xref: /openbmc/linux/drivers/md/dm-table.c (revision 4c5a116a)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	unsigned integrity_added:1;
51 
52 	/*
53 	 * Indicates the rw permissions for the new logical
54 	 * device.  This should be a combination of FMODE_READ
55 	 * and FMODE_WRITE.
56 	 */
57 	fmode_t mode;
58 
59 	/* a list of devices used by this table */
60 	struct list_head devices;
61 
62 	/* events get handed up using this callback */
63 	void (*event_fn)(void *);
64 	void *event_context;
65 
66 	struct dm_md_mempools *mempools;
67 };
68 
69 /*
70  * Similar to ceiling(log_size(n))
71  */
72 static unsigned int int_log(unsigned int n, unsigned int base)
73 {
74 	int result = 0;
75 
76 	while (n > 1) {
77 		n = dm_div_up(n, base);
78 		result++;
79 	}
80 
81 	return result;
82 }
83 
84 /*
85  * Calculate the index of the child node of the n'th node k'th key.
86  */
87 static inline unsigned int get_child(unsigned int n, unsigned int k)
88 {
89 	return (n * CHILDREN_PER_NODE) + k;
90 }
91 
92 /*
93  * Return the n'th node of level l from table t.
94  */
95 static inline sector_t *get_node(struct dm_table *t,
96 				 unsigned int l, unsigned int n)
97 {
98 	return t->index[l] + (n * KEYS_PER_NODE);
99 }
100 
101 /*
102  * Return the highest key that you could lookup from the n'th
103  * node on level l of the btree.
104  */
105 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
106 {
107 	for (; l < t->depth - 1; l++)
108 		n = get_child(n, CHILDREN_PER_NODE - 1);
109 
110 	if (n >= t->counts[l])
111 		return (sector_t) - 1;
112 
113 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
114 }
115 
116 /*
117  * Fills in a level of the btree based on the highs of the level
118  * below it.
119  */
120 static int setup_btree_index(unsigned int l, struct dm_table *t)
121 {
122 	unsigned int n, k;
123 	sector_t *node;
124 
125 	for (n = 0U; n < t->counts[l]; n++) {
126 		node = get_node(t, l, n);
127 
128 		for (k = 0U; k < KEYS_PER_NODE; k++)
129 			node[k] = high(t, l + 1, get_child(n, k));
130 	}
131 
132 	return 0;
133 }
134 
135 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
136 {
137 	unsigned long size;
138 	void *addr;
139 
140 	/*
141 	 * Check that we're not going to overflow.
142 	 */
143 	if (nmemb > (ULONG_MAX / elem_size))
144 		return NULL;
145 
146 	size = nmemb * elem_size;
147 	addr = vzalloc(size);
148 
149 	return addr;
150 }
151 EXPORT_SYMBOL(dm_vcalloc);
152 
153 /*
154  * highs, and targets are managed as dynamic arrays during a
155  * table load.
156  */
157 static int alloc_targets(struct dm_table *t, unsigned int num)
158 {
159 	sector_t *n_highs;
160 	struct dm_target *n_targets;
161 
162 	/*
163 	 * Allocate both the target array and offset array at once.
164 	 */
165 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
166 					  sizeof(sector_t));
167 	if (!n_highs)
168 		return -ENOMEM;
169 
170 	n_targets = (struct dm_target *) (n_highs + num);
171 
172 	memset(n_highs, -1, sizeof(*n_highs) * num);
173 	vfree(t->highs);
174 
175 	t->num_allocated = num;
176 	t->highs = n_highs;
177 	t->targets = n_targets;
178 
179 	return 0;
180 }
181 
182 int dm_table_create(struct dm_table **result, fmode_t mode,
183 		    unsigned num_targets, struct mapped_device *md)
184 {
185 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
186 
187 	if (!t)
188 		return -ENOMEM;
189 
190 	INIT_LIST_HEAD(&t->devices);
191 
192 	if (!num_targets)
193 		num_targets = KEYS_PER_NODE;
194 
195 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196 
197 	if (!num_targets) {
198 		kfree(t);
199 		return -ENOMEM;
200 	}
201 
202 	if (alloc_targets(t, num_targets)) {
203 		kfree(t);
204 		return -ENOMEM;
205 	}
206 
207 	t->type = DM_TYPE_NONE;
208 	t->mode = mode;
209 	t->md = md;
210 	*result = t;
211 	return 0;
212 }
213 
214 static void free_devices(struct list_head *devices, struct mapped_device *md)
215 {
216 	struct list_head *tmp, *next;
217 
218 	list_for_each_safe(tmp, next, devices) {
219 		struct dm_dev_internal *dd =
220 		    list_entry(tmp, struct dm_dev_internal, list);
221 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
222 		       dm_device_name(md), dd->dm_dev->name);
223 		dm_put_table_device(md, dd->dm_dev);
224 		kfree(dd);
225 	}
226 }
227 
228 void dm_table_destroy(struct dm_table *t)
229 {
230 	unsigned int i;
231 
232 	if (!t)
233 		return;
234 
235 	/* free the indexes */
236 	if (t->depth >= 2)
237 		vfree(t->index[t->depth - 2]);
238 
239 	/* free the targets */
240 	for (i = 0; i < t->num_targets; i++) {
241 		struct dm_target *tgt = t->targets + i;
242 
243 		if (tgt->type->dtr)
244 			tgt->type->dtr(tgt);
245 
246 		dm_put_target_type(tgt->type);
247 	}
248 
249 	vfree(t->highs);
250 
251 	/* free the device list */
252 	free_devices(&t->devices, t->md);
253 
254 	dm_free_md_mempools(t->mempools);
255 
256 	kfree(t);
257 }
258 
259 /*
260  * See if we've already got a device in the list.
261  */
262 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
263 {
264 	struct dm_dev_internal *dd;
265 
266 	list_for_each_entry (dd, l, list)
267 		if (dd->dm_dev->bdev->bd_dev == dev)
268 			return dd;
269 
270 	return NULL;
271 }
272 
273 /*
274  * If possible, this checks an area of a destination device is invalid.
275  */
276 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
277 				  sector_t start, sector_t len, void *data)
278 {
279 	struct queue_limits *limits = data;
280 	struct block_device *bdev = dev->bdev;
281 	sector_t dev_size =
282 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
283 	unsigned short logical_block_size_sectors =
284 		limits->logical_block_size >> SECTOR_SHIFT;
285 	char b[BDEVNAME_SIZE];
286 
287 	if (!dev_size)
288 		return 0;
289 
290 	if ((start >= dev_size) || (start + len > dev_size)) {
291 		DMWARN("%s: %s too small for target: "
292 		       "start=%llu, len=%llu, dev_size=%llu",
293 		       dm_device_name(ti->table->md), bdevname(bdev, b),
294 		       (unsigned long long)start,
295 		       (unsigned long long)len,
296 		       (unsigned long long)dev_size);
297 		return 1;
298 	}
299 
300 	/*
301 	 * If the target is mapped to zoned block device(s), check
302 	 * that the zones are not partially mapped.
