xref: /openbmc/linux/drivers/md/dm-table.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27 
28 #define DM_MSG_PREFIX "table"
29 
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 	int result = 0;
40 
41 	while (n > 1) {
42 		n = dm_div_up(n, base);
43 		result++;
44 	}
45 
46 	return result;
47 }
48 
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 	return (n * CHILDREN_PER_NODE) + k;
55 }
56 
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61 				 unsigned int l, unsigned int n)
62 {
63 	return t->index[l] + (n * KEYS_PER_NODE);
64 }
65 
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 	for (; l < t->depth - 1; l++)
73 		n = get_child(n, CHILDREN_PER_NODE - 1);
74 
75 	if (n >= t->counts[l])
76 		return (sector_t) -1;
77 
78 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80 
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 	unsigned int n, k;
88 	sector_t *node;
89 
90 	for (n = 0U; n < t->counts[l]; n++) {
91 		node = get_node(t, l, n);
92 
93 		for (k = 0U; k < KEYS_PER_NODE; k++)
94 			node[k] = high(t, l + 1, get_child(n, k));
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 	sector_t *n_highs;
107 	struct dm_target *n_targets;
108 
109 	/*
110 	 * Allocate both the target array and offset array at once.
111 	 */
112 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 			   GFP_KERNEL);
114 	if (!n_highs)
115 		return -ENOMEM;
116 
117 	n_targets = (struct dm_target *) (n_highs + num);
118 
119 	memset(n_highs, -1, sizeof(*n_highs) * num);
120 	kvfree(t->highs);
121 
122 	t->num_allocated = num;
123 	t->highs = n_highs;
124 	t->targets = n_targets;
125 
126 	return 0;
127 }
128 
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 		    unsigned int num_targets, struct mapped_device *md)
131 {
132 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
133 
134 	if (!t)
135 		return -ENOMEM;
136 
137 	INIT_LIST_HEAD(&t->devices);
138 	init_rwsem(&t->devices_lock);
139 
140 	if (!num_targets)
141 		num_targets = KEYS_PER_NODE;
142 
143 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
144 
145 	if (!num_targets) {
146 		kfree(t);
147 		return -ENOMEM;
148 	}
149 
150 	if (alloc_targets(t, num_targets)) {
151 		kfree(t);
152 		return -ENOMEM;
153 	}
154 
155 	t->type = DM_TYPE_NONE;
156 	t->mode = mode;
157 	t->md = md;
158 	*result = t;
159 	return 0;
160 }
161 
162 static void free_devices(struct list_head *devices, struct mapped_device *md)
163 {
164 	struct list_head *tmp, *next;
165 
166 	list_for_each_safe(tmp, next, devices) {
167 		struct dm_dev_internal *dd =
168 		    list_entry(tmp, struct dm_dev_internal, list);
169 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
170 		       dm_device_name(md), dd->dm_dev->name);
171 		dm_put_table_device(md, dd->dm_dev);
172 		kfree(dd);
173 	}
174 }
175 
176 static void dm_table_destroy_crypto_profile(struct dm_table *t);
177 
178 void dm_table_destroy(struct dm_table *t)
179 {
180 	if (!t)
181 		return;
182 
183 	/* free the indexes */
184 	if (t->depth >= 2)
185 		kvfree(t->index[t->depth - 2]);
186 
187 	/* free the targets */
188 	for (unsigned int i = 0; i < t->num_targets; i++) {
189 		struct dm_target *ti = dm_table_get_target(t, i);
190 
191 		if (ti->type->dtr)
192 			ti->type->dtr(ti);
193 
194 		dm_put_target_type(ti->type);
195 	}
196 
197 	kvfree(t->highs);
198 
199 	/* free the device list */
200 	free_devices(&t->devices, t->md);
201 
202 	dm_free_md_mempools(t->mempools);
203 
204 	dm_table_destroy_crypto_profile(t);
205 
206 	kfree(t);
207 }
208 
209 /*
210  * See if we've already got a device in the list.
211  */
212 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
213 {
214 	struct dm_dev_internal *dd;
215 
216 	list_for_each_entry(dd, l, list)
217 		if (dd->dm_dev->bdev->bd_dev == dev)
218 			return dd;
219 
220 	return NULL;
221 }
222 
223 /*
224  * If possible, this checks an area of a destination device is invalid.
225  */
226 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
227 				  sector_t start, sector_t len, void *data)
228 {
229 	struct queue_limits *limits = data;
230 	struct block_device *bdev = dev->bdev;
231 	sector_t dev_size = bdev_nr_sectors(bdev);
232 	unsigned short logical_block_size_sectors =
233 		limits->logical_block_size >> SECTOR_SHIFT;
234 
235 	if (!dev_size)
236 		return 0;
237 
238 	if ((start >= dev_size) || (start + len > dev_size)) {
239 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
240 		      dm_device_name(ti->table->md), bdev,
241 		      (unsigned long long)start,
242 		      (unsigned long long)len,
243 		      (unsigned long long)dev_size);
244 		return 1;
245 	}
246 
247 	/*
248 	 * If the target is mapped to zoned block device(s), check
249 	 * that the zones are not partially mapped.
250 	 */
251 	if (bdev_is_zoned(bdev)) {
252 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
253 
254 		if (start & (zone_sectors - 1)) {
255 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
256 			      dm_device_name(ti->table->md),
257 			      (unsigned long long)start,
258 			      zone_sectors, bdev);
259 			return 1;
260 		}
261 
262 		/*
263 		 * Note: The last zone of a zoned block device may be smaller
264 		 * than other zones. So for a target mapping the end of a
265 		 * zoned block device with such a zone, len would not be zone
266 		 * aligned. We do not allow such last smaller zone to be part
267 		 * of the mapping here to ensure that mappings with multiple
268 		 * devices do not end up with a smaller zone in the middle of
269 		 * the sector range.
270 		 */
271 		if (len & (zone_sectors - 1)) {
272 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
273 			      dm_device_name(ti->table->md),
274 			      (unsigned long long)len,
275 			      zone_sectors, bdev);
276 			return 1;
277 		}
278 	}
279 
280 	if (logical_block_size_sectors <= 1)
281 		return 0;
282 
283 	if (start & (logical_block_size_sectors - 1)) {
284 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
285 		      dm_device_name(ti->table->md),
286 		      (unsigned long long)start,
287 		      limits->logical_block_size, bdev);
288 		return 1;
289 	}
290 
291 	if (len & (logical_block_size_sectors - 1)) {
292 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
293 		      dm_device_name(ti->table->md),
294 		      (unsigned long long)len,
295 		      limits->logical_block_size, bdev);
296 		return 1;
297 	}
298 
299 	return 0;
300 }
301 
302 /*
303  * This upgrades the mode on an already open dm_dev, being
304  * careful to leave things as they were if we fail to reopen the
305  * device and not to touch the existing bdev field in case
306  * it is accessed concurrently.
307  */
308 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
309 			struct mapped_device *md)
310 {
311 	int r;
312 	struct dm_dev *old_dev, *new_dev;
313 
314 	old_dev = dd->dm_dev;
315 
316 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
317 				dd->dm_dev->mode | new_mode, &new_dev);
318 	if (r)
319 		return r;
320 
321 	dd->dm_dev = new_dev;
322 	dm_put_table_device(md, old_dev);
323 
324 	return 0;
325 }
326 
327 /*
328  * Add a device to the list, or just increment the usage count if
329  * it's already present.
330  *
331  * Note: the __ref annotation is because this function can call the __init
332  * marked early_lookup_bdev when called during early boot code from dm-init.c.
