1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 bool all_blk_mq:1; 51 unsigned integrity_added:1; 52 53 /* 54 * Indicates the rw permissions for the new logical 55 * device. This should be a combination of FMODE_READ 56 * and FMODE_WRITE. 57 */ 58 fmode_t mode; 59 60 /* a list of devices used by this table */ 61 struct list_head devices; 62 63 /* events get handed up using this callback */ 64 void (*event_fn)(void *); 65 void *event_context; 66 67 struct dm_md_mempools *mempools; 68 69 struct list_head target_callbacks; 70 }; 71 72 /* 73 * Similar to ceiling(log_size(n)) 74 */ 75 static unsigned int int_log(unsigned int n, unsigned int base) 76 { 77 int result = 0; 78 79 while (n > 1) { 80 n = dm_div_up(n, base); 81 result++; 82 } 83 84 return result; 85 } 86 87 /* 88 * Calculate the index of the child node of the n'th node k'th key. 89 */ 90 static inline unsigned int get_child(unsigned int n, unsigned int k) 91 { 92 return (n * CHILDREN_PER_NODE) + k; 93 } 94 95 /* 96 * Return the n'th node of level l from table t. 97 */ 98 static inline sector_t *get_node(struct dm_table *t, 99 unsigned int l, unsigned int n) 100 { 101 return t->index[l] + (n * KEYS_PER_NODE); 102 } 103 104 /* 105 * Return the highest key that you could lookup from the n'th 106 * node on level l of the btree. 107 */ 108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 109 { 110 for (; l < t->depth - 1; l++) 111 n = get_child(n, CHILDREN_PER_NODE - 1); 112 113 if (n >= t->counts[l]) 114 return (sector_t) - 1; 115 116 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 117 } 118 119 /* 120 * Fills in a level of the btree based on the highs of the level 121 * below it. 122 */ 123 static int setup_btree_index(unsigned int l, struct dm_table *t) 124 { 125 unsigned int n, k; 126 sector_t *node; 127 128 for (n = 0U; n < t->counts[l]; n++) { 129 node = get_node(t, l, n); 130 131 for (k = 0U; k < KEYS_PER_NODE; k++) 132 node[k] = high(t, l + 1, get_child(n, k)); 133 } 134 135 return 0; 136 } 137 138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 139 { 140 unsigned long size; 141 void *addr; 142 143 /* 144 * Check that we're not going to overflow. 145 */ 146 if (nmemb > (ULONG_MAX / elem_size)) 147 return NULL; 148 149 size = nmemb * elem_size; 150 addr = vzalloc(size); 151 152 return addr; 153 } 154 EXPORT_SYMBOL(dm_vcalloc); 155 156 /* 157 * highs, and targets are managed as dynamic arrays during a 158 * table load. 159 */ 160 static int alloc_targets(struct dm_table *t, unsigned int num) 161 { 162 sector_t *n_highs; 163 struct dm_target *n_targets; 164 165 /* 166 * Allocate both the target array and offset array at once. 167 * Append an empty entry to catch sectors beyond the end of 168 * the device. 169 */ 170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 171 sizeof(sector_t)); 172 if (!n_highs) 173 return -ENOMEM; 174 175 n_targets = (struct dm_target *) (n_highs + num); 176 177 memset(n_highs, -1, sizeof(*n_highs) * num); 178 vfree(t->highs); 179 180 t->num_allocated = num; 181 t->highs = n_highs; 182 t->targets = n_targets; 183 184 return 0; 185 } 186 187 int dm_table_create(struct dm_table **result, fmode_t mode, 188 unsigned num_targets, struct mapped_device *md) 189 { 190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 191 192 if (!t) 193 return -ENOMEM; 194 195 INIT_LIST_HEAD(&t->devices); 196 INIT_LIST_HEAD(&t->target_callbacks); 197 198 if (!num_targets) 199 num_targets = KEYS_PER_NODE; 200 201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 202 203 if (!num_targets) { 204 kfree(t); 205 return -ENOMEM; 206 } 207 208 if (alloc_targets(t, num_targets)) { 209 kfree(t); 210 return -ENOMEM; 211 } 212 213 t->type = DM_TYPE_NONE; 214 t->mode = mode; 215 t->md = md; 216 *result = t; 217 return 0; 218 } 219 220 static void free_devices(struct list_head *devices, struct mapped_device *md) 221 { 222 struct list_head *tmp, *next; 223 224 list_for_each_safe(tmp, next, devices) { 225 struct dm_dev_internal *dd = 226 list_entry(tmp, struct dm_dev_internal, list); 227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 228 dm_device_name(md), dd->dm_dev->name); 229 dm_put_table_device(md, dd->dm_dev); 230 kfree(dd); 231 } 232 } 233 234 void dm_table_destroy(struct dm_table *t) 235 { 236 unsigned int i; 237 238 if (!t) 239 return; 240 241 /* free the indexes */ 242 if (t->depth >= 2) 243 vfree(t->index[t->depth - 2]); 244 245 /* free the targets */ 246 for (i = 0; i < t->num_targets; i++) { 247 struct dm_target *tgt = t->targets + i; 248 249 if (tgt->type->dtr) 250 tgt->type->dtr(tgt); 251 252 dm_put_target_type(tgt->type); 253 } 254 255 vfree(t->highs); 256 257 /* free the device list */ 258 free_devices(&t->devices, t->md); 259 260 dm_free_md_mempools(t->mempools); 261 262 kfree(t); 263 } 264 265 /* 266 * See if we've already got a device in the list. 267 */ 268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 269 { 270 struct dm_dev_internal *dd; 271 272 list_for_each_entry (dd, l, list) 273 if (dd->dm_dev->bdev->bd_dev == dev) 274 return dd; 275 276 return NULL; 277 } 278 279 /* 280 * If possible, this checks an area of a destination device is invalid. 281 */ 282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 283 sector_t start, sector_t len, void *data) 284 { 285 struct request_queue *q; 286 struct queue_limits *limits = data; 287 struct block_device *bdev = dev->bdev; 288 sector_t dev_size = 289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 290 unsigned short logical_block_size_sectors = 291 limits->logical_block_size >> SECTOR_SHIFT; 292 char b[BDEVNAME_SIZE]; 293 294 /* 295 * Some devices exist without request functions, 296 * such as loop devices not yet bound to backing files. 297 * Forbid the use of such devices. 298 */ 299 q = bdev_get_queue(bdev); 300 if (!q || !q->make_request_fn) { 301 DMWARN("%s: %s is not yet initialised: " 302 "start=%llu, len=%llu, dev_size=%llu", 303 dm_device_name(ti->table->md), bdevname(bdev, b), 304 (unsigned long long)start, 305 (unsigned long long)len, 306 (unsigned long long)dev_size); 307 return 1; 308 } 309 310 if (!dev_size) 311 return 0; 312 313 if ((start >= dev_size) || (start + len > dev_size)) { 314 DMWARN("%s: %s too small for target: " 315 "start=%llu, len=%llu, dev_size=%llu", 316 dm_device_name(ti->table->md), bdevname(bdev, b), 317 (unsigned long long)start, 318 (unsigned long long)len, 319 (unsigned long long)dev_size); 320 return 1; 321 } 322 323 /* 324 * If the target is mapped to zoned block device(s), check 325 * that the zones are not partially mapped. 