1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/lcm.h> 22 #include <linux/blk-mq.h> 23 #include <linux/mount.h> 24 #include <linux/dax.h> 25 26 #define DM_MSG_PREFIX "table" 27 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 /* 33 * Similar to ceiling(log_size(n)) 34 */ 35 static unsigned int int_log(unsigned int n, unsigned int base) 36 { 37 int result = 0; 38 39 while (n > 1) { 40 n = dm_div_up(n, base); 41 result++; 42 } 43 44 return result; 45 } 46 47 /* 48 * Calculate the index of the child node of the n'th node k'th key. 49 */ 50 static inline unsigned int get_child(unsigned int n, unsigned int k) 51 { 52 return (n * CHILDREN_PER_NODE) + k; 53 } 54 55 /* 56 * Return the n'th node of level l from table t. 57 */ 58 static inline sector_t *get_node(struct dm_table *t, 59 unsigned int l, unsigned int n) 60 { 61 return t->index[l] + (n * KEYS_PER_NODE); 62 } 63 64 /* 65 * Return the highest key that you could lookup from the n'th 66 * node on level l of the btree. 67 */ 68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 69 { 70 for (; l < t->depth - 1; l++) 71 n = get_child(n, CHILDREN_PER_NODE - 1); 72 73 if (n >= t->counts[l]) 74 return (sector_t) - 1; 75 76 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 77 } 78 79 /* 80 * Fills in a level of the btree based on the highs of the level 81 * below it. 82 */ 83 static int setup_btree_index(unsigned int l, struct dm_table *t) 84 { 85 unsigned int n, k; 86 sector_t *node; 87 88 for (n = 0U; n < t->counts[l]; n++) { 89 node = get_node(t, l, n); 90 91 for (k = 0U; k < KEYS_PER_NODE; k++) 92 node[k] = high(t, l + 1, get_child(n, k)); 93 } 94 95 return 0; 96 } 97 98 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 99 { 100 unsigned long size; 101 void *addr; 102 103 /* 104 * Check that we're not going to overflow. 105 */ 106 if (nmemb > (ULONG_MAX / elem_size)) 107 return NULL; 108 109 size = nmemb * elem_size; 110 addr = vzalloc(size); 111 112 return addr; 113 } 114 EXPORT_SYMBOL(dm_vcalloc); 115 116 /* 117 * highs, and targets are managed as dynamic arrays during a 118 * table load. 119 */ 120 static int alloc_targets(struct dm_table *t, unsigned int num) 121 { 122 sector_t *n_highs; 123 struct dm_target *n_targets; 124 125 /* 126 * Allocate both the target array and offset array at once. 127 */ 128 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 129 sizeof(sector_t)); 130 if (!n_highs) 131 return -ENOMEM; 132 133 n_targets = (struct dm_target *) (n_highs + num); 134 135 memset(n_highs, -1, sizeof(*n_highs) * num); 136 vfree(t->highs); 137 138 t->num_allocated = num; 139 t->highs = n_highs; 140 t->targets = n_targets; 141 142 return 0; 143 } 144 145 int dm_table_create(struct dm_table **result, fmode_t mode, 146 unsigned num_targets, struct mapped_device *md) 147 { 148 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 149 150 if (!t) 151 return -ENOMEM; 152 153 INIT_LIST_HEAD(&t->devices); 154 155 if (!num_targets) 156 num_targets = KEYS_PER_NODE; 157 158 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 159 160 if (!num_targets) { 161 kfree(t); 162 return -ENOMEM; 163 } 164 165 if (alloc_targets(t, num_targets)) { 166 kfree(t); 167 return -ENOMEM; 168 } 169 170 t->type = DM_TYPE_NONE; 171 t->mode = mode; 172 t->md = md; 173 *result = t; 174 return 0; 175 } 176 177 static void free_devices(struct list_head *devices, struct mapped_device *md) 178 { 179 struct list_head *tmp, *next; 180 181 list_for_each_safe(tmp, next, devices) { 182 struct dm_dev_internal *dd = 183 list_entry(tmp, struct dm_dev_internal, list); 184 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 185 dm_device_name(md), dd->dm_dev->name); 186 dm_put_table_device(md, dd->dm_dev); 187 kfree(dd); 188 } 189 } 190 191 void dm_table_destroy(struct dm_table *t) 192 { 193 unsigned int i; 194 195 if (!t) 196 return; 197 198 /* free the indexes */ 199 if (t->depth >= 2) 200 vfree(t->index[t->depth - 2]); 201 202 /* free the targets */ 203 for (i = 0; i < t->num_targets; i++) { 204 struct dm_target *tgt = t->targets + i; 205 206 if (tgt->type->dtr) 207 tgt->type->dtr(tgt); 208 209 dm_put_target_type(tgt->type); 210 } 211 212 vfree(t->highs); 213 214 /* free the device list */ 215 free_devices(&t->devices, t->md); 216 217 dm_free_md_mempools(t->mempools); 218 219 kfree(t); 220 } 221 222 /* 223 * See if we've already got a device in the list. 224 */ 225 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 226 { 227 struct dm_dev_internal *dd; 228 229 list_for_each_entry (dd, l, list) 230 if (dd->dm_dev->bdev->bd_dev == dev) 231 return dd; 232 233 return NULL; 234 } 235 236 /* 237 * If possible, this checks an area of a destination device is invalid. 238 */ 239 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 240 sector_t start, sector_t len, void *data) 241 { 242 struct queue_limits *limits = data; 243 struct block_device *bdev = dev->bdev; 244 sector_t dev_size = 245 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 246 unsigned short logical_block_size_sectors = 247 limits->logical_block_size >> SECTOR_SHIFT; 248 char b[BDEVNAME_SIZE]; 249 250 if (!dev_size) 251 return 0; 252 253 if ((start >= dev_size) || (start + len > dev_size)) { 254 DMWARN("%s: %s too small for target: " 255 "start=%llu, len=%llu, dev_size=%llu", 256 dm_device_name(ti->table->md), bdevname(bdev, b), 257 (unsigned long long)start, 258 (unsigned long long)len, 259 (unsigned long long)dev_size); 260 return 1; 261 } 262 263 /* 264 * If the target is mapped to zoned block device(s), check 265 * that the zones are not partially mapped. 266 */ 267 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 268 unsigned int zone_sectors = bdev_zone_sectors(bdev); 269 270 if (start & (zone_sectors - 1)) { 271 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 272 dm_device_name(ti->table->md), 273 (unsigned long long)start, 274 zone_sectors, bdevname(bdev, b)); 275 return 1; 276 } 277 278 /* 279 * Note: The last zone of a zoned block device may be smaller 280 * than other zones. So for a target mapping the end of a 281 * zoned block device with such a zone, len would not be zone 282 * aligned. We do not allow such last smaller zone to be part 283 * of the mapping here to ensure that mappings with multiple 284 * devices do not end up with a smaller zone in the middle of 285 * the sector range. 