333  */
334 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
335 		  struct dm_dev **result)
336 {
337 	int r;
338 	dev_t dev;
339 	unsigned int major, minor;
340 	char dummy;
341 	struct dm_dev_internal *dd;
342 	struct dm_table *t = ti->table;
343 
344 	BUG_ON(!t);
345 
346 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
347 		/* Extract the major/minor numbers */
348 		dev = MKDEV(major, minor);
349 		if (MAJOR(dev) != major || MINOR(dev) != minor)
350 			return -EOVERFLOW;
351 	} else {
352 		r = lookup_bdev(path, &dev);
353 #ifndef MODULE
354 		if (r && system_state < SYSTEM_RUNNING)
355 			r = early_lookup_bdev(path, &dev);
356 #endif
357 		if (r)
358 			return r;
359 	}
360 	if (dev == disk_devt(t->md->disk))
361 		return -EINVAL;
362 
363 	down_write(&t->devices_lock);
364 
365 	dd = find_device(&t->devices, dev);
366 	if (!dd) {
367 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
368 		if (!dd) {
369 			r = -ENOMEM;
370 			goto unlock_ret_r;
371 		}
372 
373 		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
374 		if (r) {
375 			kfree(dd);
376 			goto unlock_ret_r;
377 		}
378 
379 		refcount_set(&dd->count, 1);
380 		list_add(&dd->list, &t->devices);
381 		goto out;
382 
383 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
384 		r = upgrade_mode(dd, mode, t->md);
385 		if (r)
386 			goto unlock_ret_r;
387 	}
388 	refcount_inc(&dd->count);
389 out:
390 	up_write(&t->devices_lock);
391 	*result = dd->dm_dev;
392 	return 0;
393 
394 unlock_ret_r:
395 	up_write(&t->devices_lock);
396 	return r;
397 }
398 EXPORT_SYMBOL(dm_get_device);
399 
400 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
401 				sector_t start, sector_t len, void *data)
402 {
403 	struct queue_limits *limits = data;
404 	struct block_device *bdev = dev->bdev;
405 	struct request_queue *q = bdev_get_queue(bdev);
406 
407 	if (unlikely(!q)) {
408 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
409 		       dm_device_name(ti->table->md), bdev);
410 		return 0;
411 	}
412 
413 	if (blk_stack_limits(limits, &q->limits,
414 			get_start_sect(bdev) + start) < 0)
415 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
416 		       "physical_block_size=%u, logical_block_size=%u, "
417 		       "alignment_offset=%u, start=%llu",
418 		       dm_device_name(ti->table->md), bdev,
419 		       q->limits.physical_block_size,
420 		       q->limits.logical_block_size,
421 		       q->limits.alignment_offset,
422 		       (unsigned long long) start << SECTOR_SHIFT);
423 	return 0;
424 }
425 
426 /*
427  * Decrement a device's use count and remove it if necessary.
428  */
429 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
430 {
431 	int found = 0;
432 	struct dm_table *t = ti->table;
433 	struct list_head *devices = &t->devices;
434 	struct dm_dev_internal *dd;
435 
436 	down_write(&t->devices_lock);
437 
438 	list_for_each_entry(dd, devices, list) {
439 		if (dd->dm_dev == d) {
440 			found = 1;
441 			break;
442 		}
443 	}
444 	if (!found) {
445 		DMERR("%s: device %s not in table devices list",
446 		      dm_device_name(t->md), d->name);
447 		goto unlock_ret;
448 	}
449 	if (refcount_dec_and_test(&dd->count)) {
450 		dm_put_table_device(t->md, d);
451 		list_del(&dd->list);
452 		kfree(dd);
453 	}
454 
455 unlock_ret:
456 	up_write(&t->devices_lock);
457 }
458 EXPORT_SYMBOL(dm_put_device);
459 
460 /*
461  * Checks to see if the target joins onto the end of the table.
462  */
463 static int adjoin(struct dm_table *t, struct dm_target *ti)
464 {
465 	struct dm_target *prev;
466 
467 	if (!t->num_targets)
468 		return !ti->begin;
469 
470 	prev = &t->targets[t->num_targets - 1];
471 	return (ti->begin == (prev->begin + prev->len));
472 }
473 
474 /*
475  * Used to dynamically allocate the arg array.
476  *
477  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
478  * process messages even if some device is suspended. These messages have a
479  * small fixed number of arguments.
480  *
481  * On the other hand, dm-switch needs to process bulk data using messages and
482  * excessive use of GFP_NOIO could cause trouble.
483  */
484 static char **realloc_argv(unsigned int *size, char **old_argv)
485 {
486 	char **argv;
487 	unsigned int new_size;
488 	gfp_t gfp;
489 
490 	if (*size) {
491 		new_size = *size * 2;
492 		gfp = GFP_KERNEL;
493 	} else {
494 		new_size = 8;
495 		gfp = GFP_NOIO;
496 	}
497 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
498 	if (argv && old_argv) {
499 		memcpy(argv, old_argv, *size * sizeof(*argv));
500 		*size = new_size;
501 	}
502 
503 	kfree(old_argv);
504 	return argv;
505 }
506 
507 /*
508  * Destructively splits up the argument list to pass to ctr.
509  */
510 int dm_split_args(int *argc, char ***argvp, char *input)
511 {
512 	char *start, *end = input, *out, **argv = NULL;
513 	unsigned int array_size = 0;
514 
515 	*argc = 0;
516 
517 	if (!input) {
518 		*argvp = NULL;
519 		return 0;
520 	}
521 
522 	argv = realloc_argv(&array_size, argv);
523 	if (!argv)
524 		return -ENOMEM;
525 
526 	while (1) {
527 		/* Skip whitespace */
528 		start = skip_spaces(end);
529 
530 		if (!*start)
531 			break;	/* success, we hit the end */
532 
533 		/* 'out' is used to remove any back-quotes */
534 		end = out = start;
535 		while (*end) {
536 			/* Everything apart from '\0' can be quoted */
537 			if (*end == '\\' && *(end + 1)) {
538 				*out++ = *(end + 1);
539 				end += 2;
540 				continue;
541 			}
542 
543 			if (isspace(*end))
544 				break;	/* end of token */
545 
546 			*out++ = *end++;
547 		}
548 
549 		/* have we already filled the array ? */
550 		if ((*argc + 1) > array_size) {
551 			argv = realloc_argv(&array_size, argv);
552 			if (!argv)
553 				return -ENOMEM;
554 		}
555 
556 		/* we know this is whitespace */
557 		if (*end)
558 			end++;
559 
560 		/* terminate the string and put it in the array */
561 		*out = '\0';
562 		argv[*argc] = start;
563 		(*argc)++;
564 	}
565 
566 	*argvp = argv;
567 	return 0;
568 }
569 
570 /*
571  * Impose necessary and sufficient conditions on a devices's table such
572  * that any incoming bio which respects its logical_block_size can be
573  * processed successfully.  If it falls across the boundary between
574  * two or more targets, the size of each piece it gets split into must
575  * be compatible with the logical_block_size of the target processing it.
576  */
577 static int validate_hardware_logical_block_alignment(struct dm_table *t,
578 						     struct queue_limits *limits)
579 {
580 	/*
581 	 * This function uses arithmetic modulo the logical_block_size
582 	 * (in units of 512-byte sectors).
583 	 */
584 	unsigned short device_logical_block_size_sects =
585 		limits->logical_block_size >> SECTOR_SHIFT;
586 
587 	/*
588 	 * Offset of the start of the next table entry, mod logical_block_size.
589 	 */
590 	unsigned short next_target_start = 0;
591 
592 	/*
593 	 * Given an aligned bio that extends beyond the end of a
594 	 * target, how many sectors must the next target handle?
595 	 */
596 	unsigned short remaining = 0;
597 
598 	struct dm_target *ti;
599 	struct queue_limits ti_limits;
600 	unsigned int i;
601 
602 	/*
603 	 * Check each entry in the table in turn.
