1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 unsigned integrity_added:1; 51 52 /* 53 * Indicates the rw permissions for the new logical 54 * device. This should be a combination of FMODE_READ 55 * and FMODE_WRITE. 56 */ 57 fmode_t mode; 58 59 /* a list of devices used by this table */ 60 struct list_head devices; 61 62 /* events get handed up using this callback */ 63 void (*event_fn)(void *); 64 void *event_context; 65 66 struct dm_md_mempools *mempools; 67 }; 68 69 /* 70 * Similar to ceiling(log_size(n)) 71 */ 72 static unsigned int int_log(unsigned int n, unsigned int base) 73 { 74 int result = 0; 75 76 while (n > 1) { 77 n = dm_div_up(n, base); 78 result++; 79 } 80 81 return result; 82 } 83 84 /* 85 * Calculate the index of the child node of the n'th node k'th key. 86 */ 87 static inline unsigned int get_child(unsigned int n, unsigned int k) 88 { 89 return (n * CHILDREN_PER_NODE) + k; 90 } 91 92 /* 93 * Return the n'th node of level l from table t. 94 */ 95 static inline sector_t *get_node(struct dm_table *t, 96 unsigned int l, unsigned int n) 97 { 98 return t->index[l] + (n * KEYS_PER_NODE); 99 } 100 101 /* 102 * Return the highest key that you could lookup from the n'th 103 * node on level l of the btree. 104 */ 105 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 106 { 107 for (; l < t->depth - 1; l++) 108 n = get_child(n, CHILDREN_PER_NODE - 1); 109 110 if (n >= t->counts[l]) 111 return (sector_t) - 1; 112 113 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 114 } 115 116 /* 117 * Fills in a level of the btree based on the highs of the level 118 * below it. 119 */ 120 static int setup_btree_index(unsigned int l, struct dm_table *t) 121 { 122 unsigned int n, k; 123 sector_t *node; 124 125 for (n = 0U; n < t->counts[l]; n++) { 126 node = get_node(t, l, n); 127 128 for (k = 0U; k < KEYS_PER_NODE; k++) 129 node[k] = high(t, l + 1, get_child(n, k)); 130 } 131 132 return 0; 133 } 134 135 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 136 { 137 unsigned long size; 138 void *addr; 139 140 /* 141 * Check that we're not going to overflow. 142 */ 143 if (nmemb > (ULONG_MAX / elem_size)) 144 return NULL; 145 146 size = nmemb * elem_size; 147 addr = vzalloc(size); 148 149 return addr; 150 } 151 EXPORT_SYMBOL(dm_vcalloc); 152 153 /* 154 * highs, and targets are managed as dynamic arrays during a 155 * table load. 156 */ 157 static int alloc_targets(struct dm_table *t, unsigned int num) 158 { 159 sector_t *n_highs; 160 struct dm_target *n_targets; 161 162 /* 163 * Allocate both the target array and offset array at once. 164 */ 165 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 166 sizeof(sector_t)); 167 if (!n_highs) 168 return -ENOMEM; 169 170 n_targets = (struct dm_target *) (n_highs + num); 171 172 memset(n_highs, -1, sizeof(*n_highs) * num); 173 vfree(t->highs); 174 175 t->num_allocated = num; 176 t->highs = n_highs; 177 t->targets = n_targets; 178 179 return 0; 180 } 181 182 int dm_table_create(struct dm_table **result, fmode_t mode, 183 unsigned num_targets, struct mapped_device *md) 184 { 185 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 186 187 if (!t) 188 return -ENOMEM; 189 190 INIT_LIST_HEAD(&t->devices); 191 192 if (!num_targets) 193 num_targets = KEYS_PER_NODE; 194 195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 196 197 if (!num_targets) { 198 kfree(t); 199 return -ENOMEM; 200 } 201 202 if (alloc_targets(t, num_targets)) { 203 kfree(t); 204 return -ENOMEM; 205 } 206 207 t->type = DM_TYPE_NONE; 208 t->mode = mode; 209 t->md = md; 210 *result = t; 211 return 0; 212 } 213 214 static void free_devices(struct list_head *devices, struct mapped_device *md) 215 { 216 struct list_head *tmp, *next; 217 218 list_for_each_safe(tmp, next, devices) { 219 struct dm_dev_internal *dd = 220 list_entry(tmp, struct dm_dev_internal, list); 221 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 222 dm_device_name(md), dd->dm_dev->name); 223 dm_put_table_device(md, dd->dm_dev); 224 kfree(dd); 225 } 226 } 227 228 void dm_table_destroy(struct dm_table *t) 229 { 230 unsigned int i; 231 232 if (!t) 233 return; 234 235 /* free the indexes */ 236 if (t->depth >= 2) 237 vfree(t->index[t->depth - 2]); 238 239 /* free the targets */ 240 for (i = 0; i < t->num_targets; i++) { 241 struct dm_target *tgt = t->targets + i; 242 243 if (tgt->type->dtr) 244 tgt->type->dtr(tgt); 245 246 dm_put_target_type(tgt->type); 247 } 248 249 vfree(t->highs); 250 251 /* free the device list */ 252 free_devices(&t->devices, t->md); 253 254 dm_free_md_mempools(t->mempools); 255 256 kfree(t); 257 } 258 259 /* 260 * See if we've already got a device in the list. 261 */ 262 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 263 { 264 struct dm_dev_internal *dd; 265 266 list_for_each_entry (dd, l, list) 267 if (dd->dm_dev->bdev->bd_dev == dev) 268 return dd; 269 270 return NULL; 271 } 272 273 /* 274 * If possible, this checks an area of a destination device is invalid. 275 */ 276 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 277 sector_t start, sector_t len, void *data) 278 { 279 struct queue_limits *limits = data; 280 struct block_device *bdev = dev->bdev; 281 sector_t dev_size = 282 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 283 unsigned short logical_block_size_sectors = 284 limits->logical_block_size >> SECTOR_SHIFT; 285 char b[BDEVNAME_SIZE]; 286 287 if (!dev_size) 288 return 0; 289 290 if ((start >= dev_size) || (start + len > dev_size)) { 291 DMWARN("%s: %s too small for target: " 292 "start=%llu, len=%llu, dev_size=%llu", 293 dm_device_name(ti->table->md), bdevname(bdev, b), 294 (unsigned long long)start, 295 (unsigned long long)len, 296 (unsigned long long)dev_size); 297 return 1; 298 } 299 300 /* 301 * If the target is mapped to zoned block device(s), check 302 * that the zones are not partially mapped. 303 */ 304 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 305 unsigned int zone_sectors = bdev_zone_sectors(bdev); 306 307 if (start & (zone_sectors - 1)) { 308 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 309 dm_device_name(ti->table->md), 310 (unsigned long long)start, 311 zone_sectors, bdevname(bdev, b)); 312 return 1; 313 } 314 315 /* 316 * Note: The last zone of a zoned block device may be smaller 317 * than other zones. So for a target mapping the end of a 318 * zoned block device with such a zone, len would not be zone 319 * aligned. We do not allow such last smaller zone to be part 320 * of the mapping here to ensure that mappings with multiple 321 * devices do not end up with a smaller zone in the middle of 322 * the sector range. 