286 */ 287 if (len & (zone_sectors - 1)) { 288 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 289 dm_device_name(ti->table->md), 290 (unsigned long long)len, 291 zone_sectors, bdevname(bdev, b)); 292 return 1; 293 } 294 } 295 296 if (logical_block_size_sectors <= 1) 297 return 0; 298 299 if (start & (logical_block_size_sectors - 1)) { 300 DMWARN("%s: start=%llu not aligned to h/w " 301 "logical block size %u of %s", 302 dm_device_name(ti->table->md), 303 (unsigned long long)start, 304 limits->logical_block_size, bdevname(bdev, b)); 305 return 1; 306 } 307 308 if (len & (logical_block_size_sectors - 1)) { 309 DMWARN("%s: len=%llu not aligned to h/w " 310 "logical block size %u of %s", 311 dm_device_name(ti->table->md), 312 (unsigned long long)len, 313 limits->logical_block_size, bdevname(bdev, b)); 314 return 1; 315 } 316 317 return 0; 318 } 319 320 /* 321 * This upgrades the mode on an already open dm_dev, being 322 * careful to leave things as they were if we fail to reopen the 323 * device and not to touch the existing bdev field in case 324 * it is accessed concurrently. 325 */ 326 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 327 struct mapped_device *md) 328 { 329 int r; 330 struct dm_dev *old_dev, *new_dev; 331 332 old_dev = dd->dm_dev; 333 334 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 335 dd->dm_dev->mode | new_mode, &new_dev); 336 if (r) 337 return r; 338 339 dd->dm_dev = new_dev; 340 dm_put_table_device(md, old_dev); 341 342 return 0; 343 } 344 345 /* 346 * Convert the path to a device 347 */ 348 dev_t dm_get_dev_t(const char *path) 349 { 350 dev_t dev; 351 struct block_device *bdev; 352 353 bdev = lookup_bdev(path); 354 if (IS_ERR(bdev)) 355 dev = name_to_dev_t(path); 356 else { 357 dev = bdev->bd_dev; 358 bdput(bdev); 359 } 360 361 return dev; 362 } 363 EXPORT_SYMBOL_GPL(dm_get_dev_t); 364 365 /* 366 * Add a device to the list, or just increment the usage count if 367 * it's already present. 368 */ 369 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 370 struct dm_dev **result) 371 { 372 int r; 373 dev_t dev; 374 struct dm_dev_internal *dd; 375 struct dm_table *t = ti->table; 376 377 BUG_ON(!t); 378 379 dev = dm_get_dev_t(path); 380 if (!dev) 381 return -ENODEV; 382 383 dd = find_device(&t->devices, dev); 384 if (!dd) { 385 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 386 if (!dd) 387 return -ENOMEM; 388 389 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 390 kfree(dd); 391 return r; 392 } 393 394 refcount_set(&dd->count, 1); 395 list_add(&dd->list, &t->devices); 396 goto out; 397 398 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 399 r = upgrade_mode(dd, mode, t->md); 400 if (r) 401 return r; 402 } 403 refcount_inc(&dd->count); 404 out: 405 *result = dd->dm_dev; 406 return 0; 407 } 408 EXPORT_SYMBOL(dm_get_device); 409 410 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 411 sector_t start, sector_t len, void *data) 412 { 413 struct queue_limits *limits = data; 414 struct block_device *bdev = dev->bdev; 415 struct request_queue *q = bdev_get_queue(bdev); 416 char b[BDEVNAME_SIZE]; 417 418 if (unlikely(!q)) { 419 DMWARN("%s: Cannot set limits for nonexistent device %s", 420 dm_device_name(ti->table->md), bdevname(bdev, b)); 421 return 0; 422 } 423 424 if (blk_stack_limits(limits, &q->limits, 425 get_start_sect(bdev) + start) < 0) 426 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 427 "physical_block_size=%u, logical_block_size=%u, " 428 "alignment_offset=%u, start=%llu", 429 dm_device_name(ti->table->md), bdevname(bdev, b), 430 q->limits.physical_block_size, 431 q->limits.logical_block_size, 432 q->limits.alignment_offset, 433 (unsigned long long) start << SECTOR_SHIFT); 434 return 0; 435 } 436 437 /* 438 * Decrement a device's use count and remove it if necessary. 439 */ 440 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 441 { 442 int found = 0; 443 struct list_head *devices = &ti->table->devices; 444 struct dm_dev_internal *dd; 445 446 list_for_each_entry(dd, devices, list) { 447 if (dd->dm_dev == d) { 448 found = 1; 449 break; 450 } 451 } 452 if (!found) { 453 DMWARN("%s: device %s not in table devices list", 454 dm_device_name(ti->table->md), d->name); 455 return; 456 } 457 if (refcount_dec_and_test(&dd->count)) { 458 dm_put_table_device(ti->table->md, d); 459 list_del(&dd->list); 460 kfree(dd); 461 } 462 } 463 EXPORT_SYMBOL(dm_put_device); 464 465 /* 466 * Checks to see if the target joins onto the end of the table. 467 */ 468 static int adjoin(struct dm_table *table, struct dm_target *ti) 469 { 470 struct dm_target *prev; 471 472 if (!table->num_targets) 473 return !ti->begin; 474 475 prev = &table->targets[table->num_targets - 1]; 476 return (ti->begin == (prev->begin + prev->len)); 477 } 478 479 /* 480 * Used to dynamically allocate the arg array. 481 * 482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 483 * process messages even if some device is suspended. These messages have a 484 * small fixed number of arguments. 485 * 486 * On the other hand, dm-switch needs to process bulk data using messages and 487 * excessive use of GFP_NOIO could cause trouble. 488 */ 489 static char **realloc_argv(unsigned *size, char **old_argv) 490 { 491 char **argv; 492 unsigned new_size; 493 gfp_t gfp; 494 495 if (*size) { 496 new_size = *size * 2; 497 gfp = GFP_KERNEL; 498 } else { 499 new_size = 8; 500 gfp = GFP_NOIO; 501 } 502 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 503 if (argv && old_argv) { 504 memcpy(argv, old_argv, *size * sizeof(*argv)); 505 *size = new_size; 506 } 507 508 kfree(old_argv); 509 return argv; 510 } 511 512 /* 513 * Destructively splits up the argument list to pass to ctr. 514 */ 515 int dm_split_args(int *argc, char ***argvp, char *input) 516 { 517 char *start, *end = input, *out, **argv = NULL; 518 unsigned array_size = 0; 519 520 *argc = 0; 521 522 if (!input) { 523 *argvp = NULL; 524 return 0; 525 } 526 527 argv = realloc_argv(&array_size, argv); 528 if (!argv) 529 return -ENOMEM; 530 531 while (1) { 532 /* Skip whitespace */ 533 start = skip_spaces(end); 534 535 if (!*start) 536 break; /* success, we hit the end */ 537 538 /* 'out' is used to remove any back-quotes */ 539 end = out = start; 540 while (*end) { 541 /* Everything apart from '\0' can be quoted */ 542 if (*end == '\\' && *(end + 1)) { 543 *out++ = *(end + 1); 544 end += 2; 545 continue; 546 } 547 548 if (isspace(*end)) 549 break; /* end of token */ 550 551 *out++ = *end++; 552 } 553 554 /* have we already filled the array ? */ 555 if ((*argc + 1) > array_size) { 556 argv = realloc_argv(&array_size, argv); 557 if (!argv) 558 return -ENOMEM; 559 } 560 561 /* we know this is whitespace */ 562 if (*end) 563 end++; 564 565 /* terminate the string and put it in the array */ 566 *out = '\0'; 567 argv[*argc] = start; 568 (*argc)++; 569 } 570 571 *argvp = argv; 572 return 0; 573 } 574 575 /* 576 * Impose necessary and sufficient conditions on a devices's table such 577 * that any incoming bio which respects its logical_block_size can be 578 * processed successfully. If it falls across the boundary between 579 * two or more targets, the size of each piece it gets split into must 580 * be compatible with the logical_block_size of the target processing it. 581 */ 582 static int validate_hardware_logical_block_alignment(struct dm_table *table, 583 struct queue_limits *limits) 584 { 585 /* 586 * This function uses arithmetic modulo the logical_block_size 587 * (in units of 512-byte sectors). 