604 	 */
605 	for (i = 0; i < t->num_targets; i++) {
606 		ti = dm_table_get_target(t, i);
607 
608 		blk_set_stacking_limits(&ti_limits);
609 
610 		/* combine all target devices' limits */
611 		if (ti->type->iterate_devices)
612 			ti->type->iterate_devices(ti, dm_set_device_limits,
613 						  &ti_limits);
614 
615 		/*
616 		 * If the remaining sectors fall entirely within this
617 		 * table entry are they compatible with its logical_block_size?
618 		 */
619 		if (remaining < ti->len &&
620 		    remaining & ((ti_limits.logical_block_size >>
621 				  SECTOR_SHIFT) - 1))
622 			break;	/* Error */
623 
624 		next_target_start =
625 		    (unsigned short) ((next_target_start + ti->len) &
626 				      (device_logical_block_size_sects - 1));
627 		remaining = next_target_start ?
628 		    device_logical_block_size_sects - next_target_start : 0;
629 	}
630 
631 	if (remaining) {
632 		DMERR("%s: table line %u (start sect %llu len %llu) "
633 		      "not aligned to h/w logical block size %u",
634 		      dm_device_name(t->md), i,
635 		      (unsigned long long) ti->begin,
636 		      (unsigned long long) ti->len,
637 		      limits->logical_block_size);
638 		return -EINVAL;
639 	}
640 
641 	return 0;
642 }
643 
644 int dm_table_add_target(struct dm_table *t, const char *type,
645 			sector_t start, sector_t len, char *params)
646 {
647 	int r = -EINVAL, argc;
648 	char **argv;
649 	struct dm_target *ti;
650 
651 	if (t->singleton) {
652 		DMERR("%s: target type %s must appear alone in table",
653 		      dm_device_name(t->md), t->targets->type->name);
654 		return -EINVAL;
655 	}
656 
657 	BUG_ON(t->num_targets >= t->num_allocated);
658 
659 	ti = t->targets + t->num_targets;
660 	memset(ti, 0, sizeof(*ti));
661 
662 	if (!len) {
663 		DMERR("%s: zero-length target", dm_device_name(t->md));
664 		return -EINVAL;
665 	}
666 
667 	ti->type = dm_get_target_type(type);
668 	if (!ti->type) {
669 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
670 		return -EINVAL;
671 	}
672 
673 	if (dm_target_needs_singleton(ti->type)) {
674 		if (t->num_targets) {
675 			ti->error = "singleton target type must appear alone in table";
676 			goto bad;
677 		}
678 		t->singleton = true;
679 	}
680 
681 	if (dm_target_always_writeable(ti->type) &&
682 	    !(t->mode & BLK_OPEN_WRITE)) {
683 		ti->error = "target type may not be included in a read-only table";
684 		goto bad;
685 	}
686 
687 	if (t->immutable_target_type) {
688 		if (t->immutable_target_type != ti->type) {
689 			ti->error = "immutable target type cannot be mixed with other target types";
690 			goto bad;
691 		}
692 	} else if (dm_target_is_immutable(ti->type)) {
693 		if (t->num_targets) {
694 			ti->error = "immutable target type cannot be mixed with other target types";
695 			goto bad;
696 		}
697 		t->immutable_target_type = ti->type;
698 	}
699 
700 	if (dm_target_has_integrity(ti->type))
701 		t->integrity_added = 1;
702 
703 	ti->table = t;
704 	ti->begin = start;
705 	ti->len = len;
706 	ti->error = "Unknown error";
707 
708 	/*
709 	 * Does this target adjoin the previous one ?
710 	 */
711 	if (!adjoin(t, ti)) {
712 		ti->error = "Gap in table";
713 		goto bad;
714 	}
715 
716 	r = dm_split_args(&argc, &argv, params);
717 	if (r) {
718 		ti->error = "couldn't split parameters";
719 		goto bad;
720 	}
721 
722 	r = ti->type->ctr(ti, argc, argv);
723 	kfree(argv);
724 	if (r)
725 		goto bad;
726 
727 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
728 
729 	if (!ti->num_discard_bios && ti->discards_supported)
730 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
731 		       dm_device_name(t->md), type);
732 
733 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
734 		static_branch_enable(&swap_bios_enabled);
735 
736 	return 0;
737 
738  bad:
739 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
740 	dm_put_target_type(ti->type);
741 	return r;
742 }
743 
744 /*
745  * Target argument parsing helpers.
746  */
747 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
748 			     unsigned int *value, char **error, unsigned int grouped)
749 {
750 	const char *arg_str = dm_shift_arg(arg_set);
751 	char dummy;
752 
753 	if (!arg_str ||
754 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
755 	    (*value < arg->min) ||
756 	    (*value > arg->max) ||
757 	    (grouped && arg_set->argc < *value)) {
758 		*error = arg->error;
759 		return -EINVAL;
760 	}
761 
762 	return 0;
763 }
764 
765 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
766 		unsigned int *value, char **error)
767 {
768 	return validate_next_arg(arg, arg_set, value, error, 0);
769 }
770 EXPORT_SYMBOL(dm_read_arg);
771 
772 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
773 		      unsigned int *value, char **error)
774 {
775 	return validate_next_arg(arg, arg_set, value, error, 1);
776 }
777 EXPORT_SYMBOL(dm_read_arg_group);
778 
779 const char *dm_shift_arg(struct dm_arg_set *as)
780 {
781 	char *r;
782 
783 	if (as->argc) {
784 		as->argc--;
785 		r = *as->argv;
786 		as->argv++;
787 		return r;
788 	}
789 
790 	return NULL;
791 }
792 EXPORT_SYMBOL(dm_shift_arg);
793 
794 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
795 {
796 	BUG_ON(as->argc < num_args);
797 	as->argc -= num_args;
798 	as->argv += num_args;
799 }
800 EXPORT_SYMBOL(dm_consume_args);
801 
802 static bool __table_type_bio_based(enum dm_queue_mode table_type)
803 {
804 	return (table_type == DM_TYPE_BIO_BASED ||
805 		table_type == DM_TYPE_DAX_BIO_BASED);
806 }
807 
808 static bool __table_type_request_based(enum dm_queue_mode table_type)
809 {
810 	return table_type == DM_TYPE_REQUEST_BASED;
811 }
812 
813 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
814 {
815 	t->type = type;
816 }
817 EXPORT_SYMBOL_GPL(dm_table_set_type);
818 
819 /* validate the dax capability of the target device span */
820 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
821 			sector_t start, sector_t len, void *data)
822 {
823 	if (dev->dax_dev)
824 		return false;
825 
826 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
827 	return true;
828 }
829 
830 /* Check devices support synchronous DAX */
831 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
832 					      sector_t start, sector_t len, void *data)
833 {
834 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
835 }
836 
837 static bool dm_table_supports_dax(struct dm_table *t,
838 				  iterate_devices_callout_fn iterate_fn)
839 {
840 	/* Ensure that all targets support DAX. */
841 	for (unsigned int i = 0; i < t->num_targets; i++) {
842 		struct dm_target *ti = dm_table_get_target(t, i);
843 
844 		if (!ti->type->direct_access)
845 			return false;
846 
847 		if (!ti->type->iterate_devices ||
848 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
849 			return false;
850 	}
851 
852 	return true;
853 }
854 
855 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
856 				  sector_t start, sector_t len, void *data)
857 {
858 	struct block_device *bdev = dev->bdev;
859 	struct request_queue *q = bdev_get_queue(bdev);
860 
861 	/* request-based cannot stack on partitions! */
862 	if (bdev_is_partition(bdev))
863 		return false;
864 
865 	return queue_is_mq(q);
866 }
867 
868 static int dm_table_determine_type(struct dm_table *t)
869 {
870 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
871 	struct dm_target *ti;
872 	struct list_head *devices = dm_table_get_devices(t);
873 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
874 
875 	if (t->type != DM_TYPE_NONE) {
876 		/* target already set the table's type */
877 		if (t->type == DM_TYPE_BIO_BASED) {
878 			/* possibly upgrade to a variant of bio-based */
879 			goto verify_bio_based;
880 		}
881 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
882 		goto verify_rq_based;
883 	}
884 
885 	for (unsigned int i = 0; i < t->num_targets; i++) {
886 		ti = dm_table_get_target(t, i);
887 		if (dm_target_hybrid(ti))
888 			hybrid = 1;
889 		else if (dm_target_request_based(ti))
890 			request_based = 1;
891 		else
892 			bio_based = 1;
893 
894 		if (bio_based && request_based) {
895 			DMERR("Inconsistent table: different target types can't be mixed up");
896 			return -EINVAL;
897 		}
898 	}
899 
900 	if (hybrid && !bio_based && !request_based) {
901 		/*
902 		 * The targets can work either way.
