
1106 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1107 {
1108 	return t->mempools;
1109 }
1110 
1111 static int setup_indexes(struct dm_table *t)
1112 {
1113 	int i;
1114 	unsigned int total = 0;
1115 	sector_t *indexes;
1116 
1117 	/* allocate the space for *all* the indexes */
1118 	for (i = t->depth - 2; i >= 0; i--) {
1119 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1120 		total += t->counts[i];
1121 	}
1122 
1123 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1124 	if (!indexes)
1125 		return -ENOMEM;
1126 
1127 	/* set up internal nodes, bottom-up */
1128 	for (i = t->depth - 2; i >= 0; i--) {
1129 		t->index[i] = indexes;
1130 		indexes += (KEYS_PER_NODE * t->counts[i]);
1131 		setup_btree_index(i, t);
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Builds the btree to index the map.
1139  */
1140 static int dm_table_build_index(struct dm_table *t)
1141 {
1142 	int r = 0;
1143 	unsigned int leaf_nodes;
1144 
1145 	/* how many indexes will the btree have ? */
1146 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1147 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1148 
1149 	/* leaf layer has already been set up */
1150 	t->counts[t->depth - 1] = leaf_nodes;
1151 	t->index[t->depth - 1] = t->highs;
1152 
1153 	if (t->depth >= 2)
1154 		r = setup_indexes(t);
1155 
1156 	return r;
1157 }
1158 
1159 static bool integrity_profile_exists(struct gendisk *disk)
1160 {
1161 	return !!blk_get_integrity(disk);
1162 }
1163 
1164 /*
1165  * Get a disk whose integrity profile reflects the table's profile.
1166  * Returns NULL if integrity support was inconsistent or unavailable.
1167  */
1168 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1169 {
1170 	struct list_head *devices = dm_table_get_devices(t);
1171 	struct dm_dev_internal *dd = NULL;
1172 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1173 	unsigned i;
1174 
1175 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1176 		struct dm_target *ti = dm_table_get_target(t, i);
1177 		if (!dm_target_passes_integrity(ti->type))
1178 			goto no_integrity;
1179 	}
1180 
1181 	list_for_each_entry(dd, devices, list) {
1182 		template_disk = dd->dm_dev->bdev->bd_disk;
1183 		if (!integrity_profile_exists(template_disk))
1184 			goto no_integrity;
1185 		else if (prev_disk &&
1186 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1187 			goto no_integrity;
1188 		prev_disk = template_disk;
1189 	}
1190 
1191 	return template_disk;
1192 
1193 no_integrity:
1194 	if (prev_disk)
1195 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1196 		       dm_device_name(t->md),
1197 		       prev_disk->disk_name,
1198 		       template_disk->disk_name);
1199 	return NULL;
1200 }
1201 
1202 /*
1203  * Register the mapped device for blk_integrity support if the
1204  * underlying devices have an integrity profile.  But all devices may
1205  * not have matching profiles (checking all devices isn't reliable
1206  * during table load because this table may use other DM device(s) which
1207  * must be resumed before they will have an initialized integity
1208  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1209  * profile validation: First pass during table load, final pass during
1210  * resume.
1211  */
1212 static int dm_table_register_integrity(struct dm_table *t)
1213 {
1214 	struct mapped_device *md = t->md;
1215 	struct gendisk *template_disk = NULL;
1216 
1217 	/* If target handles integrity itself do not register it here. */
1218 	if (t->integrity_added)
1219 		return 0;
1220 
1221 	template_disk = dm_table_get_integrity_disk(t);
1222 	if (!template_disk)
1223 		return 0;
1224 
1225 	if (!integrity_profile_exists(dm_disk(md))) {
1226 		t->integrity_supported = true;
1227 		/*
1228 		 * Register integrity profile during table load; we can do
1229 		 * this because the final profile must match during resume.
1230 		 */
1231 		blk_integrity_register(dm_disk(md),
1232 				       blk_get_integrity(template_disk));
1233 		return 0;
1234 	}
1235 
1236 	/*
1237 	 * If DM device already has an initialized integrity
1238 	 * profile the new profile should not conflict.