326 */ 327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 328 unsigned int zone_sectors = bdev_zone_sectors(bdev); 329 330 if (start & (zone_sectors - 1)) { 331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 332 dm_device_name(ti->table->md), 333 (unsigned long long)start, 334 zone_sectors, bdevname(bdev, b)); 335 return 1; 336 } 337 338 /* 339 * Note: The last zone of a zoned block device may be smaller 340 * than other zones. So for a target mapping the end of a 341 * zoned block device with such a zone, len would not be zone 342 * aligned. We do not allow such last smaller zone to be part 343 * of the mapping here to ensure that mappings with multiple 344 * devices do not end up with a smaller zone in the middle of 345 * the sector range. 346 */ 347 if (len & (zone_sectors - 1)) { 348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 349 dm_device_name(ti->table->md), 350 (unsigned long long)len, 351 zone_sectors, bdevname(bdev, b)); 352 return 1; 353 } 354 } 355 356 if (logical_block_size_sectors <= 1) 357 return 0; 358 359 if (start & (logical_block_size_sectors - 1)) { 360 DMWARN("%s: start=%llu not aligned to h/w " 361 "logical block size %u of %s", 362 dm_device_name(ti->table->md), 363 (unsigned long long)start, 364 limits->logical_block_size, bdevname(bdev, b)); 365 return 1; 366 } 367 368 if (len & (logical_block_size_sectors - 1)) { 369 DMWARN("%s: len=%llu not aligned to h/w " 370 "logical block size %u of %s", 371 dm_device_name(ti->table->md), 372 (unsigned long long)len, 373 limits->logical_block_size, bdevname(bdev, b)); 374 return 1; 375 } 376 377 return 0; 378 } 379 380 /* 381 * This upgrades the mode on an already open dm_dev, being 382 * careful to leave things as they were if we fail to reopen the 383 * device and not to touch the existing bdev field in case 384 * it is accessed concurrently inside dm_table_any_congested(). 385 */ 386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 387 struct mapped_device *md) 388 { 389 int r; 390 struct dm_dev *old_dev, *new_dev; 391 392 old_dev = dd->dm_dev; 393 394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 395 dd->dm_dev->mode | new_mode, &new_dev); 396 if (r) 397 return r; 398 399 dd->dm_dev = new_dev; 400 dm_put_table_device(md, old_dev); 401 402 return 0; 403 } 404 405 /* 406 * Convert the path to a device 407 */ 408 dev_t dm_get_dev_t(const char *path) 409 { 410 dev_t dev; 411 struct block_device *bdev; 412 413 bdev = lookup_bdev(path); 414 if (IS_ERR(bdev)) 415 dev = name_to_dev_t(path); 416 else { 417 dev = bdev->bd_dev; 418 bdput(bdev); 419 } 420 421 return dev; 422 } 423 EXPORT_SYMBOL_GPL(dm_get_dev_t); 424 425 /* 426 * Add a device to the list, or just increment the usage count if 427 * it's already present. 428 */ 429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 430 struct dm_dev **result) 431 { 432 int r; 433 dev_t dev; 434 struct dm_dev_internal *dd; 435 struct dm_table *t = ti->table; 436 437 BUG_ON(!t); 438 439 dev = dm_get_dev_t(path); 440 if (!dev) 441 return -ENODEV; 442 443 dd = find_device(&t->devices, dev); 444 if (!dd) { 445 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 446 if (!dd) 447 return -ENOMEM; 448 449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 450 kfree(dd); 451 return r; 452 } 453 454 refcount_set(&dd->count, 1); 455 list_add(&dd->list, &t->devices); 456 goto out; 457 458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 459 r = upgrade_mode(dd, mode, t->md); 460 if (r) 461 return r; 462 } 463 refcount_inc(&dd->count); 464 out: 465 *result = dd->dm_dev; 466 return 0; 467 } 468 EXPORT_SYMBOL(dm_get_device); 469 470 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 471 sector_t start, sector_t len, void *data) 472 { 473 struct queue_limits *limits = data; 474 struct block_device *bdev = dev->bdev; 475 struct request_queue *q = bdev_get_queue(bdev); 476 char b[BDEVNAME_SIZE]; 477 478 if (unlikely(!q)) { 479 DMWARN("%s: Cannot set limits for nonexistent device %s", 480 dm_device_name(ti->table->md), bdevname(bdev, b)); 481 return 0; 482 } 483 484 if (bdev_stack_limits(limits, bdev, start) < 0) 485 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 486 "physical_block_size=%u, logical_block_size=%u, " 487 "alignment_offset=%u, start=%llu", 488 dm_device_name(ti->table->md), bdevname(bdev, b), 489 q->limits.physical_block_size, 490 q->limits.logical_block_size, 491 q->limits.alignment_offset, 492 (unsigned long long) start << SECTOR_SHIFT); 493 494 limits->zoned = blk_queue_zoned_model(q); 495 496 return 0; 497 } 498 499 /* 500 * Decrement a device's use count and remove it if necessary. 501 */ 502 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 503 { 504 int found = 0; 505 struct list_head *devices = &ti->table->devices; 506 struct dm_dev_internal *dd; 507 508 list_for_each_entry(dd, devices, list) { 509 if (dd->dm_dev == d) { 510 found = 1; 511 break; 512 } 513 } 514 if (!found) { 515 DMWARN("%s: device %s not in table devices list", 516 dm_device_name(ti->table->md), d->name); 517 return; 518 } 519 if (refcount_dec_and_test(&dd->count)) { 520 dm_put_table_device(ti->table->md, d); 521 list_del(&dd->list); 522 kfree(dd); 523 } 524 } 525 EXPORT_SYMBOL(dm_put_device); 526 527 /* 528 * Checks to see if the target joins onto the end of the table. 529 */ 530 static int adjoin(struct dm_table *table, struct dm_target *ti) 531 { 532 struct dm_target *prev; 533 534 if (!table->num_targets) 535 return !ti->begin; 536 537 prev = &table->targets[table->num_targets - 1]; 538 return (ti->begin == (prev->begin + prev->len)); 539 } 540 541 /* 542 * Used to dynamically allocate the arg array. 543 * 544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 545 * process messages even if some device is suspended. These messages have a 546 * small fixed number of arguments. 547 * 548 * On the other hand, dm-switch needs to process bulk data using messages and 549 * excessive use of GFP_NOIO could cause trouble. 550 */ 551 static char **realloc_argv(unsigned *size, char **old_argv) 552 { 553 char **argv; 554 unsigned new_size; 555 gfp_t gfp; 556 557 if (*size) { 558 new_size = *size * 2; 559 gfp = GFP_KERNEL; 560 } else { 561 new_size = 8; 562 gfp = GFP_NOIO; 563 } 564 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 565 if (argv) { 566 memcpy(argv, old_argv, *size * sizeof(*argv)); 567 *size = new_size; 568 } 569 570 kfree(old_argv); 571 return argv; 572 } 573 574 /* 575 * Destructively splits up the argument list to pass to ctr. 576 */ 577 int dm_split_args(int *argc, char ***argvp, char *input) 578 { 579 char *start, *end = input, *out, **argv = NULL; 580 unsigned array_size = 0; 581 582 *argc = 0; 583 584 if (!input) { 585 *argvp = NULL; 586 return 0; 587 } 588 589 argv = realloc_argv(&array_size, argv); 590 if (!argv) 591 return -ENOMEM; 592 593 while (1) { 594 /* Skip whitespace */ 595 start = skip_spaces(end); 596 597 if (!