903 		 * Determine the type from the live device.
904 		 * Default to bio-based if device is new.
905 		 */
906 		if (__table_type_request_based(live_md_type))
907 			request_based = 1;
908 		else
909 			bio_based = 1;
910 	}
911 
912 	if (bio_based) {
913 verify_bio_based:
914 		/* We must use this table as bio-based */
915 		t->type = DM_TYPE_BIO_BASED;
916 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
917 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
918 			t->type = DM_TYPE_DAX_BIO_BASED;
919 		}
920 		return 0;
921 	}
922 
923 	BUG_ON(!request_based); /* No targets in this table */
924 
925 	t->type = DM_TYPE_REQUEST_BASED;
926 
927 verify_rq_based:
928 	/*
929 	 * Request-based dm supports only tables that have a single target now.
930 	 * To support multiple targets, request splitting support is needed,
931 	 * and that needs lots of changes in the block-layer.
932 	 * (e.g. request completion process for partial completion.)
933 	 */
934 	if (t->num_targets > 1) {
935 		DMERR("request-based DM doesn't support multiple targets");
936 		return -EINVAL;
937 	}
938 
939 	if (list_empty(devices)) {
940 		int srcu_idx;
941 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
942 
943 		/* inherit live table's type */
944 		if (live_table)
945 			t->type = live_table->type;
946 		dm_put_live_table(t->md, srcu_idx);
947 		return 0;
948 	}
949 
950 	ti = dm_table_get_immutable_target(t);
951 	if (!ti) {
952 		DMERR("table load rejected: immutable target is required");
953 		return -EINVAL;
954 	} else if (ti->max_io_len) {
955 		DMERR("table load rejected: immutable target that splits IO is not supported");
956 		return -EINVAL;
957 	}
958 
959 	/* Non-request-stackable devices can't be used for request-based dm */
960 	if (!ti->type->iterate_devices ||
961 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
962 		DMERR("table load rejected: including non-request-stackable devices");
963 		return -EINVAL;
964 	}
965 
966 	return 0;
967 }
968 
969 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
970 {
971 	return t->type;
972 }
973 
974 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
975 {
976 	return t->immutable_target_type;
977 }
978 
979 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
980 {
981 	/* Immutable target is implicitly a singleton */
982 	if (t->num_targets > 1 ||
983 	    !dm_target_is_immutable(t->targets[0].type))
984 		return NULL;
985 
986 	return t->targets;
987 }
988 
989 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
990 {
991 	for (unsigned int i = 0; i < t->num_targets; i++) {
992 		struct dm_target *ti = dm_table_get_target(t, i);
993 
994 		if (dm_target_is_wildcard(ti->type))
995 			return ti;
996 	}
997 
998 	return NULL;
999 }
1000 
1001 bool dm_table_bio_based(struct dm_table *t)
1002 {
1003 	return __table_type_bio_based(dm_table_get_type(t));
1004 }
1005 
1006 bool dm_table_request_based(struct dm_table *t)
1007 {
1008 	return __table_type_request_based(dm_table_get_type(t));
1009 }
1010 
1011 static bool dm_table_supports_poll(struct dm_table *t);
1012 
1013 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1014 {
1015 	enum dm_queue_mode type = dm_table_get_type(t);
1016 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1017 	unsigned int min_pool_size = 0, pool_size;
1018 	struct dm_md_mempools *pools;
1019 
1020 	if (unlikely(type == DM_TYPE_NONE)) {
1021 		DMERR("no table type is set, can't allocate mempools");
1022 		return -EINVAL;
1023 	}
1024 
1025 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1026 	if (!pools)
1027 		return -ENOMEM;
1028 
1029 	if (type == DM_TYPE_REQUEST_BASED) {
1030 		pool_size = dm_get_reserved_rq_based_ios();
1031 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1032 		goto init_bs;
1033 	}
1034 
1035 	for (unsigned int i = 0; i < t->num_targets; i++) {
1036 		struct dm_target *ti = dm_table_get_target(t, i);
1037 
1038 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1039 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1040 	}
1041 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1042 	front_pad = roundup(per_io_data_size,
1043 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1044 
1045 	io_front_pad = roundup(per_io_data_size,
1046 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1047 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1048 			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1049 		goto out_free_pools;
1050 	if (t->integrity_supported &&
1051 	    bioset_integrity_create(&pools->io_bs, pool_size))
1052 		goto out_free_pools;
1053 init_bs:
1054 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1055 		goto out_free_pools;
1056 	if (t->integrity_supported &&
1057 	    bioset_integrity_create(&pools->bs, pool_size))
1058 		goto out_free_pools;
1059 
1060 	t->mempools = pools;
1061 	return 0;
1062 
1063 out_free_pools:
1064 	dm_free_md_mempools(pools);
1065 	return -ENOMEM;
1066 }
1067 
1068 static int setup_indexes(struct dm_table *t)
1069 {
1070 	int i;
1071 	unsigned int total = 0;
1072 	sector_t *indexes;
1073 
1074 	/* allocate the space for *all* the indexes */
1075 	for (i = t->depth - 2; i >= 0; i--) {
1076 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1077 		total += t->counts[i];
1078 	}
1079 
1080 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1081 	if (!indexes)
1082 		return -ENOMEM;
1083 
1084 	/* set up internal nodes, bottom-up */
1085 	for (i = t->depth - 2; i >= 0; i--) {
1086 		t->index[i] = indexes;
1087 		indexes += (KEYS_PER_NODE * t->counts[i]);
1088 		setup_btree_index(i, t);
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Builds the btree to index the map.
1096  */
1097 static int dm_table_build_index(struct dm_table *t)
1098 {
1099 	int r = 0;
1100 	unsigned int leaf_nodes;
1101 
1102 	/* how many indexes will the btree have ? */
1103 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1104 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1105 
1106 	/* leaf layer has already been set up */
1107 	t->counts[t->depth - 1] = leaf_nodes;
1108 	t->index[t->depth - 1] = t->highs;
1109 
1110 	if (t->depth >= 2)
1111 		r = setup_indexes(t);
1112 
1113 	return r;
1114 }
1115 
1116 static bool integrity_profile_exists(struct gendisk *disk)
1117 {
1118 	return !!blk_get_integrity(disk);
1119 }
1120 
1121 /*
1122  * Get a disk whose integrity profile reflects the table's profile.
1123  * Returns NULL if integrity support was inconsistent or unavailable.
1124  */
1125 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1126 {
1127 	struct list_head *devices = dm_table_get_devices(t);
1128 	struct dm_dev_internal *dd = NULL;
1129 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1130 
1131 	for (unsigned int i = 0; i < t->num_targets; i++) {
1132 		struct dm_target *ti = dm_table_get_target(t, i);
1133 
1134 		if (!dm_target_passes_integrity(ti->type))
1135 			goto no_integrity;
1136 	}
1137 
1138 	list_for_each_entry(dd, devices, list) {
1139 		template_disk = dd->dm_dev->bdev->bd_disk;
1140 		if (!integrity_profile_exists(template_disk))
1141 			goto no_integrity;
1142 		else if (prev_disk &&
1143 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1144 			goto no_integrity;
1145 		prev_disk = template_disk;
1146 	}
1147 
1148 	return template_disk;
1149 
1150 no_integrity:
1151 	if (prev_disk)
1152 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1153 		       dm_device_name(t->md),
1154 		       prev_disk->disk_name,
1155 		       template_disk->disk_name);
1156 	return NULL;
1157 }
1158 
1159 /*
1160  * Register the mapped device for blk_integrity support if the
1161  * underlying devices have an integrity profile.  But all devices may
1162  * not have matching profiles (checking all devices isn't reliable
1163  * during table load because this table may use other DM device(s) which
1164  * must be resumed before they will have an initialized integity
1165  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1166  * profile validation: First pass during table load, final pass during
1167  * resume.