1239 	 */
1240 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1241 		DMWARN("%s: conflict with existing integrity profile: "
1242 		       "%s profile mismatch",
1243 		       dm_device_name(t->md),
1244 		       template_disk->disk_name);
1245 		return 1;
1246 	}
1247 
1248 	/* Preserve existing integrity profile */
1249 	t->integrity_supported = true;
1250 	return 0;
1251 }
1252 
1253 /*
1254  * Prepares the table for use by building the indices,
1255  * setting the type, and allocating mempools.
1256  */
1257 int dm_table_complete(struct dm_table *t)
1258 {
1259 	int r;
1260 
1261 	r = dm_table_determine_type(t);
1262 	if (r) {
1263 		DMERR("unable to determine table type");
1264 		return r;
1265 	}
1266 
1267 	r = dm_table_build_index(t);
1268 	if (r) {
1269 		DMERR("unable to build btrees");
1270 		return r;
1271 	}
1272 
1273 	r = dm_table_register_integrity(t);
1274 	if (r) {
1275 		DMERR("could not register integrity profile.");
1276 		return r;
1277 	}
1278 
1279 	r = dm_table_alloc_md_mempools(t, t->md);
1280 	if (r)
1281 		DMERR("unable to allocate mempools");
1282 
1283 	return r;
1284 }
1285 
1286 static DEFINE_MUTEX(_event_lock);
1287 void dm_table_event_callback(struct dm_table *t,
1288 			     void (*fn)(void *), void *context)
1289 {
1290 	mutex_lock(&_event_lock);
1291 	t->event_fn = fn;
1292 	t->event_context = context;
1293 	mutex_unlock(&_event_lock);
1294 }
1295 
1296 void dm_table_event(struct dm_table *t)
1297 {
1298 	/*
1299 	 * You can no longer call dm_table_event() from interrupt
1300 	 * context, use a bottom half instead.
1301 	 */
1302 	BUG_ON(in_interrupt());
1303 
1304 	mutex_lock(&_event_lock);
1305 	if (t->event_fn)
1306 		t->event_fn(t->event_context);
1307 	mutex_unlock(&_event_lock);
1308 }
1309 EXPORT_SYMBOL(dm_table_event);
1310 
1311 sector_t dm_table_get_size(struct dm_table *t)
1312 {
1313 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1314 }
1315 EXPORT_SYMBOL(dm_table_get_size);
1316 
1317 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1318 {
1319 	if (index >= t->num_targets)
1320 		return NULL;
1321 
1322 	return t->targets + index;
1323 }
1324 
1325 /*
1326  * Search the btree for the correct target.
1327  *
1328  * Caller should check returned pointer with dm_target_is_valid()
1329  * to trap I/O beyond end of device.
1330  */
1331 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1332 {
1333 	unsigned int l, n = 0, k = 0;
1334 	sector_t *node;
1335 
1336 	for (l = 0; l < t->depth; l++) {
1337 		n = get_child(n, k);
1338 		node = get_node(t, l, n);
1339 
1340 		for (k = 0; k < KEYS_PER_NODE; k++)
1341 			if (node[k] >= sector)
1342 				break;
1343 	}
1344 
1345 	return &t->targets[(KEYS_PER_NODE * n) + k];
1346 }
1347 
1348 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1349 			sector_t start, sector_t len, void *data)
1350 {
1351 	unsigned *num_devices = data;
1352 
1353 	(*num_devices)++;
1354 
1355 	return 0;
1356 }
1357 
1358 /*
1359  * Check whether a table has no data devices attached using each
1360  * target's iterate_devices method.
1361  * Returns false if the result is unknown because a target doesn't
1362  * support iterate_devices.