588 */ 589 unsigned short device_logical_block_size_sects = 590 limits->logical_block_size >> SECTOR_SHIFT; 591 592 /* 593 * Offset of the start of the next table entry, mod logical_block_size. 594 */ 595 unsigned short next_target_start = 0; 596 597 /* 598 * Given an aligned bio that extends beyond the end of a 599 * target, how many sectors must the next target handle? 600 */ 601 unsigned short remaining = 0; 602 603 struct dm_target *ti; 604 struct queue_limits ti_limits; 605 unsigned i; 606 607 /* 608 * Check each entry in the table in turn. 609 */ 610 for (i = 0; i < dm_table_get_num_targets(table); i++) { 611 ti = dm_table_get_target(table, i); 612 613 blk_set_stacking_limits(&ti_limits); 614 615 /* combine all target devices' limits */ 616 if (ti->type->iterate_devices) 617 ti->type->iterate_devices(ti, dm_set_device_limits, 618 &ti_limits); 619 620 /* 621 * If the remaining sectors fall entirely within this 622 * table entry are they compatible with its logical_block_size? 623 */ 624 if (remaining < ti->len && 625 remaining & ((ti_limits.logical_block_size >> 626 SECTOR_SHIFT) - 1)) 627 break; /* Error */ 628 629 next_target_start = 630 (unsigned short) ((next_target_start + ti->len) & 631 (device_logical_block_size_sects - 1)); 632 remaining = next_target_start ? 633 device_logical_block_size_sects - next_target_start : 0; 634 } 635 636 if (remaining) { 637 DMWARN("%s: table line %u (start sect %llu len %llu) " 638 "not aligned to h/w logical block size %u", 639 dm_device_name(table->md), i, 640 (unsigned long long) ti->begin, 641 (unsigned long long) ti->len, 642 limits->logical_block_size); 643 return -EINVAL; 644 } 645 646 return 0; 647 } 648 649 int dm_table_add_target(struct dm_table *t, const char *type, 650 sector_t start, sector_t len, char *params) 651 { 652 int r = -EINVAL, argc; 653 char **argv; 654 struct dm_target *tgt; 655 656 if (t->singleton) { 657 DMERR("%s: target type %s must appear alone in table", 658 dm_device_name(t->md), t->targets->type->name); 659 return -EINVAL; 660 } 661 662 BUG_ON(t->num_targets >= t->num_allocated); 663 664 tgt = t->targets + t->num_targets; 665 memset(tgt, 0, sizeof(*tgt)); 666 667 if (!len) { 668 DMERR("%s: zero-length target", dm_device_name(t->md)); 669 return -EINVAL; 670 } 671 672 tgt->type = dm_get_target_type(type); 673 if (!tgt->type) { 674 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 675 return -EINVAL; 676 } 677 678 if (dm_target_needs_singleton(tgt->type)) { 679 if (t->num_targets) { 680 tgt->error = "singleton target type must appear alone in table"; 681 goto bad; 682 } 683 t->singleton = true; 684 } 685 686 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 687 tgt->error = "target type may not be included in a read-only table"; 688 goto bad; 689 } 690 691 if (t->immutable_target_type) { 692 if (t->immutable_target_type != tgt->type) { 693 tgt->error = "immutable target type cannot be mixed with other target types"; 694 goto bad; 695 } 696 } else if (dm_target_is_immutable(tgt->type)) { 697 if (t->num_targets) { 698 tgt->error = "immutable target type cannot be mixed with other target types"; 699 goto bad; 700 } 701 t->immutable_target_type = tgt->type; 702 } 703 704 if (dm_target_has_integrity(tgt->type)) 705 t->integrity_added = 1; 706 707 tgt->table = t; 708 tgt->begin = start; 709 tgt->len = len; 710 tgt->error = "Unknown error"; 711 712 /* 713 * Does this target adjoin the previous one ? 714 */ 715 if (!adjoin(t, tgt)) { 716 tgt->error = "Gap in table"; 717 goto bad; 718 } 719 720 r = dm_split_args(&argc, &argv, params); 721 if (r) { 722 tgt->error = "couldn't split parameters (insufficient memory)"; 723 goto bad; 724 } 725 726 r = tgt->type->ctr(tgt, argc, argv); 727 kfree(argv); 728 if (r) 729 goto bad; 730 731 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 732 733 if (!tgt->num_discard_bios && tgt->discards_supported) 734 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 735 dm_device_name(t->md), type); 736 737 return 0; 738 739 bad: 740 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 741 dm_put_target_type(tgt->type); 742 return r; 743 } 744 745 /* 746 * Target argument parsing helpers. 747 */ 748 static int validate_next_arg(const struct dm_arg *arg, 749 struct dm_arg_set *arg_set, 750 unsigned *value, char **error, unsigned grouped) 751 { 752 const char *arg_str = dm_shift_arg(arg_set); 753 char dummy; 754 755 if (!arg_str || 756 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 757 (*value < arg->min) || 758 (*value > arg->max) || 759 (grouped && arg_set->argc < *value)) { 760 *error = arg->error; 761 return -EINVAL; 762 } 763 764 return 0; 765 } 766 767 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 768 unsigned *value, char **error) 769 { 770 return validate_next_arg(arg, arg_set, value, error, 0); 771 } 772 EXPORT_SYMBOL(dm_read_arg); 773 774 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 775 unsigned *value, char **error) 776 { 777 return validate_next_arg(arg, arg_set, value, error, 1); 778 } 779 EXPORT_SYMBOL(dm_read_arg_group); 780 781 const char *dm_shift_arg(struct dm_arg_set *as) 782 { 783 char *r; 784 785 if (as->argc) { 786 as->argc--; 787 r = *as->argv; 788 as->argv++; 789 return r; 790 } 791 792 return NULL; 793 } 794 EXPORT_SYMBOL(dm_shift_arg); 795 796 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 797 { 798 BUG_ON(as->argc < num_args); 799 as->argc -= num_args; 800 as->argv += num_args; 801 } 802 EXPORT_SYMBOL(dm_consume_args); 803 804 static bool __table_type_bio_based(enum dm_queue_mode table_type) 805 { 806 return (table_type == DM_TYPE_BIO_BASED || 807 table_type == DM_TYPE_DAX_BIO_BASED); 808 } 809 810 static bool __table_type_request_based(enum dm_queue_mode table_type) 811 { 812 return table_type == DM_TYPE_REQUEST_BASED; 813 } 814 815 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 816 { 817 t->type = type; 818 } 819 EXPORT_SYMBOL_GPL(dm_table_set_type); 820 821 /* validate the dax capability of the target device span */ 822 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 823 sector_t start, sector_t len, void *data) 824 { 825 int blocksize = *(int *) data, id; 826 bool rc; 827 828 id = dax_read_lock(); 829 rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len); 830 dax_read_unlock(id); 831 832 return rc; 833 } 834 835 /* Check devices support synchronous DAX */ 836 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev, 837 sector_t start, sector_t len, void *data) 838 { 839 return dev->dax_dev && dax_synchronous(dev->dax_dev); 840 } 841 842 bool dm_table_supports_dax(struct dm_table *t, 843 iterate_devices_callout_fn iterate_fn, int *blocksize) 844 { 845 struct dm_target *ti; 846 unsigned i; 847 848 /* Ensure that all targets support DAX. */ 849 for (i = 0; i < dm_table_get_num_targets(t); i++) { 850 ti = dm_table_get_target(t, i); 851 852 if (!ti->type->direct_access) 853 return false; 854 855 if (!ti->type->iterate_devices || 856 !ti->type->iterate_devices(ti, iterate_fn, blocksize)) 857 return false; 858 } 859 860 return true; 861 } 862 863 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 864 sector_t start, sector_t len, void *data) 865 { 866 struct block_device *bdev = dev->bdev; 867 struct request_queue *q = bdev_get_queue(bdev); 868 869 /* request-based cannot stack on partitions! */ 870 if (bdev_is_partition(bdev)) 871 return false; 872 873 return queue_is_mq(q); 874 } 875 876 static int dm_table_determine_type(struct dm_table *t) 877 { 878 unsigned i; 879 unsigned bio_based = 0, request_based = 0, hybrid = 0; 880 struct dm_target *tgt; 881 struct list_head *devices = dm_table_get_devices(t); 882 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 883 int page_size = PAGE_SIZE; 884 885 if (t->type != DM_TYPE_NONE) { 886 /* target already set the table's type */ 887 if (t->type == DM_TYPE_BIO_BASED) { 888 /* possibly upgrade to a variant of bio-based */ 889 goto verify_bio_based; 890 } 891 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 892 goto verify_rq_based; 893 } 894 895 for (i = 0; i < t->num_targets; i++) { 896 tgt = t->targets + i; 897 if (dm_target_hybrid(tgt)) 898 hybrid = 1; 899 else if (dm_target_request_based(tgt)) 900 request_based = 1; 901 else 902 bio_based = 1; 903 904 if (bio_based && request_based) { 905 DMERR("Inconsistent table: different target types" 906 " can't be mixed up"); 907 return -EINVAL; 908 } 909 } 910 911 if (hybrid && !bio_based && !request_based) { 912 /* 913 * The targets can work either way. 914 * Determine the type from the live device. 915 * Default to bio-based if device is new. 916 */ 917 if (__table_type_request_based(live_md_type)) 918 request_based = 1; 919 else 920 bio_based = 1; 921 } 922 923 if (bio_based) { 924 verify_bio_based: 925 /* We must use this table as bio-based */ 926 t->type = DM_TYPE_BIO_BASED; 927 if (dm_table_supports_dax(t, device_supports_dax, &page_size) || 928 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 929 t->type = DM_TYPE_DAX_BIO_BASED; 930 } 931 return 0; 932 } 933 934 BUG_ON(!request_based); /* No targets in this table */ 935 936 t->type = DM_TYPE_REQUEST_BASED; 937 938 verify_rq_based: 939 /* 940 * Request-based dm supports only tables that have a single target now. 941 * To support multiple targets, request splitting support is needed, 942 * and that needs lots of changes in the block-layer. 943 * (e.g. request completion process for partial completion.) 944 */ 945 if (t->num_targets > 1) { 946 DMERR("request-based DM doesn't support multiple targets"); 947 return -EINVAL; 948 } 949 950 if (list_empty(devices)) { 951 int srcu_idx; 952 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 953 954 /* inherit live table's type */ 955 if (live_table) 956 t->type = live_table->type; 957 dm_put_live_table(t->md, srcu_idx); 958 return 0; 959 } 960 961 tgt = dm_table_get_immutable_target(t); 962 if (!tgt) { 963 DMERR("table load rejected: immutable target is required"); 964 return -EINVAL; 965 } else if (tgt->max_io_len) { 966 DMERR("table load rejected: immutable target that splits IO is not supported"); 967 return -EINVAL; 968 } 969 970 /* Non-request-stackable devices can't be used for request-based dm */ 971 if (!tgt->type->iterate_devices || 972 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 973 DMERR("table load rejected: including non-request-stackable devices"); 974 return -EINVAL; 975 } 976 977 return 0; 978 } 979 980 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 981 { 982 return t->type; 983 } 984 985 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 986 { 987 return t->immutable_target_type; 988 } 989 990 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 991 { 992 /* Immutable target is implicitly a singleton */ 993 if (t->num_targets > 1 || 994 !dm_target_is_immutable(t->targets[0].type)) 995 return NULL; 996 997 return t->targets; 998 } 999 1000 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1001 { 1002 struct dm_target *ti; 1003 unsigned i; 1004 1005 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1006 ti = dm_table_get_target(t, i); 1007 if (dm_target_is_wildcard(ti->type)) 1008 return ti; 1009 } 1010 1011 return NULL; 1012 } 1013 1014 bool dm_table_bio_based(struct dm_table *t) 1015 { 1016 return __table_type_bio_based(dm_table_get_type(t)); 1017 } 1018 1019 bool dm_table_request_based(struct dm_table *t) 1020 { 1021 return __table_type_request_based(dm_table_get_type(t)); 1022 } 1023 1024 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1025 { 1026 enum dm_queue_mode type = dm_table_get_type(t); 1027 unsigned per_io_data_size = 0; 1028 unsigned min_pool_size = 0; 1029 struct dm_target *ti; 1030 unsigned i; 1031 1032 if (unlikely(type == DM_TYPE_NONE)) { 1033 DMWARN("no table type is set, can't allocate mempools"); 1034 return -EINVAL; 1035 } 1036 1037 if (__table_type_bio_based(type)) 1038 for (i = 0; i < t->num_targets; i++) { 1039 ti = t->targets + i; 1040 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1041 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1042 } 1043 1044 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1045 per_io_data_size, min_pool_size); 1046 if (!t->mempools) 1047 return -ENOMEM; 1048 1049 return 0; 1050 } 1051 1052 void dm_table_free_md_mempools(struct dm_table *t) 1053 { 1054 dm_free_md_mempools(t->mempools); 1055 t->mempools = NULL; 1056 } 1057 1058 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1059 { 1060 return t->mempools; 1061 } 1062 1063 static int setup_indexes(struct dm_table *t) 1064 { 1065 int i; 1066 unsigned int total = 0; 1067 sector_t *indexes; 1068 1069 /* allocate the space for *all* the indexes */ 1070 for (i = t->depth - 2; i >= 0; i--) { 1071 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1072 total += t->counts[i]; 1073 } 1074 1075 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1076 if (!indexes) 1077 return -ENOMEM; 1078 1079 /* set up internal nodes, bottom-up */ 1080 for (i = t->depth - 2; i >= 0; i--) { 1081 t->index[i] = indexes; 1082 indexes += (KEYS_PER_NODE * t->counts[i]); 1083 setup_btree_index(i, t); 1084 } 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * Builds the btree to index the map. 1091 */ 1092 static int dm_table_build_index(struct dm_table *t) 1093 { 1094 int r = 0; 1095 unsigned int leaf_nodes; 1096 1097 /* how many indexes will the btree have ? */ 1098 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1099 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1100 1101 /* leaf layer has already been set up */ 1102 t->counts[t->depth - 1] = leaf_nodes; 1103 t->index[t->depth - 1] = t->highs; 1104 1105 if (t->depth >= 2) 1106 r = setup_indexes(t); 1107 1108 return r; 1109 } 1110 1111 static bool integrity_profile_exists(struct gendisk *disk) 1112 { 1113 return !!blk_get_integrity(disk); 1114 } 1115 1116 /* 1117 * Get a disk whose integrity profile reflects the table's profile. 1118 * Returns NULL if integrity support was inconsistent or unavailable. 1119 */ 1120 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1121 { 1122 struct list_head *devices = dm_table_get_devices(t); 1123 struct dm_dev_internal *dd = NULL; 1124 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1125 unsigned i; 1126 1127 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1128 struct dm_target *ti = dm_table_get_target(t, i); 1129 if (!dm_target_passes_integrity(ti->type)) 1130 goto no_integrity; 1131 } 1132 1133 list_for_each_entry(dd, devices, list) { 1134 template_disk = dd->dm_dev->bdev->bd_disk; 1135 if (!integrity_profile_exists(template_disk)) 1136 goto no_integrity; 1137 else if (prev_disk && 1138 blk_integrity_compare(prev_disk, template_disk) < 0) 1139 goto no_integrity; 1140 prev_disk = template_disk; 1141 } 1142 1143 return template_disk; 1144 1145 no_integrity: 1146 if (prev_disk) 1147 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1148 dm_device_name(t->md), 1149 prev_disk->disk_name, 1150 template_disk->disk_name); 1151 return NULL; 1152 } 1153 1154 /* 1155 * Register the mapped device for blk_integrity support if the 1156 * underlying devices have an integrity profile. But all devices may 1157 * not have matching profiles (checking all devices isn't reliable 1158 * during table load because this table may use other DM device(s) which 1159 * must be resumed before they will have an initialized integity 1160 * profile). Consequently, stacked DM devices force a 2 stage integrity 1161 * profile validation: First pass during table load, final pass during 1162 * resume. 1163 */ 1164 static int dm_table_register_integrity(struct dm_table *t) 1165 { 1166 struct mapped_device *md = t->md; 1167 struct gendisk *template_disk = NULL; 1168 1169 /* If target handles integrity itself do not register it here. */ 1170 if (t->integrity_added) 1171 return 0; 1172 1173 template_disk = dm_table_get_integrity_disk(t); 1174 if (!template_disk) 1175 return 0; 1176 1177 if (!integrity_profile_exists(dm_disk(md))) { 1178 t->integrity_supported = true; 1179 /* 1180 * Register integrity profile during table load; we can do 1181 * this because the final profile must match during resume. 1182 */ 1183 blk_integrity_register(dm_disk(md), 1184 blk_get_integrity(template_disk)); 1185 return 0; 1186 } 1187 1188 /* 1189 * If DM device already has an initialized integrity 1190 * profile the new profile should not conflict. 1191 */ 1192 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1193 DMWARN("%s: conflict with existing integrity profile: " 1194 "%s profile mismatch", 1195 dm_device_name(t->md), 1196 template_disk->disk_name); 1197 return 1; 1198 } 1199 1200 /* Preserve existing integrity profile */ 1201 t->integrity_supported = true; 1202 return 0; 1203 } 1204 1205 /* 1206 * Prepares the table for use by building the indices, 1207 * setting the type, and allocating mempools. 1208 */ 1209 int dm_table_complete(struct dm_table *t) 1210 { 1211 int r; 1212 1213 r = dm_table_determine_type(t); 1214 if (r) { 1215 DMERR("unable to determine table type"); 1216 return r; 1217 } 1218 1219 r = dm_table_build_index(t); 1220 if (r) { 1221 DMERR("unable to build btrees"); 1222 return r; 1223 } 1224 1225 r = dm_table_register_integrity(t); 1226 if (r) { 1227 DMERR("could not register integrity profile."); 1228 return r; 1229 } 1230 1231 r = dm_table_alloc_md_mempools(t, t->md); 1232 if (r) 1233 DMERR("unable to allocate mempools"); 1234 1235 return r; 1236 } 1237 1238 static DEFINE_MUTEX(_event_lock); 1239 void dm_table_event_callback(struct dm_table *t, 1240 void (*fn)(void *), void *context) 1241 { 1242 mutex_lock(&_event_lock); 1243 t->event_fn = fn; 1244 t->event_context = context; 1245 mutex_unlock(&_event_lock); 1246 } 1247 1248 void dm_table_event(struct dm_table *t) 1249 { 1250 /* 1251 * You can no longer call dm_table_event() from interrupt 1252 * context, use a bottom half instead. 1253 */ 1254 BUG_ON(in_interrupt()); 1255 1256 mutex_lock(&_event_lock); 1257 if (t->event_fn) 1258 t->event_fn(t->event_context); 1259 mutex_unlock(&_event_lock); 1260 } 1261 EXPORT_SYMBOL(dm_table_event); 1262 1263 inline sector_t dm_table_get_size(struct dm_table *t) 1264 { 1265 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1266 } 1267 EXPORT_SYMBOL(dm_table_get_size); 1268 1269 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1270 { 1271 if (index >= t->num_targets) 1272 return NULL; 1273 1274 return t->targets + index; 1275 } 1276 1277 /* 1278 * Search the btree for the correct target. 1279 * 1280 * Caller should check returned pointer for NULL 1281 * to trap I/O beyond end of device. 1282 */ 1283 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1284 { 1285 unsigned int l, n = 0, k = 0; 1286 sector_t *node; 1287 1288 if (unlikely(sector >= dm_table_get_size(t))) 1289 return NULL; 1290 1291 for (l = 0; l < t->depth; l++) { 1292 n = get_child(n, k); 1293 node = get_node(t, l, n); 1294 1295 for (k = 0; k < KEYS_PER_NODE; k++) 1296 if (node[k] >= sector) 1297 break; 1298 } 1299 1300 return &t->targets[(KEYS_PER_NODE * n) + k]; 1301 } 1302 1303 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1304 sector_t start, sector_t len, void *data) 1305 { 1306 unsigned *num_devices = data; 1307 1308 (*num_devices)++; 1309 1310 return 0; 1311 } 1312 1313 /* 1314 * Check whether a table has no data devices attached using each 1315 * target's iterate_devices method. 