1168  */
1169 static int dm_table_register_integrity(struct dm_table *t)
1170 {
1171 	struct mapped_device *md = t->md;
1172 	struct gendisk *template_disk = NULL;
1173 
1174 	/* If target handles integrity itself do not register it here. */
1175 	if (t->integrity_added)
1176 		return 0;
1177 
1178 	template_disk = dm_table_get_integrity_disk(t);
1179 	if (!template_disk)
1180 		return 0;
1181 
1182 	if (!integrity_profile_exists(dm_disk(md))) {
1183 		t->integrity_supported = true;
1184 		/*
1185 		 * Register integrity profile during table load; we can do
1186 		 * this because the final profile must match during resume.
1187 		 */
1188 		blk_integrity_register(dm_disk(md),
1189 				       blk_get_integrity(template_disk));
1190 		return 0;
1191 	}
1192 
1193 	/*
1194 	 * If DM device already has an initialized integrity
1195 	 * profile the new profile should not conflict.
1196 	 */
1197 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1198 		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1199 		      dm_device_name(t->md),
1200 		      template_disk->disk_name);
1201 		return 1;
1202 	}
1203 
1204 	/* Preserve existing integrity profile */
1205 	t->integrity_supported = true;
1206 	return 0;
1207 }
1208 
1209 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1210 
1211 struct dm_crypto_profile {
1212 	struct blk_crypto_profile profile;
1213 	struct mapped_device *md;
1214 };
1215 
1216 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1217 				     sector_t start, sector_t len, void *data)
1218 {
1219 	const struct blk_crypto_key *key = data;
1220 
1221 	blk_crypto_evict_key(dev->bdev, key);
1222 	return 0;
1223 }
1224 
1225 /*
1226  * When an inline encryption key is evicted from a device-mapper device, evict
1227  * it from all the underlying devices.
1228  */
1229 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1230 			    const struct blk_crypto_key *key, unsigned int slot)
1231 {
1232 	struct mapped_device *md =
1233 		container_of(profile, struct dm_crypto_profile, profile)->md;
1234 	struct dm_table *t;
1235 	int srcu_idx;
1236 
1237 	t = dm_get_live_table(md, &srcu_idx);
1238 	if (!t)
1239 		return 0;
1240 
1241 	for (unsigned int i = 0; i < t->num_targets; i++) {
1242 		struct dm_target *ti = dm_table_get_target(t, i);
1243 
1244 		if (!ti->type->iterate_devices)
1245 			continue;
1246 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1247 					  (void *)key);
1248 	}
1249 
1250 	dm_put_live_table(md, srcu_idx);
1251 	return 0;
1252 }
1253 
1254 static int
1255 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1256 				     sector_t start, sector_t len, void *data)
1257 {
1258 	struct blk_crypto_profile *parent = data;
1259 	struct blk_crypto_profile *child =
1260 		bdev_get_queue(dev->bdev)->crypto_profile;
1261 
1262 	blk_crypto_intersect_capabilities(parent, child);
1263 	return 0;
1264 }
1265 
1266 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1267 {
1268 	struct dm_crypto_profile *dmcp = container_of(profile,
1269 						      struct dm_crypto_profile,
1270 						      profile);
1271 
1272 	if (!profile)
1273 		return;
1274 
1275 	blk_crypto_profile_destroy(profile);
1276 	kfree(dmcp);
1277 }
1278 
1279 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1280 {
1281 	dm_destroy_crypto_profile(t->crypto_profile);
1282 	t->crypto_profile = NULL;
1283 }
1284 
1285 /*
1286  * Constructs and initializes t->crypto_profile with a crypto profile that
1287  * represents the common set of crypto capabilities of the devices described by
1288  * the dm_table.  However, if the constructed crypto profile doesn't support all
1289  * crypto capabilities that are supported by the current mapped_device, it
1290  * returns an error instead, since we don't support removing crypto capabilities
1291  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1292  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1293  */
1294 static int dm_table_construct_crypto_profile(struct dm_table *t)
1295 {
1296 	struct dm_crypto_profile *dmcp;
1297 	struct blk_crypto_profile *profile;
1298 	unsigned int i;
1299 	bool empty_profile = true;
1300 
1301 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1302 	if (!dmcp)
1303 		return -ENOMEM;
1304 	dmcp->md = t->md;
1305 
1306 	profile = &dmcp->profile;
1307 	blk_crypto_profile_init(profile, 0);
1308 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1309 	profile->max_dun_bytes_supported = UINT_MAX;
1310 	memset(profile->modes_supported, 0xFF,
1311 	       sizeof(profile->modes_supported));
1312 
1313 	for (i = 0; i < t->num_targets; i++) {
1314 		struct dm_target *ti = dm_table_get_target(t, i);
1315 
1316 		if (!dm_target_passes_crypto(ti->type)) {
1317 			blk_crypto_intersect_capabilities(profile, NULL);
1318 			break;
1319 		}
1320 		if (!ti->type->iterate_devices)
1321 			continue;
1322 		ti->type->iterate_devices(ti,
1323 					  device_intersect_crypto_capabilities,
1324 					  profile);
1325 	}
1326 
1327 	if (t->md->queue &&
1328 	    !blk_crypto_has_capabilities(profile,
1329 					 t->md->queue->crypto_profile)) {
1330 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1331 		dm_destroy_crypto_profile(profile);
1332 		return -EINVAL;
1333 	}
1334 
1335 	/*
1336 	 * If the new profile doesn't actually support any crypto capabilities,
1337 	 * we may as well represent it with a NULL profile.
1338 	 */
1339 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1340 		if (profile->modes_supported[i]) {
1341 			empty_profile = false;
1342 			break;
1343 		}
1344 	}
1345 
1346 	if (empty_profile) {
1347 		dm_destroy_crypto_profile(profile);
1348 		profile = NULL;
1349 	}
1350 
1351 	/*
1352 	 * t->crypto_profile is only set temporarily while the table is being
1353 	 * set up, and it gets set to NULL after the profile has been
1354 	 * transferred to the request_queue.
1355 	 */
1356 	t->crypto_profile = profile;
1357 
1358 	return 0;
1359 }
1360 
1361 static void dm_update_crypto_profile(struct request_queue *q,
1362 				     struct dm_table *t)
1363 {
1364 	if (!t->crypto_profile)
1365 		return;
1366 
1367 	/* Make the crypto profile less restrictive. */
1368 	if (!q->crypto_profile) {
1369 		blk_crypto_register(t->crypto_profile, q);
1370 	} else {
1371 		blk_crypto_update_capabilities(q->crypto_profile,
1372 					       t->crypto_profile);
1373 		dm_destroy_crypto_profile(t->crypto_profile);
1374 	}
1375 	t->crypto_profile = NULL;
1376 }
1377 
1378 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1379 
1380 static int dm_table_construct_crypto_profile(struct dm_table *t)
1381 {
1382 	return 0;
1383 }
1384 
1385 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1386 {
1387 }
1388 
1389 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1390 {
1391 }
1392 
1393 static void dm_update_crypto_profile(struct request_queue *q,
1394 				     struct dm_table *t)
1395 {
1396 }
1397 
1398 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1399 
1400 /*
1401  * Prepares the table for use by building the indices,
1402  * setting the type, and allocating mempools.
