xref: /openbmc/linux/drivers/md/dm-table.c (revision 3b23dc52)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	bool all_blk_mq:1;
51 	unsigned integrity_added:1;
52 
53 	/*
54 	 * Indicates the rw permissions for the new logical
55 	 * device.  This should be a combination of FMODE_READ
56 	 * and FMODE_WRITE.
57 	 */
58 	fmode_t mode;
59 
60 	/* a list of devices used by this table */
61 	struct list_head devices;
62 
63 	/* events get handed up using this callback */
64 	void (*event_fn)(void *);
65 	void *event_context;
66 
67 	struct dm_md_mempools *mempools;
68 
69 	struct list_head target_callbacks;
70 };
71 
72 /*
73  * Similar to ceiling(log_size(n))
74  */
75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77 	int result = 0;
78 
79 	while (n > 1) {
80 		n = dm_div_up(n, base);
81 		result++;
82 	}
83 
84 	return result;
85 }
86 
87 /*
88  * Calculate the index of the child node of the n'th node k'th key.
89  */
90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92 	return (n * CHILDREN_PER_NODE) + k;
93 }
94 
95 /*
96  * Return the n'th node of level l from table t.
97  */
98 static inline sector_t *get_node(struct dm_table *t,
99 				 unsigned int l, unsigned int n)
100 {
101 	return t->index[l] + (n * KEYS_PER_NODE);
102 }
103 
104 /*
105  * Return the highest key that you could lookup from the n'th
106  * node on level l of the btree.
107  */
108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110 	for (; l < t->depth - 1; l++)
111 		n = get_child(n, CHILDREN_PER_NODE - 1);
112 
113 	if (n >= t->counts[l])
114 		return (sector_t) - 1;
115 
116 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118 
119 /*
120  * Fills in a level of the btree based on the highs of the level
121  * below it.
122  */
123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125 	unsigned int n, k;
126 	sector_t *node;
127 
128 	for (n = 0U; n < t->counts[l]; n++) {
129 		node = get_node(t, l, n);
130 
131 		for (k = 0U; k < KEYS_PER_NODE; k++)
132 			node[k] = high(t, l + 1, get_child(n, k));
133 	}
134 
135 	return 0;
136 }
137 
138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140 	unsigned long size;
141 	void *addr;
142 
143 	/*
144 	 * Check that we're not going to overflow.
145 	 */
146 	if (nmemb > (ULONG_MAX / elem_size))
147 		return NULL;
148 
149 	size = nmemb * elem_size;
150 	addr = vzalloc(size);
151 
152 	return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155 
156 /*
157  * highs, and targets are managed as dynamic arrays during a
158  * table load.
159  */
160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162 	sector_t *n_highs;
163 	struct dm_target *n_targets;
164 
165 	/*
166 	 * Allocate both the target array and offset array at once.
167 	 * Append an empty entry to catch sectors beyond the end of
168 	 * the device.
169 	 */
170 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 					  sizeof(sector_t));
172 	if (!n_highs)
173 		return -ENOMEM;
174 
175 	n_targets = (struct dm_target *) (n_highs + num);
176 
177 	memset(n_highs, -1, sizeof(*n_highs) * num);
178 	vfree(t->highs);
179 
180 	t->num_allocated = num;
181 	t->highs = n_highs;
182 	t->targets = n_targets;
183 
184 	return 0;
185 }
186 
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 		    unsigned num_targets, struct mapped_device *md)
189 {
190 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191 
192 	if (!t)
193 		return -ENOMEM;
194 
195 	INIT_LIST_HEAD(&t->devices);
196 	INIT_LIST_HEAD(&t->target_callbacks);
197 
198 	if (!num_targets)
199 		num_targets = KEYS_PER_NODE;
200 
201 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202 
203 	if (!num_targets) {
204 		kfree(t);
205 		return -ENOMEM;
206 	}
207 
208 	if (alloc_targets(t, num_targets)) {
209 		kfree(t);
210 		return -ENOMEM;
211 	}
212 
213 	t->type = DM_TYPE_NONE;
214 	t->mode = mode;
215 	t->md = md;
216 	*result = t;
217 	return 0;
218 }
219 
220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222 	struct list_head *tmp, *next;
223 
224 	list_for_each_safe(tmp, next, devices) {
225 		struct dm_dev_internal *dd =
226 		    list_entry(tmp, struct dm_dev_internal, list);
227 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 		       dm_device_name(md), dd->dm_dev->name);
229 		dm_put_table_device(md, dd->dm_dev);
230 		kfree(dd);
231 	}
232 }
233 
234 void dm_table_destroy(struct dm_table *t)
235 {
236 	unsigned int i;
237 
238 	if (!t)
239 		return;
240 
241 	/* free the indexes */
242 	if (t->depth >= 2)
243 		vfree(t->index[t->depth - 2]);
244 
245 	/* free the targets */
246 	for (i = 0; i < t->num_targets; i++) {
247 		struct dm_target *tgt = t->targets + i;
248 
249 		if (tgt->type->dtr)
250 			tgt->type->dtr(tgt);
251 
252 		dm_put_target_type(tgt->type);
253 	}
254 
255 	vfree(t->highs);
256 
257 	/* free the device list */
258 	free_devices(&t->devices, t->md);
259 
260 	dm_free_md_mempools(t->mempools);
261 
262 	kfree(t);
263 }
264 
265 /*
266  * See if we've already got a device in the list.
267  */
268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270 	struct dm_dev_internal *dd;
271 
272 	list_for_each_entry (dd, l, list)
273 		if (dd->dm_dev->bdev->bd_dev == dev)
274 			return dd;
275 
276 	return NULL;
277 }
278 
279 /*
280  * If possible, this checks an area of a destination device is invalid.
281  */
282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 				  sector_t start, sector_t len, void *data)
284 {
285 	struct request_queue *q;
286 	struct queue_limits *limits = data;
287 	struct block_device *bdev = dev->bdev;
288 	sector_t dev_size =
289 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 	unsigned short logical_block_size_sectors =
291 		limits->logical_block_size >> SECTOR_SHIFT;
292 	char b[BDEVNAME_SIZE];
293 
294 	/*
295 	 * Some devices exist without request functions,
296 	 * such as loop devices not yet bound to backing files.
297 	 * Forbid the use of such devices.