1316 * Returns false if the result is unknown because a target doesn't 1317 * support iterate_devices. 1318 */ 1319 bool dm_table_has_no_data_devices(struct dm_table *table) 1320 { 1321 struct dm_target *ti; 1322 unsigned i, num_devices; 1323 1324 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1325 ti = dm_table_get_target(table, i); 1326 1327 if (!ti->type->iterate_devices) 1328 return false; 1329 1330 num_devices = 0; 1331 ti->type->iterate_devices(ti, count_device, &num_devices); 1332 if (num_devices) 1333 return false; 1334 } 1335 1336 return true; 1337 } 1338 1339 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1340 sector_t start, sector_t len, void *data) 1341 { 1342 struct request_queue *q = bdev_get_queue(dev->bdev); 1343 enum blk_zoned_model *zoned_model = data; 1344 1345 return q && blk_queue_zoned_model(q) == *zoned_model; 1346 } 1347 1348 static bool dm_table_supports_zoned_model(struct dm_table *t, 1349 enum blk_zoned_model zoned_model) 1350 { 1351 struct dm_target *ti; 1352 unsigned i; 1353 1354 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1355 ti = dm_table_get_target(t, i); 1356 1357 if (zoned_model == BLK_ZONED_HM && 1358 !dm_target_supports_zoned_hm(ti->type)) 1359 return false; 1360 1361 if (!ti->type->iterate_devices || 1362 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1363 return false; 1364 } 1365 1366 return true; 1367 } 1368 1369 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1370 sector_t start, sector_t len, void *data) 1371 { 1372 struct request_queue *q = bdev_get_queue(dev->bdev); 1373 unsigned int *zone_sectors = data; 1374 1375 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1376 } 1377 1378 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1379 unsigned int zone_sectors) 1380 { 1381 struct dm_target *ti; 1382 unsigned i; 1383 1384 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1385 ti = dm_table_get_target(t, i); 1386 1387 if (!ti->type->iterate_devices || 1388 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1389 return false; 1390 } 1391 1392 return true; 1393 } 1394 1395 static int validate_hardware_zoned_model(struct dm_table *table, 1396 enum blk_zoned_model zoned_model, 1397 unsigned int zone_sectors) 1398 { 1399 if (zoned_model == BLK_ZONED_NONE) 1400 return 0; 1401 1402 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1403 DMERR("%s: zoned model is not consistent across all devices", 1404 dm_device_name(table->md)); 1405 return -EINVAL; 1406 } 1407 1408 /* Check zone size validity and compatibility */ 1409 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1410 return -EINVAL; 1411 1412 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1413 DMERR("%s: zone sectors is not consistent across all devices", 1414 dm_device_name(table->md)); 1415 return -EINVAL; 1416 } 1417 1418 return 0; 1419 } 1420 1421 /* 1422 * Establish the new table's queue_limits and validate them. 1423 */ 1424 int dm_calculate_queue_limits(struct dm_table *table, 1425 struct queue_limits *limits) 1426 { 1427 struct dm_target *ti; 1428 struct queue_limits ti_limits; 1429 unsigned i; 1430 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1431 unsigned int zone_sectors = 0; 1432 1433 blk_set_stacking_limits(limits); 1434 1435 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1436 blk_set_stacking_limits(&ti_limits); 1437 1438 ti = dm_table_get_target(table, i); 1439 1440 if (!ti->type->iterate_devices) 1441 goto combine_limits; 1442 1443 /* 1444 * Combine queue limits of all the devices this target uses. 1445 */ 1446 ti->type->iterate_devices(ti, dm_set_device_limits, 1447 &ti_limits); 1448 1449 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1450 /* 1451 * After stacking all limits, validate all devices 1452 * in table support this zoned model and zone sectors. 1453 */ 1454 zoned_model = ti_limits.zoned; 1455 zone_sectors = ti_limits.chunk_sectors; 1456 } 1457 1458 /* Stack chunk_sectors if target-specific splitting is required */ 1459 if (ti->max_io_len) 1460 ti_limits.chunk_sectors = lcm_not_zero(ti->max_io_len, 1461 ti_limits.chunk_sectors); 1462 /* Set I/O hints portion of queue limits */ 1463 if (ti->type->io_hints) 1464 ti->type->io_hints(ti, &ti_limits); 1465 1466 /* 1467 * Check each device area is consistent with the target's 1468 * overall queue limits. 1469 */ 1470 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1471 &ti_limits)) 1472 return -EINVAL; 1473 1474 combine_limits: 1475 /* 1476 * Merge this target's queue limits into the overall limits 1477 * for the table. 1478 */ 1479 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1480 DMWARN("%s: adding target device " 1481 "(start sect %llu len %llu) " 1482 "caused an alignment inconsistency", 1483 dm_device_name(table->md), 1484 (unsigned long long) ti->begin, 1485 (unsigned long long) ti->len); 1486 } 1487 1488 /* 1489 * Verify that the zoned model and zone sectors, as determined before 1490 * any .io_hints override, are the same across all devices in the table. 1491 * - this is especially relevant if .io_hints is emulating a disk-managed 1492 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1493 * BUT... 1494 */ 1495 if (limits->zoned != BLK_ZONED_NONE) { 1496 /* 1497 * ...IF the above limits stacking determined a zoned model 1498 * validate that all of the table's devices conform to it. 1499 */ 1500 zoned_model = limits->zoned; 1501 zone_sectors = limits->chunk_sectors; 1502 } 1503 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1504 return -EINVAL; 1505 1506 return validate_hardware_logical_block_alignment(table, limits); 1507 } 1508 1509 /* 1510 * Verify that all devices have an integrity profile that matches the 1511 * DM device's registered integrity profile. If the profiles don't 1512 * match then unregister the DM device's integrity profile. 1513 */ 1514 static void dm_table_verify_integrity(struct dm_table *t) 1515 { 1516 struct gendisk *template_disk = NULL; 1517 1518 if (t->integrity_added) 1519 return; 1520 1521 if (t->integrity_supported) { 1522 /* 1523 * Verify that the original integrity profile 1524 * matches all the devices in this table. 