1403  */
1404 int dm_table_complete(struct dm_table *t)
1405 {
1406 	int r;
1407 
1408 	r = dm_table_determine_type(t);
1409 	if (r) {
1410 		DMERR("unable to determine table type");
1411 		return r;
1412 	}
1413 
1414 	r = dm_table_build_index(t);
1415 	if (r) {
1416 		DMERR("unable to build btrees");
1417 		return r;
1418 	}
1419 
1420 	r = dm_table_register_integrity(t);
1421 	if (r) {
1422 		DMERR("could not register integrity profile.");
1423 		return r;
1424 	}
1425 
1426 	r = dm_table_construct_crypto_profile(t);
1427 	if (r) {
1428 		DMERR("could not construct crypto profile.");
1429 		return r;
1430 	}
1431 
1432 	r = dm_table_alloc_md_mempools(t, t->md);
1433 	if (r)
1434 		DMERR("unable to allocate mempools");
1435 
1436 	return r;
1437 }
1438 
1439 static DEFINE_MUTEX(_event_lock);
1440 void dm_table_event_callback(struct dm_table *t,
1441 			     void (*fn)(void *), void *context)
1442 {
1443 	mutex_lock(&_event_lock);
1444 	t->event_fn = fn;
1445 	t->event_context = context;
1446 	mutex_unlock(&_event_lock);
1447 }
1448 
1449 void dm_table_event(struct dm_table *t)
1450 {
1451 	mutex_lock(&_event_lock);
1452 	if (t->event_fn)
1453 		t->event_fn(t->event_context);
1454 	mutex_unlock(&_event_lock);
1455 }
1456 EXPORT_SYMBOL(dm_table_event);
1457 
1458 inline sector_t dm_table_get_size(struct dm_table *t)
1459 {
1460 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1461 }
1462 EXPORT_SYMBOL(dm_table_get_size);
1463 
1464 /*
1465  * Search the btree for the correct target.
1466  *
1467  * Caller should check returned pointer for NULL
1468  * to trap I/O beyond end of device.
1469  */
1470 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1471 {
1472 	unsigned int l, n = 0, k = 0;
1473 	sector_t *node;
1474 
1475 	if (unlikely(sector >= dm_table_get_size(t)))
1476 		return NULL;
1477 
1478 	for (l = 0; l < t->depth; l++) {
1479 		n = get_child(n, k);
1480 		node = get_node(t, l, n);
1481 
1482 		for (k = 0; k < KEYS_PER_NODE; k++)
1483 			if (node[k] >= sector)
1484 				break;
1485 	}
1486 
1487 	return &t->targets[(KEYS_PER_NODE * n) + k];
1488 }
1489 
1490 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1491 				   sector_t start, sector_t len, void *data)
1492 {
1493 	struct request_queue *q = bdev_get_queue(dev->bdev);
1494 
1495 	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1496 }
1497 
1498 /*
1499  * type->iterate_devices() should be called when the sanity check needs to
1500  * iterate and check all underlying data devices. iterate_devices() will
1501  * iterate all underlying data devices until it encounters a non-zero return
1502  * code, returned by whether the input iterate_devices_callout_fn, or
1503  * iterate_devices() itself internally.
1504  *
1505  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1506  * iterate multiple underlying devices internally, in which case a non-zero
1507  * return code returned by iterate_devices_callout_fn will stop the iteration
1508  * in advance.
1509  *
1510  * Cases requiring _any_ underlying device supporting some kind of attribute,
1511  * should use the iteration structure like dm_table_any_dev_attr(), or call
1512  * it directly. @func should handle semantics of positive examples, e.g.
1513  * capable of something.
1514  *
1515  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1516  * should use the iteration structure like dm_table_supports_nowait() or
1517  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1518  * uses an @anti_func that handle semantics of counter examples, e.g. not
1519  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1520  */
1521 static bool dm_table_any_dev_attr(struct dm_table *t,
1522 				  iterate_devices_callout_fn func, void *data)
1523 {
1524 	for (unsigned int i = 0; i < t->num_targets; i++) {
1525 		struct dm_target *ti = dm_table_get_target(t, i);
1526 
1527 		if (ti->type->iterate_devices &&
1528 		    ti->type->iterate_devices(ti, func, data))
1529 			return true;
1530 	}
1531 
1532 	return false;
1533 }
1534 
1535 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1536 			sector_t start, sector_t len, void *data)
1537 {
1538 	unsigned int *num_devices = data;
1539 
1540 	(*num_devices)++;
1541 
1542 	return 0;
1543 }
1544 
1545 static bool dm_table_supports_poll(struct dm_table *t)
1546 {
1547 	for (unsigned int i = 0; i < t->num_targets; i++) {
1548 		struct dm_target *ti = dm_table_get_target(t, i);
1549 
1550 		if (!ti->type->iterate_devices ||
1551 		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1552 			return false;
1553 	}
1554 
1555 	return true;
1556 }
1557 
1558 /*
1559  * Check whether a table has no data devices attached using each
1560  * target's iterate_devices method.
1561  * Returns false if the result is unknown because a target doesn't
1562  * support iterate_devices.
1563  */
1564 bool dm_table_has_no_data_devices(struct dm_table *t)
1565 {
1566 	for (unsigned int i = 0; i < t->num_targets; i++) {
1567 		struct dm_target *ti = dm_table_get_target(t, i);
1568 		unsigned int num_devices = 0;
1569 
1570 		if (!ti->type->iterate_devices)
1571 			return false;
1572 
1573 		ti->type->iterate_devices(ti, count_device, &num_devices);
1574 		if (num_devices)
1575 			return false;
1576 	}
1577 
1578 	return true;
1579 }
1580 
1581 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582 				  sector_t start, sector_t len, void *data)
1583 {
1584 	struct request_queue *q = bdev_get_queue(dev->bdev);
1585 	enum blk_zoned_model *zoned_model = data;
1586 
1587 	return blk_queue_zoned_model(q) != *zoned_model;
1588 }
1589 
1590 /*
1591  * Check the device zoned model based on the target feature flag. If the target
1592  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593  * also accepted but all devices must have the same zoned model. If the target
1594  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595  * zoned model with all zoned devices having the same zone size.
1596  */
1597 static bool dm_table_supports_zoned_model(struct dm_table *t,
1598 					  enum blk_zoned_model zoned_model)
1599 {
1600 	for (unsigned int i = 0; i < t->num_targets; i++) {
1601 		struct dm_target *ti = dm_table_get_target(t, i);
1602 
1603 		if (dm_target_supports_zoned_hm(ti->type)) {
1604 			if (!ti->type->iterate_devices ||
1605 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1606 						      &zoned_model))
1607 				return false;
1608 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1609 			if (zoned_model == BLK_ZONED_HM)
1610 				return false;
1611 		}
1612 	}
1613 
1614 	return true;
1615 }
1616 
1617 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1618 					   sector_t start, sector_t len, void *data)
1619 {
1620 	unsigned int *zone_sectors = data;
1621 
1622 	if (!bdev_is_zoned(dev->bdev))
1623 		return 0;
1624 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1625 }
1626 
1627 /*
1628  * Check consistency of zoned model and zone sectors across all targets. For
1629  * zone sectors, if the destination device is a zoned block device, it shall
1630  * have the specified zone_sectors.
1631  */
1632 static int validate_hardware_zoned_model(struct dm_table *t,
1633 					 enum blk_zoned_model zoned_model,
1634 					 unsigned int zone_sectors)
1635 {
1636 	if (zoned_model == BLK_ZONED_NONE)
1637 		return 0;
1638 
1639 	if (!dm_table_supports_zoned_model(t, zoned_model)) {
1640 		DMERR("%s: zoned model is not consistent across all devices",
1641 		      dm_device_name(t->md));
1642 		return -EINVAL;
1643 	}
1644 
1645 	/* Check zone size validity and compatibility */
1646 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1647 		return -EINVAL;
1648 
1649 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1650 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1651 		      dm_device_name(t->md));
1652 		return -EINVAL;
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 /*
1659  * Establish the new table's queue_limits and validate them.