303 	 */
304 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
305 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
306 
307 		if (start & (zone_sectors - 1)) {
308 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
309 			       dm_device_name(ti->table->md),
310 			       (unsigned long long)start,
311 			       zone_sectors, bdevname(bdev, b));
312 			return 1;
313 		}
314 
315 		/*
316 		 * Note: The last zone of a zoned block device may be smaller
317 		 * than other zones. So for a target mapping the end of a
318 		 * zoned block device with such a zone, len would not be zone
319 		 * aligned. We do not allow such last smaller zone to be part
320 		 * of the mapping here to ensure that mappings with multiple
321 		 * devices do not end up with a smaller zone in the middle of
322 		 * the sector range.
323 		 */
324 		if (len & (zone_sectors - 1)) {
325 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
326 			       dm_device_name(ti->table->md),
327 			       (unsigned long long)len,
328 			       zone_sectors, bdevname(bdev, b));
329 			return 1;
330 		}
331 	}
332 
333 	if (logical_block_size_sectors <= 1)
334 		return 0;
335 
336 	if (start & (logical_block_size_sectors - 1)) {
337 		DMWARN("%s: start=%llu not aligned to h/w "
338 		       "logical block size %u of %s",
339 		       dm_device_name(ti->table->md),
340 		       (unsigned long long)start,
341 		       limits->logical_block_size, bdevname(bdev, b));
342 		return 1;
343 	}
344 
345 	if (len & (logical_block_size_sectors - 1)) {
346 		DMWARN("%s: len=%llu not aligned to h/w "
347 		       "logical block size %u of %s",
348 		       dm_device_name(ti->table->md),
349 		       (unsigned long long)len,
350 		       limits->logical_block_size, bdevname(bdev, b));
351 		return 1;
352 	}
353 
354 	return 0;
355 }
356 
357 /*
358  * This upgrades the mode on an already open dm_dev, being
359  * careful to leave things as they were if we fail to reopen the
360  * device and not to touch the existing bdev field in case
361  * it is accessed concurrently.
362  */
363 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
364 			struct mapped_device *md)
365 {
366 	int r;
367 	struct dm_dev *old_dev, *new_dev;
368 
369 	old_dev = dd->dm_dev;
370 
371 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
372 				dd->dm_dev->mode | new_mode, &new_dev);
373 	if (r)
374 		return r;
375 
376 	dd->dm_dev = new_dev;
377 	dm_put_table_device(md, old_dev);
378 
379 	return 0;
380 }
381 
382 /*
383  * Convert the path to a device
384  */
385 dev_t dm_get_dev_t(const char *path)
386 {
387 	dev_t dev;
388 	struct block_device *bdev;
389 
390 	bdev = lookup_bdev(path);
391 	if (IS_ERR(bdev))
392 		dev = name_to_dev_t(path);
393 	else {
394 		dev = bdev->bd_dev;
395 		bdput(bdev);
396 	}
397 
398 	return dev;
399 }
400 EXPORT_SYMBOL_GPL(dm_get_dev_t);
401 
402 /*
403  * Add a device to the list, or just increment the usage count if
404  * it's already present.
405  */
406 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
407 		  struct dm_dev **result)
408 {
409 	int r;
410 	dev_t dev;
411 	struct dm_dev_internal *dd;
412 	struct dm_table *t = ti->table;
413 
414 	BUG_ON(!t);
415 
416 	dev = dm_get_dev_t(path);
417 	if (!dev)
418 		return -ENODEV;
419 
420 	dd = find_device(&t->devices, dev);
421 	if (!dd) {
422 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
423 		if (!dd)
424 			return -ENOMEM;
425 
426 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
427 			kfree(dd);
428 			return r;
429 		}
430 
431 		refcount_set(&dd->count, 1);
432 		list_add(&dd->list, &t->devices);
433 		goto out;
434 
435 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
436 		r = upgrade_mode(dd, mode, t->md);
437 		if (r)
438 			return r;
439 	}
440 	refcount_inc(&dd->count);
441 out:
442 	*result = dd->dm_dev;
443 	return 0;
444 }
445 EXPORT_SYMBOL(dm_get_device);
446 
447 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
448 				sector_t start, sector_t len, void *data)
449 {
450 	struct queue_limits *limits = data;
451 	struct block_device *bdev = dev->bdev;
452 	struct request_queue *q = bdev_get_queue(bdev);
453 	char b[BDEVNAME_SIZE];
454 
455 	if (unlikely(!q)) {
456 		DMWARN("%s: Cannot set limits for nonexistent device %s",
457 		       dm_device_name(ti->table->md), bdevname(bdev, b));
458 		return 0;
459 	}
460 
461 	if (bdev_stack_limits(limits, bdev, start) < 0)
462 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
463 		       "physical_block_size=%u, logical_block_size=%u, "
464 		       "alignment_offset=%u, start=%llu",
465 		       dm_device_name(ti->table->md), bdevname(bdev, b),
466 		       q->limits.physical_block_size,
467 		       q->limits.logical_block_size,
468 		       q->limits.alignment_offset,
469 		       (unsigned long long) start << SECTOR_SHIFT);
470 
471 	limits->zoned = blk_queue_zoned_model(q);
472 
473 	return 0;
474 }
475 
476 /*
477  * Decrement a device's use count and remove it if necessary.
478  */
479 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
480 {
481 	int found = 0;
482 	struct list_head *devices = &ti->table->devices;
483 	struct dm_dev_internal *dd;
484 
485 	list_for_each_entry(dd, devices, list) {
486 		if (dd->dm_dev == d) {
487 			found = 1;
488 			break;
489 		}
490 	}
491 	if (!found) {
492 		DMWARN("%s: device %s not in table devices list",
493 		       dm_device_name(ti->table->md), d->name);
494 		return;
495 	}
496 	if (refcount_dec_and_test(&dd->count)) {
497 		dm_put_table_device(ti->table->md, d);
498 		list_del(&dd->list);
499 		kfree(dd);
500 	}
501 }
502 EXPORT_SYMBOL(dm_put_device);
503 
504 /*
505  * Checks to see if the target joins onto the end of the table.
506  */
507 static int adjoin(struct dm_table *table, struct dm_target *ti)
508 {
509 	struct dm_target *prev;
510 
511 	if (!table->num_targets)
512 		return !ti->begin;
513 
514 	prev = &table->targets[table->num_targets - 1];
515 	return (ti->begin == (prev->begin + prev->len));
516 }
517 
518 /*
519  * Used to dynamically allocate the arg array.
520  *
521  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
522  * process messages even if some device is suspended. These messages have a
523  * small fixed number of arguments.
524  *
525  * On the other hand, dm-switch needs to process bulk data using messages and
526  * excessive use of GFP_NOIO could cause trouble.
527  */
528 static char **realloc_argv(unsigned *size, char **old_argv)
529 {
530 	char **argv;
531 	unsigned new_size;
532 	gfp_t gfp;
533 
534 	if (*size) {
535 		new_size = *size * 2;
536 		gfp = GFP_KERNEL;
537 	} else {
538 		new_size = 8;
539 		gfp = GFP_NOIO;
540 	}
541 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
542 	if (argv && old_argv) {
543 		memcpy(argv, old_argv, *size * sizeof(*argv));
544 		*size = new_size;
545 	}
546 
547 	kfree(old_argv);
548 	return argv;
549 }
550 
551 /*
552  * Destructively splits up the argument list to pass to ctr.