298 	 */
299 	q = bdev_get_queue(bdev);
300 	if (!q || !q->make_request_fn) {
301 		DMWARN("%s: %s is not yet initialised: "
302 		       "start=%llu, len=%llu, dev_size=%llu",
303 		       dm_device_name(ti->table->md), bdevname(bdev, b),
304 		       (unsigned long long)start,
305 		       (unsigned long long)len,
306 		       (unsigned long long)dev_size);
307 		return 1;
308 	}
309 
310 	if (!dev_size)
311 		return 0;
312 
313 	if ((start >= dev_size) || (start + len > dev_size)) {
314 		DMWARN("%s: %s too small for target: "
315 		       "start=%llu, len=%llu, dev_size=%llu",
316 		       dm_device_name(ti->table->md), bdevname(bdev, b),
317 		       (unsigned long long)start,
318 		       (unsigned long long)len,
319 		       (unsigned long long)dev_size);
320 		return 1;
321 	}
322 
323 	/*
324 	 * If the target is mapped to zoned block device(s), check
325 	 * that the zones are not partially mapped.
326 	 */
327 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
329 
330 		if (start & (zone_sectors - 1)) {
331 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 			       dm_device_name(ti->table->md),
333 			       (unsigned long long)start,
334 			       zone_sectors, bdevname(bdev, b));
335 			return 1;
336 		}
337 
338 		/*
339 		 * Note: The last zone of a zoned block device may be smaller
340 		 * than other zones. So for a target mapping the end of a
341 		 * zoned block device with such a zone, len would not be zone
342 		 * aligned. We do not allow such last smaller zone to be part
343 		 * of the mapping here to ensure that mappings with multiple
344 		 * devices do not end up with a smaller zone in the middle of
345 		 * the sector range.
346 		 */
347 		if (len & (zone_sectors - 1)) {
348 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 			       dm_device_name(ti->table->md),
350 			       (unsigned long long)len,
351 			       zone_sectors, bdevname(bdev, b));
352 			return 1;
353 		}
354 	}
355 
356 	if (logical_block_size_sectors <= 1)
357 		return 0;
358 
359 	if (start & (logical_block_size_sectors - 1)) {
360 		DMWARN("%s: start=%llu not aligned to h/w "
361 		       "logical block size %u of %s",
362 		       dm_device_name(ti->table->md),
363 		       (unsigned long long)start,
364 		       limits->logical_block_size, bdevname(bdev, b));
365 		return 1;
366 	}
367 
368 	if (len & (logical_block_size_sectors - 1)) {
369 		DMWARN("%s: len=%llu not aligned to h/w "
370 		       "logical block size %u of %s",
371 		       dm_device_name(ti->table->md),
372 		       (unsigned long long)len,
373 		       limits->logical_block_size, bdevname(bdev, b));
374 		return 1;
375 	}
376 
377 	return 0;
378 }
379 
380 /*
381  * This upgrades the mode on an already open dm_dev, being
382  * careful to leave things as they were if we fail to reopen the
383  * device and not to touch the existing bdev field in case
384  * it is accessed concurrently inside dm_table_any_congested().
385  */
386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 			struct mapped_device *md)
388 {
389 	int r;
390 	struct dm_dev *old_dev, *new_dev;
391 
392 	old_dev = dd->dm_dev;
393 
394 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 				dd->dm_dev->mode | new_mode, &new_dev);
396 	if (r)
397 		return r;
398 
399 	dd->dm_dev = new_dev;
400 	dm_put_table_device(md, old_dev);
401 
402 	return 0;
403 }
404 
405 /*
406  * Convert the path to a device
407  */
408 dev_t dm_get_dev_t(const char *path)
409 {
410 	dev_t dev;
411 	struct block_device *bdev;
412 
413 	bdev = lookup_bdev(path);
414 	if (IS_ERR(bdev))
415 		dev = name_to_dev_t(path);
416 	else {
417 		dev = bdev->bd_dev;
418 		bdput(bdev);
419 	}
420 
421 	return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424 
425 /*
426  * Add a device to the list, or just increment the usage count if
427  * it's already present.
428  */
429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 		  struct dm_dev **result)
431 {
432 	int r;
433 	dev_t dev;
434 	struct dm_dev_internal *dd;
435 	struct dm_table *t = ti->table;
436 
437 	BUG_ON(!t);
438 
439 	dev = dm_get_dev_t(path);
440 	if (!dev)
441 		return -ENODEV;
442 
443 	dd = find_device(&t->devices, dev);
444 	if (!dd) {
445 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 		if (!dd)
447 			return -ENOMEM;
448 
449 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 			kfree(dd);
451 			return r;
452 		}
453 
454 		refcount_set(&dd->count, 1);
455 		list_add(&dd->list, &t->devices);
456 		goto out;
457 
458 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 		r = upgrade_mode(dd, mode, t->md);
460 		if (r)
461 			return r;
462 	}
463 	refcount_inc(&dd->count);
464 out:
465 	*result = dd->dm_dev;
466 	return 0;
467 }
468 EXPORT_SYMBOL(dm_get_device);
469 
470 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 				sector_t start, sector_t len, void *data)
472 {
473 	struct queue_limits *limits = data;
474 	struct block_device *bdev = dev->bdev;
475 	struct request_queue *q = bdev_get_queue(bdev);
476 	char b[BDEVNAME_SIZE];
477 
478 	if (unlikely(!q)) {
479 		DMWARN("%s: Cannot set limits for nonexistent device %s",
480 		       dm_device_name(ti->table->md), bdevname(bdev, b));
481 		return 0;
482 	}
483 
484 	if (bdev_stack_limits(limits, bdev, start) < 0)
485 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 		       "physical_block_size=%u, logical_block_size=%u, "
487 		       "alignment_offset=%u, start=%llu",
488 		       dm_device_name(ti->table->md), bdevname(bdev, b),
489 		       q->limits.physical_block_size,
490 		       q->limits.logical_block_size,
491 		       q->limits.alignment_offset,
492 		       (unsigned long long) start << SECTOR_SHIFT);
493 
494 	limits->zoned = blk_queue_zoned_model(q);
495 
496 	return 0;
497 }
498 
499 /*
500  * Decrement a device's use count and remove it if necessary.
501  */
502 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503 {
504 	int found = 0;
505 	struct list_head *devices = &ti->table->devices;
506 	struct dm_dev_internal *dd;
507 
508 	list_for_each_entry(dd, devices, list) {
509 		if (dd->dm_dev == d) {
510 			found = 1;
511 			break;
512 		}
513 	}
514 	if (!found) {
515 		DMWARN("%s: device %s not in table devices list",
516 		       dm_device_name(ti->table->md), d->name);
517 		return;
518 	}
519 	if (refcount_dec_and_test(&dd->count)) {
520 		dm_put_table_device(ti->table->md, d);
521 		list_del(&dd->list);
522 		kfree(dd);
523 	}
524 }
525 EXPORT_SYMBOL(dm_put_device);
526 
527 /*
528  * Checks to see if the target joins onto the end of the table.