1660  */
1661 int dm_calculate_queue_limits(struct dm_table *t,
1662 			      struct queue_limits *limits)
1663 {
1664 	struct queue_limits ti_limits;
1665 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1666 	unsigned int zone_sectors = 0;
1667 
1668 	blk_set_stacking_limits(limits);
1669 
1670 	for (unsigned int i = 0; i < t->num_targets; i++) {
1671 		struct dm_target *ti = dm_table_get_target(t, i);
1672 
1673 		blk_set_stacking_limits(&ti_limits);
1674 
1675 		if (!ti->type->iterate_devices) {
1676 			/* Set I/O hints portion of queue limits */
1677 			if (ti->type->io_hints)
1678 				ti->type->io_hints(ti, &ti_limits);
1679 			goto combine_limits;
1680 		}
1681 
1682 		/*
1683 		 * Combine queue limits of all the devices this target uses.
1684 		 */
1685 		ti->type->iterate_devices(ti, dm_set_device_limits,
1686 					  &ti_limits);
1687 
1688 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1689 			/*
1690 			 * After stacking all limits, validate all devices
1691 			 * in table support this zoned model and zone sectors.
1692 			 */
1693 			zoned_model = ti_limits.zoned;
1694 			zone_sectors = ti_limits.chunk_sectors;
1695 		}
1696 
1697 		/* Set I/O hints portion of queue limits */
1698 		if (ti->type->io_hints)
1699 			ti->type->io_hints(ti, &ti_limits);
1700 
1701 		/*
1702 		 * Check each device area is consistent with the target's
1703 		 * overall queue limits.
1704 		 */
1705 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1706 					      &ti_limits))
1707 			return -EINVAL;
1708 
1709 combine_limits:
1710 		/*
1711 		 * Merge this target's queue limits into the overall limits
1712 		 * for the table.
1713 		 */
1714 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1715 			DMWARN("%s: adding target device (start sect %llu len %llu) "
1716 			       "caused an alignment inconsistency",
1717 			       dm_device_name(t->md),
1718 			       (unsigned long long) ti->begin,
1719 			       (unsigned long long) ti->len);
1720 	}
1721 
1722 	/*
1723 	 * Verify that the zoned model and zone sectors, as determined before
1724 	 * any .io_hints override, are the same across all devices in the table.
1725 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1726 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1727 	 * BUT...
1728 	 */
1729 	if (limits->zoned != BLK_ZONED_NONE) {
1730 		/*
1731 		 * ...IF the above limits stacking determined a zoned model
1732 		 * validate that all of the table's devices conform to it.
1733 		 */
1734 		zoned_model = limits->zoned;
1735 		zone_sectors = limits->chunk_sectors;
1736 	}
1737 	if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1738 		return -EINVAL;
1739 
1740 	return validate_hardware_logical_block_alignment(t, limits);
1741 }
1742 
1743 /*
1744  * Verify that all devices have an integrity profile that matches the
1745  * DM device's registered integrity profile.  If the profiles don't
1746  * match then unregister the DM device's integrity profile.
1747  */
1748 static void dm_table_verify_integrity(struct dm_table *t)
1749 {
1750 	struct gendisk *template_disk = NULL;
1751 
1752 	if (t->integrity_added)
1753 		return;
1754 
1755 	if (t->integrity_supported) {
1756 		/*
1757 		 * Verify that the original integrity profile
1758 		 * matches all the devices in this table.
1759 		 */
1760 		template_disk = dm_table_get_integrity_disk(t);
1761 		if (template_disk &&
1762 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1763 			return;
1764 	}
1765 
1766 	if (integrity_profile_exists(dm_disk(t->md))) {
1767 		DMWARN("%s: unable to establish an integrity profile",
1768 		       dm_device_name(t->md));
1769 		blk_integrity_unregister(dm_disk(t->md));
1770 	}
1771 }
1772 
1773 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1774 				sector_t start, sector_t len, void *data)
1775 {
1776 	unsigned long flush = (unsigned long) data;
1777 	struct request_queue *q = bdev_get_queue(dev->bdev);
1778 
1779 	return (q->queue_flags & flush);
1780 }
1781 
1782 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1783 {
1784 	/*
1785 	 * Require at least one underlying device to support flushes.
1786 	 * t->devices includes internal dm devices such as mirror logs
1787 	 * so we need to use iterate_devices here, which targets
1788 	 * supporting flushes must provide.
1789 	 */
1790 	for (unsigned int i = 0; i < t->num_targets; i++) {
1791 		struct dm_target *ti = dm_table_get_target(t, i);
1792 
1793 		if (!ti->num_flush_bios)
1794 			continue;
1795 
1796 		if (ti->flush_supported)
1797 			return true;
1798 
1799 		if (ti->type->iterate_devices &&
1800 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1801 			return true;
1802 	}
1803 
1804 	return false;
1805 }
1806 
1807 static int device_dax_write_cache_enabled(struct dm_target *ti,
1808 					  struct dm_dev *dev, sector_t start,
1809 					  sector_t len, void *data)
1810 {
1811 	struct dax_device *dax_dev = dev->dax_dev;
1812 
1813 	if (!dax_dev)
1814 		return false;
1815 
1816 	if (dax_write_cache_enabled(dax_dev))
1817 		return true;
1818 	return false;
1819 }
1820 
1821 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1822 				sector_t start, sector_t len, void *data)
1823 {
1824 	return !bdev_nonrot(dev->bdev);
1825 }
1826 
1827 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1828 			     sector_t start, sector_t len, void *data)
1829 {
1830 	struct request_queue *q = bdev_get_queue(dev->bdev);
1831 
1832 	return !blk_queue_add_random(q);
1833 }
1834 
1835 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1836 					   sector_t start, sector_t len, void *data)
1837 {
1838 	struct request_queue *q = bdev_get_queue(dev->bdev);
1839 
1840 	return !q->limits.max_write_zeroes_sectors;
1841 }
1842 
1843 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1844 {
1845 	for (unsigned int i = 0; i < t->num_targets; i++) {
1846 		struct dm_target *ti = dm_table_get_target(t, i);
1847 
1848 		if (!ti->num_write_zeroes_bios)
1849 			return false;
1850 
1851 		if (!ti->type->iterate_devices ||
1852 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1853 			return false;
1854 	}
1855 
1856 	return true;
1857 }
1858 
1859 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1860 				     sector_t start, sector_t len, void *data)
1861 {
1862 	return !bdev_nowait(dev->bdev);
1863 }
1864 
1865 static bool dm_table_supports_nowait(struct dm_table *t)
1866 {
1867 	for (unsigned int i = 0; i < t->num_targets; i++) {
1868 		struct dm_target *ti = dm_table_get_target(t, i);
1869 
1870 		if (!dm_target_supports_nowait(ti->type))
1871 			return false;
1872 
1873 		if (!ti->type->iterate_devices ||
1874 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1875 			return false;
1876 	}
1877 
1878 	return true;
1879 }
1880 
1881 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1882 				      sector_t start, sector_t len, void *data)
1883 {
1884 	return !bdev_max_discard_sectors(dev->bdev);
1885 }
1886 
1887 static bool dm_table_supports_discards(struct dm_table *t)
1888 {
1889 	for (unsigned int i = 0; i < t->num_targets; i++) {
1890 		struct dm_target *ti = dm_table_get_target(t, i);
1891 
1892 		if (!ti->num_discard_bios)
1893 			return false;
1894 
1895 		/*
1896 		 * Either the target provides discard support (as implied by setting
1897 		 * 'discards_supported') or it relies on _all_ data devices having
1898 		 * discard support.