1363  */
1364 bool dm_table_has_no_data_devices(struct dm_table *table)
1365 {
1366 	struct dm_target *ti;
1367 	unsigned i, num_devices;
1368 
1369 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1370 		ti = dm_table_get_target(table, i);
1371 
1372 		if (!ti->type->iterate_devices)
1373 			return false;
1374 
1375 		num_devices = 0;
1376 		ti->type->iterate_devices(ti, count_device, &num_devices);
1377 		if (num_devices)
1378 			return false;
1379 	}
1380 
1381 	return true;
1382 }
1383 
1384 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1385 				 sector_t start, sector_t len, void *data)
1386 {
1387 	struct request_queue *q = bdev_get_queue(dev->bdev);
1388 	enum blk_zoned_model *zoned_model = data;
1389 
1390 	return q && blk_queue_zoned_model(q) == *zoned_model;
1391 }
1392 
1393 static bool dm_table_supports_zoned_model(struct dm_table *t,
1394 					  enum blk_zoned_model zoned_model)
1395 {
1396 	struct dm_target *ti;
1397 	unsigned i;
1398 
1399 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1400 		ti = dm_table_get_target(t, i);
1401 
1402 		if (zoned_model == BLK_ZONED_HM &&
1403 		    !dm_target_supports_zoned_hm(ti->type))
1404 			return false;
1405 
1406 		if (!ti->type->iterate_devices ||
1407 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1408 			return false;
1409 	}
1410 
1411 	return true;
1412 }
1413 
1414 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1415 				       sector_t start, sector_t len, void *data)
1416 {
1417 	struct request_queue *q = bdev_get_queue(dev->bdev);
1418 	unsigned int *zone_sectors = data;
1419 
1420 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1421 }
1422 
1423 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1424 					  unsigned int zone_sectors)
1425 {
1426 	struct dm_target *ti;
1427 	unsigned i;
1428 
1429 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1430 		ti = dm_table_get_target(t, i);
1431 
1432 		if (!ti->type->iterate_devices ||
1433 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1434 			return false;
1435 	}
1436 
1437 	return true;
1438 }
1439 
1440 static int validate_hardware_zoned_model(struct dm_table *table,
1441 					 enum blk_zoned_model zoned_model,
1442 					 unsigned int zone_sectors)
1443 {
1444 	if (zoned_model == BLK_ZONED_NONE)
1445 		return 0;
1446 
1447 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1448 		DMERR("%s: zoned model is not consistent across all devices",
1449 		      dm_device_name(table->md));
1450 		return -EINVAL;
1451 	}
1452 
1453 	/* Check zone size validity and compatibility */
1454 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1455 		return -EINVAL;
1456 
1457 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1458 		DMERR("%s: zone sectors is not consistent across all devices",
1459 		      dm_device_name(table->md));
1460 		return -EINVAL;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 /*
1467  * Establish the new table's queue_limits and validate them.
1468  */
1469 int dm_calculate_queue_limits(struct dm_table *table,
1470 			      struct queue_limits *limits)
1471 {
1472 	struct dm_target *ti;
1473 	struct queue_limits ti_limits;
1474 	unsigned i;
1475 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1476 	unsigned int zone_sectors = 0;
1477 
1478 	blk_set_stacking_limits(limits);
1479 
1480 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1481 		blk_set_stacking_limits(&ti_limits);
1482 
1483 		ti = dm_table_get_target(table, i);
1484 
1485 		if (!ti->type->iterate_devices)
1486 			goto combine_limits;
1487 
1488 		/*
1489 		 * Combine queue limits of all the devices this target uses.
1490 		 */
1491 		ti->type->iterate_devices(ti, dm_set_device_limits,
1492 					  &ti_limits);
1493 
1494 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1495 			/*
1496 			 * After stacking all limits, validate all devices
1497 			 * in table support this zoned model and zone sectors.
1498 			 */
1499 			zoned_model = ti_limits.zoned;
1500 			zone_sectors = ti_limits.chunk_sectors;
1501 		}
1502 
1503 		/* Set I/O hints portion of queue limits */
1504 		if (ti->type->io_hints)
1505 			ti->type->io_hints(ti, &ti_limits);
1506 
1507 		/*
1508 		 * Check each device area is consistent with the target's
1509 		 * overall queue limits.
1510 		 */
1511 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1512 					      &ti_limits))
1513 			return -EINVAL;
1514 
1515 combine_limits:
1516 		/*
1517 		 * Merge this target's queue limits into the overall limits
1518 		 * for the table.
1519 		 */
1520 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1521 			DMWARN("%s: adding target device "
1522 			       "(start sect %llu len %llu) "
1523 			       "caused an alignment inconsistency",
1524 			       dm_device_name(table->md),
1525 			       (unsigned long long) ti->begin,
1526 			       (unsigned long long) ti->len);
1527 
1528 		/*
1529 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1530 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1531 		 */
1532 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1533 			/*
1534 			 * By default, the stacked limits zoned model is set to
1535 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1536 			 * this model using the first target model reported
1537 			 * that is not BLK_ZONED_NONE. This will be either the
1538 			 * first target device zoned model or the model reported
1539 			 * by the target .io_hints.