529  */
530 static int adjoin(struct dm_table *table, struct dm_target *ti)
531 {
532 	struct dm_target *prev;
533 
534 	if (!table->num_targets)
535 		return !ti->begin;
536 
537 	prev = &table->targets[table->num_targets - 1];
538 	return (ti->begin == (prev->begin + prev->len));
539 }
540 
541 /*
542  * Used to dynamically allocate the arg array.
543  *
544  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545  * process messages even if some device is suspended. These messages have a
546  * small fixed number of arguments.
547  *
548  * On the other hand, dm-switch needs to process bulk data using messages and
549  * excessive use of GFP_NOIO could cause trouble.
550  */
551 static char **realloc_argv(unsigned *size, char **old_argv)
552 {
553 	char **argv;
554 	unsigned new_size;
555 	gfp_t gfp;
556 
557 	if (*size) {
558 		new_size = *size * 2;
559 		gfp = GFP_KERNEL;
560 	} else {
561 		new_size = 8;
562 		gfp = GFP_NOIO;
563 	}
564 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
565 	if (argv) {
566 		memcpy(argv, old_argv, *size * sizeof(*argv));
567 		*size = new_size;
568 	}
569 
570 	kfree(old_argv);
571 	return argv;
572 }
573 
574 /*
575  * Destructively splits up the argument list to pass to ctr.
576  */
577 int dm_split_args(int *argc, char ***argvp, char *input)
578 {
579 	char *start, *end = input, *out, **argv = NULL;
580 	unsigned array_size = 0;
581 
582 	*argc = 0;
583 
584 	if (!input) {
585 		*argvp = NULL;
586 		return 0;
587 	}
588 
589 	argv = realloc_argv(&array_size, argv);
590 	if (!argv)
591 		return -ENOMEM;
592 
593 	while (1) {
594 		/* Skip whitespace */
595 		start = skip_spaces(end);
596 
597 		if (!*start)
598 			break;	/* success, we hit the end */
599 
600 		/* 'out' is used to remove any back-quotes */
601 		end = out = start;
602 		while (*end) {
603 			/* Everything apart from '\0' can be quoted */
604 			if (*end == '\\' && *(end + 1)) {
605 				*out++ = *(end + 1);
606 				end += 2;
607 				continue;
608 			}
609 
610 			if (isspace(*end))
611 				break;	/* end of token */
612 
613 			*out++ = *end++;
614 		}
615 
616 		/* have we already filled the array ? */
617 		if ((*argc + 1) > array_size) {
618 			argv = realloc_argv(&array_size, argv);
619 			if (!argv)
620 				return -ENOMEM;
621 		}
622 
623 		/* we know this is whitespace */
624 		if (*end)
625 			end++;
626 
627 		/* terminate the string and put it in the array */
628 		*out = '\0';
629 		argv[*argc] = start;
630 		(*argc)++;
631 	}
632 
633 	*argvp = argv;
634 	return 0;
635 }
636 
637 /*
638  * Impose necessary and sufficient conditions on a devices's table such
639  * that any incoming bio which respects its logical_block_size can be
640  * processed successfully.  If it falls across the boundary between
641  * two or more targets, the size of each piece it gets split into must
642  * be compatible with the logical_block_size of the target processing it.
643  */
644 static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 						 struct queue_limits *limits)
646 {
647 	/*
648 	 * This function uses arithmetic modulo the logical_block_size
649 	 * (in units of 512-byte sectors).
650 	 */
651 	unsigned short device_logical_block_size_sects =
652 		limits->logical_block_size >> SECTOR_SHIFT;
653 
654 	/*
655 	 * Offset of the start of the next table entry, mod logical_block_size.
656 	 */
657 	unsigned short next_target_start = 0;
658 
659 	/*
660 	 * Given an aligned bio that extends beyond the end of a
661 	 * target, how many sectors must the next target handle?
662 	 */
663 	unsigned short remaining = 0;
664 
665 	struct dm_target *uninitialized_var(ti);
666 	struct queue_limits ti_limits;
667 	unsigned i;
668 
669 	/*
670 	 * Check each entry in the table in turn.
671 	 */
672 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 		ti = dm_table_get_target(table, i);
674 
675 		blk_set_stacking_limits(&ti_limits);
676 
677 		/* combine all target devices' limits */
678 		if (ti->type->iterate_devices)
679 			ti->type->iterate_devices(ti, dm_set_device_limits,
680 						  &ti_limits);
681 
682 		/*
683 		 * If the remaining sectors fall entirely within this
684 		 * table entry are they compatible with its logical_block_size?
685 		 */
686 		if (remaining < ti->len &&
687 		    remaining & ((ti_limits.logical_block_size >>
688 				  SECTOR_SHIFT) - 1))
689 			break;	/* Error */
690 
691 		next_target_start =
692 		    (unsigned short) ((next_target_start + ti->len) &
693 				      (device_logical_block_size_sects - 1));
694 		remaining = next_target_start ?
695 		    device_logical_block_size_sects - next_target_start : 0;
696 	}
697 
698 	if (remaining) {
699 		DMWARN("%s: table line %u (start sect %llu len %llu) "
700 		       "not aligned to h/w logical block size %u",
701 		       dm_device_name(table->md), i,
702 		       (unsigned long long) ti->begin,
703 		       (unsigned long long) ti->len,
704 		       limits->logical_block_size);
705 		return -EINVAL;
706 	}
707 
708 	return 0;
709 }
710 
711 int dm_table_add_target(struct dm_table *t, const char *type,
712 			sector_t start, sector_t len, char *params)
713 {
714 	int r = -EINVAL, argc;
715 	char **argv;
716 	struct dm_target *tgt;
717 
718 	if (t->singleton) {
719 		DMERR("%s: target type %s must appear alone in table",
720 		      dm_device_name(t->md), t->targets->type->name);
721 		return -EINVAL;
722 	}
723 
724 	BUG_ON(t->num_targets >= t->num_allocated);
725 
726 	tgt = t->targets + t->num_targets;
727 	memset(tgt, 0, sizeof(*tgt));
728 
729 	if (!len) {
730 		DMERR("%s: zero-length target", dm_device_name(t->md));
731 		return -EINVAL;
732 	}
733 
734 	tgt->type = dm_get_target_type(type);
735 	if (!tgt->type) {
736 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 		return -EINVAL;
738 	}
739 
740 	if (dm_target_needs_singleton(tgt->type)) {
741 		if (t->num_targets) {
742 			tgt->error = "singleton target type must appear alone in table";
743 			goto bad;
744 		}
745 		t->singleton = true;
746 	}
747 
748 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 		tgt->error = "target type may not be included in a read-only table";
750 		goto bad;
751 	}
752 
753 	if (t->immutable_target_type) {
754 		if (t->immutable_target_type != tgt->type) {
755 			tgt->error = "immutable target type cannot be mixed with other target types";
756 			goto bad;
757 		}
758 	} else if (dm_target_is_immutable(tgt->type)) {
759 		if (t->num_targets) {
760 			tgt->error = "immutable target type cannot be mixed with other target types";
761 			goto bad;
762 		}
763 		t->immutable_target_type = tgt->type;
764 	}
765 
766 	if (dm_target_has_integrity(tgt->type))
767 		t->integrity_added = 1;
768 
769 	tgt->table = t;
770 	tgt->begin = start;
771 	tgt->len = len;
772 	tgt->error = "Unknown error";
773 
774 	/*
775 	 * Does this target adjoin the previous one ?