553  */
554 int dm_split_args(int *argc, char ***argvp, char *input)
555 {
556 	char *start, *end = input, *out, **argv = NULL;
557 	unsigned array_size = 0;
558 
559 	*argc = 0;
560 
561 	if (!input) {
562 		*argvp = NULL;
563 		return 0;
564 	}
565 
566 	argv = realloc_argv(&array_size, argv);
567 	if (!argv)
568 		return -ENOMEM;
569 
570 	while (1) {
571 		/* Skip whitespace */
572 		start = skip_spaces(end);
573 
574 		if (!*start)
575 			break;	/* success, we hit the end */
576 
577 		/* 'out' is used to remove any back-quotes */
578 		end = out = start;
579 		while (*end) {
580 			/* Everything apart from '\0' can be quoted */
581 			if (*end == '\\' && *(end + 1)) {
582 				*out++ = *(end + 1);
583 				end += 2;
584 				continue;
585 			}
586 
587 			if (isspace(*end))
588 				break;	/* end of token */
589 
590 			*out++ = *end++;
591 		}
592 
593 		/* have we already filled the array ? */
594 		if ((*argc + 1) > array_size) {
595 			argv = realloc_argv(&array_size, argv);
596 			if (!argv)
597 				return -ENOMEM;
598 		}
599 
600 		/* we know this is whitespace */
601 		if (*end)
602 			end++;
603 
604 		/* terminate the string and put it in the array */
605 		*out = '\0';
606 		argv[*argc] = start;
607 		(*argc)++;
608 	}
609 
610 	*argvp = argv;
611 	return 0;
612 }
613 
614 /*
615  * Impose necessary and sufficient conditions on a devices's table such
616  * that any incoming bio which respects its logical_block_size can be
617  * processed successfully.  If it falls across the boundary between
618  * two or more targets, the size of each piece it gets split into must
619  * be compatible with the logical_block_size of the target processing it.
620  */
621 static int validate_hardware_logical_block_alignment(struct dm_table *table,
622 						 struct queue_limits *limits)
623 {
624 	/*
625 	 * This function uses arithmetic modulo the logical_block_size
626 	 * (in units of 512-byte sectors).
627 	 */
628 	unsigned short device_logical_block_size_sects =
629 		limits->logical_block_size >> SECTOR_SHIFT;
630 
631 	/*
632 	 * Offset of the start of the next table entry, mod logical_block_size.
633 	 */
634 	unsigned short next_target_start = 0;
635 
636 	/*
637 	 * Given an aligned bio that extends beyond the end of a
638 	 * target, how many sectors must the next target handle?
639 	 */
640 	unsigned short remaining = 0;
641 
642 	struct dm_target *ti;
643 	struct queue_limits ti_limits;
644 	unsigned i;
645 
646 	/*
647 	 * Check each entry in the table in turn.
648 	 */
649 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
650 		ti = dm_table_get_target(table, i);
651 
652 		blk_set_stacking_limits(&ti_limits);
653 
654 		/* combine all target devices' limits */
655 		if (ti->type->iterate_devices)
656 			ti->type->iterate_devices(ti, dm_set_device_limits,
657 						  &ti_limits);
658 
659 		/*
660 		 * If the remaining sectors fall entirely within this
661 		 * table entry are they compatible with its logical_block_size?
662 		 */
663 		if (remaining < ti->len &&
664 		    remaining & ((ti_limits.logical_block_size >>
665 				  SECTOR_SHIFT) - 1))
666 			break;	/* Error */
667 
668 		next_target_start =
669 		    (unsigned short) ((next_target_start + ti->len) &
670 				      (device_logical_block_size_sects - 1));
671 		remaining = next_target_start ?
672 		    device_logical_block_size_sects - next_target_start : 0;
673 	}
674 
675 	if (remaining) {
676 		DMWARN("%s: table line %u (start sect %llu len %llu) "
677 		       "not aligned to h/w logical block size %u",
678 		       dm_device_name(table->md), i,
679 		       (unsigned long long) ti->begin,
680 		       (unsigned long long) ti->len,
681 		       limits->logical_block_size);
682 		return -EINVAL;
683 	}
684 
685 	return 0;
686 }
687 
688 int dm_table_add_target(struct dm_table *t, const char *type,
689 			sector_t start, sector_t len, char *params)
690 {
691 	int r = -EINVAL, argc;
692 	char **argv;
693 	struct dm_target *tgt;
694 
695 	if (t->singleton) {
696 		DMERR("%s: target type %s must appear alone in table",
697 		      dm_device_name(t->md), t->targets->type->name);
698 		return -EINVAL;
699 	}
700 
701 	BUG_ON(t->num_targets >= t->num_allocated);
702 
703 	tgt = t->targets + t->num_targets;
704 	memset(tgt, 0, sizeof(*tgt));
705 
706 	if (!len) {
707 		DMERR("%s: zero-length target", dm_device_name(t->md));
708 		return -EINVAL;
709 	}
710 
711 	tgt->type = dm_get_target_type(type);
712 	if (!tgt->type) {
713 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
714 		return -EINVAL;
715 	}
716 
717 	if (dm_target_needs_singleton(tgt->type)) {
718 		if (t->num_targets) {
719 			tgt->error = "singleton target type must appear alone in table";
720 			goto bad;
721 		}
722 		t->singleton = true;
723 	}
724 
725 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
726 		tgt->error = "target type may not be included in a read-only table";
727 		goto bad;
728 	}
729 
730 	if (t->immutable_target_type) {
731 		if (t->immutable_target_type != tgt->type) {
732 			tgt->error = "immutable target type cannot be mixed with other target types";
733 			goto bad;
734 		}
735 	} else if (dm_target_is_immutable(tgt->type)) {
736 		if (t->num_targets) {
737 			tgt->error = "immutable target type cannot be mixed with other target types";
738 			goto bad;
739 		}
740 		t->immutable_target_type = tgt->type;
741 	}
742 
743 	if (dm_target_has_integrity(tgt->type))
744 		t->integrity_added = 1;
745 
746 	tgt->table = t;
747 	tgt->begin = start;
748 	tgt->len = len;
749 	tgt->error = "Unknown error";
750 
751 	/*
752 	 * Does this target adjoin the previous one ?
753 	 */
754 	if (!adjoin(t, tgt)) {
755 		tgt->error = "Gap in table";
756 		goto bad;
757 	}
758 
759 	r = dm_split_args(&argc, &argv, params);
760 	if (r) {
761 		tgt->error = "couldn't split parameters (insufficient memory)";
762 		goto bad;
763 	}
764 
765 	r = tgt->type->ctr(tgt, argc, argv);
766 	kfree(argv);
767 	if (r)
768 		goto bad;
769 
770 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
771 
772 	if (!tgt->num_discard_bios && tgt->discards_supported)
773 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
774 		       dm_device_name(t->md), type);
775 
776 	return 0;
777 
778  bad:
779 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
780 	dm_put_target_type(tgt->type);
781 	return r;
782 }
783 
784 /*
785  * Target argument parsing helpers.