323 */ 324 if (len & (zone_sectors - 1)) { 325 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 326 dm_device_name(ti->table->md), 327 (unsigned long long)len, 328 zone_sectors, bdevname(bdev, b)); 329 return 1; 330 } 331 } 332 333 if (logical_block_size_sectors <= 1) 334 return 0; 335 336 if (start & (logical_block_size_sectors - 1)) { 337 DMWARN("%s: start=%llu not aligned to h/w " 338 "logical block size %u of %s", 339 dm_device_name(ti->table->md), 340 (unsigned long long)start, 341 limits->logical_block_size, bdevname(bdev, b)); 342 return 1; 343 } 344 345 if (len & (logical_block_size_sectors - 1)) { 346 DMWARN("%s: len=%llu not aligned to h/w " 347 "logical block size %u of %s", 348 dm_device_name(ti->table->md), 349 (unsigned long long)len, 350 limits->logical_block_size, bdevname(bdev, b)); 351 return 1; 352 } 353 354 return 0; 355 } 356 357 /* 358 * This upgrades the mode on an already open dm_dev, being 359 * careful to leave things as they were if we fail to reopen the 360 * device and not to touch the existing bdev field in case 361 * it is accessed concurrently. 362 */ 363 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 364 struct mapped_device *md) 365 { 366 int r; 367 struct dm_dev *old_dev, *new_dev; 368 369 old_dev = dd->dm_dev; 370 371 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 372 dd->dm_dev->mode | new_mode, &new_dev); 373 if (r) 374 return r; 375 376 dd->dm_dev = new_dev; 377 dm_put_table_device(md, old_dev); 378 379 return 0; 380 } 381 382 /* 383 * Convert the path to a device 384 */ 385 dev_t dm_get_dev_t(const char *path) 386 { 387 dev_t dev; 388 struct block_device *bdev; 389 390 bdev = lookup_bdev(path); 391 if (IS_ERR(bdev)) 392 dev = name_to_dev_t(path); 393 else { 394 dev = bdev->bd_dev; 395 bdput(bdev); 396 } 397 398 return dev; 399 } 400 EXPORT_SYMBOL_GPL(dm_get_dev_t); 401 402 /* 403 * Add a device to the list, or just increment the usage count if 404 * it's already present. 405 */ 406 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 407 struct dm_dev **result) 408 { 409 int r; 410 dev_t dev; 411 struct dm_dev_internal *dd; 412 struct dm_table *t = ti->table; 413 414 BUG_ON(!t); 415 416 dev = dm_get_dev_t(path); 417 if (!dev) 418 return -ENODEV; 419 420 dd = find_device(&t->devices, dev); 421 if (!dd) { 422 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 423 if (!dd) 424 return -ENOMEM; 425 426 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 427 kfree(dd); 428 return r; 429 } 430 431 refcount_set(&dd->count, 1); 432 list_add(&dd->list, &t->devices); 433 goto out; 434 435 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 436 r = upgrade_mode(dd, mode, t->md); 437 if (r) 438 return r; 439 } 440 refcount_inc(&dd->count); 441 out: 442 *result = dd->dm_dev; 443 return 0; 444 } 445 EXPORT_SYMBOL(dm_get_device); 446 447 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 448 sector_t start, sector_t len, void *data) 449 { 450 struct queue_limits *limits = data; 451 struct block_device *bdev = dev->bdev; 452 struct request_queue *q = bdev_get_queue(bdev); 453 char b[BDEVNAME_SIZE]; 454 455 if (unlikely(!q)) { 456 DMWARN("%s: Cannot set limits for nonexistent device %s", 457 dm_device_name(ti->table->md), bdevname(bdev, b)); 458 return 0; 459 } 460 461 if (bdev_stack_limits(limits, bdev, start) < 0) 462 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 463 "physical_block_size=%u, logical_block_size=%u, " 464 "alignment_offset=%u, start=%llu", 465 dm_device_name(ti->table->md), bdevname(bdev, b), 466 q->limits.physical_block_size, 467 q->limits.logical_block_size, 468 q->limits.alignment_offset, 469 (unsigned long long) start << SECTOR_SHIFT); 470 471 limits->zoned = blk_queue_zoned_model(q); 472 473 return 0; 474 } 475 476 /* 477 * Decrement a device's use count and remove it if necessary. 478 */ 479 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 480 { 481 int found = 0; 482 struct list_head *devices = &ti->table->devices; 483 struct dm_dev_internal *dd; 484 485 list_for_each_entry(dd, devices, list) { 486 if (dd->dm_dev == d) { 487 found = 1; 488 break; 489 } 490 } 491 if (!found) { 492 DMWARN("%s: device %s not in table devices list", 493 dm_device_name(ti->table->md), d->name); 494 return; 495 } 496 if (refcount_dec_and_test(&dd->count)) { 497 dm_put_table_device(ti->table->md, d); 498 list_del(&dd->list); 499 kfree(dd); 500 } 501 } 502 EXPORT_SYMBOL(dm_put_device); 503 504 /* 505 * Checks to see if the target joins onto the end of the table. 506 */ 507 static int adjoin(struct dm_table *table, struct dm_target *ti) 508 { 509 struct dm_target *prev; 510 511 if (!table->num_targets) 512 return !ti->begin; 513 514 prev = &table->targets[table->num_targets - 1]; 515 return (ti->begin == (prev->begin + prev->len)); 516 } 517 518 /* 519 * Used to dynamically allocate the arg array. 520 * 521 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 522 * process messages even if some device is suspended. These messages have a 523 * small fixed number of arguments. 524 * 525 * On the other hand, dm-switch needs to process bulk data using messages and 526 * excessive use of GFP_NOIO could cause trouble. 527 */ 528 static char **realloc_argv(unsigned *size, char **old_argv) 529 { 530 char **argv; 531 unsigned new_size; 532 gfp_t gfp; 533 534 if (*size) { 535 new_size = *size * 2; 536 gfp = GFP_KERNEL; 537 } else { 538 new_size = 8; 539 gfp = GFP_NOIO; 540 } 541 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 542 if (argv && old_argv) { 543 memcpy(argv, old_argv, *size * sizeof(*argv)); 544 *size = new_size; 545 } 546 547 kfree(old_argv); 548 return argv; 549 } 550 551 /* 552 * Destructively splits up the argument list to pass to ctr. 553 */ 554 int dm_split_args(int *argc, char ***argvp, char *input) 555 { 556 char *start, *end = input, *out, **argv = NULL; 557 unsigned array_size = 0; 558 559 *argc = 0; 560 561 if (!input) { 562 *argvp = NULL; 563 return 0; 564 } 565 566 argv = realloc_argv(&array_size, argv); 567 if (!argv) 568 return -ENOMEM; 569 570 while (1) { 571 /* Skip whitespace */ 572 start = skip_spaces(end); 573 574 if (!