776 	 */
777 	if (!adjoin(t, tgt)) {
778 		tgt->error = "Gap in table";
779 		goto bad;
780 	}
781 
782 	r = dm_split_args(&argc, &argv, params);
783 	if (r) {
784 		tgt->error = "couldn't split parameters (insufficient memory)";
785 		goto bad;
786 	}
787 
788 	r = tgt->type->ctr(tgt, argc, argv);
789 	kfree(argv);
790 	if (r)
791 		goto bad;
792 
793 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794 
795 	if (!tgt->num_discard_bios && tgt->discards_supported)
796 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 		       dm_device_name(t->md), type);
798 
799 	return 0;
800 
801  bad:
802 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 	dm_put_target_type(tgt->type);
804 	return r;
805 }
806 
807 /*
808  * Target argument parsing helpers.
809  */
810 static int validate_next_arg(const struct dm_arg *arg,
811 			     struct dm_arg_set *arg_set,
812 			     unsigned *value, char **error, unsigned grouped)
813 {
814 	const char *arg_str = dm_shift_arg(arg_set);
815 	char dummy;
816 
817 	if (!arg_str ||
818 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 	    (*value < arg->min) ||
820 	    (*value > arg->max) ||
821 	    (grouped && arg_set->argc < *value)) {
822 		*error = arg->error;
823 		return -EINVAL;
824 	}
825 
826 	return 0;
827 }
828 
829 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 		unsigned *value, char **error)
831 {
832 	return validate_next_arg(arg, arg_set, value, error, 0);
833 }
834 EXPORT_SYMBOL(dm_read_arg);
835 
836 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 		      unsigned *value, char **error)
838 {
839 	return validate_next_arg(arg, arg_set, value, error, 1);
840 }
841 EXPORT_SYMBOL(dm_read_arg_group);
842 
843 const char *dm_shift_arg(struct dm_arg_set *as)
844 {
845 	char *r;
846 
847 	if (as->argc) {
848 		as->argc--;
849 		r = *as->argv;
850 		as->argv++;
851 		return r;
852 	}
853 
854 	return NULL;
855 }
856 EXPORT_SYMBOL(dm_shift_arg);
857 
858 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859 {
860 	BUG_ON(as->argc < num_args);
861 	as->argc -= num_args;
862 	as->argv += num_args;
863 }
864 EXPORT_SYMBOL(dm_consume_args);
865 
866 static bool __table_type_bio_based(enum dm_queue_mode table_type)
867 {
868 	return (table_type == DM_TYPE_BIO_BASED ||
869 		table_type == DM_TYPE_DAX_BIO_BASED ||
870 		table_type == DM_TYPE_NVME_BIO_BASED);
871 }
872 
873 static bool __table_type_request_based(enum dm_queue_mode table_type)
874 {
875 	return (table_type == DM_TYPE_REQUEST_BASED ||
876 		table_type == DM_TYPE_MQ_REQUEST_BASED);
877 }
878 
879 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
880 {
881 	t->type = type;
882 }
883 EXPORT_SYMBOL_GPL(dm_table_set_type);
884 
885 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
886 			       sector_t start, sector_t len, void *data)
887 {
888 	return bdev_dax_supported(dev->bdev, PAGE_SIZE);
889 }
890 
891 static bool dm_table_supports_dax(struct dm_table *t)
892 {
893 	struct dm_target *ti;
894 	unsigned i;
895 
896 	/* Ensure that all targets support DAX. */
897 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
898 		ti = dm_table_get_target(t, i);
899 
900 		if (!ti->type->direct_access)
901 			return false;
902 
903 		if (!ti->type->iterate_devices ||
904 		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
905 			return false;
906 	}
907 
908 	return true;
909 }
910 
911 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
912 
913 struct verify_rq_based_data {
914 	unsigned sq_count;
915 	unsigned mq_count;
916 };
917 
918 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
919 			      sector_t start, sector_t len, void *data)
920 {
921 	struct request_queue *q = bdev_get_queue(dev->bdev);
922 	struct verify_rq_based_data *v = data;
923 
924 	if (q->mq_ops)
925 		v->mq_count++;
926 	else
927 		v->sq_count++;
928 
929 	return queue_is_rq_based(q);
930 }
931 
932 static int dm_table_determine_type(struct dm_table *t)
933 {
934 	unsigned i;
935 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
936 	struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
937 	struct dm_target *tgt;
938 	struct list_head *devices = dm_table_get_devices(t);
939 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
940 
941 	if (t->type != DM_TYPE_NONE) {
942 		/* target already set the table's type */
943 		if (t->type == DM_TYPE_BIO_BASED) {
944 			/* possibly upgrade to a variant of bio-based */
945 			goto verify_bio_based;
946 		}
947 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
948 		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
949 		goto verify_rq_based;
950 	}
951 
952 	for (i = 0; i < t->num_targets; i++) {
953 		tgt = t->targets + i;
954 		if (dm_target_hybrid(tgt))
955 			hybrid = 1;
956 		else if (dm_target_request_based(tgt))
957 			request_based = 1;
958 		else
959 			bio_based = 1;
960 
961 		if (bio_based && request_based) {
962 			DMERR("Inconsistent table: different target types"
963 			      " can't be mixed up");
964 			return -EINVAL;
965 		}
966 	}
967 
968 	if (hybrid && !bio_based && !request_based) {
969 		/*
970 		 * The targets can work either way.
971 		 * Determine the type from the live device.
972 		 * Default to bio-based if device is new.