786  */
787 static int validate_next_arg(const struct dm_arg *arg,
788 			     struct dm_arg_set *arg_set,
789 			     unsigned *value, char **error, unsigned grouped)
790 {
791 	const char *arg_str = dm_shift_arg(arg_set);
792 	char dummy;
793 
794 	if (!arg_str ||
795 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
796 	    (*value < arg->min) ||
797 	    (*value > arg->max) ||
798 	    (grouped && arg_set->argc < *value)) {
799 		*error = arg->error;
800 		return -EINVAL;
801 	}
802 
803 	return 0;
804 }
805 
806 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
807 		unsigned *value, char **error)
808 {
809 	return validate_next_arg(arg, arg_set, value, error, 0);
810 }
811 EXPORT_SYMBOL(dm_read_arg);
812 
813 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
814 		      unsigned *value, char **error)
815 {
816 	return validate_next_arg(arg, arg_set, value, error, 1);
817 }
818 EXPORT_SYMBOL(dm_read_arg_group);
819 
820 const char *dm_shift_arg(struct dm_arg_set *as)
821 {
822 	char *r;
823 
824 	if (as->argc) {
825 		as->argc--;
826 		r = *as->argv;
827 		as->argv++;
828 		return r;
829 	}
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(dm_shift_arg);
834 
835 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
836 {
837 	BUG_ON(as->argc < num_args);
838 	as->argc -= num_args;
839 	as->argv += num_args;
840 }
841 EXPORT_SYMBOL(dm_consume_args);
842 
843 static bool __table_type_bio_based(enum dm_queue_mode table_type)
844 {
845 	return (table_type == DM_TYPE_BIO_BASED ||
846 		table_type == DM_TYPE_DAX_BIO_BASED ||
847 		table_type == DM_TYPE_NVME_BIO_BASED);
848 }
849 
850 static bool __table_type_request_based(enum dm_queue_mode table_type)
851 {
852 	return table_type == DM_TYPE_REQUEST_BASED;
853 }
854 
855 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
856 {
857 	t->type = type;
858 }
859 EXPORT_SYMBOL_GPL(dm_table_set_type);
860 
861 /* validate the dax capability of the target device span */
862 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
863 			sector_t start, sector_t len, void *data)
864 {
865 	int blocksize = *(int *) data;
866 
867 	return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
868 				       start, len);
869 }
870 
871 /* Check devices support synchronous DAX */
872 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
873 				  sector_t start, sector_t len, void *data)
874 {
875 	return dev->dax_dev && dax_synchronous(dev->dax_dev);
876 }
877 
878 bool dm_table_supports_dax(struct dm_table *t,
879 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
880 {
881 	struct dm_target *ti;
882 	unsigned i;
883 
884 	/* Ensure that all targets support DAX. */
885 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
886 		ti = dm_table_get_target(t, i);
887 
888 		if (!ti->type->direct_access)
889 			return false;
890 
891 		if (!ti->type->iterate_devices ||
892 		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
893 			return false;
894 	}
895 
896 	return true;
897 }
898 
899 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
900 
901 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
902 				  sector_t start, sector_t len, void *data)
903 {
904 	struct block_device *bdev = dev->bdev;
905 	struct request_queue *q = bdev_get_queue(bdev);
906 
907 	/* request-based cannot stack on partitions! */
908 	if (bdev != bdev->bd_contains)
909 		return false;
910 
911 	return queue_is_mq(q);
912 }
913 
914 static int dm_table_determine_type(struct dm_table *t)
915 {
916 	unsigned i;
917 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
918 	struct dm_target *tgt;
919 	struct list_head *devices = dm_table_get_devices(t);
920 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
921 	int page_size = PAGE_SIZE;
922 
923 	if (t->type != DM_TYPE_NONE) {
924 		/* target already set the table's type */
925 		if (t->type == DM_TYPE_BIO_BASED) {
926 			/* possibly upgrade to a variant of bio-based */
927 			goto verify_bio_based;
928 		}
929 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
930 		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
931 		goto verify_rq_based;
932 	}
933 
934 	for (i = 0; i < t->num_targets; i++) {
935 		tgt = t->targets + i;
936 		if (dm_target_hybrid(tgt))
937 			hybrid = 1;
938 		else if (dm_target_request_based(tgt))
939 			request_based = 1;
940 		else
941 			bio_based = 1;
942 
943 		if (bio_based && request_based) {
944 			DMERR("Inconsistent table: different target types"
945 			      " can't be mixed up");
946 			return -EINVAL;
947 		}
948 	}
949 
950 	if (hybrid && !bio_based && !request_based) {
951 		/*
952 		 * The targets can work either way.
953 		 * Determine the type from the live device.
954 		 * Default to bio-based if device is new.
955 		 */
956 		if (__table_type_request_based(live_md_type))
957 			request_based = 1;
958 		else
959 			bio_based = 1;
960 	}
961 
962 	if (bio_based) {
963 verify_bio_based:
964 		/* We must use this table as bio-based */
965 		t->type = DM_TYPE_BIO_BASED;
966 		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
967 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
968 			t->type = DM_TYPE_DAX_BIO_BASED;
969 		} else {
970 			/* Check if upgrading to NVMe bio-based is valid or required */
971 			tgt = dm_table_get_immutable_target(t);
972 			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
973 				t->type = DM_TYPE_NVME_BIO_BASED;
974 				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
975 			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
976 				t->type = DM_TYPE_NVME_BIO_BASED;
977 			}
978 		}
979 		return 0;
980 	}
981 
982 	BUG_ON(!request_based); /* No targets in this table */
983 
984 	t->type = DM_TYPE_REQUEST_BASED;
985 
986 verify_rq_based:
987 	/*
988 	 * Request-based dm supports only tables that have a single target now.
989 	 * To support multiple targets, request splitting support is needed,
990 	 * and that needs lots of changes in the block-layer.
991 	 * (e.g. request completion process for partial completion.)
992 	 */
993 	if (t->num_targets > 1) {
994 		DMERR("%s DM doesn't support multiple targets",
995 		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
996 		return -EINVAL;
997 	}
998 
999 	if (list_empty(devices)) {
1000 		int srcu_idx;
1001 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1002 
1003 		/* inherit live table's type */
1004 		if (live_table)
1005 			t->type = live_table->type;
1006 		dm_put_live_table(t->md, srcu_idx);
1007 		return 0;
1008 	}
1009 
1010 	tgt = dm_table_get_immutable_target(t);
1011 	if (!tgt) {
1012 		DMERR("table load rejected: immutable target is required");
1013 		return -EINVAL;
1014 	} else if (tgt->max_io_len) {
1015 		DMERR("table load rejected: immutable target that splits IO is not supported");
1016 		return -EINVAL;
1017 	}
1018 
1019 	/* Non-request-stackable devices can't be used for request-based dm */
1020 	if (!tgt->type->iterate_devices ||
1021 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
1022 		DMERR("table load rejected: including non-request-stackable devices");
1023 		return -EINVAL;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1030 {
1031 	return t->type;
1032 }
1033 
1034 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1035 {
1036 	return t->immutable_target_type;
1037 }
1038 
1039 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1040 {
1041 	/* Immutable target is implicitly a singleton */
1042 	if (t->num_targets > 1 ||
1043 	    !dm_target_is_immutable(t->targets[0].type))
1044 		return NULL;
1045 
1046 	return t->targets;
1047 }
1048 
1049 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1050 {
1051 	struct dm_target *ti;
1052 	unsigned i;
1053 
1054 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1055 		ti = dm_table_get_target(t, i);
1056 		if (dm_target_is_wildcard(ti->type))
1057 			return ti;
1058 	}
1059 
1060 	return NULL;
1061 }
1062 
1063 bool dm_table_bio_based(struct dm_table *t)
1064 {
1065 	return __table_type_bio_based(dm_table_get_type(t));
1066 }
1067 
1068 bool dm_table_request_based(struct dm_table *t)
1069 {
1070 	return __table_type_request_based(dm_table_get_type(t));
1071 }
1072 
1073 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1074 {
1075 	enum dm_queue_mode type = dm_table_get_type(t);
1076 	unsigned per_io_data_size = 0;
1077 	unsigned min_pool_size = 0;
1078 	struct dm_target *ti;
1079 	unsigned i;
1080 
1081 	if (unlikely(type == DM_TYPE_NONE)) {
1082 		DMWARN("no table type is set, can't allocate mempools");
1083 		return -EINVAL;
1084 	}
1085 
1086 	if (__table_type_bio_based(type))
1087 		for (i = 0; i < t->num_targets; i++) {
1088 			ti = t->targets + i;
1089 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1090 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1091 		}
1092 
1093 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1094 					   per_io_data_size, min_pool_size);
1095 	if (!t->mempools)
1096 		return -ENOMEM;
1097 
1098 	return 0;
1099 }
1100 
1101 void dm_table_free_md_mempools(struct dm_table *t)
1102 {
1103 	dm_free_md_mempools(t->mempools);
1104 	t->mempools = NULL;
1105 }
1106 
1107 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1108 {
1109 	return t->mempools;
1110 }
1111 
1112 static int setup_indexes(struct dm_table *t)
1113 {
1114 	int i;
1115 	unsigned int total = 0;
1116 	sector_t *indexes;
1117 
1118 	/* allocate the space for *all* the indexes */
1119 	for (i = t->depth - 2; i >= 0; i--) {
1120 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1121 		total += t->counts[i];
1122 	}
1123 
1124 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1125 	if (!indexes)
1126 		return -ENOMEM;
1127 
1128 	/* set up internal nodes, bottom-up */
1129 	for (i = t->depth - 2; i >= 0; i--) {
1130 		t->index[i] = indexes;
1131 		indexes += (KEYS_PER_NODE * t->counts[i]);
1132 		setup_btree_index(i, t);
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Builds the btree to index the map.