*start) 575 break; /* success, we hit the end */ 576 577 /* 'out' is used to remove any back-quotes */ 578 end = out = start; 579 while (*end) { 580 /* Everything apart from '\0' can be quoted */ 581 if (*end == '\\' && *(end + 1)) { 582 *out++ = *(end + 1); 583 end += 2; 584 continue; 585 } 586 587 if (isspace(*end)) 588 break; /* end of token */ 589 590 *out++ = *end++; 591 } 592 593 /* have we already filled the array ? */ 594 if ((*argc + 1) > array_size) { 595 argv = realloc_argv(&array_size, argv); 596 if (!argv) 597 return -ENOMEM; 598 } 599 600 /* we know this is whitespace */ 601 if (*end) 602 end++; 603 604 /* terminate the string and put it in the array */ 605 *out = '\0'; 606 argv[*argc] = start; 607 (*argc)++; 608 } 609 610 *argvp = argv; 611 return 0; 612 } 613 614 /* 615 * Impose necessary and sufficient conditions on a devices's table such 616 * that any incoming bio which respects its logical_block_size can be 617 * processed successfully. If it falls across the boundary between 618 * two or more targets, the size of each piece it gets split into must 619 * be compatible with the logical_block_size of the target processing it. 620 */ 621 static int validate_hardware_logical_block_alignment(struct dm_table *table, 622 struct queue_limits *limits) 623 { 624 /* 625 * This function uses arithmetic modulo the logical_block_size 626 * (in units of 512-byte sectors). 627 */ 628 unsigned short device_logical_block_size_sects = 629 limits->logical_block_size >> SECTOR_SHIFT; 630 631 /* 632 * Offset of the start of the next table entry, mod logical_block_size. 633 */ 634 unsigned short next_target_start = 0; 635 636 /* 637 * Given an aligned bio that extends beyond the end of a 638 * target, how many sectors must the next target handle? 639 */ 640 unsigned short remaining = 0; 641 642 struct dm_target *ti; 643 struct queue_limits ti_limits; 644 unsigned i; 645 646 /* 647 * Check each entry in the table in turn. 648 */ 649 for (i = 0; i < dm_table_get_num_targets(table); i++) { 650 ti = dm_table_get_target(table, i); 651 652 blk_set_stacking_limits(&ti_limits); 653 654 /* combine all target devices' limits */ 655 if (ti->type->iterate_devices) 656 ti->type->iterate_devices(ti, dm_set_device_limits, 657 &ti_limits); 658 659 /* 660 * If the remaining sectors fall entirely within this 661 * table entry are they compatible with its logical_block_size? 662 */ 663 if (remaining < ti->len && 664 remaining & ((ti_limits.logical_block_size >> 665 SECTOR_SHIFT) - 1)) 666 break; /* Error */ 667 668 next_target_start = 669 (unsigned short) ((next_target_start + ti->len) & 670 (device_logical_block_size_sects - 1)); 671 remaining = next_target_start ? 672 device_logical_block_size_sects - next_target_start : 0; 673 } 674 675 if (remaining) { 676 DMWARN("%s: table line %u (start sect %llu len %llu) " 677 "not aligned to h/w logical block size %u", 678 dm_device_name(table->md), i, 679 (unsigned long long) ti->begin, 680 (unsigned long long) ti->len, 681 limits->logical_block_size); 682 return -EINVAL; 683 } 684 685 return 0; 686 } 687 688 int dm_table_add_target(struct dm_table *t, const char *type, 689 sector_t start, sector_t len, char *params) 690 { 691 int r = -EINVAL, argc; 692 char **argv; 693 struct dm_target *tgt; 694 695 if (t->singleton) { 696 DMERR("%s: target type %s must appear alone in table", 697 dm_device_name(t->md), t->targets->type->name); 698 return -EINVAL; 699 } 700 701 BUG_ON(t->num_targets >= t->num_allocated); 702 703 tgt = t->targets + t->num_targets; 704 memset(tgt, 0, sizeof(*tgt)); 705 706 if (!len) { 707 DMERR("%s: zero-length target", dm_device_name(t->md)); 708 return -EINVAL; 709 } 710 711 tgt->type = dm_get_target_type(type); 712 if (!tgt->type) { 713 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 714 return -EINVAL; 715 } 716 717 if (dm_target_needs_singleton(tgt->type)) { 718 if (t->num_targets) { 719 tgt->error = "singleton target type must appear alone in table"; 720 goto bad; 721 } 722 t->singleton = true; 723 } 724 725 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 726 tgt->error = "target type may not be included in a read-only table"; 727 goto bad; 728 } 729 730 if (t->immutable_target_type) { 731 if (t->immutable_target_type != tgt->type) { 732 tgt->error = "immutable target type cannot be mixed with other target types"; 733 goto bad; 734 } 735 } else if (dm_target_is_immutable(tgt->type)) { 736 if (t->num_targets) { 737 tgt->error = "immutable target type cannot be mixed with other target types"; 738 goto bad; 739 } 740 t->immutable_target_type = tgt->type; 741 } 742 743 if (dm_target_has_integrity(tgt->type)) 744 t->integrity_added = 1; 745 746 tgt->table = t; 747 tgt->begin = start; 748 tgt->len = len; 749 tgt->error = "Unknown error"; 750 751 /* 752 * Does this target adjoin the previous one ? 753 */ 754 if (!adjoin(t, tgt)) { 755 tgt->error = "Gap in table"; 756 goto bad; 757 } 758 759 r = dm_split_args(&argc, &argv, params); 760 if (r) { 761 tgt->error = "couldn't split parameters (insufficient memory)"; 762 goto bad; 763 } 764 765 r = tgt->type->ctr(tgt, argc, argv); 766 kfree(argv); 767 if (r) 768 goto bad; 769 770 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 771 772 if (!tgt->num_discard_bios && tgt->discards_supported) 773 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 774 dm_device_name(t->md), type); 775 776 return 0; 777 778 bad: 779 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 780 dm_put_target_type(tgt->type); 781 return r; 782 } 783 784 /* 785 * Target argument parsing helpers. 786 */ 787 static int validate_next_arg(const struct dm_arg *arg, 788 struct dm_arg_set *arg_set, 789 unsigned *value, char **error, unsigned grouped) 790 { 791 const char *arg_str = dm_shift_arg(arg_set); 792 char dummy; 793 794 if (!arg_str || 795 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 796 (*value < arg->min) || 797 (*value > arg->max) || 798 (grouped && arg_set->argc < *value)) { 799 *error = arg->error; 800 return -EINVAL; 801 } 802 803 return 0; 804 } 805 806 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 807 unsigned *value, char **error) 808 { 809 return validate_next_arg(arg, arg_set, value, error, 0); 810 } 811 EXPORT_SYMBOL(dm_read_arg); 812 813 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 814 unsigned *value, char **error) 815 { 816 return validate_next_arg(arg, arg_set, value, error, 1); 817 } 818 EXPORT_SYMBOL(dm_read_arg_group); 819 820 const char *dm_shift_arg(struct dm_arg_set *as) 821 { 822 char *r; 823 824 if (as->argc) { 825 as->argc--; 826 r = *as->argv; 827 as->argv++; 828 return r; 829 } 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(dm_shift_arg); 834 835 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 836 { 837 BUG_ON(as->argc < num_args); 838 as->argc -= num_args; 839 as->argv += num_args; 840 } 841 EXPORT_SYMBOL(dm_consume_args); 842 843 static bool __table_type_bio_based(enum dm_queue_mode table_type) 844 { 845 return (table_type == DM_TYPE_BIO_BASED || 846 table_type == DM_TYPE_DAX_BIO_BASED || 847 table_type == DM_TYPE_NVME_BIO_BASED); 848 } 849 850 static bool __table_type_request_based(enum dm_queue_mode table_type) 851 { 852 return table_type == DM_TYPE_REQUEST_BASED; 853 } 854 855 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 856 { 857 t->type = type; 858 } 859 EXPORT_SYMBOL_GPL(dm_table_set_type); 860 861 /* validate the dax