1525 */ 1526 template_disk = dm_table_get_integrity_disk(t); 1527 if (template_disk && 1528 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1529 return; 1530 } 1531 1532 if (integrity_profile_exists(dm_disk(t->md))) { 1533 DMWARN("%s: unable to establish an integrity profile", 1534 dm_device_name(t->md)); 1535 blk_integrity_unregister(dm_disk(t->md)); 1536 } 1537 } 1538 1539 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1540 sector_t start, sector_t len, void *data) 1541 { 1542 unsigned long flush = (unsigned long) data; 1543 struct request_queue *q = bdev_get_queue(dev->bdev); 1544 1545 return q && (q->queue_flags & flush); 1546 } 1547 1548 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1549 { 1550 struct dm_target *ti; 1551 unsigned i; 1552 1553 /* 1554 * Require at least one underlying device to support flushes. 1555 * t->devices includes internal dm devices such as mirror logs 1556 * so we need to use iterate_devices here, which targets 1557 * supporting flushes must provide. 1558 */ 1559 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1560 ti = dm_table_get_target(t, i); 1561 1562 if (!ti->num_flush_bios) 1563 continue; 1564 1565 if (ti->flush_supported) 1566 return true; 1567 1568 if (ti->type->iterate_devices && 1569 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1570 return true; 1571 } 1572 1573 return false; 1574 } 1575 1576 static int device_dax_write_cache_enabled(struct dm_target *ti, 1577 struct dm_dev *dev, sector_t start, 1578 sector_t len, void *data) 1579 { 1580 struct dax_device *dax_dev = dev->dax_dev; 1581 1582 if (!dax_dev) 1583 return false; 1584 1585 if (dax_write_cache_enabled(dax_dev)) 1586 return true; 1587 return false; 1588 } 1589 1590 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1591 { 1592 struct dm_target *ti; 1593 unsigned i; 1594 1595 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1596 ti = dm_table_get_target(t, i); 1597 1598 if (ti->type->iterate_devices && 1599 ti->type->iterate_devices(ti, 1600 device_dax_write_cache_enabled, NULL)) 1601 return true; 1602 } 1603 1604 return false; 1605 } 1606 1607 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1608 sector_t start, sector_t len, void *data) 1609 { 1610 struct request_queue *q = bdev_get_queue(dev->bdev); 1611 1612 return q && blk_queue_nonrot(q); 1613 } 1614 1615 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1616 sector_t start, sector_t len, void *data) 1617 { 1618 struct request_queue *q = bdev_get_queue(dev->bdev); 1619 1620 return q && !blk_queue_add_random(q); 1621 } 1622 1623 static bool dm_table_all_devices_attribute(struct dm_table *t, 1624 iterate_devices_callout_fn func) 1625 { 1626 struct dm_target *ti; 1627 unsigned i; 1628 1629 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1630 ti = dm_table_get_target(t, i); 1631 1632 if (!ti->type->iterate_devices || 1633 !ti->type->iterate_devices(ti, func, NULL)) 1634 return false; 1635 } 1636 1637 return true; 1638 } 1639 1640 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1641 sector_t start, sector_t len, void *data) 1642 { 1643 struct request_queue *q = bdev_get_queue(dev->bdev); 1644 1645 return q && !q->limits.max_write_same_sectors; 1646 } 1647 1648 static bool dm_table_supports_write_same(struct dm_table *t) 1649 { 1650 struct dm_target *ti; 1651 unsigned i; 1652 1653 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1654 ti = dm_table_get_target(t, i); 1655 1656 if (!ti->num_write_same_bios) 1657 return false; 1658 1659 if (!ti->type->iterate_devices || 1660 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1661 return false; 1662 } 1663 1664 return true; 1665 } 1666 1667 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1668 sector_t start, sector_t len, void *data) 1669 { 1670 struct request_queue *q = bdev_get_queue(dev->bdev); 1671 1672 return q && !q->limits.max_write_zeroes_sectors; 1673 } 1674 1675 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1676 { 1677 struct dm_target *ti; 1678 unsigned i = 0; 1679 1680 while (i < dm_table_get_num_targets(t)) { 1681 ti = dm_table_get_target(t, i++); 1682 1683 if (!ti->num_write_zeroes_bios) 1684 return false; 1685 1686 if (!ti->type->iterate_devices || 1687 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1688 return false; 1689 } 1690 1691 return true; 1692 } 1693 1694 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1695 sector_t start, sector_t len, void *data) 1696 { 1697 struct request_queue *q = bdev_get_queue(dev->bdev); 1698 1699 return q && !blk_queue_nowait(q); 1700 } 1701 1702 static bool dm_table_supports_nowait(struct dm_table *t) 1703 { 1704 struct dm_target *ti; 1705 unsigned i = 0; 1706 1707 while (i < dm_table_get_num_targets(t)) { 1708 ti = dm_table_get_target(t, i++); 1709 1710 if (!dm_target_supports_nowait(ti->type)) 1711 return false; 1712 1713 if (!ti->type->iterate_devices || 1714 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1715 return false; 1716 } 1717 1718 return true; 1719 } 1720 1721 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1722 sector_t start, sector_t len, void *data) 1723 { 1724 struct request_queue *q = bdev_get_queue(dev->bdev); 1725 1726 return q && !blk_queue_discard(q); 1727 } 1728 1729 static bool dm_table_supports_discards(struct dm_table *t) 1730 { 1731 struct dm_target *ti; 1732 unsigned i; 1733 1734 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1735 ti = dm_table_get_target(t, i); 1736 1737 if (!ti->num_discard_bios) 1738 return false; 1739 1740 /* 1741 * Either the target provides discard support (as implied by setting 1742 * 'discards_supported') or it relies on _all_ data devices having 1743 * discard support. 1744 */ 1745 if (!ti->discards_supported && 1746 (!ti->type->iterate_devices || 1747 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1748 return false; 1749 } 1750 1751 return true; 1752 } 1753 1754 static int device_not_secure_erase_capable(struct dm_target *ti, 1755 struct dm_dev *dev, sector_t start, 1756 sector_t len, void *data) 1757 { 1758 struct request_queue *q = bdev_get_queue(dev->bdev); 1759 1760 return q && !blk_queue_secure_erase(q); 1761 } 1762 1763 static bool dm_table_supports_secure_erase(struct dm_table *t) 1764 { 1765 struct dm_target *ti; 1766 unsigned int i; 1767 1768 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1769 ti = dm_table_get_target(t, i); 1770 1771 if (!ti->num_secure_erase_bios) 1772 return false; 1773 1774 if (!ti->type->iterate_devices || 1775 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1776 return false; 1777 } 1778 1779 return true; 1780 } 1781 1782 static int device_requires_stable_pages(struct dm_target *ti, 1783 struct dm_dev *dev, sector_t start, 1784 sector_t len, void *data) 1785 { 1786 struct request_queue *q = bdev_get_queue(dev->bdev); 1787 1788 return q && blk_queue_stable_writes(q); 1789 } 1790 1791 /* 1792 * If any underlying device requires stable pages, a table must require 1793 * them as well. Only targets that support iterate_devices are considered: 1794 * don't want error, zero, etc to require stable pages. 