1140  */
1141 static int dm_table_build_index(struct dm_table *t)
1142 {
1143 	int r = 0;
1144 	unsigned int leaf_nodes;
1145 
1146 	/* how many indexes will the btree have ? */
1147 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1148 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1149 
1150 	/* leaf layer has already been set up */
1151 	t->counts[t->depth - 1] = leaf_nodes;
1152 	t->index[t->depth - 1] = t->highs;
1153 
1154 	if (t->depth >= 2)
1155 		r = setup_indexes(t);
1156 
1157 	return r;
1158 }
1159 
1160 static bool integrity_profile_exists(struct gendisk *disk)
1161 {
1162 	return !!blk_get_integrity(disk);
1163 }
1164 
1165 /*
1166  * Get a disk whose integrity profile reflects the table's profile.
1167  * Returns NULL if integrity support was inconsistent or unavailable.
1168  */
1169 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1170 {
1171 	struct list_head *devices = dm_table_get_devices(t);
1172 	struct dm_dev_internal *dd = NULL;
1173 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1174 	unsigned i;
1175 
1176 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1177 		struct dm_target *ti = dm_table_get_target(t, i);
1178 		if (!dm_target_passes_integrity(ti->type))
1179 			goto no_integrity;
1180 	}
1181 
1182 	list_for_each_entry(dd, devices, list) {
1183 		template_disk = dd->dm_dev->bdev->bd_disk;
1184 		if (!integrity_profile_exists(template_disk))
1185 			goto no_integrity;
1186 		else if (prev_disk &&
1187 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1188 			goto no_integrity;
1189 		prev_disk = template_disk;
1190 	}
1191 
1192 	return template_disk;
1193 
1194 no_integrity:
1195 	if (prev_disk)
1196 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1197 		       dm_device_name(t->md),
1198 		       prev_disk->disk_name,
1199 		       template_disk->disk_name);
1200 	return NULL;
1201 }
1202 
1203 /*
1204  * Register the mapped device for blk_integrity support if the
1205  * underlying devices have an integrity profile.  But all devices may
1206  * not have matching profiles (checking all devices isn't reliable
1207  * during table load because this table may use other DM device(s) which
1208  * must be resumed before they will have an initialized integity
1209  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1210  * profile validation: First pass during table load, final pass during
1211  * resume.
1212  */
1213 static int dm_table_register_integrity(struct dm_table *t)
1214 {
1215 	struct mapped_device *md = t->md;
1216 	struct gendisk *template_disk = NULL;
1217 
1218 	/* If target handles integrity itself do not register it here. */
1219 	if (t->integrity_added)
1220 		return 0;
1221 
1222 	template_disk = dm_table_get_integrity_disk(t);
1223 	if (!template_disk)
1224 		return 0;
1225 
1226 	if (!integrity_profile_exists(dm_disk(md))) {
1227 		t->integrity_supported = true;
1228 		/*
1229 		 * Register integrity profile during table load; we can do
1230 		 * this because the final profile must match during resume.
1231 		 */
1232 		blk_integrity_register(dm_disk(md),
1233 				       blk_get_integrity(template_disk));
1234 		return 0;
1235 	}
1236 
1237 	/*
1238 	 * If DM device already has an initialized integrity
1239 	 * profile the new profile should not conflict.
1240 	 */
1241 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1242 		DMWARN("%s: conflict with existing integrity profile: "
1243 		       "%s profile mismatch",
1244 		       dm_device_name(t->md),
1245 		       template_disk->disk_name);
1246 		return 1;
1247 	}
1248 
1249 	/* Preserve existing integrity profile */
1250 	t->integrity_supported = true;
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Prepares the table for use by building the indices,
1256  * setting the type, and allocating mempools.
1257  */
1258 int dm_table_complete(struct dm_table *t)
1259 {
1260 	int r;
1261 
1262 	r = dm_table_determine_type(t);
1263 	if (r) {
1264 		DMERR("unable to determine table type");
1265 		return r;
1266 	}
1267 
1268 	r = dm_table_build_index(t);
1269 	if (r) {
1270 		DMERR("unable to build btrees");
1271 		return r;
1272 	}
1273 
1274 	r = dm_table_register_integrity(t);
1275 	if (r) {
1276 		DMERR("could not register integrity profile.");
1277 		return r;
1278 	}
1279 
1280 	r = dm_table_alloc_md_mempools(t, t->md);
1281 	if (r)
1282 		DMERR("unable to allocate mempools");
1283 
1284 	return r;
1285 }
1286 
1287 static DEFINE_MUTEX(_event_lock);
1288 void dm_table_event_callback(struct dm_table *t,
1289 			     void (*fn)(void *), void *context)
1290 {
1291 	mutex_lock(&_event_lock);
1292 	t->event_fn = fn;
1293 	t->event_context = context;
1294 	mutex_unlock(&_event_lock);
1295 }
1296 
1297 void dm_table_event(struct dm_table *t)
1298 {
1299 	/*
1300 	 * You can no longer call dm_table_event() from interrupt
1301 	 * context, use a bottom half instead.