973 		 */
974 		if (__table_type_request_based(live_md_type))
975 			request_based = 1;
976 		else
977 			bio_based = 1;
978 	}
979 
980 	if (bio_based) {
981 verify_bio_based:
982 		/* We must use this table as bio-based */
983 		t->type = DM_TYPE_BIO_BASED;
984 		if (dm_table_supports_dax(t) ||
985 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
986 			t->type = DM_TYPE_DAX_BIO_BASED;
987 		} else {
988 			/* Check if upgrading to NVMe bio-based is valid or required */
989 			tgt = dm_table_get_immutable_target(t);
990 			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
991 				t->type = DM_TYPE_NVME_BIO_BASED;
992 				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
993 			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
994 				t->type = DM_TYPE_NVME_BIO_BASED;
995 			}
996 		}
997 		return 0;
998 	}
999 
1000 	BUG_ON(!request_based); /* No targets in this table */
1001 
1002 	/*
1003 	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1004 	 * having a compatible target use dm_table_set_type.
1005 	 */
1006 	t->type = DM_TYPE_REQUEST_BASED;
1007 
1008 verify_rq_based:
1009 	/*
1010 	 * Request-based dm supports only tables that have a single target now.
1011 	 * To support multiple targets, request splitting support is needed,
1012 	 * and that needs lots of changes in the block-layer.
1013 	 * (e.g. request completion process for partial completion.)
1014 	 */
1015 	if (t->num_targets > 1) {
1016 		DMERR("%s DM doesn't support multiple targets",
1017 		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1018 		return -EINVAL;
1019 	}
1020 
1021 	if (list_empty(devices)) {
1022 		int srcu_idx;
1023 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1024 
1025 		/* inherit live table's type and all_blk_mq */
1026 		if (live_table) {
1027 			t->type = live_table->type;
1028 			t->all_blk_mq = live_table->all_blk_mq;
1029 		}
1030 		dm_put_live_table(t->md, srcu_idx);
1031 		return 0;
1032 	}
1033 
1034 	tgt = dm_table_get_immutable_target(t);
1035 	if (!tgt) {
1036 		DMERR("table load rejected: immutable target is required");
1037 		return -EINVAL;
1038 	} else if (tgt->max_io_len) {
1039 		DMERR("table load rejected: immutable target that splits IO is not supported");
1040 		return -EINVAL;
1041 	}
1042 
1043 	/* Non-request-stackable devices can't be used for request-based dm */
1044 	if (!tgt->type->iterate_devices ||
1045 	    !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1046 		DMERR("table load rejected: including non-request-stackable devices");
1047 		return -EINVAL;
1048 	}
1049 	if (v.sq_count && v.mq_count) {
1050 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1051 		return -EINVAL;
1052 	}
1053 	t->all_blk_mq = v.mq_count > 0;
1054 
1055 	if (!t->all_blk_mq &&
1056 	    (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1057 		DMERR("table load rejected: all devices are not blk-mq request-stackable");
1058 		return -EINVAL;
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1065 {
1066 	return t->type;
1067 }
1068 
1069 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1070 {
1071 	return t->immutable_target_type;
1072 }
1073 
1074 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1075 {
1076 	/* Immutable target is implicitly a singleton */
1077 	if (t->num_targets > 1 ||
1078 	    !dm_target_is_immutable(t->targets[0].type))
1079 		return NULL;
1080 
1081 	return t->targets;
1082 }
1083 
1084 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1085 {
1086 	struct dm_target *ti;
1087 	unsigned i;
1088 
1089 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1090 		ti = dm_table_get_target(t, i);
1091 		if (dm_target_is_wildcard(ti->type))
1092 			return ti;
1093 	}
1094 
1095 	return NULL;
1096 }
1097 
1098 bool dm_table_bio_based(struct dm_table *t)
1099 {
1100 	return __table_type_bio_based(dm_table_get_type(t));
1101 }
1102 
1103 bool dm_table_request_based(struct dm_table *t)
1104 {
1105 	return __table_type_request_based(dm_table_get_type(t));
1106 }
1107 
1108 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1109 {
1110 	return t->all_blk_mq;
1111 }
1112 
1113 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1114 {
1115 	enum dm_queue_mode type = dm_table_get_type(t);
1116 	unsigned per_io_data_size = 0;
1117 	unsigned min_pool_size = 0;
1118 	struct dm_target *ti;
1119 	unsigned i;
1120 
1121 	if (unlikely(type == DM_TYPE_NONE)) {
1122 		DMWARN("no table type is set, can't allocate mempools");
1123 		return -EINVAL;
1124 	}
1125 
1126 	if (__table_type_bio_based(type))
1127 		for (i = 0; i < t->num_targets; i++) {
1128 			ti = t->targets + i;
1129 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1130 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1131 		}
1132 
1133 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1134 					   per_io_data_size, min_pool_size);
1135 	if (!t->mempools)
1136 		return -ENOMEM;
1137 
1138 	return 0;
1139 }
1140 
1141 void dm_table_free_md_mempools(struct dm_table *t)
1142 {
1143 	dm_free_md_mempools(t->mempools);
1144 	t->mempools = NULL;
1145 }
1146 
1147 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1148 {
1149 	return t->mempools;
1150 }
1151 
1152 static int setup_indexes(struct dm_table *t)
1153 {
1154 	int i;
1155 	unsigned int total = 0;
1156 	sector_t *indexes;
1157 
1158 	/* allocate the space for *all* the indexes */
1159 	for (i = t->depth - 2; i >= 0; i--) {
1160 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1161 		total += t->counts[i];
1162 	}
1163 
1164 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1165 	if (!indexes)
1166 		return -ENOMEM;
1167 
1168 	/* set up internal nodes, bottom-up */
1169 	for (i = t->depth - 2; i >= 0; i--) {
1170 		t->index[i] = indexes;
1171 		indexes += (KEYS_PER_NODE * t->counts[i]);
1172 		setup_btree_index(i, t);
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * Builds the btree to index the map.
1180  */
1181 static int dm_table_build_index(struct dm_table *t)
1182 {
1183 	int r = 0;
1184 	unsigned int leaf_nodes;
1185 
1186 	/* how many indexes will the btree have ? */
1187 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1188 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1189 
1190 	/* leaf layer has already been set up */
1191 	t->counts[t->depth - 1] = leaf_nodes;
1192 	t->index[t->depth - 1] = t->highs;
1193 
1194 	if (t->depth >= 2)
1195 		r = setup_indexes(t);
1196 
1197 	return r;
1198 }
1199 
1200 static bool integrity_profile_exists(struct gendisk *disk)
1201 {
1202 	return !!blk_get_integrity(disk);
1203 }
1204 
1205 /*
1206  * Get a disk whose integrity profile reflects the table's profile.
1207  * Returns NULL if integrity support was inconsistent or unavailable.