1899 		 */
1900 		if (!ti->discards_supported &&
1901 		    (!ti->type->iterate_devices ||
1902 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1903 			return false;
1904 	}
1905 
1906 	return true;
1907 }
1908 
1909 static int device_not_secure_erase_capable(struct dm_target *ti,
1910 					   struct dm_dev *dev, sector_t start,
1911 					   sector_t len, void *data)
1912 {
1913 	return !bdev_max_secure_erase_sectors(dev->bdev);
1914 }
1915 
1916 static bool dm_table_supports_secure_erase(struct dm_table *t)
1917 {
1918 	for (unsigned int i = 0; i < t->num_targets; i++) {
1919 		struct dm_target *ti = dm_table_get_target(t, i);
1920 
1921 		if (!ti->num_secure_erase_bios)
1922 			return false;
1923 
1924 		if (!ti->type->iterate_devices ||
1925 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1926 			return false;
1927 	}
1928 
1929 	return true;
1930 }
1931 
1932 static int device_requires_stable_pages(struct dm_target *ti,
1933 					struct dm_dev *dev, sector_t start,
1934 					sector_t len, void *data)
1935 {
1936 	return bdev_stable_writes(dev->bdev);
1937 }
1938 
1939 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1940 			      struct queue_limits *limits)
1941 {
1942 	bool wc = false, fua = false;
1943 	int r;
1944 
1945 	/*
1946 	 * Copy table's limits to the DM device's request_queue
1947 	 */
1948 	q->limits = *limits;
1949 
1950 	if (dm_table_supports_nowait(t))
1951 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1952 	else
1953 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1954 
1955 	if (!dm_table_supports_discards(t)) {
1956 		q->limits.max_discard_sectors = 0;
1957 		q->limits.max_hw_discard_sectors = 0;
1958 		q->limits.discard_granularity = 0;
1959 		q->limits.discard_alignment = 0;
1960 		q->limits.discard_misaligned = 0;
1961 	}
1962 
1963 	if (!dm_table_supports_secure_erase(t))
1964 		q->limits.max_secure_erase_sectors = 0;
1965 
1966 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1967 		wc = true;
1968 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1969 			fua = true;
1970 	}
1971 	blk_queue_write_cache(q, wc, fua);
1972 
1973 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1974 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1975 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1976 			set_dax_synchronous(t->md->dax_dev);
1977 	} else
1978 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1979 
1980 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1981 		dax_write_cache(t->md->dax_dev, true);
1982 
1983 	/* Ensure that all underlying devices are non-rotational. */
1984 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1985 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1986 	else
1987 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1988 
1989 	if (!dm_table_supports_write_zeroes(t))
1990 		q->limits.max_write_zeroes_sectors = 0;
1991 
1992 	dm_table_verify_integrity(t);
1993 
1994 	/*
1995 	 * Some devices don't use blk_integrity but still want stable pages
1996 	 * because they do their own checksumming.
1997 	 * If any underlying device requires stable pages, a table must require
1998 	 * them as well.  Only targets that support iterate_devices are considered:
1999 	 * don't want error, zero, etc to require stable pages.
2000 	 */
2001 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2002 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2003 	else
2004 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2005 
2006 	/*
2007 	 * Determine whether or not this queue's I/O timings contribute
2008 	 * to the entropy pool, Only request-based targets use this.
2009 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2010 	 * have it set.
2011 	 */
2012 	if (blk_queue_add_random(q) &&
2013 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2014 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2015 
2016 	/*
2017 	 * For a zoned target, setup the zones related queue attributes
2018 	 * and resources necessary for zone append emulation if necessary.
2019 	 */
2020 	if (blk_queue_is_zoned(q)) {
2021 		r = dm_set_zones_restrictions(t, q);
2022 		if (r)
2023 			return r;
2024 		if (!static_key_enabled(&zoned_enabled.key))
2025 			static_branch_enable(&zoned_enabled);
2026 	}
2027 
2028 	dm_update_crypto_profile(q, t);
2029 	disk_update_readahead(t->md->disk);
2030 
2031 	/*
2032 	 * Check for request-based device is left to
2033 	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2034 	 *
2035 	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2036 	 * underlying devices supporting polling.
2037 	 */
2038 	if (__table_type_bio_based(t->type)) {
2039 		if (dm_table_supports_poll(t))
2040 			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2041 		else
2042 			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2043 	}
2044 
2045 	return 0;
2046 }
2047 
2048 struct list_head *dm_table_get_devices(struct dm_table *t)
2049 {
2050 	return &t->devices;
2051 }
2052 
2053 blk_mode_t dm_table_get_mode(struct dm_table *t)
2054 {
2055 	return t->mode;
2056 }
2057 EXPORT_SYMBOL(dm_table_get_mode);
2058 
2059 enum suspend_mode {
2060 	PRESUSPEND,
2061 	PRESUSPEND_UNDO,
2062 	POSTSUSPEND,
2063 };
2064 
2065 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2066 {
2067 	lockdep_assert_held(&t->md->suspend_lock);
2068 
2069 	for (unsigned int i = 0; i < t->num_targets; i++) {
2070 		struct dm_target *ti = dm_table_get_target(t, i);
2071 
2072 		switch (mode) {
2073 		case PRESUSPEND:
2074 			if (ti->type->presuspend)
2075 				ti->type->presuspend(ti);
2076 			break;
2077 		case PRESUSPEND_UNDO:
2078 			if (ti->type->presuspend_undo)
2079 				ti->type->presuspend_undo(ti);
2080 			break;
2081 		case POSTSUSPEND:
2082 			if (ti->type->postsuspend)
2083 				ti->type->postsuspend(ti);
2084 			break;
2085 		}
2086 	}
2087 }
2088 
2089 void dm_table_presuspend_targets(struct dm_table *t)
2090 {
2091 	if (!t)
2092 		return;
2093 
2094 	suspend_targets(t, PRESUSPEND);
2095 }
2096 
2097 void dm_table_presuspend_undo_targets(struct dm_table *t)
2098 {
2099 	if (!t)
2100 		return;
2101 
2102 	suspend_targets(t, PRESUSPEND_UNDO);
2103 }
2104 
2105 void dm_table_postsuspend_targets(struct dm_table *t)
2106 {
2107 	if (!t)
2108 		return;
2109 
2110 	suspend_targets(t, POSTSUSPEND);
2111 }
2112 
2113 int dm_table_resume_targets(struct dm_table *t)
2114 {
2115 	unsigned int i;
2116 	int r = 0;
2117 
2118 	lockdep_assert_held(&t->md->suspend_lock);
2119 
2120 	for (i = 0; i < t->num_targets; i++) {
2121 		struct dm_target *ti = dm_table_get_target(t, i);
2122 
2123 		if (!ti->type->preresume)
2124 			continue;
2125 
2126 		r = ti->type->preresume(ti);
2127 		if (r) {
2128 			DMERR("%s: %s: preresume failed, error = %d",
2129 			      dm_device_name(t->md), ti->type->name, r);
2130 			return r;
2131 		}
2132 	}
2133 
2134 	for (i = 0; i < t->num_targets; i++) {
2135 		struct dm_target *ti = dm_table_get_target(t, i);
2136 
2137 		if (ti->type->resume)
2138 			ti->type->resume(ti);
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 struct mapped_device *dm_table_get_md(struct dm_table *t)
2145 {
2146 	return t->md;
2147 }
2148 EXPORT_SYMBOL(dm_table_get_md);
2149 
2150 const char *dm_table_device_name(struct dm_table *t)
2151 {
2152 	return dm_device_name(t->md);
2153 }
2154 EXPORT_SYMBOL_GPL(dm_table_device_name);
2155 
2156 void dm_table_run_md_queue_async(struct dm_table *t)
2157 {
2158 	if (!dm_table_request_based(t))
2159 		return;
2160 
2161 	if (t->md->queue)
2162 		blk_mq_run_hw_queues(t->md->queue, true);
2163 }
2164 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2165 
2166