1302 	 */
1303 	BUG_ON(in_interrupt());
1304 
1305 	mutex_lock(&_event_lock);
1306 	if (t->event_fn)
1307 		t->event_fn(t->event_context);
1308 	mutex_unlock(&_event_lock);
1309 }
1310 EXPORT_SYMBOL(dm_table_event);
1311 
1312 inline sector_t dm_table_get_size(struct dm_table *t)
1313 {
1314 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1315 }
1316 EXPORT_SYMBOL(dm_table_get_size);
1317 
1318 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1319 {
1320 	if (index >= t->num_targets)
1321 		return NULL;
1322 
1323 	return t->targets + index;
1324 }
1325 
1326 /*
1327  * Search the btree for the correct target.
1328  *
1329  * Caller should check returned pointer for NULL
1330  * to trap I/O beyond end of device.
1331  */
1332 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1333 {
1334 	unsigned int l, n = 0, k = 0;
1335 	sector_t *node;
1336 
1337 	if (unlikely(sector >= dm_table_get_size(t)))
1338 		return NULL;
1339 
1340 	for (l = 0; l < t->depth; l++) {
1341 		n = get_child(n, k);
1342 		node = get_node(t, l, n);
1343 
1344 		for (k = 0; k < KEYS_PER_NODE; k++)
1345 			if (node[k] >= sector)
1346 				break;
1347 	}
1348 
1349 	return &t->targets[(KEYS_PER_NODE * n) + k];
1350 }
1351 
1352 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1353 			sector_t start, sector_t len, void *data)
1354 {
1355 	unsigned *num_devices = data;
1356 
1357 	(*num_devices)++;
1358 
1359 	return 0;
1360 }
1361 
1362 /*
1363  * Check whether a table has no data devices attached using each
1364  * target's iterate_devices method.
1365  * Returns false if the result is unknown because a target doesn't
1366  * support iterate_devices.
1367  */
1368 bool dm_table_has_no_data_devices(struct dm_table *table)
1369 {
1370 	struct dm_target *ti;
1371 	unsigned i, num_devices;
1372 
1373 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1374 		ti = dm_table_get_target(table, i);
1375 
1376 		if (!ti->type->iterate_devices)
1377 			return false;
1378 
1379 		num_devices = 0;
1380 		ti->type->iterate_devices(ti, count_device, &num_devices);
1381 		if (num_devices)
1382 			return false;
1383 	}
1384 
1385 	return true;
1386 }
1387 
1388 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1389 				 sector_t start, sector_t len, void *data)
1390 {
1391 	struct request_queue *q = bdev_get_queue(dev->bdev);
1392 	enum blk_zoned_model *zoned_model = data;
1393 
1394 	return q && blk_queue_zoned_model(q) == *zoned_model;
1395 }
1396 
1397 static bool dm_table_supports_zoned_model(struct dm_table *t,
1398 					  enum blk_zoned_model zoned_model)
1399 {
1400 	struct dm_target *ti;
1401 	unsigned i;
1402 
1403 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1404 		ti = dm_table_get_target(t, i);
1405 
1406 		if (zoned_model == BLK_ZONED_HM &&
1407 		    !dm_target_supports_zoned_hm(ti->type))
1408 			return false;
1409 
1410 		if (!ti->type->iterate_devices ||
1411 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1412 			return false;
1413 	}
1414 
1415 	return true;
1416 }
1417 
1418 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1419 				       sector_t start, sector_t len, void *data)
1420 {
1421 	struct request_queue *q = bdev_get_queue(dev->bdev);
1422 	unsigned int *zone_sectors = data;
1423 
1424 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1425 }
1426 
1427 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1428 					  unsigned int zone_sectors)
1429 {
1430 	struct dm_target *ti;
1431 	unsigned i;
1432 
1433 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1434 		ti = dm_table_get_target(t, i);
1435 
1436 		if (!ti->type->iterate_devices ||
1437 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1438 			return false;
1439 	}
1440 
1441 	return true;
1442 }
1443 
1444 static int validate_hardware_zoned_model(struct dm_table *table,
1445 					 enum blk_zoned_model zoned_model,
1446 					 unsigned int zone_sectors)
1447 {
1448 	if (zoned_model == BLK_ZONED_NONE)
1449 		return 0;
1450 
1451 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1452 		DMERR("%s: zoned model is not consistent across all devices",
1453 		      dm_device_name(table->md));
1454 		return -EINVAL;
1455 	}
1456 
1457 	/* Check zone size validity and compatibility */
1458 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1459 		return -EINVAL;
1460 
1461 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1462 		DMERR("%s: zone sectors is not consistent across all devices",
1463 		      dm_device_name(table->md));
1464 		return -EINVAL;
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 /*
1471  * Establish the new table's queue_limits and validate them.
1472  */
1473 int dm_calculate_queue_limits(struct dm_table *table,
1474 			      struct queue_limits *limits)
1475 {
1476 	struct dm_target *ti;
1477 	struct queue_limits ti_limits;
1478 	unsigned i;
1479 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1480 	unsigned int zone_sectors = 0;
1481 
1482 	blk_set_stacking_limits(limits);
1483 
1484 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1485 		blk_set_stacking_limits(&ti_limits);
1486 
1487 		ti = dm_table_get_target(table, i);
1488 
1489 		if (!ti->type->iterate_devices)
1490 			goto combine_limits;
1491 
1492 		/*
1493 		 * Combine queue limits of all the devices this target uses.
1494 		 */
1495 		ti->type->iterate_devices(ti, dm_set_device_limits,
1496 					  &ti_limits);
1497 
1498 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1499 			/*
1500 			 * After stacking all limits, validate all devices
1501 			 * in table support this zoned model and zone sectors.
1502 			 */
1503 			zoned_model = ti_limits.zoned;
1504 			zone_sectors = ti_limits.chunk_sectors;
1505 		}
1506 
1507 		/* Set I/O hints portion of queue limits */
1508 		if (ti->type->io_hints)
1509 			ti->type->io_hints(ti, &ti_limits);
1510 
1511 		/*
1512 		 * Check each device area is consistent with the target's
1513 		 * overall queue limits.
1514 		 */
1515 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1516 					      &ti_limits))
1517 			return -EINVAL;
1518 
1519 combine_limits:
1520 		/*
1521 		 * Merge this target's queue limits into the overall limits
1522 		 * for the table.
1523 		 */
1524 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1525 			DMWARN("%s: adding target device "
1526 			       "(start sect %llu len %llu) "
1527 			       "caused an alignment inconsistency",
1528 			       dm_device_name(table->md),
1529 			       (unsigned long long) ti->begin,
1530 			       (unsigned long long) ti->len);
1531 
1532 		/*
1533 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1534 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1535 		 */
1536 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1537 			/*
1538 			 * By default, the stacked limits zoned model is set to
1539 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1540 			 * this model using the first target model reported
1541 			 * that is not BLK_ZONED_NONE. This will be either the
1542 			 * first target device zoned model or the model reported
1543 			 * by the target .io_hints.
1544 			 */
1545 			limits->zoned = ti_limits.zoned;
1546 		}
1547 	}
1548 
1549 	/*
1550 	 * Verify that the zoned model and zone sectors, as determined before
1551 	 * any .io_hints override, are the same across all devices in the table.
1552 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1553 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1554 	 * BUT...
1555 	 */
1556 	if (limits->zoned != BLK_ZONED_NONE) {
1557 		/*
1558 		 * ...IF the above limits stacking determined a zoned model
1559 		 * validate that all of the table's devices conform to it.