capability of the target device span */ 862 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 863 sector_t start, sector_t len, void *data) 864 { 865 int blocksize = *(int *) data; 866 867 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize, 868 start, len); 869 } 870 871 /* Check devices support synchronous DAX */ 872 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev, 873 sector_t start, sector_t len, void *data) 874 { 875 return dev->dax_dev && dax_synchronous(dev->dax_dev); 876 } 877 878 bool dm_table_supports_dax(struct dm_table *t, 879 iterate_devices_callout_fn iterate_fn, int *blocksize) 880 { 881 struct dm_target *ti; 882 unsigned i; 883 884 /* Ensure that all targets support DAX. */ 885 for (i = 0; i < dm_table_get_num_targets(t); i++) { 886 ti = dm_table_get_target(t, i); 887 888 if (!ti->type->direct_access) 889 return false; 890 891 if (!ti->type->iterate_devices || 892 !ti->type->iterate_devices(ti, iterate_fn, blocksize)) 893 return false; 894 } 895 896 return true; 897 } 898 899 static bool dm_table_does_not_support_partial_completion(struct dm_table *t); 900 901 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 902 sector_t start, sector_t len, void *data) 903 { 904 struct block_device *bdev = dev->bdev; 905 struct request_queue *q = bdev_get_queue(bdev); 906 907 /* request-based cannot stack on partitions! */ 908 if (bdev != bdev->bd_contains) 909 return false; 910 911 return queue_is_mq(q); 912 } 913 914 static int dm_table_determine_type(struct dm_table *t) 915 { 916 unsigned i; 917 unsigned bio_based = 0, request_based = 0, hybrid = 0; 918 struct dm_target *tgt; 919 struct list_head *devices = dm_table_get_devices(t); 920 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 921 int page_size = PAGE_SIZE; 922 923 if (t->type != DM_TYPE_NONE) { 924 /* target already set the table's type */ 925 if (t->type == DM_TYPE_BIO_BASED) { 926 /* possibly upgrade to a variant of bio-based */ 927 goto verify_bio_based; 928 } 929 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 930 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED); 931 goto verify_rq_based; 932 } 933 934 for (i = 0; i < t->num_targets; i++) { 935 tgt = t->targets + i; 936 if (dm_target_hybrid(tgt)) 937 hybrid = 1; 938 else if (dm_target_request_based(tgt)) 939 request_based = 1; 940 else 941 bio_based = 1; 942 943 if (bio_based && request_based) { 944 DMERR("Inconsistent table: different target types" 945 " can't be mixed up"); 946 return -EINVAL; 947 } 948 } 949 950 if (hybrid && !bio_based && !request_based) { 951 /* 952 * The targets can work either way. 953 * Determine the type from the live device. 954 * Default to bio-based if device is new. 955 */ 956 if (__table_type_request_based(live_md_type)) 957 request_based = 1; 958 else 959 bio_based = 1; 960 } 961 962 if (bio_based) { 963 verify_bio_based: 964 /* We must use this table as bio-based */ 965 t->type = DM_TYPE_BIO_BASED; 966 if (dm_table_supports_dax(t, device_supports_dax, &page_size) || 967 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 968 t->type = DM_TYPE_DAX_BIO_BASED; 969 } else { 970 /* Check if upgrading to NVMe bio-based is valid or required */ 971 tgt = dm_table_get_immutable_target(t); 972 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) { 973 t->type = DM_TYPE_NVME_BIO_BASED; 974 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */ 975 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) { 976 t->type = DM_TYPE_NVME_BIO_BASED; 977 } 978 } 979 return 0; 980 } 981 982 BUG_ON(!request_based); /* No targets in this table */ 983 984 t->type = DM_TYPE_REQUEST_BASED; 985 986 verify_rq_based: 987 /* 988 * Request-based dm supports only tables that have a single target now. 989 * To support multiple targets, request splitting support is needed, 990 * and that needs lots of changes in the block-layer. 991 * (e.g. request completion process for partial completion.) 992 */ 993 if (t->num_targets > 1) { 994 DMERR("%s DM doesn't support multiple targets", 995 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based"); 996 return -EINVAL; 997 } 998 999 if (list_empty(devices)) { 1000 int srcu_idx; 1001 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 1002 1003 /* inherit live table's type */ 1004 if (live_table) 1005 t->type = live_table->type; 1006 dm_put_live_table(t->md, srcu_idx); 1007 return 0; 1008 } 1009 1010 tgt = dm_table_get_immutable_target(t); 1011 if (!tgt) { 1012 DMERR("table load rejected: immutable target is required"); 1013 return -EINVAL; 1014 } else if (tgt->max_io_len) { 1015 DMERR("table load rejected: immutable target that splits IO is not supported"); 1016 return -EINVAL; 1017 } 1018 1019 /* Non-request-stackable devices can't be used for request-based dm */ 1020 if (!tgt->type->iterate_devices || 1021 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 1022 DMERR("table load rejected: including non-request-stackable devices"); 1023 return -EINVAL; 1024 } 1025 1026 return 0; 1027 } 1028 1029 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1030 { 1031 return t->type; 1032 } 1033 1034 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1035 { 1036 return t->immutable_target_type; 1037 } 1038 1039 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1040 { 1041 /* Immutable target is implicitly a singleton */ 1042 if (t->num_targets > 1 || 1043 !dm_target_is_immutable(t->targets[0].type)) 1044 return NULL; 1045 1046 return t->targets; 1047 } 1048 1049 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1050 { 1051 struct dm_target *ti; 1052 unsigned i; 1053 1054 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1055 ti = dm_table_get_target(t, i); 1056 if (dm_target_is_wildcard(ti->type)) 1057 return ti; 1058 } 1059 1060 return NULL; 1061 } 1062 1063 bool dm_table_bio_based(struct dm_table *t) 1064 { 1065 return __table_type_bio_based(dm_table_get_type(t)); 1066 } 1067 1068 bool dm_table_request_based(struct dm_table *t) 1069 { 1070 return __table_type_request_based(dm_table_get_type(t)); 1071 } 1072 1073 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1074 { 1075 enum dm_queue_mode type = dm_table_get_type(t); 1076 unsigned per_io_data_size = 0; 1077 unsigned min_pool_size = 0; 1078 struct dm_target *ti; 1079 unsigned i; 1080 1081 if (unlikely(type == DM_TYPE_NONE)) { 1082 DMWARN("no table type is set, can't allocate mempools"); 1083 return -EINVAL; 1084 } 1085 1086 if (__table_type_bio_based(type)) 1087 for (i = 0; i < t->num_targets; i++) { 1088 ti = t->targets + i; 1089 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1090 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1091 } 1092 1093 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1094 