1540 			 */
1541 			limits->zoned = ti_limits.zoned;
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * Verify that the zoned model and zone sectors, as determined before
1547 	 * any .io_hints override, are the same across all devices in the table.
1548 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1549 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1550 	 * BUT...
1551 	 */
1552 	if (limits->zoned != BLK_ZONED_NONE) {
1553 		/*
1554 		 * ...IF the above limits stacking determined a zoned model
1555 		 * validate that all of the table's devices conform to it.
1556 		 */
1557 		zoned_model = limits->zoned;
1558 		zone_sectors = limits->chunk_sectors;
1559 	}
1560 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1561 		return -EINVAL;
1562 
1563 	return validate_hardware_logical_block_alignment(table, limits);
1564 }
1565 
1566 /*
1567  * Verify that all devices have an integrity profile that matches the
1568  * DM device's registered integrity profile.  If the profiles don't
1569  * match then unregister the DM device's integrity profile.
1570  */
1571 static void dm_table_verify_integrity(struct dm_table *t)
1572 {
1573 	struct gendisk *template_disk = NULL;
1574 
1575 	if (t->integrity_added)
1576 		return;
1577 
1578 	if (t->integrity_supported) {
1579 		/*
1580 		 * Verify that the original integrity profile
1581 		 * matches all the devices in this table.
1582 		 */
1583 		template_disk = dm_table_get_integrity_disk(t);
1584 		if (template_disk &&
1585 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1586 			return;
1587 	}
1588 
1589 	if (integrity_profile_exists(dm_disk(t->md))) {
1590 		DMWARN("%s: unable to establish an integrity profile",
1591 		       dm_device_name(t->md));
1592 		blk_integrity_unregister(dm_disk(t->md));
1593 	}
1594 }
1595 
1596 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1597 				sector_t start, sector_t len, void *data)
1598 {
1599 	unsigned long flush = (unsigned long) data;
1600 	struct request_queue *q = bdev_get_queue(dev->bdev);
1601 
1602 	return q && (q->queue_flags & flush);
1603 }
1604 
1605 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1606 {
1607 	struct dm_target *ti;
1608 	unsigned i;
1609 
1610 	/*
1611 	 * Require at least one underlying device to support flushes.
1612 	 * t->devices includes internal dm devices such as mirror logs
1613 	 * so we need to use iterate_devices here, which targets
1614 	 * supporting flushes must provide.
1615 	 */
1616 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1617 		ti = dm_table_get_target(t, i);
1618 
1619 		if (!ti->num_flush_bios)
1620 			continue;
1621 
1622 		if (ti->flush_supported)
1623 			return true;
1624 
1625 		if (ti->type->iterate_devices &&
1626 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1627 			return true;
1628 	}
1629 
1630 	return false;
1631 }
1632 
1633 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1634 			    sector_t start, sector_t len, void *data)
1635 {
1636 	struct request_queue *q = bdev_get_queue(dev->bdev);
1637 
1638 	return q && blk_queue_nonrot(q);
1639 }
1640 
1641 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1642 			     sector_t start, sector_t len, void *data)
1643 {
1644 	struct request_queue *q = bdev_get_queue(dev->bdev);
1645 
1646 	return q && !blk_queue_add_random(q);
1647 }
1648 
1649 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1650 				   sector_t start, sector_t len, void *data)
1651 {
1652 	struct request_queue *q = bdev_get_queue(dev->bdev);
1653 
1654 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1655 }
1656 
1657 static bool dm_table_all_devices_attribute(struct dm_table *t,
1658 					   iterate_devices_callout_fn func)
1659 {
1660 	struct dm_target *ti;
1661 	unsigned i;
1662 
1663 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1664 		ti = dm_table_get_target(t, i);
1665 
1666 		if (!ti->type->iterate_devices ||
1667 		    !ti->type->iterate_devices(ti, func, NULL))
1668 			return false;
1669 	}
1670 
1671 	return true;
1672 }
1673 
1674 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1675 					 sector_t start, sector_t len, void *data)
1676 {
1677 	struct request_queue *q = bdev_get_queue(dev->bdev);
1678 
1679 	return q && !q->limits.max_write_same_sectors;
1680 }
1681 
1682 static bool dm_table_supports_write_same(struct dm_table *t)