1795 */ 1796 static bool dm_table_requires_stable_pages(struct dm_table *t) 1797 { 1798 struct dm_target *ti; 1799 unsigned i; 1800 1801 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1802 ti = dm_table_get_target(t, i); 1803 1804 if (ti->type->iterate_devices && 1805 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL)) 1806 return true; 1807 } 1808 1809 return false; 1810 } 1811 1812 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1813 struct queue_limits *limits) 1814 { 1815 bool wc = false, fua = false; 1816 int page_size = PAGE_SIZE; 1817 1818 /* 1819 * Copy table's limits to the DM device's request_queue 1820 */ 1821 q->limits = *limits; 1822 1823 if (dm_table_supports_nowait(t)) 1824 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1825 else 1826 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1827 1828 if (!dm_table_supports_discards(t)) { 1829 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1830 /* Must also clear discard limits... */ 1831 q->limits.max_discard_sectors = 0; 1832 q->limits.max_hw_discard_sectors = 0; 1833 q->limits.discard_granularity = 0; 1834 q->limits.discard_alignment = 0; 1835 q->limits.discard_misaligned = 0; 1836 } else 1837 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1838 1839 if (dm_table_supports_secure_erase(t)) 1840 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1841 1842 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1843 wc = true; 1844 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1845 fua = true; 1846 } 1847 blk_queue_write_cache(q, wc, fua); 1848 1849 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) { 1850 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1851 if (dm_table_supports_dax(t, device_dax_synchronous, NULL)) 1852 set_dax_synchronous(t->md->dax_dev); 1853 } 1854 else 1855 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1856 1857 if (dm_table_supports_dax_write_cache(t)) 1858 dax_write_cache(t->md->dax_dev, true); 1859 1860 /* Ensure that all underlying devices are non-rotational. */ 1861 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1862 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1863 else 1864 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1865 1866 if (!dm_table_supports_write_same(t)) 1867 q->limits.max_write_same_sectors = 0; 1868 if (!dm_table_supports_write_zeroes(t)) 1869 q->limits.max_write_zeroes_sectors = 0; 1870 1871 dm_table_verify_integrity(t); 1872 1873 /* 1874 * Some devices don't use blk_integrity but still want stable pages 1875 * because they do their own checksumming. 1876 */ 1877 if (dm_table_requires_stable_pages(t)) 1878 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 1879 else 1880 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 1881 1882 /* 1883 * Determine whether or not this queue's I/O timings contribute 1884 * to the entropy pool, Only request-based targets use this. 1885 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1886 * have it set. 1887 */ 1888 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1889 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1890 1891 /* 1892 * For a zoned target, the number of zones should be updated for the 1893 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 1894 * target, this is all that is needed. 1895 */ 1896 #ifdef CONFIG_BLK_DEV_ZONED 1897 if (blk_queue_is_zoned(q)) { 1898 WARN_ON_ONCE(queue_is_mq(q)); 1899 q->nr_zones = blkdev_nr_zones(t->md->disk); 1900 } 1901 #endif 1902 1903 blk_queue_update_readahead(q); 1904 } 1905 1906 unsigned int dm_table_get_num_targets(struct dm_table *t) 1907 { 1908 return t->num_targets; 1909 } 1910 1911 struct list_head *dm_table_get_devices(struct dm_table *t) 1912 { 1913 return &t->devices; 1914 } 1915 1916 fmode_t dm_table_get_mode(struct dm_table *t) 1917 { 1918 return t->mode; 1919 } 1920 EXPORT_SYMBOL(dm_table_get_mode); 1921 1922 enum suspend_mode { 1923 PRESUSPEND, 1924 PRESUSPEND_UNDO, 1925 POSTSUSPEND, 1926 }; 1927 1928 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1929 { 1930 int i = t->num_targets; 1931 struct dm_target *ti = t->targets; 1932 1933 lockdep_assert_held(&t->md->suspend_lock); 1934 1935 while (i--) { 1936 switch (mode) { 1937 case PRESUSPEND: 1938 if (ti->type->presuspend) 1939 ti->type->presuspend(ti); 1940 break; 1941 case PRESUSPEND_UNDO: 1942 if (ti->type->presuspend_undo) 1943 ti->type->presuspend_undo(ti); 1944 break; 1945 case POSTSUSPEND: 1946 if (ti->type->postsuspend) 1947 ti->type->postsuspend(ti); 1948 break; 1949 } 1950 ti++; 1951 } 1952 } 1953 1954 void dm_table_presuspend_targets(struct dm_table *t) 1955 { 1956 if (!t) 1957 return; 1958 1959 suspend_targets(t, PRESUSPEND); 1960 } 1961 1962 void dm_table_presuspend_undo_targets(struct dm_table *t) 1963 { 1964 if (!t) 1965 return; 1966 1967 suspend_targets(t, PRESUSPEND_UNDO); 1968 } 1969 1970 void dm_table_postsuspend_targets(struct dm_table *t) 1971 { 1972 if (!t) 1973 return; 1974 1975 suspend_targets(t, POSTSUSPEND); 1976 } 1977 1978 int dm_table_resume_targets(struct dm_table *t) 1979 { 1980 int i, r = 0; 1981 1982 lockdep_assert_held(&t->md->suspend_lock); 1983 1984 for (i = 0; i < t->num_targets; i++) { 1985 struct dm_target *ti = t->targets + i; 1986 1987 if (!ti->type->preresume) 1988 continue; 1989 1990 r = ti->type->preresume(ti); 1991 if (r) { 1992 DMERR("%s: %s: preresume failed, error = %d", 1993 dm_device_name(t->md), ti->type->name, r); 1994 return r; 1995 } 1996 } 1997 1998 for (i = 0; i < t->num_targets; i++) { 1999 struct dm_target *ti = t->targets + i; 2000 2001 if (ti->type->resume) 2002 ti->type->resume(ti); 2003 } 2004 2005 return 0; 2006 } 2007 2008 struct mapped_device *dm_table_get_md(struct dm_table *t) 2009 { 2010 return t->md; 2011 } 2012 EXPORT_SYMBOL(dm_table_get_md); 2013 2014 const char *dm_table_device_name(struct dm_table *t) 2015 { 2016 return dm_device_name(t->md); 2017 } 2018 EXPORT_SYMBOL_GPL(dm_table_device_name); 2019 2020 void dm_table_run_md_queue_async(struct dm_table *t) 2021 { 2022 if (!dm_table_request_based(t)) 2023 return; 2024 2025 if (t->md->queue) 2026 blk_mq_run_hw_queues(t->md->queue, true); 2027 } 2028 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2029 2030