*start) 598 break; /* success, we hit the end */ 599 600 /* 'out' is used to remove any back-quotes */ 601 end = out = start; 602 while (*end) { 603 /* Everything apart from '\0' can be quoted */ 604 if (*end == '\\' && *(end + 1)) { 605 *out++ = *(end + 1); 606 end += 2; 607 continue; 608 } 609 610 if (isspace(*end)) 611 break; /* end of token */ 612 613 *out++ = *end++; 614 } 615 616 /* have we already filled the array ? */ 617 if ((*argc + 1) > array_size) { 618 argv = realloc_argv(&array_size, argv); 619 if (!argv) 620 return -ENOMEM; 621 } 622 623 /* we know this is whitespace */ 624 if (*end) 625 end++; 626 627 /* terminate the string and put it in the array */ 628 *out = '\0'; 629 argv[*argc] = start; 630 (*argc)++; 631 } 632 633 *argvp = argv; 634 return 0; 635 } 636 637 /* 638 * Impose necessary and sufficient conditions on a devices's table such 639 * that any incoming bio which respects its logical_block_size can be 640 * processed successfully. If it falls across the boundary between 641 * two or more targets, the size of each piece it gets split into must 642 * be compatible with the logical_block_size of the target processing it. 643 */ 644 static int validate_hardware_logical_block_alignment(struct dm_table *table, 645 struct queue_limits *limits) 646 { 647 /* 648 * This function uses arithmetic modulo the logical_block_size 649 * (in units of 512-byte sectors). 650 */ 651 unsigned short device_logical_block_size_sects = 652 limits->logical_block_size >> SECTOR_SHIFT; 653 654 /* 655 * Offset of the start of the next table entry, mod logical_block_size. 656 */ 657 unsigned short next_target_start = 0; 658 659 /* 660 * Given an aligned bio that extends beyond the end of a 661 * target, how many sectors must the next target handle? 662 */ 663 unsigned short remaining = 0; 664 665 struct dm_target *uninitialized_var(ti); 666 struct queue_limits ti_limits; 667 unsigned i; 668 669 /* 670 * Check each entry in the table in turn. 671 */ 672 for (i = 0; i < dm_table_get_num_targets(table); i++) { 673 ti = dm_table_get_target(table, i); 674 675 blk_set_stacking_limits(&ti_limits); 676 677 /* combine all target devices' limits */ 678 if (ti->type->iterate_devices) 679 ti->type->iterate_devices(ti, dm_set_device_limits, 680 &ti_limits); 681 682 /* 683 * If the remaining sectors fall entirely within this 684 * table entry are they compatible with its logical_block_size? 685 */ 686 if (remaining < ti->len && 687 remaining & ((ti_limits.logical_block_size >> 688 SECTOR_SHIFT) - 1)) 689 break; /* Error */ 690 691 next_target_start = 692 (unsigned short) ((next_target_start + ti->len) & 693 (device_logical_block_size_sects - 1)); 694 remaining = next_target_start ? 695 device_logical_block_size_sects - next_target_start : 0; 696 } 697 698 if (remaining) { 699 DMWARN("%s: table line %u (start sect %llu len %llu) " 700 "not aligned to h/w logical block size %u", 701 dm_device_name(table->md), i, 702 (unsigned long long) ti->begin, 703 (unsigned long long) ti->len, 704 limits->logical_block_size); 705 return -EINVAL; 706 } 707 708 return 0; 709 } 710 711 int dm_table_add_target(struct dm_table *t, const char *type, 712 sector_t start, sector_t len, char *params) 713 { 714 int r = -EINVAL, argc; 715 char **argv; 716 struct dm_target *tgt; 717 718 if (t->singleton) { 719 DMERR("%s: target type %s must appear alone in table", 720 dm_device_name(t->md), t->targets->type->name); 721 return -EINVAL; 722 } 723 724 BUG_ON(t->num_targets >= t->num_allocated); 725 726 tgt = t->targets + t->num_targets; 727 memset(tgt, 0, sizeof(*tgt)); 728 729 if (!len) { 730 DMERR("%s: zero-length target", dm_device_name(t->md)); 731 return -EINVAL; 732 } 733 734 tgt->type = dm_get_target_type(type); 735 if (!tgt->type) { 736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 737 return -EINVAL; 738 } 739 740 if (dm_target_needs_singleton(tgt->type)) { 741 if (t->num_targets) { 742 tgt->error = "singleton target type must appear alone in table"; 743 goto bad; 744 } 745 t->singleton = true; 746 } 747 748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 749 tgt->error = "target type may not be included in a read-only table"; 750 goto bad; 751 } 752 753 if (t->immutable_target_type) { 754 if (t->immutable_target_type != tgt->type) { 755 tgt->error = "immutable target type cannot be mixed with other target types"; 756 goto bad; 757 } 758 } else if (dm_target_is_immutable(tgt->type)) { 759 if (t->num_targets) { 760 tgt->error = "immutable target type cannot be mixed with other target types"; 761 goto bad; 762 } 763 t->immutable_target_type = tgt->type; 764 } 765 766 if (dm_target_has_integrity(tgt->type)) 767 t->integrity_added = 1; 768 769 tgt->table = t; 770 tgt->begin = start; 771 tgt->len = len; 772 tgt->error = "Unknown error"; 773 774 /* 775 * Does this target adjoin the previous one ? 776 */ 777 if (!adjoin(t, tgt)) { 778 tgt->error = "Gap in table"; 779 goto bad; 780 } 781 782 r = dm_split_args(&argc, &argv, params); 783 if (r) { 784 tgt->error = "couldn't split parameters (insufficient memory)"; 785 goto bad; 786 } 787 788 r = tgt->type->ctr(tgt, argc, argv); 789 kfree(argv); 790 if (r) 791 goto bad; 792 793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 794 795 if (!tgt->num_discard_bios && tgt->discards_supported) 796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 797 dm_device_name(t->md), type); 798 799 return 0; 800 801 bad: 802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 803 dm_put_target_type(tgt->type); 804 return r; 805 } 806 807 /* 808 * Target argument parsing helpers. 809 */ 810 static int validate_next_arg(const struct dm_arg *arg, 811 struct dm_arg_set *arg_set, 812 unsigned *value, char **error, unsigned grouped) 813 { 814 const char *arg_str = dm_shift_arg(arg_set); 815 char dummy; 816 817 if (!arg_str || 818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 819 (*value < arg->min) || 820 (*value > arg->max) || 821 (grouped && arg_set->argc < *value)) { 822 *error = arg->error; 823 return -EINVAL; 824 } 825 826 return 0; 827 } 828 829 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 830 unsigned *value, char **error) 831 { 832 return validate_next_arg(arg, arg_set, value, error, 0); 833 } 834 EXPORT_SYMBOL(dm_read_arg); 835 836 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 837 unsigned *value, char **error) 838 { 839 return validate_next_arg(arg, arg_set, value, error, 1); 840 } 841 EXPORT_SYMBOL(dm_read_arg_group); 842 843 const char *dm_shift_arg(struct dm_arg_set *as) 844 { 845 char *r; 846 847 if (as->argc) { 848 as->argc--; 849 r = *as->argv; 850 as->argv++; 851 return r; 852 } 853 854 return NULL; 855 } 856 EXPORT_SYMBOL(dm_shift_arg); 857 858 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 859 { 860 BUG_ON(as->argc < num_args); 861 as->argc -= num_args; 862 as->argv += num_args; 863 } 864 EXPORT_SYMBOL(dm_consume_args); 865 866 static bool __table_type_bio_based(enum dm_queue_mode table_type) 867 { 868 return (table_type == DM_TYPE_BIO_BASED || 869 table_type == DM_TYPE_DAX_BIO_BASED || 870 table_type == DM_TYPE_NVME_BIO_BASED); 871 } 872 873 static bool __table_type_request_based(enum dm_queue_mode table_type) 874 { 875 return (table_type == DM_TYPE_REQUEST_BASED || 876 table_type == DM_TYPE_MQ_REQUEST_BASED); 877 } 878 879 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 880 { 881 t->type = type; 882 } 883 EXPORT_SYMBOL_GPL(dm_table_set_type); 884 885 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 886 sector_t start, sector_t len, void *data) 887 { 888 return bdev_dax_supported(dev->bdev, PAGE_SIZE); 889 } 890 891 static bool dm_table_supports_dax(struct dm_table *t) 892 { 893 struct dm_target *ti; 894 unsigned i; 895 896 /* Ensure that all targets support DAX. */ 897 for (i = 0; i < dm_table_get_num_targets(t); i++) { 898 ti = dm_table_get_target(t, i); 899 900 if (!ti->type->direct_access) 901 return false; 902 903 if (!ti->type->iterate_devices || 904 !ti->type->iterate_devices(ti, device_supports_dax, NULL)) 905 return false; 906 } 907 908 return true; 909 } 910 911 static bool dm_table_does_not_support_partial_completion(struct dm_table *t); 912 913 struct verify_rq_based_data { 914 unsigned sq_count; 915 unsigned mq_count; 916 }; 917 918 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev, 919 sector_t start, sector_t len, void *data) 920 { 921 struct request_queue *q = bdev_get_queue(dev->bdev); 922 struct verify_rq_based_data *v = data; 923 924 if (q->mq_ops) 925 v->mq_count++; 926 else 927 v->sq_count++; 928 929 return queue_is_rq_based(q); 930 } 931 932 static int dm_table_determine_type(struct dm_table *t) 933 { 934 unsigned i; 935 unsigned bio_based = 0, request_based = 0, hybrid = 0; 936 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0}; 937 struct dm_target *tgt; 938 struct list_head *devices = dm_table_get_devices(t); 939 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 940 941 if (t->type != DM_TYPE_NONE) { 942 /* target already set the table's type */ 943 if (t->type == DM_TYPE_BIO_BASED) { 944 /* possibly upgrade to a variant of bio-based */ 945 goto verify_bio_based; 946 } 947 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 948 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED); 949 goto verify_rq_based; 950 } 951 952 for (i = 0; i < t->num_targets; i++) { 953 tgt = t->targets + i; 954 if (dm_target_hybrid(tgt)) 955 hybrid = 1; 956 else if (dm_target_request_based(tgt)) 957 request_based = 1; 958 else 959 bio_based = 1; 960 961 if (bio_based && request_based) { 962 DMERR("Inconsistent table: different target types" 963 " can't be mixed up"); 964 return -EINVAL; 965 } 966 } 967 968 if (hybrid && !bio_based && !request_based) { 969 /* 970 * The targets can work either way. 971 * Determine the type from the live device. 972 * Default to bio-based if device is new. 973 */ 974 if (__table_type_request_based(live_md_type)) 975 request_based = 1; 976 else 977 bio_based = 1; 978 } 979 980 if (bio_based) { 981 verify_bio_based: 982 /* We must use this table as bio-based */ 983 t->type = DM_TYPE_BIO_BASED; 984 if (dm_table_supports_dax(t) || 985 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 986 t->type = DM_TYPE_DAX_BIO_BASED; 987 } else { 988 /* Check if upgrading to NVMe bio-based is valid or required */ 989 tgt = dm_table_get_immutable_target(t); 990 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) { 991 t->type = DM_TYPE_NVME_BIO_BASED; 992 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */ 993 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) { 994 t->type = DM_TYPE_NVME_BIO_BASED; 995 } 996 } 997 return 0; 998 } 999 1000 BUG_ON(!request_based); /* No targets in this table */ 1001 1002 /* 1003 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by 1004 * having a compatible target use dm_table_set_type. 1005 */ 1006 t->type = DM_TYPE_REQUEST_BASED; 1007 1008 verify_rq_based: 1009 /* 1010 * Request-based dm supports only tables that have a single target now. 1011 * To support multiple targets, request splitting support is needed, 1012 * and that needs lots of changes in the block-layer. 1013 * (e.g. request completion process for partial completion.) 1014 */ 1015 if (t->num_targets > 1) { 1016 DMERR("%s DM doesn't support multiple targets", 1017 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based"); 1018 return -EINVAL; 1019 } 1020 1021 if (list_empty(devices)) { 1022 int srcu_idx; 1023 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 1024 1025 /* inherit live table's type and all_blk_mq */ 1026 if (live_table) { 1027 t->type = live_table->type; 1028 t->all_blk_mq = live_table->all_blk_mq; 1029 } 1030 dm_put_live_table(t->md, srcu_idx); 1031 return 0; 1032 } 1033 1034 tgt = dm_table_get_immutable_target(t); 1035 if (!tgt) { 1036 DMERR("table load rejected: immutable target is required"); 1037 return -EINVAL; 1038 } else if (tgt->max_io_len) { 1039 DMERR("table load rejected: immutable target that splits IO is not supported"); 1040 return -EINVAL; 1041 } 1042 1043 /* Non-request-stackable devices can't be used for request-based dm */ 1044 if (!tgt->type->iterate_devices || 1045 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) { 1046 DMERR("table load rejected: including non-request-stackable devices"); 1047 return -EINVAL; 1048 } 1049 if (v.sq_count && v.mq_count) { 1050 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 1051 return -EINVAL; 1052 } 1053 t->all_blk_mq = v.mq_count > 0; 1054 1055 if (!t->all_blk_mq && 1056 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) { 1057 DMERR("table load rejected: all devices are not blk-mq request-stackable"); 1058 return -EINVAL; 1059 } 1060 1061 return 0; 1062 } 1063 1064 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1065 { 1066 return t->type; 1067 } 1068 1069 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1070 { 1071 return t->immutable_target_type; 1072 } 1073 1074 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1075 { 1076 /* Immutable target is implicitly a singleton */ 1077 if (t->num_targets > 1 || 1078 !dm_target_is_immutable(t->targets[0].type)) 1079 return NULL; 1080 1081 return t->targets; 1082 } 1083 1084 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1085 { 1086 struct dm_target *ti; 1087 unsigned i; 1088 1089 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1090 ti = dm_table_get_target(t, i); 1091 if (dm_target_is_wildcard(ti->type)) 1092 return ti; 1093 } 1094 1095 return NULL; 1096 } 1097 1098 bool dm_table_bio_based(struct dm_table *t) 1099 { 1100 return __table_type_bio_based(dm_table_get_type(t)); 1101 } 1102 1103 bool dm_table_request_based(struct dm_table *t) 1104 { 1105 return __table_type_request_based(dm_table_get_type(t)); 