1683 {
1684 	struct dm_target *ti;
1685 	unsigned i;
1686 
1687 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1688 		ti = dm_table_get_target(t, i);
1689 
1690 		if (!ti->num_write_same_bios)
1691 			return false;
1692 
1693 		if (!ti->type->iterate_devices ||
1694 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1695 			return false;
1696 	}
1697 
1698 	return true;
1699 }
1700 
1701 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1702 					   sector_t start, sector_t len, void *data)
1703 {
1704 	struct request_queue *q = bdev_get_queue(dev->bdev);
1705 
1706 	return q && !q->limits.max_write_zeroes_sectors;
1707 }
1708 
1709 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1710 {
1711 	struct dm_target *ti;
1712 	unsigned i = 0;
1713 
1714 	while (i < dm_table_get_num_targets(t)) {
1715 		ti = dm_table_get_target(t, i++);
1716 
1717 		if (!ti->num_write_zeroes_bios)
1718 			return false;
1719 
1720 		if (!ti->type->iterate_devices ||
1721 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1722 			return false;
1723 	}
1724 
1725 	return true;
1726 }
1727 
1728 
1729 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1730 				  sector_t start, sector_t len, void *data)
1731 {
1732 	struct request_queue *q = bdev_get_queue(dev->bdev);
1733 
1734 	return q && blk_queue_discard(q);
1735 }
1736 
1737 static bool dm_table_supports_discards(struct dm_table *t)
1738 {
1739 	struct dm_target *ti;
1740 	unsigned i;
1741 
1742 	/*
1743 	 * Unless any target used by the table set discards_supported,
1744 	 * require at least one underlying device to support discards.
1745 	 * t->devices includes internal dm devices such as mirror logs
1746 	 * so we need to use iterate_devices here, which targets
1747 	 * supporting discard selectively must provide.
1748 	 */
1749 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1750 		ti = dm_table_get_target(t, i);
1751 
1752 		if (!ti->num_discard_bios)
1753 			continue;
1754 
1755 		if (ti->discards_supported)
1756 			return true;
1757 
1758 		if (ti->type->iterate_devices &&
1759 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1760 			return true;
1761 	}
1762 
1763 	return false;
1764 }
1765 
1766 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1767 			       struct queue_limits *limits)
1768 {
1769 	bool wc = false, fua = false;
1770 
1771 	/*
1772 	 * Copy table's limits to the DM device's request_queue
1773 	 */
1774 	q->limits = *limits;
1775 
1776 	if (!dm_table_supports_discards(t))
1777 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1778 	else
1779 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1780 
1781 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1782 		wc = true;
1783 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1784 			fua = true;
1785 	}
1786 	blk_queue_write_cache(q, wc, fua);
1787 
1788 	/* Ensure that all underlying devices are non-rotational. */
1789 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1790 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1791 	else
1792 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1793 
1794 	if (!dm_table_supports_write_same(t))
1795 		q->limits.max_write_same_sectors = 0;
1796 	if (!dm_table_supports_write_zeroes(t))
1797 		q->limits.max_write_zeroes_sectors = 0;
1798 
1799 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1800 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1801 	else
1802 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1803 
1804 	dm_table_verify_integrity(t);
1805 
1806 	/*
1807 	 * Determine whether or not this queue's I/O timings contribute
1808 	 * to the entropy pool, Only request-based targets use this.
1809 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1810 	 * have it set.
1811 	 */
1812 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1813 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1814 
1815 	/*
1816 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1817 	 * visible to other CPUs because, once the flag is set, incoming bios
1818 	 * are processed by request-based dm, which refers to the queue
1819 	 * settings.
1820 	 * Until the flag set, bios are passed to bio-based dm and queued to
1821 	 * md->deferred where queue settings are not needed yet.
1822 	 * Those bios are passed to request-based dm at the resume time.