1208  */
1209 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1210 {
1211 	struct list_head *devices = dm_table_get_devices(t);
1212 	struct dm_dev_internal *dd = NULL;
1213 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1214 	unsigned i;
1215 
1216 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1217 		struct dm_target *ti = dm_table_get_target(t, i);
1218 		if (!dm_target_passes_integrity(ti->type))
1219 			goto no_integrity;
1220 	}
1221 
1222 	list_for_each_entry(dd, devices, list) {
1223 		template_disk = dd->dm_dev->bdev->bd_disk;
1224 		if (!integrity_profile_exists(template_disk))
1225 			goto no_integrity;
1226 		else if (prev_disk &&
1227 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1228 			goto no_integrity;
1229 		prev_disk = template_disk;
1230 	}
1231 
1232 	return template_disk;
1233 
1234 no_integrity:
1235 	if (prev_disk)
1236 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1237 		       dm_device_name(t->md),
1238 		       prev_disk->disk_name,
1239 		       template_disk->disk_name);
1240 	return NULL;
1241 }
1242 
1243 /*
1244  * Register the mapped device for blk_integrity support if the
1245  * underlying devices have an integrity profile.  But all devices may
1246  * not have matching profiles (checking all devices isn't reliable
1247  * during table load because this table may use other DM device(s) which
1248  * must be resumed before they will have an initialized integity
1249  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1250  * profile validation: First pass during table load, final pass during
1251  * resume.
1252  */
1253 static int dm_table_register_integrity(struct dm_table *t)
1254 {
1255 	struct mapped_device *md = t->md;
1256 	struct gendisk *template_disk = NULL;
1257 
1258 	/* If target handles integrity itself do not register it here. */
1259 	if (t->integrity_added)
1260 		return 0;
1261 
1262 	template_disk = dm_table_get_integrity_disk(t);
1263 	if (!template_disk)
1264 		return 0;
1265 
1266 	if (!integrity_profile_exists(dm_disk(md))) {
1267 		t->integrity_supported = true;
1268 		/*
1269 		 * Register integrity profile during table load; we can do
1270 		 * this because the final profile must match during resume.
1271 		 */
1272 		blk_integrity_register(dm_disk(md),
1273 				       blk_get_integrity(template_disk));
1274 		return 0;
1275 	}
1276 
1277 	/*
1278 	 * If DM device already has an initialized integrity
1279 	 * profile the new profile should not conflict.
1280 	 */
1281 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1282 		DMWARN("%s: conflict with existing integrity profile: "
1283 		       "%s profile mismatch",
1284 		       dm_device_name(t->md),
1285 		       template_disk->disk_name);
1286 		return 1;
1287 	}
1288 
1289 	/* Preserve existing integrity profile */
1290 	t->integrity_supported = true;
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Prepares the table for use by building the indices,
1296  * setting the type, and allocating mempools.
1297  */
1298 int dm_table_complete(struct dm_table *t)
1299 {
1300 	int r;
1301 
1302 	r = dm_table_determine_type(t);
1303 	if (r) {
1304 		DMERR("unable to determine table type");
1305 		return r;
1306 	}
1307 
1308 	r = dm_table_build_index(t);
1309 	if (r) {
1310 		DMERR("unable to build btrees");
1311 		return r;
1312 	}
1313 
1314 	r = dm_table_register_integrity(t);
1315 	if (r) {
1316 		DMERR("could not register integrity profile.");
1317 		return r;
1318 	}
1319 
1320 	r = dm_table_alloc_md_mempools(t, t->md);
1321 	if (r)
1322 		DMERR("unable to allocate mempools");
1323 
1324 	return r;
1325 }
1326 
1327 static DEFINE_MUTEX(_event_lock);
1328 void dm_table_event_callback(struct dm_table *t,
1329 			     void (*fn)(void *), void *context)
1330 {
1331 	mutex_lock(&_event_lock);
1332 	t->event_fn = fn;
1333 	t->event_context = context;
1334 	mutex_unlock(&_event_lock);
1335 }
1336 
1337 void dm_table_event(struct dm_table *t)
1338 {
1339 	/*
1340 	 * You can no longer call dm_table_event() from interrupt
1341 	 * context, use a bottom half instead.
1342 	 */
1343 	BUG_ON(in_interrupt());
1344 
1345 	mutex_lock(&_event_lock);
1346 	if (t->event_fn)
1347 		t->event_fn(t->event_context);
1348 	mutex_unlock(&_event_lock);
1349 }
1350 EXPORT_SYMBOL(dm_table_event);
1351 
1352 sector_t dm_table_get_size(struct dm_table *t)
1353 {
1354 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1355 }
1356 EXPORT_SYMBOL(dm_table_get_size);
1357 
1358 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1359 {
1360 	if (index >= t->num_targets)
1361 		return NULL;
1362 
1363 	return t->targets + index;
1364 }
1365 
1366 /*
1367  * Search the btree for the correct target.
1368  *
1369  * Caller should check returned pointer with dm_target_is_valid()
1370  * to trap I/O beyond end of device.
1371  */
1372 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1373 {
1374 	unsigned int l, n = 0, k = 0;
1375 	sector_t *node;
1376 
1377 	for (l = 0; l < t->depth; l++) {
1378 		n = get_child(n, k);
1379 		node = get_node(t, l, n);
1380 
1381 		for (k = 0; k < KEYS_PER_NODE; k++)
1382 			if (node[k] >= sector)
1383 				break;
1384 	}
1385 
1386 	return &t->targets[(KEYS_PER_NODE * n) + k];
1387 }
1388 
1389 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1390 			sector_t start, sector_t len, void *data)
1391 {
1392 	unsigned *num_devices = data;
1393 
1394 	(*num_devices)++;
1395 
1396 	return 0;
1397 }
1398 
1399 /*
1400  * Check whether a table has no data devices attached using each
1401  * target's iterate_devices method.
1402  * Returns false if the result is unknown because a target doesn't
1403  * support iterate_devices.