1106 } 1107 1108 bool dm_table_all_blk_mq_devices(struct dm_table *t) 1109 { 1110 return t->all_blk_mq; 1111 } 1112 1113 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1114 { 1115 enum dm_queue_mode type = dm_table_get_type(t); 1116 unsigned per_io_data_size = 0; 1117 unsigned min_pool_size = 0; 1118 struct dm_target *ti; 1119 unsigned i; 1120 1121 if (unlikely(type == DM_TYPE_NONE)) { 1122 DMWARN("no table type is set, can't allocate mempools"); 1123 return -EINVAL; 1124 } 1125 1126 if (__table_type_bio_based(type)) 1127 for (i = 0; i < t->num_targets; i++) { 1128 ti = t->targets + i; 1129 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1130 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1131 } 1132 1133 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1134 per_io_data_size, min_pool_size); 1135 if (!t->mempools) 1136 return -ENOMEM; 1137 1138 return 0; 1139 } 1140 1141 void dm_table_free_md_mempools(struct dm_table *t) 1142 { 1143 dm_free_md_mempools(t->mempools); 1144 t->mempools = NULL; 1145 } 1146 1147 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1148 { 1149 return t->mempools; 1150 } 1151 1152 static int setup_indexes(struct dm_table *t) 1153 { 1154 int i; 1155 unsigned int total = 0; 1156 sector_t *indexes; 1157 1158 /* allocate the space for *all* the indexes */ 1159 for (i = t->depth - 2; i >= 0; i--) { 1160 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1161 total += t->counts[i]; 1162 } 1163 1164 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1165 if (!indexes) 1166 return -ENOMEM; 1167 1168 /* set up internal nodes, bottom-up */ 1169 for (i = t->depth - 2; i >= 0; i--) { 1170 t->index[i] = indexes; 1171 indexes += (KEYS_PER_NODE * t->counts[i]); 1172 setup_btree_index(i, t); 1173 } 1174 1175 return 0; 1176 } 1177 1178 /* 1179 * Builds the btree to index the map. 1180 */ 1181 static int dm_table_build_index(struct dm_table *t) 1182 { 1183 int r = 0; 1184 unsigned int leaf_nodes; 1185 1186 /* how many indexes will the btree have ? */ 1187 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1188 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1189 1190 /* leaf layer has already been set up */ 1191 t->counts[t->depth - 1] = leaf_nodes; 1192 t->index[t->depth - 1] = t->highs; 1193 1194 if (t->depth >= 2) 1195 r = setup_indexes(t); 1196 1197 return r; 1198 } 1199 1200 static bool integrity_profile_exists(struct gendisk *disk) 1201 { 1202 return !!blk_get_integrity(disk); 1203 } 1204 1205 /* 1206 * Get a disk whose integrity profile reflects the table's profile. 1207 * Returns NULL if integrity support was inconsistent or unavailable. 1208 */ 1209 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1210 { 1211 struct list_head *devices = dm_table_get_devices(t); 1212 struct dm_dev_internal *dd = NULL; 1213 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1214 unsigned i; 1215 1216 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1217 struct dm_target *ti = dm_table_get_target(t, i); 1218 if (!dm_target_passes_integrity(ti->type)) 1219 goto no_integrity; 1220 } 1221 1222 list_for_each_entry(dd, devices, list) { 1223 template_disk = dd->dm_dev->bdev->bd_disk; 1224 if (!integrity_profile_exists(template_disk)) 1225 goto no_integrity; 1226 else if (prev_disk && 1227 blk_integrity_compare(prev_disk, template_disk) < 0) 1228 goto no_integrity; 1229 prev_disk = template_disk; 1230 } 1231 1232 return template_disk; 1233 1234 no_integrity: 1235 if (prev_disk) 1236 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1237 dm_device_name(t->md), 1238 prev_disk->disk_name, 1239 template_disk->disk_name); 1240 return NULL; 1241 } 1242 1243 /* 1244 * Register the mapped device for blk_integrity support if the 1245 * underlying devices have an integrity profile. But all devices may 1246 * not have matching profiles (checking all devices isn't reliable 1247 * during table load because this table may use other DM device(s) which 1248 * must be resumed before they will have an initialized integity 1249 * profile). Consequently, stacked DM devices force a 2 stage integrity 1250 * profile validation: First pass during table load, final pass during 1251 * resume. 1252 */ 1253 static int dm_table_register_integrity(struct dm_table *t) 1254 { 1255 struct mapped_device *md = t->md; 1256 struct gendisk *template_disk = NULL; 1257 1258 /* If target handles integrity itself do not register it here. */ 1259 if (t->integrity_added) 1260 return 0; 1261 1262 template_disk = dm_table_get_integrity_disk(t); 1263 if (!template_disk) 1264 return 0; 1265 1266 if (!integrity_profile_exists(dm_disk(md))) { 1267 t->integrity_supported = true; 1268 /* 1269 * Register integrity profile during table load; we can do 1270 * this because the final profile must match during resume. 1271 */ 1272 blk_integrity_register(dm_disk(md), 1273 blk_get_integrity(template_disk)); 1274 return 0; 1275 } 1276 1277 /* 1278 * If DM device already has an initialized integrity 1279 * profile the new profile should not conflict. 1280 */ 1281 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1282 DMWARN("%s: conflict with existing integrity profile: " 1283 "%s profile mismatch", 1284 dm_device_name(t->md), 1285 template_disk->disk_name); 1286 return 1; 1287 } 1288 1289 /* Preserve existing integrity profile */ 1290 t->integrity_supported = true; 1291 return 0; 1292 } 1293 1294 /* 1295 * Prepares the table for use by building the indices, 1296 * setting the type, and allocating mempools. 1297 */ 1298 int dm_table_complete(struct dm_table *t) 1299 { 1300 int r; 1301 1302 r = dm_table_determine_type(t); 1303 if (r) { 1304 DMERR("unable to determine table type"); 1305 return r; 1306 } 1307 1308 r = dm_table_build_index(t); 1309 if (r) { 1310 DMERR("unable to build btrees"); 1311 return r; 1312 } 1313 1314 r = dm_table_register_integrity(t); 1315 if (r) { 1316 DMERR("could not register integrity profile."); 1317 return r; 1318 } 1319 1320 r = dm_table_alloc_md_mempools(t, t->md); 1321 if (r) 1322 DMERR("unable to allocate mempools"); 1323 1324 return r; 1325 } 1326 1327 static DEFINE_MUTEX(_event_lock); 1328 void dm_table_event_callback(struct dm_table *t, 1329 void (*fn)(void *), void *context) 1330 { 1331 mutex_lock(&_event_lock); 1332 t->event_fn = fn; 1333 t->event_context = context; 1334 mutex_unlock(&_event_lock); 1335 } 1336 1337 void dm_table_event(struct dm_table *t) 1338 { 1339 /* 1340 * You can no longer call dm_table_event() from interrupt 1341 * context, use a bottom half instead. 