1823 	 */
1824 	smp_mb();
1825 	if (dm_table_request_based(t))
1826 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1827 }
1828 
1829 unsigned int dm_table_get_num_targets(struct dm_table *t)
1830 {
1831 	return t->num_targets;
1832 }
1833 
1834 struct list_head *dm_table_get_devices(struct dm_table *t)
1835 {
1836 	return &t->devices;
1837 }
1838 
1839 fmode_t dm_table_get_mode(struct dm_table *t)
1840 {
1841 	return t->mode;
1842 }
1843 EXPORT_SYMBOL(dm_table_get_mode);
1844 
1845 enum suspend_mode {
1846 	PRESUSPEND,
1847 	PRESUSPEND_UNDO,
1848 	POSTSUSPEND,
1849 };
1850 
1851 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1852 {
1853 	int i = t->num_targets;
1854 	struct dm_target *ti = t->targets;
1855 
1856 	lockdep_assert_held(&t->md->suspend_lock);
1857 
1858 	while (i--) {
1859 		switch (mode) {
1860 		case PRESUSPEND:
1861 			if (ti->type->presuspend)
1862 				ti->type->presuspend(ti);
1863 			break;
1864 		case PRESUSPEND_UNDO:
1865 			if (ti->type->presuspend_undo)
1866 				ti->type->presuspend_undo(ti);
1867 			break;
1868 		case POSTSUSPEND:
1869 			if (ti->type->postsuspend)
1870 				ti->type->postsuspend(ti);
1871 			break;
1872 		}
1873 		ti++;
1874 	}
1875 }
1876 
1877 void dm_table_presuspend_targets(struct dm_table *t)
1878 {
1879 	if (!t)
1880 		return;
1881 
1882 	suspend_targets(t, PRESUSPEND);
1883 }
1884 
1885 void dm_table_presuspend_undo_targets(struct dm_table *t)
1886 {
1887 	if (!t)
1888 		return;
1889 
1890 	suspend_targets(t, PRESUSPEND_UNDO);
1891 }
1892 
1893 void dm_table_postsuspend_targets(struct dm_table *t)
1894 {
1895 	if (!t)
1896 		return;
1897 
1898 	suspend_targets(t, POSTSUSPEND);
1899 }
1900 
1901 int dm_table_resume_targets(struct dm_table *t)
1902 {
1903 	int i, r = 0;
1904 
1905 	lockdep_assert_held(&t->md->suspend_lock);
1906 
1907 	for (i = 0; i < t->num_targets; i++) {
1908 		struct dm_target *ti = t->targets + i;
1909 
1910 		if (!ti->type->preresume)
1911 			continue;
1912 
1913 		r = ti->type->preresume(ti);
1914 		if (r) {
1915 			DMERR("%s: %s: preresume failed, error = %d",
1916 			      dm_device_name(t->md), ti->type->name, r);
1917 			return r;
1918 		}
1919 	}
1920 
1921 	for (i = 0; i < t->num_targets; i++) {
1922 		struct dm_target *ti = t->targets + i;
1923 
1924 		if (ti->type->resume)
1925 			ti->type->resume(ti);
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1932 {
1933 	list_add(&cb->list, &t->target_callbacks);
1934 }
1935 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1936 
1937 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1938 {
1939 	struct dm_dev_internal *dd;
1940 	struct list_head *devices = dm_table_get_devices(t);
1941 	struct dm_target_callbacks *cb;
1942 	int r = 0;
1943 
1944 	list_for_each_entry(dd, devices, list) {
1945 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1946 		char b[BDEVNAME_SIZE];
1947 
1948 		if (likely(q))
1949 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
1950 		else
1951 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1952 				     dm_device_name(t->md),
1953 				     bdevname(dd->dm_dev->bdev, b));
1954 	}
1955 
1956 	list_for_each_entry(cb, &t->target_callbacks, list)
1957 		if (cb->congested_fn)
1958 			r |= cb->congested_fn(cb, bdi_bits);
1959 
1960 	return r;
1961 }
1962 
1963 struct mapped_device *dm_table_get_md(struct dm_table *t)
1964 {
1965 	return t->md;
1966 }
1967 EXPORT_SYMBOL(dm_table_get_md);
1968 
1969 void dm_table_run_md_queue_async(struct dm_table *t)
1970 {
1971 	struct mapped_device *md;
1972 	struct request_queue *queue;
1973 	unsigned long flags;
1974 
1975 	if (!dm_table_request_based(t))
1976 		return;
1977 
1978 	md = dm_table_get_md(t);
1979 	queue = dm_get_md_queue(md);
1980 	if (queue) {
1981 		if (queue->mq_ops)
1982 			blk_mq_run_hw_queues(queue, true);
1983 		else {
1984 			spin_lock_irqsave(queue->queue_lock, flags);
1985 			blk_run_queue_async(queue);
1986 			spin_unlock_irqrestore(queue->queue_lock, flags);
1987 		}
1988 	}
1989 }
1990 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1991 
1992