per_io_data_size, min_pool_size); 1095 if (!t->mempools) 1096 return -ENOMEM; 1097 1098 return 0; 1099 } 1100 1101 void dm_table_free_md_mempools(struct dm_table *t) 1102 { 1103 dm_free_md_mempools(t->mempools); 1104 t->mempools = NULL; 1105 } 1106 1107 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1108 { 1109 return t->mempools; 1110 } 1111 1112 static int setup_indexes(struct dm_table *t) 1113 { 1114 int i; 1115 unsigned int total = 0; 1116 sector_t *indexes; 1117 1118 /* allocate the space for *all* the indexes */ 1119 for (i = t->depth - 2; i >= 0; i--) { 1120 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1121 total += t->counts[i]; 1122 } 1123 1124 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1125 if (!indexes) 1126 return -ENOMEM; 1127 1128 /* set up internal nodes, bottom-up */ 1129 for (i = t->depth - 2; i >= 0; i--) { 1130 t->index[i] = indexes; 1131 indexes += (KEYS_PER_NODE * t->counts[i]); 1132 setup_btree_index(i, t); 1133 } 1134 1135 return 0; 1136 } 1137 1138 /* 1139 * Builds the btree to index the map. 1140 */ 1141 static int dm_table_build_index(struct dm_table *t) 1142 { 1143 int r = 0; 1144 unsigned int leaf_nodes; 1145 1146 /* how many indexes will the btree have ? */ 1147 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1148 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1149 1150 /* leaf layer has already been set up */ 1151 t->counts[t->depth - 1] = leaf_nodes; 1152 t->index[t->depth - 1] = t->highs; 1153 1154 if (t->depth >= 2) 1155 r = setup_indexes(t); 1156 1157 return r; 1158 } 1159 1160 static bool integrity_profile_exists(struct gendisk *disk) 1161 { 1162 return !!blk_get_integrity(disk); 1163 } 1164 1165 /* 1166 * Get a disk whose integrity profile reflects the table's profile. 1167 * Returns NULL if integrity support was inconsistent or unavailable. 1168 */ 1169 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1170 { 1171 struct list_head *devices = dm_table_get_devices(t); 1172 struct dm_dev_internal *dd = NULL; 1173 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1174 unsigned i; 1175 1176 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1177 struct dm_target *ti = dm_table_get_target(t, i); 1178 if (!dm_target_passes_integrity(ti->type)) 1179 goto no_integrity; 1180 } 1181 1182 list_for_each_entry(dd, devices, list) { 1183 template_disk = dd->dm_dev->bdev->bd_disk; 1184 if (!integrity_profile_exists(template_disk)) 1185 goto no_integrity; 1186 else if (prev_disk && 1187 blk_integrity_compare(prev_disk, template_disk) < 0) 1188 goto no_integrity; 1189 prev_disk = template_disk; 1190 } 1191 1192 return template_disk; 1193 1194 no_integrity: 1195 if (prev_disk) 1196 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1197 dm_device_name(t->md), 1198 prev_disk->disk_name, 1199 template_disk->disk_name); 1200 return NULL; 1201 } 1202 1203 /* 1204 * Register the mapped device for blk_integrity support if the 1205 * underlying devices have an integrity profile. But all devices may 1206 * not have matching profiles (checking all devices isn't reliable 1207 * during table load because this table may use other DM device(s) which 1208 * must be resumed before they will have an initialized integity 1209 * profile). Consequently, stacked DM devices force a 2 stage integrity 1210 * profile validation: First pass during table load, final pass during 1211 * resume. 1212 */ 1213 static int dm_table_register_integrity(struct dm_table *t) 1214 { 1215 struct mapped_device *md = t->md; 1216 struct gendisk *template_disk = NULL; 1217 1218 /* If target handles integrity itself do not register it here. */ 1219 if (t->integrity_added) 1220 return 0; 1221 1222 template_disk = dm_table_get_integrity_disk(t); 1223 if (!template_disk) 1224 return 0; 1225 1226 if (!integrity_profile_exists(dm_disk(md))) { 1227 t->integrity_supported = true; 1228 /* 1229 * Register integrity profile during table load; we can do 1230 * this because the final profile must match during resume. 1231 */ 1232 blk_integrity_register(dm_disk(md), 1233 blk_get_integrity(template_disk)); 1234 return 0; 1235 } 1236 1237 /* 1238 * If DM device already has an initialized integrity 1239 * profile the new profile should not conflict. 1240 */ 1241 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1242 DMWARN("%s: conflict with existing integrity profile: " 1243 "%s profile mismatch", 1244 dm_device_name(t->md), 1245 template_disk->disk_name); 1246 return 1; 1247 } 1248 1249 /* Preserve existing integrity profile */ 1250 t->integrity_supported = true; 1251 return 0; 1252 } 1253 1254 /* 1255 * Prepares the table for use by building the indices, 1256 * setting the type, and allocating mempools. 1257 */ 1258 int dm_table_complete(struct dm_table *t) 1259 { 1260 int r; 1261 1262 r = dm_table_determine_type(t); 1263 if (r) { 1264 DMERR("unable to determine table type"); 1265 return r; 1266 } 1267 1268 r = dm_table_build_index(t); 1269 if (r) { 1270 DMERR("unable to build btrees"); 1271 return r; 1272 } 1273 1274 r = dm_table_register_integrity(t); 1275 if (r) { 1276 DMERR("could not register integrity profile."); 1277 return r; 1278 } 1279 1280 r = dm_table_alloc_md_mempools(t, t->md); 1281 if (r) 1282 DMERR("unable to allocate mempools"); 1283 1284 return r; 1285 } 1286 1287 static DEFINE_MUTEX(_event_lock); 1288 void dm_table_event_callback(struct dm_table *t, 1289 void (*fn)(void *), void *context) 1290 { 1291 mutex_lock(&_event_lock); 1292 t->event_fn = fn; 1293 t->event_context = context; 1294 mutex_unlock(&_event_lock); 1295 } 1296 1297 void dm_table_event(struct dm_table *t) 1298 { 1299 /* 1300 * You can no longer call dm_table_event() from interrupt 1301 * context, use a bottom half instead. 1302 */ 1303 BUG_ON(in_interrupt()); 1304 1305 mutex_lock(&_event_lock); 1306 if (t->event_fn) 1307 t->event_fn(t->event_context); 1308 mutex_unlock(&_event_lock); 1309 } 1310 EXPORT_SYMBOL(dm_table_event); 1311 1312 inline sector_t dm_table_get_size(struct dm_table *t) 1313 { 1314 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1315 } 1316 EXPORT_SYMBOL(dm_table_get_size); 1317 1318 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1319 { 1320 if (index >= t->num_targets) 1321 return NULL; 1322 1323 return t->targets + index; 1324 } 1325 1326 /* 1327 * Search the btree for the correct target. 1328 * 1329 * Caller should check returned pointer for NULL 1330 * to trap I/O beyond end of device. 