1342 */ 1343 BUG_ON(in_interrupt()); 1344 1345 mutex_lock(&_event_lock); 1346 if (t->event_fn) 1347 t->event_fn(t->event_context); 1348 mutex_unlock(&_event_lock); 1349 } 1350 EXPORT_SYMBOL(dm_table_event); 1351 1352 sector_t dm_table_get_size(struct dm_table *t) 1353 { 1354 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1355 } 1356 EXPORT_SYMBOL(dm_table_get_size); 1357 1358 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1359 { 1360 if (index >= t->num_targets) 1361 return NULL; 1362 1363 return t->targets + index; 1364 } 1365 1366 /* 1367 * Search the btree for the correct target. 1368 * 1369 * Caller should check returned pointer with dm_target_is_valid() 1370 * to trap I/O beyond end of device. 1371 */ 1372 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1373 { 1374 unsigned int l, n = 0, k = 0; 1375 sector_t *node; 1376 1377 for (l = 0; l < t->depth; l++) { 1378 n = get_child(n, k); 1379 node = get_node(t, l, n); 1380 1381 for (k = 0; k < KEYS_PER_NODE; k++) 1382 if (node[k] >= sector) 1383 break; 1384 } 1385 1386 return &t->targets[(KEYS_PER_NODE * n) + k]; 1387 } 1388 1389 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1390 sector_t start, sector_t len, void *data) 1391 { 1392 unsigned *num_devices = data; 1393 1394 (*num_devices)++; 1395 1396 return 0; 1397 } 1398 1399 /* 1400 * Check whether a table has no data devices attached using each 1401 * target's iterate_devices method. 1402 * Returns false if the result is unknown because a target doesn't 1403 * support iterate_devices. 1404 */ 1405 bool dm_table_has_no_data_devices(struct dm_table *table) 1406 { 1407 struct dm_target *ti; 1408 unsigned i, num_devices; 1409 1410 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1411 ti = dm_table_get_target(table, i); 1412 1413 if (!ti->type->iterate_devices) 1414 return false; 1415 1416 num_devices = 0; 1417 ti->type->iterate_devices(ti, count_device, &num_devices); 1418 if (num_devices) 1419 return false; 1420 } 1421 1422 return true; 1423 } 1424 1425 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1426 sector_t start, sector_t len, void *data) 1427 { 1428 struct request_queue *q = bdev_get_queue(dev->bdev); 1429 enum blk_zoned_model *zoned_model = data; 1430 1431 return q && blk_queue_zoned_model(q) == *zoned_model; 1432 } 1433 1434 static bool dm_table_supports_zoned_model(struct dm_table *t, 1435 enum blk_zoned_model zoned_model) 1436 { 1437 struct dm_target *ti; 1438 unsigned i; 1439 1440 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1441 ti = dm_table_get_target(t, i); 1442 1443 if (zoned_model == BLK_ZONED_HM && 1444 !dm_target_supports_zoned_hm(ti->type)) 1445 return false; 1446 1447 if (!ti->type->iterate_devices || 1448 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1449 return false; 1450 } 1451 1452 return true; 1453 } 1454 1455 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1456 sector_t start, sector_t len, void *data) 1457 { 1458 struct request_queue *q = bdev_get_queue(dev->bdev); 1459 unsigned int *zone_sectors = data; 1460 1461 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1462 } 1463 1464 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1465 unsigned int zone_sectors) 1466 { 1467 struct dm_target *ti; 1468 unsigned i; 1469 1470 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1471 ti = dm_table_get_target(t, i); 1472 1473 if (!ti->type->iterate_devices || 1474 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1475 return false; 1476 } 1477 1478 return true; 1479 } 1480 1481 static int validate_hardware_zoned_model(struct dm_table *table, 1482 enum blk_zoned_model zoned_model, 1483 unsigned int zone_sectors) 1484 { 1485 if (zoned_model == BLK_ZONED_NONE) 1486 return 0; 1487 1488 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1489 DMERR("%s: zoned model is not consistent across all devices", 1490 dm_device_name(table->md)); 1491 return -EINVAL; 1492 } 1493 1494 /* Check zone size validity and compatibility */ 1495 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1496 return -EINVAL; 1497 1498 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1499 DMERR("%s: zone sectors is not consistent across all devices", 1500 dm_device_name(table->md)); 1501 return -EINVAL; 1502 } 1503 1504 return 0; 1505 } 1506 1507 /* 1508 * Establish the new table's queue_limits and validate them. 1509 */ 1510 int dm_calculate_queue_limits(struct dm_table *table, 1511 struct queue_limits *limits) 1512 { 1513 struct dm_target *ti; 1514 struct queue_limits ti_limits; 1515 unsigned i; 1516 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1517 unsigned int zone_sectors = 0; 1518 1519 blk_set_stacking_limits(limits); 1520 1521 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1522 blk_set_stacking_limits(&ti_limits); 1523 1524 ti = dm_table_get_target(table, i); 1525 1526 if (!ti->type->iterate_devices) 1527 goto combine_limits; 1528 1529 /* 1530 * Combine queue limits of all the devices this target uses. 1531 */ 1532 ti->type->iterate_devices(ti, dm_set_device_limits, 1533 &ti_limits); 1534 1535 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1536 /* 1537 * After stacking all limits, validate all devices 1538 * in table support this zoned model and zone sectors. 1539 */ 1540 zoned_model = ti_limits.zoned; 1541 zone_sectors = ti_limits.chunk_sectors; 1542 } 1543 1544 /* Set I/O hints portion of queue limits */ 1545 if (ti->type->io_hints) 1546 ti->type->io_hints(ti, &ti_limits); 1547 1548 /* 1549 * Check each device area is consistent with the target's 1550 * overall queue limits. 1551 */ 1552 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1553 &ti_limits)) 1554 return -EINVAL; 1555 1556 combine_limits: 1557 /* 1558 * Merge this target's queue limits into the overall limits 1559 * for the table. 1560 */ 1561 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1562 DMWARN("%s: adding target device " 1563 "(start sect %llu len %llu) " 1564 "caused an alignment inconsistency", 1565 dm_device_name(table->md), 1566 (unsigned long long) ti->begin, 1567 (unsigned long long) ti->len); 1568 1569 /* 1570 * FIXME: this should likely be moved to blk_stack_limits(), would 1571 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1572 */ 1573 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1574 /* 1575 * By default, the stacked limits zoned model is set to 1576 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1577 * this model using the first target model reported 1578 * that is not BLK_ZONED_NONE. This will be either the 1579 * first target device zoned model or the model reported 1580 * by the target .io_hints. 1581 */ 1582 limits->zoned = ti_limits.zoned; 1583 } 1584 } 1585 1586 /* 1587 * Verify that the zoned model and zone sectors, as determined before 1588 * any .io_hints override, are the same across all devices in the table. 