1404  */
1405 bool dm_table_has_no_data_devices(struct dm_table *table)
1406 {
1407 	struct dm_target *ti;
1408 	unsigned i, num_devices;
1409 
1410 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1411 		ti = dm_table_get_target(table, i);
1412 
1413 		if (!ti->type->iterate_devices)
1414 			return false;
1415 
1416 		num_devices = 0;
1417 		ti->type->iterate_devices(ti, count_device, &num_devices);
1418 		if (num_devices)
1419 			return false;
1420 	}
1421 
1422 	return true;
1423 }
1424 
1425 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1426 				 sector_t start, sector_t len, void *data)
1427 {
1428 	struct request_queue *q = bdev_get_queue(dev->bdev);
1429 	enum blk_zoned_model *zoned_model = data;
1430 
1431 	return q && blk_queue_zoned_model(q) == *zoned_model;
1432 }
1433 
1434 static bool dm_table_supports_zoned_model(struct dm_table *t,
1435 					  enum blk_zoned_model zoned_model)
1436 {
1437 	struct dm_target *ti;
1438 	unsigned i;
1439 
1440 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1441 		ti = dm_table_get_target(t, i);
1442 
1443 		if (zoned_model == BLK_ZONED_HM &&
1444 		    !dm_target_supports_zoned_hm(ti->type))
1445 			return false;
1446 
1447 		if (!ti->type->iterate_devices ||
1448 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1449 			return false;
1450 	}
1451 
1452 	return true;
1453 }
1454 
1455 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1456 				       sector_t start, sector_t len, void *data)
1457 {
1458 	struct request_queue *q = bdev_get_queue(dev->bdev);
1459 	unsigned int *zone_sectors = data;
1460 
1461 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1462 }
1463 
1464 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1465 					  unsigned int zone_sectors)
1466 {
1467 	struct dm_target *ti;
1468 	unsigned i;
1469 
1470 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1471 		ti = dm_table_get_target(t, i);
1472 
1473 		if (!ti->type->iterate_devices ||
1474 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1475 			return false;
1476 	}
1477 
1478 	return true;
1479 }
1480 
1481 static int validate_hardware_zoned_model(struct dm_table *table,
1482 					 enum blk_zoned_model zoned_model,
1483 					 unsigned int zone_sectors)
1484 {
1485 	if (zoned_model == BLK_ZONED_NONE)
1486 		return 0;
1487 
1488 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1489 		DMERR("%s: zoned model is not consistent across all devices",
1490 		      dm_device_name(table->md));
1491 		return -EINVAL;
1492 	}
1493 
1494 	/* Check zone size validity and compatibility */
1495 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1496 		return -EINVAL;
1497 
1498 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1499 		DMERR("%s: zone sectors is not consistent across all devices",
1500 		      dm_device_name(table->md));
1501 		return -EINVAL;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 /*
1508  * Establish the new table's queue_limits and validate them.
1509  */
1510 int dm_calculate_queue_limits(struct dm_table *table,
1511 			      struct queue_limits *limits)
1512 {
1513 	struct dm_target *ti;
1514 	struct queue_limits ti_limits;
1515 	unsigned i;
1516 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1517 	unsigned int zone_sectors = 0;
1518 
1519 	blk_set_stacking_limits(limits);
1520 
1521 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1522 		blk_set_stacking_limits(&ti_limits);
1523 
1524 		ti = dm_table_get_target(table, i);
1525 
1526 		if (!ti->type->iterate_devices)
1527 			goto combine_limits;
1528 
1529 		/*
1530 		 * Combine queue limits of all the devices this target uses.
1531 		 */
1532 		ti->type->iterate_devices(ti, dm_set_device_limits,
1533 					  &ti_limits);
1534 
1535 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1536 			/*
1537 			 * After stacking all limits, validate all devices
1538 			 * in table support this zoned model and zone sectors.
1539 			 */
1540 			zoned_model = ti_limits.zoned;
1541 			zone_sectors = ti_limits.chunk_sectors;
1542 		}
1543 
1544 		/* Set I/O hints portion of queue limits */
1545 		if (ti->type->io_hints)
1546 			ti->type->io_hints(ti, &ti_limits);
1547 
1548 		/*
1549 		 * Check each device area is consistent with the target's
1550 		 * overall queue limits.
1551 		 */
1552 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1553 					      &ti_limits))
1554 			return -EINVAL;
1555 
1556 combine_limits:
1557 		/*
1558 		 * Merge this target's queue limits into the overall limits
1559 		 * for the table.
1560 		 */
1561 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1562 			DMWARN("%s: adding target device "
1563 			       "(start sect %llu len %llu) "
1564 			       "caused an alignment inconsistency",
1565 			       dm_device_name(table->md),
1566 			       (unsigned long long) ti->begin,
1567 			       (unsigned long long) ti->len);
1568 
1569 		/*
1570 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1571 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1572 		 */
1573 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1574 			/*
1575 			 * By default, the stacked limits zoned model is set to
1576 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1577 			 * this model using the first target model reported
1578 			 * that is not BLK_ZONED_NONE. This will be either the
1579 			 * first target device zoned model or the model reported
1580 			 * by the target .io_hints.
1581 			 */
1582 			limits->zoned = ti_limits.zoned;
1583 		}
1584 	}
1585 
1586 	/*
1587 	 * Verify that the zoned model and zone sectors, as determined before
1588 	 * any .io_hints override, are the same across all devices in the table.
1589 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1590 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1591 	 * BUT...
1592 	 */
1593 	if (limits->zoned != BLK_ZONED_NONE) {
1594 		/*
1595 		 * ...IF the above limits stacking determined a zoned model
1596 		 * validate that all of the table's devices conform to it.
1597 		 */
1598 		zoned_model = limits->zoned;
1599 		zone_sectors = limits->chunk_sectors;
1600 	}
1601 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1602 		return -EINVAL;
1603 
1604 	return validate_hardware_logical_block_alignment(table, limits);
1605 }
1606 
1607 /*
1608  * Verify that all devices have an integrity profile that matches the
1609  * DM device's registered integrity profile.  If the profiles don't
1610  * match then unregister the DM device's integrity profile.
1611  */
1612 static void dm_table_verify_integrity(struct dm_table *t)
1613 {
1614 	struct gendisk *template_disk = NULL;
1615 
1616 	if (t->integrity_added)
1617 		return;
1618 
1619 	if (t->integrity_supported) {
1620 		/*
1621 		 * Verify that the original integrity profile
1622 		 * matches all the devices in this table.
1623 		 */
1624 		template_disk = dm_table_get_integrity_disk(t);
1625 		if (template_disk &&
1626 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1627 			return;
1628 	}
1629 
1630 	if (integrity_profile_exists(dm_disk(t->md))) {
1631 		DMWARN("%s: unable to establish an integrity profile",
1632 		       dm_device_name(t->md));
1633 		blk_integrity_unregister(dm_disk(t->md));
1634 	}
1635 }
1636 
1637 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1638 				sector_t start, sector_t len, void *data)
1639 {
1640 	unsigned long flush = (unsigned long) data;
1641 	struct request_queue *q = bdev_get_queue(dev->bdev);
1642 
1643 	return q && (q->queue_flags & flush);
1644 }
1645 
1646 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1647 {
1648 	struct dm_target *ti;
1649 	unsigned i;
1650 
1651 	/*
1652 	 * Require at least one underlying device to support flushes.