1331 */ 1332 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1333 { 1334 unsigned int l, n = 0, k = 0; 1335 sector_t *node; 1336 1337 if (unlikely(sector >= dm_table_get_size(t))) 1338 return NULL; 1339 1340 for (l = 0; l < t->depth; l++) { 1341 n = get_child(n, k); 1342 node = get_node(t, l, n); 1343 1344 for (k = 0; k < KEYS_PER_NODE; k++) 1345 if (node[k] >= sector) 1346 break; 1347 } 1348 1349 return &t->targets[(KEYS_PER_NODE * n) + k]; 1350 } 1351 1352 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1353 sector_t start, sector_t len, void *data) 1354 { 1355 unsigned *num_devices = data; 1356 1357 (*num_devices)++; 1358 1359 return 0; 1360 } 1361 1362 /* 1363 * Check whether a table has no data devices attached using each 1364 * target's iterate_devices method. 1365 * Returns false if the result is unknown because a target doesn't 1366 * support iterate_devices. 1367 */ 1368 bool dm_table_has_no_data_devices(struct dm_table *table) 1369 { 1370 struct dm_target *ti; 1371 unsigned i, num_devices; 1372 1373 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1374 ti = dm_table_get_target(table, i); 1375 1376 if (!ti->type->iterate_devices) 1377 return false; 1378 1379 num_devices = 0; 1380 ti->type->iterate_devices(ti, count_device, &num_devices); 1381 if (num_devices) 1382 return false; 1383 } 1384 1385 return true; 1386 } 1387 1388 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1389 sector_t start, sector_t len, void *data) 1390 { 1391 struct request_queue *q = bdev_get_queue(dev->bdev); 1392 enum blk_zoned_model *zoned_model = data; 1393 1394 return q && blk_queue_zoned_model(q) == *zoned_model; 1395 } 1396 1397 static bool dm_table_supports_zoned_model(struct dm_table *t, 1398 enum blk_zoned_model zoned_model) 1399 { 1400 struct dm_target *ti; 1401 unsigned i; 1402 1403 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1404 ti = dm_table_get_target(t, i); 1405 1406 if (zoned_model == BLK_ZONED_HM && 1407 !dm_target_supports_zoned_hm(ti->type)) 1408 return false; 1409 1410 if (!ti->type->iterate_devices || 1411 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1412 return false; 1413 } 1414 1415 return true; 1416 } 1417 1418 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1419 sector_t start, sector_t len, void *data) 1420 { 1421 struct request_queue *q = bdev_get_queue(dev->bdev); 1422 unsigned int *zone_sectors = data; 1423 1424 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1425 } 1426 1427 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1428 unsigned int zone_sectors) 1429 { 1430 struct dm_target *ti; 1431 unsigned i; 1432 1433 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1434 ti = dm_table_get_target(t, i); 1435 1436 if (!ti->type->iterate_devices || 1437 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1438 return false; 1439 } 1440 1441 return true; 1442 } 1443 1444 static int validate_hardware_zoned_model(struct dm_table *table, 1445 enum blk_zoned_model zoned_model, 1446 unsigned int zone_sectors) 1447 { 1448 if (zoned_model == BLK_ZONED_NONE) 1449 return 0; 1450 1451 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1452 DMERR("%s: zoned model is not consistent across all devices", 1453 dm_device_name(table->md)); 1454 return -EINVAL; 1455 } 1456 1457 /* Check zone size validity and compatibility */ 1458 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1459 return -EINVAL; 1460 1461 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1462 DMERR("%s: zone sectors is not consistent across all devices", 1463 dm_device_name(table->md)); 1464 return -EINVAL; 1465 } 1466 1467 return 0; 1468 } 1469 1470 /* 1471 * Establish the new table's queue_limits and validate them. 1472 */ 1473 int dm_calculate_queue_limits(struct dm_table *table, 1474 struct queue_limits *limits) 1475 { 1476 struct dm_target *ti; 1477 struct queue_limits ti_limits; 1478 unsigned i; 1479 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1480 unsigned int zone_sectors = 0; 1481 1482 blk_set_stacking_limits(limits); 1483 1484 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1485 blk_set_stacking_limits(&ti_limits); 1486 1487 ti = dm_table_get_target(table, i); 1488 1489 if (!ti->type->iterate_devices) 1490 goto combine_limits; 1491 1492 /* 1493 * Combine queue limits of all the devices this target uses. 1494 */ 1495 ti->type->iterate_devices(ti, dm_set_device_limits, 1496 &ti_limits); 1497 1498 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1499 /* 1500 * After stacking all limits, validate all devices 1501 * in table support this zoned model and zone sectors. 1502 */ 1503 zoned_model = ti_limits.zoned; 1504 zone_sectors = ti_limits.chunk_sectors; 1505 } 1506 1507 /* Set I/O hints portion of queue limits */ 1508 if (ti->type->io_hints) 1509 ti->type->io_hints(ti, &ti_limits); 1510 1511 /* 1512 * Check each device area is consistent with the target's 1513 * overall queue limits. 1514 */ 1515 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1516 &ti_limits)) 1517 return -EINVAL; 1518 1519 combine_limits: 1520 /* 1521 * Merge this target's queue limits into the overall limits 1522 * for the table. 1523 */ 1524 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1525 DMWARN("%s: adding target device " 1526 "(start sect %llu len %llu) " 1527 "caused an alignment inconsistency", 1528 dm_device_name(table->md), 1529 (unsigned long long) ti->begin, 1530 (unsigned long long) ti->len); 1531 1532 /* 1533 * FIXME: this should likely be moved to blk_stack_limits(), would 1534 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1535 */ 1536 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1537 /* 1538 * By default, the stacked limits zoned model is set to 1539 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1540 * this model using the first target model reported 1541 * that is not BLK_ZONED_NONE. This will be either the 1542 * first target device zoned model or the model reported 1543 * by the target .io_hints. 1544 */ 1545 limits->zoned = ti_limits.zoned; 1546 } 1547 } 1548 1549 /* 1550 * Verify that the zoned model and zone sectors, as determined before 1551 * any .io_hints override, are the same across all devices in the table. 1552 * - this is especially relevant if .io_hints is emulating a disk-managed 1553 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1554 * BUT... 1555 */ 1556 if (limits->zoned != BLK_ZONED_NONE) { 1557 /* 1558 * ...IF the above limits stacking determined a zoned model 1559 * validate that all of the table's devices conform to it. 1560 */ 1561 zoned_model = limits->zoned; 1562 zone_sectors = limits->chunk_sectors; 1563 } 1564 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1565 return -EINVAL; 1566 1567 return validate_hardware_logical_block_alignment(table, limits); 1568 } 1569 1570 /* 1571 * Verify that all devices have an integrity profile that matches the 1572 * DM device's registered integrity profile. If the profiles don't 1573 * match then unregister the DM device's integrity profile. 