1560 		 */
1561 		zoned_model = limits->zoned;
1562 		zone_sectors = limits->chunk_sectors;
1563 	}
1564 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1565 		return -EINVAL;
1566 
1567 	return validate_hardware_logical_block_alignment(table, limits);
1568 }
1569 
1570 /*
1571  * Verify that all devices have an integrity profile that matches the
1572  * DM device's registered integrity profile.  If the profiles don't
1573  * match then unregister the DM device's integrity profile.
1574  */
1575 static void dm_table_verify_integrity(struct dm_table *t)
1576 {
1577 	struct gendisk *template_disk = NULL;
1578 
1579 	if (t->integrity_added)
1580 		return;
1581 
1582 	if (t->integrity_supported) {
1583 		/*
1584 		 * Verify that the original integrity profile
1585 		 * matches all the devices in this table.
1586 		 */
1587 		template_disk = dm_table_get_integrity_disk(t);
1588 		if (template_disk &&
1589 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1590 			return;
1591 	}
1592 
1593 	if (integrity_profile_exists(dm_disk(t->md))) {
1594 		DMWARN("%s: unable to establish an integrity profile",
1595 		       dm_device_name(t->md));
1596 		blk_integrity_unregister(dm_disk(t->md));
1597 	}
1598 }
1599 
1600 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1601 				sector_t start, sector_t len, void *data)
1602 {
1603 	unsigned long flush = (unsigned long) data;
1604 	struct request_queue *q = bdev_get_queue(dev->bdev);
1605 
1606 	return q && (q->queue_flags & flush);
1607 }
1608 
1609 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1610 {
1611 	struct dm_target *ti;
1612 	unsigned i;
1613 
1614 	/*
1615 	 * Require at least one underlying device to support flushes.
1616 	 * t->devices includes internal dm devices such as mirror logs
1617 	 * so we need to use iterate_devices here, which targets
1618 	 * supporting flushes must provide.
1619 	 */
1620 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1621 		ti = dm_table_get_target(t, i);
1622 
1623 		if (!ti->num_flush_bios)
1624 			continue;
1625 
1626 		if (ti->flush_supported)
1627 			return true;
1628 
1629 		if (ti->type->iterate_devices &&
1630 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1631 			return true;
1632 	}
1633 
1634 	return false;
1635 }
1636 
1637 static int device_dax_write_cache_enabled(struct dm_target *ti,
1638 					  struct dm_dev *dev, sector_t start,
1639 					  sector_t len, void *data)
1640 {
1641 	struct dax_device *dax_dev = dev->dax_dev;
1642 
1643 	if (!dax_dev)
1644 		return false;
1645 
1646 	if (dax_write_cache_enabled(dax_dev))
1647 		return true;
1648 	return false;
1649 }
1650 
1651 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1652 {
1653 	struct dm_target *ti;
1654 	unsigned i;
1655 
1656 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1657 		ti = dm_table_get_target(t, i);
1658 
1659 		if (ti->type->iterate_devices &&
1660 		    ti->type->iterate_devices(ti,
1661 				device_dax_write_cache_enabled, NULL))
1662 			return true;
1663 	}
1664 
1665 	return false;
1666 }
1667 
1668 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1669 			    sector_t start, sector_t len, void *data)
1670 {
1671 	struct request_queue *q = bdev_get_queue(dev->bdev);
1672 
1673 	return q && blk_queue_nonrot(q);
1674 }
1675 
1676 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1677 			     sector_t start, sector_t len, void *data)
1678 {
1679 	struct request_queue *q = bdev_get_queue(dev->bdev);
1680 
1681 	return q && !blk_queue_add_random(q);
1682 }
1683 
1684 static bool dm_table_all_devices_attribute(struct dm_table *t,
1685 					   iterate_devices_callout_fn func)
1686 {
1687 	struct dm_target *ti;
1688 	unsigned i;
1689 
1690 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1691 		ti = dm_table_get_target(t, i);
1692 
1693 		if (!ti->type->iterate_devices ||
1694 		    !ti->type->iterate_devices(ti, func, NULL))
1695 			return false;
1696 	}
1697 
1698 	return true;
1699 }
1700 
1701 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1702 					sector_t start, sector_t len, void *data)
1703 {
1704 	char b[BDEVNAME_SIZE];
1705 
1706 	/* For now, NVMe devices are the only devices of this class */
1707 	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1708 }
1709 
1710 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1711 {
1712 	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1713 }
1714 
1715 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1716 					 sector_t start, sector_t len, void *data)
1717 {
1718 	struct request_queue *q = bdev_get_queue(dev->bdev);
1719 
1720 	return q && !q->limits.max_write_same_sectors;
1721 }
1722 
1723 static bool dm_table_supports_write_same(struct dm_table *t)
1724 {
1725 	struct dm_target *ti;
1726 	unsigned i;
1727 
1728 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1729 		ti = dm_table_get_target(t, i);
1730 
1731 		if (!ti->num_write_same_bios)
1732 			return false;
1733 
1734 		if (!ti->type->iterate_devices ||
1735 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1736 			return false;
1737 	}
1738 
1739 	return true;
1740 }
1741 
1742 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1743 					   sector_t start, sector_t len, void *data)
1744 {
1745 	struct request_queue *q = bdev_get_queue(dev->bdev);
1746 
1747 	return q && !q->limits.max_write_zeroes_sectors;
1748 }
1749 
1750 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1751 {
1752 	struct dm_target *ti;
1753 	unsigned i = 0;
1754 
1755 	while (i < dm_table_get_num_targets(t)) {
1756 		ti = dm_table_get_target(t, i++);
1757 
1758 		if (!ti->num_write_zeroes_bios)
1759 			return false;
1760 
1761 		if (!ti->type->iterate_devices ||
1762 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1763 			return false;
1764 	}
1765 
1766 	return true;
1767 }
1768 
1769 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1770 				      sector_t start, sector_t len, void *data)
1771 {
1772 	struct request_queue *q = bdev_get_queue(dev->bdev);
1773 
1774 	return q && !blk_queue_discard(q);
1775 }
1776 
1777 static bool dm_table_supports_discards(struct dm_table *t)
1778 {
1779 	struct dm_target *ti;
1780 	unsigned i;
1781 
1782 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1783 		ti = dm_table_get_target(t, i);
1784 
1785 		if (!ti->num_discard_bios)
1786 			return false;
1787 
1788 		/*
1789 		 * Either the target provides discard support (as implied by setting
1790 		 * 'discards_supported') or it relies on _all_ data devices having
1791 		 * discard support.
1792 		 */
1793 		if (!ti->discards_supported &&
1794 		    (!ti->type->iterate_devices ||
1795 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1796 			return false;
1797 	}
1798 
1799 	return true;
1800 }
1801 
1802 static int device_not_secure_erase_capable(struct dm_target *ti,
1803 					   struct dm_dev *dev, sector_t start,
1804 					   sector_t len, void *data)
1805 {
1806 	struct request_queue *q = bdev_get_queue(dev->bdev);
1807 
1808 	return q && !blk_queue_secure_erase(q);
1809 }
1810 
1811 static bool dm_table_supports_secure_erase(struct dm_table *t)
1812 {
1813 	struct dm_target *ti;
1814 	unsigned int i;
1815 
1816 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1817 		ti = dm_table_get_target(t, i);
1818 
1819 		if (!ti->num_secure_erase_bios)
1820 			return false;
1821 
1822 		if (!ti->type->iterate_devices ||
1823 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1824 			return false;
1825 	}
1826 
1827 	return true;
1828 }
1829 
1830 static int device_requires_stable_pages(struct dm_target *ti,
1831 					struct dm_dev *dev, sector_t start,
1832 					sector_t len, void *data)
1833 {
1834 	struct request_queue *q = bdev_get_queue(dev->bdev);
1835 
1836 	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1837 }
1838 
1839 /*
1840  * If any underlying device requires stable pages, a table must require
1841  * them as well.  Only targets that support iterate_devices are considered:
1842  * don't want error, zero, etc to require stable pages.