1589 * - this is especially relevant if .io_hints is emulating a disk-managed 1590 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1591 * BUT... 1592 */ 1593 if (limits->zoned != BLK_ZONED_NONE) { 1594 /* 1595 * ...IF the above limits stacking determined a zoned model 1596 * validate that all of the table's devices conform to it. 1597 */ 1598 zoned_model = limits->zoned; 1599 zone_sectors = limits->chunk_sectors; 1600 } 1601 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1602 return -EINVAL; 1603 1604 return validate_hardware_logical_block_alignment(table, limits); 1605 } 1606 1607 /* 1608 * Verify that all devices have an integrity profile that matches the 1609 * DM device's registered integrity profile. If the profiles don't 1610 * match then unregister the DM device's integrity profile. 1611 */ 1612 static void dm_table_verify_integrity(struct dm_table *t) 1613 { 1614 struct gendisk *template_disk = NULL; 1615 1616 if (t->integrity_added) 1617 return; 1618 1619 if (t->integrity_supported) { 1620 /* 1621 * Verify that the original integrity profile 1622 * matches all the devices in this table. 1623 */ 1624 template_disk = dm_table_get_integrity_disk(t); 1625 if (template_disk && 1626 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1627 return; 1628 } 1629 1630 if (integrity_profile_exists(dm_disk(t->md))) { 1631 DMWARN("%s: unable to establish an integrity profile", 1632 dm_device_name(t->md)); 1633 blk_integrity_unregister(dm_disk(t->md)); 1634 } 1635 } 1636 1637 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1638 sector_t start, sector_t len, void *data) 1639 { 1640 unsigned long flush = (unsigned long) data; 1641 struct request_queue *q = bdev_get_queue(dev->bdev); 1642 1643 return q && (q->queue_flags & flush); 1644 } 1645 1646 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1647 { 1648 struct dm_target *ti; 1649 unsigned i; 1650 1651 /* 1652 * Require at least one underlying device to support flushes. 1653 * t->devices includes internal dm devices such as mirror logs 1654 * so we need to use iterate_devices here, which targets 1655 * supporting flushes must provide. 1656 */ 1657 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1658 ti = dm_table_get_target(t, i); 1659 1660 if (!ti->num_flush_bios) 1661 continue; 1662 1663 if (ti->flush_supported) 1664 return true; 1665 1666 if (ti->type->iterate_devices && 1667 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1668 return true; 1669 } 1670 1671 return false; 1672 } 1673 1674 static int device_dax_write_cache_enabled(struct dm_target *ti, 1675 struct dm_dev *dev, sector_t start, 1676 sector_t len, void *data) 1677 { 1678 struct dax_device *dax_dev = dev->dax_dev; 1679 1680 if (!dax_dev) 1681 return false; 1682 1683 if (dax_write_cache_enabled(dax_dev)) 1684 return true; 1685 return false; 1686 } 1687 1688 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1689 { 1690 struct dm_target *ti; 1691 unsigned i; 1692 1693 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1694 ti = dm_table_get_target(t, i); 1695 1696 if (ti->type->iterate_devices && 1697 ti->type->iterate_devices(ti, 1698 device_dax_write_cache_enabled, NULL)) 1699 return true; 1700 } 1701 1702 return false; 1703 } 1704 1705 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1706 sector_t start, sector_t len, void *data) 1707 { 1708 struct request_queue *q = bdev_get_queue(dev->bdev); 1709 1710 return q && blk_queue_nonrot(q); 1711 } 1712 1713 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1714 sector_t start, sector_t len, void *data) 1715 { 1716 struct request_queue *q = bdev_get_queue(dev->bdev); 1717 1718 return q && !blk_queue_add_random(q); 1719 } 1720 1721 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1722 sector_t start, sector_t len, void *data) 1723 { 1724 struct request_queue *q = bdev_get_queue(dev->bdev); 1725 1726 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1727 } 1728 1729 static bool dm_table_all_devices_attribute(struct dm_table *t, 1730 iterate_devices_callout_fn func) 1731 { 1732 struct dm_target *ti; 1733 unsigned i; 1734 1735 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1736 ti = dm_table_get_target(t, i); 1737 1738 if (!ti->type->iterate_devices || 1739 !ti->type->iterate_devices(ti, func, NULL)) 1740 return false; 1741 } 1742 1743 return true; 1744 } 1745 1746 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev, 1747 sector_t start, sector_t len, void *data) 1748 { 1749 char b[BDEVNAME_SIZE]; 1750 1751 /* For now, NVMe devices are the only devices of this class */ 1752 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0); 1753 } 1754 1755 static bool dm_table_does_not_support_partial_completion(struct dm_table *t) 1756 { 1757 return dm_table_all_devices_attribute(t, device_no_partial_completion); 1758 } 1759 1760 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1761 sector_t start, sector_t len, void *data) 1762 { 1763 struct request_queue *q = bdev_get_queue(dev->bdev); 1764 1765 return q && !q->limits.max_write_same_sectors; 1766 } 1767 1768 static bool dm_table_supports_write_same(struct dm_table *t) 1769 { 1770 struct dm_target *ti; 1771 unsigned i; 1772 1773 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1774 ti = dm_table_get_target(t, i); 1775 1776 if (!ti->num_write_same_bios) 1777 return false; 1778 1779 if (!ti->type->iterate_devices || 1780 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1781 return false; 1782 } 1783 1784 return true; 1785 } 1786 1787 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1788 sector_t start, sector_t len, void *data) 1789 { 1790 struct request_queue *q = bdev_get_queue(dev->bdev); 1791 1792 return q && !q->limits.max_write_zeroes_sectors; 1793 } 1794 1795 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1796 { 1797 struct dm_target *ti; 1798 unsigned i = 0; 1799 1800 while (i < dm_table_get_num_targets(t)) { 1801 ti = dm_table_get_target(t, i++); 1802 1803 if (!ti->num_write_zeroes_bios) 1804 return false; 1805 1806 if (!ti->type->iterate_devices || 1807 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1808 return false; 1809 } 1810 1811 return true; 1812 } 1813 1814 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1815 sector_t start, sector_t len, void *data) 1816 { 1817 struct request_queue *q = bdev_get_queue(dev->bdev); 1818 1819 return q && !blk_queue_discard(q); 1820 } 1821 1822 static bool dm_table_supports_discards(struct dm_table *t) 1823 { 1824 struct dm_target *ti; 1825 unsigned i; 1826 1827 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1828 ti = dm_table_get_target(t, i); 1829 1830 if (!ti->num_discard_bios) 1831 return false; 1832 1833 /* 1834 * Either the target provides discard support (as implied by setting 1835 * 'discards_supported') or it relies on _all_ data devices having 1836 * discard support. 