1574 */ 1575 static void dm_table_verify_integrity(struct dm_table *t) 1576 { 1577 struct gendisk *template_disk = NULL; 1578 1579 if (t->integrity_added) 1580 return; 1581 1582 if (t->integrity_supported) { 1583 /* 1584 * Verify that the original integrity profile 1585 * matches all the devices in this table. 1586 */ 1587 template_disk = dm_table_get_integrity_disk(t); 1588 if (template_disk && 1589 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1590 return; 1591 } 1592 1593 if (integrity_profile_exists(dm_disk(t->md))) { 1594 DMWARN("%s: unable to establish an integrity profile", 1595 dm_device_name(t->md)); 1596 blk_integrity_unregister(dm_disk(t->md)); 1597 } 1598 } 1599 1600 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1601 sector_t start, sector_t len, void *data) 1602 { 1603 unsigned long flush = (unsigned long) data; 1604 struct request_queue *q = bdev_get_queue(dev->bdev); 1605 1606 return q && (q->queue_flags & flush); 1607 } 1608 1609 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1610 { 1611 struct dm_target *ti; 1612 unsigned i; 1613 1614 /* 1615 * Require at least one underlying device to support flushes. 1616 * t->devices includes internal dm devices such as mirror logs 1617 * so we need to use iterate_devices here, which targets 1618 * supporting flushes must provide. 1619 */ 1620 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1621 ti = dm_table_get_target(t, i); 1622 1623 if (!ti->num_flush_bios) 1624 continue; 1625 1626 if (ti->flush_supported) 1627 return true; 1628 1629 if (ti->type->iterate_devices && 1630 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1631 return true; 1632 } 1633 1634 return false; 1635 } 1636 1637 static int device_dax_write_cache_enabled(struct dm_target *ti, 1638 struct dm_dev *dev, sector_t start, 1639 sector_t len, void *data) 1640 { 1641 struct dax_device *dax_dev = dev->dax_dev; 1642 1643 if (!dax_dev) 1644 return false; 1645 1646 if (dax_write_cache_enabled(dax_dev)) 1647 return true; 1648 return false; 1649 } 1650 1651 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1652 { 1653 struct dm_target *ti; 1654 unsigned i; 1655 1656 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1657 ti = dm_table_get_target(t, i); 1658 1659 if (ti->type->iterate_devices && 1660 ti->type->iterate_devices(ti, 1661 device_dax_write_cache_enabled, NULL)) 1662 return true; 1663 } 1664 1665 return false; 1666 } 1667 1668 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1669 sector_t start, sector_t len, void *data) 1670 { 1671 struct request_queue *q = bdev_get_queue(dev->bdev); 1672 1673 return q && blk_queue_nonrot(q); 1674 } 1675 1676 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1677 sector_t start, sector_t len, void *data) 1678 { 1679 struct request_queue *q = bdev_get_queue(dev->bdev); 1680 1681 return q && !blk_queue_add_random(q); 1682 } 1683 1684 static bool dm_table_all_devices_attribute(struct dm_table *t, 1685 iterate_devices_callout_fn func) 1686 { 1687 struct dm_target *ti; 1688 unsigned i; 1689 1690 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1691 ti = dm_table_get_target(t, i); 1692 1693 if (!ti->type->iterate_devices || 1694 !ti->type->iterate_devices(ti, func, NULL)) 1695 return false; 1696 } 1697 1698 return true; 1699 } 1700 1701 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev, 1702 sector_t start, sector_t len, void *data) 1703 { 1704 char b[BDEVNAME_SIZE]; 1705 1706 /* For now, NVMe devices are the only devices of this class */ 1707 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0); 1708 } 1709 1710 static bool dm_table_does_not_support_partial_completion(struct dm_table *t) 1711 { 1712 return dm_table_all_devices_attribute(t, device_no_partial_completion); 1713 } 1714 1715 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1716 sector_t start, sector_t len, void *data) 1717 { 1718 struct request_queue *q = bdev_get_queue(dev->bdev); 1719 1720 return q && !q->limits.max_write_same_sectors; 1721 } 1722 1723 static bool dm_table_supports_write_same(struct dm_table *t) 1724 { 1725 struct dm_target *ti; 1726 unsigned i; 1727 1728 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1729 ti = dm_table_get_target(t, i); 1730 1731 if (!ti->num_write_same_bios) 1732 return false; 1733 1734 if (!ti->type->iterate_devices || 1735 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1736 return false; 1737 } 1738 1739 return true; 1740 } 1741 1742 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1743 sector_t start, sector_t len, void *data) 1744 { 1745 struct request_queue *q = bdev_get_queue(dev->bdev); 1746 1747 return q && !q->limits.max_write_zeroes_sectors; 1748 } 1749 1750 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1751 { 1752 struct dm_target *ti; 1753 unsigned i = 0; 1754 1755 while (i < dm_table_get_num_targets(t)) { 1756 ti = dm_table_get_target(t, i++); 1757 1758 if (!ti->num_write_zeroes_bios) 1759 return false; 1760 1761 if (!ti->type->iterate_devices || 1762 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1763 return false; 1764 } 1765 1766 return true; 1767 } 1768 1769 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1770 sector_t start, sector_t len, void *data) 1771 { 1772 struct request_queue *q = bdev_get_queue(dev->bdev); 1773 1774 return q && !blk_queue_discard(q); 1775 } 1776 1777 static bool dm_table_supports_discards(struct dm_table *t) 1778 { 1779 struct dm_target *ti; 1780 unsigned i; 1781 1782 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1783 ti = dm_table_get_target(t, i); 1784 1785 if (!ti->num_discard_bios) 1786 return false; 1787 1788 /* 1789 * Either the target provides discard support (as implied by setting 1790 * 'discards_supported') or it relies on _all_ data devices having 1791 * discard support. 1792 */ 1793 if (!ti->discards_supported && 1794 (!ti->type->iterate_devices || 1795 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1796 return false; 1797 } 1798 1799 return true; 1800 } 1801 1802 static int device_not_secure_erase_capable(struct dm_target *ti, 1803 struct dm_dev *dev, sector_t start, 1804 sector_t len, void *data) 1805 { 1806 struct request_queue *q = bdev_get_queue(dev->bdev); 1807 1808 return q && !blk_queue_secure_erase(q); 1809 } 1810 1811 static bool dm_table_supports_secure_erase(struct dm_table *t) 1812 { 1813 struct dm_target *ti; 1814 unsigned int i; 1815 1816 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1817 ti = dm_table_get_target(t, i); 1818 1819 if (!ti->num_secure_erase_bios) 1820 return false; 1821 1822 if (!ti->type->iterate_devices || 1823 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1824 return false; 1825 } 1826 1827 return true; 1828 } 1829 1830 static int device_requires_stable_pages(struct dm_target *ti, 1831 struct dm_dev *dev, sector_t start, 1832 sector_t len, void *data) 1833 { 1834 struct request_queue *q = bdev_get_queue(dev->bdev); 1835 1836 return q && bdi_cap_stable_pages_required(q->backing_dev_info); 1837 } 1838 1839 /* 1840 * If any underlying device requires stable pages, a table must require 1841 * them as well. Only targets that support iterate_devices are considered: 1842 * don't want error, zero, etc to require stable pages. 