1843  */
1844 static bool dm_table_requires_stable_pages(struct dm_table *t)
1845 {
1846 	struct dm_target *ti;
1847 	unsigned i;
1848 
1849 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1850 		ti = dm_table_get_target(t, i);
1851 
1852 		if (ti->type->iterate_devices &&
1853 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1854 			return true;
1855 	}
1856 
1857 	return false;
1858 }
1859 
1860 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1861 			       struct queue_limits *limits)
1862 {
1863 	bool wc = false, fua = false;
1864 	int page_size = PAGE_SIZE;
1865 
1866 	/*
1867 	 * Copy table's limits to the DM device's request_queue
1868 	 */
1869 	q->limits = *limits;
1870 
1871 	if (!dm_table_supports_discards(t)) {
1872 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1873 		/* Must also clear discard limits... */
1874 		q->limits.max_discard_sectors = 0;
1875 		q->limits.max_hw_discard_sectors = 0;
1876 		q->limits.discard_granularity = 0;
1877 		q->limits.discard_alignment = 0;
1878 		q->limits.discard_misaligned = 0;
1879 	} else
1880 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1881 
1882 	if (dm_table_supports_secure_erase(t))
1883 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1884 
1885 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1886 		wc = true;
1887 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1888 			fua = true;
1889 	}
1890 	blk_queue_write_cache(q, wc, fua);
1891 
1892 	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1893 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1894 		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1895 			set_dax_synchronous(t->md->dax_dev);
1896 	}
1897 	else
1898 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1899 
1900 	if (dm_table_supports_dax_write_cache(t))
1901 		dax_write_cache(t->md->dax_dev, true);
1902 
1903 	/* Ensure that all underlying devices are non-rotational. */
1904 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1905 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1906 	else
1907 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1908 
1909 	if (!dm_table_supports_write_same(t))
1910 		q->limits.max_write_same_sectors = 0;
1911 	if (!dm_table_supports_write_zeroes(t))
1912 		q->limits.max_write_zeroes_sectors = 0;
1913 
1914 	dm_table_verify_integrity(t);
1915 
1916 	/*
1917 	 * Some devices don't use blk_integrity but still want stable pages
1918 	 * because they do their own checksumming.
1919 	 */
1920 	if (dm_table_requires_stable_pages(t))
1921 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1922 	else
1923 		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1924 
1925 	/*
1926 	 * Determine whether or not this queue's I/O timings contribute
1927 	 * to the entropy pool, Only request-based targets use this.
1928 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1929 	 * have it set.
1930 	 */
1931 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1932 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1933 
1934 	/*
1935 	 * For a zoned target, the number of zones should be updated for the
1936 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1937 	 * target, this is all that is needed.
1938 	 */
1939 #ifdef CONFIG_BLK_DEV_ZONED
1940 	if (blk_queue_is_zoned(q)) {
1941 		WARN_ON_ONCE(queue_is_mq(q));
1942 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1943 	}
1944 #endif
1945 
1946 	/* Allow reads to exceed readahead limits */
1947 	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1948 }
1949 
1950 unsigned int dm_table_get_num_targets(struct dm_table *t)
1951 {
1952 	return t->num_targets;
1953 }
1954 
1955 struct list_head *dm_table_get_devices(struct dm_table *t)
1956 {
1957 	return &t->devices;
1958 }
1959 
1960 fmode_t dm_table_get_mode(struct dm_table *t)
1961 {
1962 	return t->mode;
1963 }
1964 EXPORT_SYMBOL(dm_table_get_mode);
1965 
1966 enum suspend_mode {
1967 	PRESUSPEND,
1968 	PRESUSPEND_UNDO,
1969 	POSTSUSPEND,
1970 };
1971 
1972 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1973 {
1974 	int i = t->num_targets;
1975 	struct dm_target *ti = t->targets;
1976 
1977 	lockdep_assert_held(&t->md->suspend_lock);
1978 
1979 	while (i--) {
1980 		switch (mode) {
1981 		case PRESUSPEND:
1982 			if (ti->type->presuspend)
1983 				ti->type->presuspend(ti);
1984 			break;
1985 		case PRESUSPEND_UNDO:
1986 			if (ti->type->presuspend_undo)
1987 				ti->type->presuspend_undo(ti);
1988 			break;
1989 		case POSTSUSPEND:
1990 			if (ti->type->postsuspend)
1991 				ti->type->postsuspend(ti);
1992 			break;
1993 		}
1994 		ti++;
1995 	}
1996 }
1997 
1998 void dm_table_presuspend_targets(struct dm_table *t)
1999 {
2000 	if (!t)
2001 		return;
2002 
2003 	suspend_targets(t, PRESUSPEND);
2004 }
2005 
2006 void dm_table_presuspend_undo_targets(struct dm_table *t)
2007 {
2008 	if (!t)
2009 		return;
2010 
2011 	suspend_targets(t, PRESUSPEND_UNDO);
2012 }
2013 
2014 void dm_table_postsuspend_targets(struct dm_table *t)
2015 {
2016 	if (!t)
2017 		return;
2018 
2019 	suspend_targets(t, POSTSUSPEND);
2020 }
2021 
2022 int dm_table_resume_targets(struct dm_table *t)
2023 {
2024 	int i, r = 0;
2025 
2026 	lockdep_assert_held(&t->md->suspend_lock);
2027 
2028 	for (i = 0; i < t->num_targets; i++) {
2029 		struct dm_target *ti = t->targets + i;
2030 
2031 		if (!ti->type->preresume)
2032 			continue;
2033 
2034 		r = ti->type->preresume(ti);
2035 		if (r) {
2036 			DMERR("%s: %s: preresume failed, error = %d",
2037 			      dm_device_name(t->md), ti->type->name, r);
2038 			return r;
2039 		}
2040 	}
2041 
2042 	for (i = 0; i < t->num_targets; i++) {
2043 		struct dm_target *ti = t->targets + i;
2044 
2045 		if (ti->type->resume)
2046 			ti->type->resume(ti);
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 struct mapped_device *dm_table_get_md(struct dm_table *t)
2053 {
2054 	return t->md;
2055 }
2056 EXPORT_SYMBOL(dm_table_get_md);
2057 
2058 const char *dm_table_device_name(struct dm_table *t)
2059 {
2060 	return dm_device_name(t->md);
2061 }
2062 EXPORT_SYMBOL_GPL(dm_table_device_name);
2063 
2064 void dm_table_run_md_queue_async(struct dm_table *t)
2065 {
2066 	struct mapped_device *md;
2067 	struct request_queue *queue;
2068 
2069 	if (!dm_table_request_based(t))
2070 		return;
2071 
2072 	md = dm_table_get_md(t);
2073 	queue = dm_get_md_queue(md);
2074 	if (queue)
2075 		blk_mq_run_hw_queues(queue, true);
2076 }
2077 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2078 
2079