1837 */ 1838 if (!ti->discards_supported && 1839 (!ti->type->iterate_devices || 1840 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1841 return false; 1842 } 1843 1844 return true; 1845 } 1846 1847 static int device_not_secure_erase_capable(struct dm_target *ti, 1848 struct dm_dev *dev, sector_t start, 1849 sector_t len, void *data) 1850 { 1851 struct request_queue *q = bdev_get_queue(dev->bdev); 1852 1853 return q && !blk_queue_secure_erase(q); 1854 } 1855 1856 static bool dm_table_supports_secure_erase(struct dm_table *t) 1857 { 1858 struct dm_target *ti; 1859 unsigned int i; 1860 1861 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1862 ti = dm_table_get_target(t, i); 1863 1864 if (!ti->num_secure_erase_bios) 1865 return false; 1866 1867 if (!ti->type->iterate_devices || 1868 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1869 return false; 1870 } 1871 1872 return true; 1873 } 1874 1875 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1876 struct queue_limits *limits) 1877 { 1878 bool wc = false, fua = false; 1879 1880 /* 1881 * Copy table's limits to the DM device's request_queue 1882 */ 1883 q->limits = *limits; 1884 1885 if (!dm_table_supports_discards(t)) { 1886 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1887 /* Must also clear discard limits... */ 1888 q->limits.max_discard_sectors = 0; 1889 q->limits.max_hw_discard_sectors = 0; 1890 q->limits.discard_granularity = 0; 1891 q->limits.discard_alignment = 0; 1892 q->limits.discard_misaligned = 0; 1893 } else 1894 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1895 1896 if (dm_table_supports_secure_erase(t)) 1897 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1898 1899 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1900 wc = true; 1901 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1902 fua = true; 1903 } 1904 blk_queue_write_cache(q, wc, fua); 1905 1906 if (dm_table_supports_dax(t)) 1907 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1908 else 1909 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1910 1911 if (dm_table_supports_dax_write_cache(t)) 1912 dax_write_cache(t->md->dax_dev, true); 1913 1914 /* Ensure that all underlying devices are non-rotational. */ 1915 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1916 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1917 else 1918 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1919 1920 if (!dm_table_supports_write_same(t)) 1921 q->limits.max_write_same_sectors = 0; 1922 if (!dm_table_supports_write_zeroes(t)) 1923 q->limits.max_write_zeroes_sectors = 0; 1924 1925 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1926 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q); 1927 else 1928 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q); 1929 1930 dm_table_verify_integrity(t); 1931 1932 /* 1933 * Determine whether or not this queue's I/O timings contribute 1934 * to the entropy pool, Only request-based targets use this. 1935 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1936 * have it set. 1937 */ 1938 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1939 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1940 } 1941 1942 unsigned int dm_table_get_num_targets(struct dm_table *t) 1943 { 1944 return t->num_targets; 1945 } 1946 1947 struct list_head *dm_table_get_devices(struct dm_table *t) 1948 { 1949 return &t->devices; 1950 } 1951 1952 fmode_t dm_table_get_mode(struct dm_table *t) 1953 { 1954 return t->mode; 1955 } 1956 EXPORT_SYMBOL(dm_table_get_mode); 1957 1958 enum suspend_mode { 1959 PRESUSPEND, 1960 PRESUSPEND_UNDO, 1961 POSTSUSPEND, 1962 }; 1963 1964 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1965 { 1966 int i = t->num_targets; 1967 struct dm_target *ti = t->targets; 1968 1969 lockdep_assert_held(&t->md->suspend_lock); 1970 1971 while (i--) { 1972 switch (mode) { 1973 case PRESUSPEND: 1974 if (ti->type->presuspend) 1975 ti->type->presuspend(ti); 1976 break; 1977 case PRESUSPEND_UNDO: 1978 if (ti->type->presuspend_undo) 1979 ti->type->presuspend_undo(ti); 1980 break; 1981 case POSTSUSPEND: 1982 if (ti->type->postsuspend) 1983 ti->type->postsuspend(ti); 1984 break; 1985 } 1986 ti++; 1987 } 1988 } 1989 1990 void dm_table_presuspend_targets(struct dm_table *t) 1991 { 1992 if (!t) 1993 return; 1994 1995 suspend_targets(t, PRESUSPEND); 1996 } 1997 1998 void dm_table_presuspend_undo_targets(struct dm_table *t) 1999 { 2000 if (!t) 2001 return; 2002 2003 suspend_targets(t, PRESUSPEND_UNDO); 2004 } 2005 2006 void dm_table_postsuspend_targets(struct dm_table *t) 2007 { 2008 if (!t) 2009 return; 2010 2011 suspend_targets(t, POSTSUSPEND); 2012 } 2013 2014 int dm_table_resume_targets(struct dm_table *t) 2015 { 2016 int i, r = 0; 2017 2018 lockdep_assert_held(&t->md->suspend_lock); 2019 2020 for (i = 0; i < t->num_targets; i++) { 2021 struct dm_target *ti = t->targets + i; 2022 2023 if (!ti->type->preresume) 2024 continue; 2025 2026 r = ti->type->preresume(ti); 2027 if (r) { 2028 DMERR("%s: %s: preresume failed, error = %d", 2029 dm_device_name(t->md), ti->type->name, r); 2030 return r; 2031 } 2032 } 2033 2034 for (i = 0; i < t->num_targets; i++) { 2035 struct dm_target *ti = t->targets + i; 2036 2037 if (ti->type->resume) 2038 ti->type->resume(ti); 2039 } 2040 2041 return 0; 2042 } 2043 2044 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 2045 { 2046 list_add(&cb->list, &t->target_callbacks); 2047 } 2048 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 2049 2050 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 2051 { 2052 struct dm_dev_internal *dd; 2053 struct list_head *devices = dm_table_get_devices(t); 2054 struct dm_target_callbacks *cb; 2055 int r = 0; 2056 2057 list_for_each_entry(dd, devices, list) { 2058 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 2059 char b[BDEVNAME_SIZE]; 2060 2061 if (likely(q)) 2062 r |= bdi_congested(q->backing_dev_info, bdi_bits); 2063 else 2064 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 2065 dm_device_name(t->md), 2066 bdevname(dd->dm_dev->bdev, b)); 2067 } 2068 2069 list_for_each_entry(cb, &t->target_callbacks, list) 2070 if (cb->congested_fn) 2071 r |= cb->congested_fn(cb, bdi_bits); 2072 2073 return r; 2074 } 2075 2076 struct mapped_device *dm_table_get_md(struct dm_table *t) 2077 { 2078 return t->md; 2079 } 2080 EXPORT_SYMBOL(dm_table_get_md); 2081 2082 void dm_table_run_md_queue_async(struct dm_table *t) 2083 { 2084 struct mapped_device *md; 2085 struct request_queue *queue; 2086 unsigned long flags; 2087 2088 if (!dm_table_request_based(t)) 2089 return; 2090 2091 md = dm_table_get_md(t); 2092 queue = dm_get_md_queue(md); 2093 if (queue) { 2094 if (queue->mq_ops) 2095 blk_mq_run_hw_queues(queue, true); 2096 else { 2097 spin_lock_irqsave(queue->queue_lock, flags); 2098 blk_run_queue_async(queue); 2099 spin_unlock_irqrestore(queue->queue_lock, flags); 2100 } 2101 } 2102 } 2103 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2104 2105