1843 */ 1844 static bool dm_table_requires_stable_pages(struct dm_table *t) 1845 { 1846 struct dm_target *ti; 1847 unsigned i; 1848 1849 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1850 ti = dm_table_get_target(t, i); 1851 1852 if (ti->type->iterate_devices && 1853 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL)) 1854 return true; 1855 } 1856 1857 return false; 1858 } 1859 1860 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1861 struct queue_limits *limits) 1862 { 1863 bool wc = false, fua = false; 1864 int page_size = PAGE_SIZE; 1865 1866 /* 1867 * Copy table's limits to the DM device's request_queue 1868 */ 1869 q->limits = *limits; 1870 1871 if (!dm_table_supports_discards(t)) { 1872 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1873 /* Must also clear discard limits... */ 1874 q->limits.max_discard_sectors = 0; 1875 q->limits.max_hw_discard_sectors = 0; 1876 q->limits.discard_granularity = 0; 1877 q->limits.discard_alignment = 0; 1878 q->limits.discard_misaligned = 0; 1879 } else 1880 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1881 1882 if (dm_table_supports_secure_erase(t)) 1883 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1884 1885 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1886 wc = true; 1887 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1888 fua = true; 1889 } 1890 blk_queue_write_cache(q, wc, fua); 1891 1892 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) { 1893 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1894 if (dm_table_supports_dax(t, device_dax_synchronous, NULL)) 1895 set_dax_synchronous(t->md->dax_dev); 1896 } 1897 else 1898 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1899 1900 if (dm_table_supports_dax_write_cache(t)) 1901 dax_write_cache(t->md->dax_dev, true); 1902 1903 /* Ensure that all underlying devices are non-rotational. */ 1904 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1905 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1906 else 1907 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1908 1909 if (!dm_table_supports_write_same(t)) 1910 q->limits.max_write_same_sectors = 0; 1911 if (!dm_table_supports_write_zeroes(t)) 1912 q->limits.max_write_zeroes_sectors = 0; 1913 1914 dm_table_verify_integrity(t); 1915 1916 /* 1917 * Some devices don't use blk_integrity but still want stable pages 1918 * because they do their own checksumming. 1919 */ 1920 if (dm_table_requires_stable_pages(t)) 1921 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 1922 else 1923 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES; 1924 1925 /* 1926 * Determine whether or not this queue's I/O timings contribute 1927 * to the entropy pool, Only request-based targets use this. 1928 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1929 * have it set. 1930 */ 1931 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1932 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1933 1934 /* 1935 * For a zoned target, the number of zones should be updated for the 1936 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 1937 * target, this is all that is needed. 1938 */ 1939 #ifdef CONFIG_BLK_DEV_ZONED 1940 if (blk_queue_is_zoned(q)) { 1941 WARN_ON_ONCE(queue_is_mq(q)); 1942 q->nr_zones = blkdev_nr_zones(t->md->disk); 1943 } 1944 #endif 1945 1946 /* Allow reads to exceed readahead limits */ 1947 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9); 1948 } 1949 1950 unsigned int dm_table_get_num_targets(struct dm_table *t) 1951 { 1952 return t->num_targets; 1953 } 1954 1955 struct list_head *dm_table_get_devices(struct dm_table *t) 1956 { 1957 return &t->devices; 1958 } 1959 1960 fmode_t dm_table_get_mode(struct dm_table *t) 1961 { 1962 return t->mode; 1963 } 1964 EXPORT_SYMBOL(dm_table_get_mode); 1965 1966 enum suspend_mode { 1967 PRESUSPEND, 1968 PRESUSPEND_UNDO, 1969 POSTSUSPEND, 1970 }; 1971 1972 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1973 { 1974 int i = t->num_targets; 1975 struct dm_target *ti = t->targets; 1976 1977 lockdep_assert_held(&t->md->suspend_lock); 1978 1979 while (i--) { 1980 switch (mode) { 1981 case PRESUSPEND: 1982 if (ti->type->presuspend) 1983 ti->type->presuspend(ti); 1984 break; 1985 case PRESUSPEND_UNDO: 1986 if (ti->type->presuspend_undo) 1987 ti->type->presuspend_undo(ti); 1988 break; 1989 case POSTSUSPEND: 1990 if (ti->type->postsuspend) 1991 ti->type->postsuspend(ti); 1992 break; 1993 } 1994 ti++; 1995 } 1996 } 1997 1998 void dm_table_presuspend_targets(struct dm_table *t) 1999 { 2000 if (!t) 2001 return; 2002 2003 suspend_targets(t, PRESUSPEND); 2004 } 2005 2006 void dm_table_presuspend_undo_targets(struct dm_table *t) 2007 { 2008 if (!t) 2009 return; 2010 2011 suspend_targets(t, PRESUSPEND_UNDO); 2012 } 2013 2014 void dm_table_postsuspend_targets(struct dm_table *t) 2015 { 2016 if (!t) 2017 return; 2018 2019 suspend_targets(t, POSTSUSPEND); 2020 } 2021 2022 int dm_table_resume_targets(struct dm_table *t) 2023 { 2024 int i, r = 0; 2025 2026 lockdep_assert_held(&t->md->suspend_lock); 2027 2028 for (i = 0; i < t->num_targets; i++) { 2029 struct dm_target *ti = t->targets + i; 2030 2031 if (!ti->type->preresume) 2032 continue; 2033 2034 r = ti->type->preresume(ti); 2035 if (r) { 2036 DMERR("%s: %s: preresume failed, error = %d", 2037 dm_device_name(t->md), ti->type->name, r); 2038 return r; 2039 } 2040 } 2041 2042 for (i = 0; i < t->num_targets; i++) { 2043 struct dm_target *ti = t->targets + i; 2044 2045 if (ti->type->resume) 2046 ti->type->resume(ti); 2047 } 2048 2049 return 0; 2050 } 2051 2052 struct mapped_device *dm_table_get_md(struct dm_table *t) 2053 { 2054 return t->md; 2055 } 2056 EXPORT_SYMBOL(dm_table_get_md); 2057 2058 const char *dm_table_device_name(struct dm_table *t) 2059 { 2060 return dm_device_name(t->md); 2061 } 2062 EXPORT_SYMBOL_GPL(dm_table_device_name); 2063 2064 void dm_table_run_md_queue_async(struct dm_table *t) 2065 { 2066 struct mapped_device *md; 2067 struct request_queue *queue; 2068 2069 if (!dm_table_request_based(t)) 2070 return; 2071 2072 md = dm_table_get_md(t); 2073 queue = dm_get_md_queue(md); 2074 if (queue) 2075 blk_mq_run_hw_queues(queue, true); 2076 } 2077 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2078 2079