1653 	 * t->devices includes internal dm devices such as mirror logs
1654 	 * so we need to use iterate_devices here, which targets
1655 	 * supporting flushes must provide.
1656 	 */
1657 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1658 		ti = dm_table_get_target(t, i);
1659 
1660 		if (!ti->num_flush_bios)
1661 			continue;
1662 
1663 		if (ti->flush_supported)
1664 			return true;
1665 
1666 		if (ti->type->iterate_devices &&
1667 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1668 			return true;
1669 	}
1670 
1671 	return false;
1672 }
1673 
1674 static int device_dax_write_cache_enabled(struct dm_target *ti,
1675 					  struct dm_dev *dev, sector_t start,
1676 					  sector_t len, void *data)
1677 {
1678 	struct dax_device *dax_dev = dev->dax_dev;
1679 
1680 	if (!dax_dev)
1681 		return false;
1682 
1683 	if (dax_write_cache_enabled(dax_dev))
1684 		return true;
1685 	return false;
1686 }
1687 
1688 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1689 {
1690 	struct dm_target *ti;
1691 	unsigned i;
1692 
1693 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1694 		ti = dm_table_get_target(t, i);
1695 
1696 		if (ti->type->iterate_devices &&
1697 		    ti->type->iterate_devices(ti,
1698 				device_dax_write_cache_enabled, NULL))
1699 			return true;
1700 	}
1701 
1702 	return false;
1703 }
1704 
1705 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1706 			    sector_t start, sector_t len, void *data)
1707 {
1708 	struct request_queue *q = bdev_get_queue(dev->bdev);
1709 
1710 	return q && blk_queue_nonrot(q);
1711 }
1712 
1713 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1714 			     sector_t start, sector_t len, void *data)
1715 {
1716 	struct request_queue *q = bdev_get_queue(dev->bdev);
1717 
1718 	return q && !blk_queue_add_random(q);
1719 }
1720 
1721 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1722 				   sector_t start, sector_t len, void *data)
1723 {
1724 	struct request_queue *q = bdev_get_queue(dev->bdev);
1725 
1726 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1727 }
1728 
1729 static bool dm_table_all_devices_attribute(struct dm_table *t,
1730 					   iterate_devices_callout_fn func)
1731 {
1732 	struct dm_target *ti;
1733 	unsigned i;
1734 
1735 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1736 		ti = dm_table_get_target(t, i);
1737 
1738 		if (!ti->type->iterate_devices ||
1739 		    !ti->type->iterate_devices(ti, func, NULL))
1740 			return false;
1741 	}
1742 
1743 	return true;
1744 }
1745 
1746 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1747 					sector_t start, sector_t len, void *data)
1748 {
1749 	char b[BDEVNAME_SIZE];
1750 
1751 	/* For now, NVMe devices are the only devices of this class */
1752 	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1753 }
1754 
1755 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1756 {
1757 	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1758 }
1759 
1760 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1761 					 sector_t start, sector_t len, void *data)
1762 {
1763 	struct request_queue *q = bdev_get_queue(dev->bdev);
1764 
1765 	return q && !q->limits.max_write_same_sectors;
1766 }
1767 
1768 static bool dm_table_supports_write_same(struct dm_table *t)
1769 {
1770 	struct dm_target *ti;
1771 	unsigned i;
1772 
1773 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1774 		ti = dm_table_get_target(t, i);
1775 
1776 		if (!ti->num_write_same_bios)
1777 			return false;
1778 
1779 		if (!ti->type->iterate_devices ||
1780 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1781 			return false;
1782 	}
1783 
1784 	return true;
1785 }
1786 
1787 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1788 					   sector_t start, sector_t len, void *data)
1789 {
1790 	struct request_queue *q = bdev_get_queue(dev->bdev);
1791 
1792 	return q && !q->limits.max_write_zeroes_sectors;
1793 }
1794 
1795 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1796 {
1797 	struct dm_target *ti;
1798 	unsigned i = 0;
1799 
1800 	while (i < dm_table_get_num_targets(t)) {
1801 		ti = dm_table_get_target(t, i++);
1802 
1803 		if (!ti->num_write_zeroes_bios)
1804 			return false;
1805 
1806 		if (!ti->type->iterate_devices ||
1807 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1808 			return false;
1809 	}
1810 
1811 	return true;
1812 }
1813 
1814 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1815 				      sector_t start, sector_t len, void *data)
1816 {
1817 	struct request_queue *q = bdev_get_queue(dev->bdev);
1818 
1819 	return q && !blk_queue_discard(q);
1820 }
1821 
1822 static bool dm_table_supports_discards(struct dm_table *t)
1823 {
1824 	struct dm_target *ti;
1825 	unsigned i;
1826 
1827 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1828 		ti = dm_table_get_target(t, i);
1829 
1830 		if (!ti->num_discard_bios)
1831 			return false;
1832 
1833 		/*
1834 		 * Either the target provides discard support (as implied by setting
1835 		 * 'discards_supported') or it relies on _all_ data devices having
1836 		 * discard support.
1837 		 */
1838 		if (!ti->discards_supported &&
1839 		    (!ti->type->iterate_devices ||
1840 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1841 			return false;
1842 	}
1843 
1844 	return true;
1845 }
1846 
1847 static int device_not_secure_erase_capable(struct dm_target *ti,
1848 					   struct dm_dev *dev, sector_t start,
1849 					   sector_t len, void *data)
1850 {
1851 	struct request_queue *q = bdev_get_queue(dev->bdev);
1852 
1853 	return q && !blk_queue_secure_erase(q);
1854 }
1855 
1856 static bool dm_table_supports_secure_erase(struct dm_table *t)
1857 {
1858 	struct dm_target *ti;
1859 	unsigned int i;
1860 
1861 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1862 		ti = dm_table_get_target(t, i);
1863 
1864 		if (!ti->num_secure_erase_bios)
1865 			return false;
1866 
1867 		if (!ti->type->iterate_devices ||
1868 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1869 			return false;
1870 	}
1871 
1872 	return true;
1873 }
1874 
1875 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1876 			       struct queue_limits *limits)
1877 {
1878 	bool wc = false, fua = false;
1879 
1880 	/*
1881 	 * Copy table's limits to the DM device's request_queue
1882 	 */
1883 	q->limits = *limits;
1884 
1885 	if (!dm_table_supports_discards(t)) {
1886 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1887 		/* Must also clear discard limits... */
1888 		q->limits.max_discard_sectors = 0;
1889 		q->limits.max_hw_discard_sectors = 0;
1890 		q->limits.discard_granularity = 0;
1891 		q->limits.discard_alignment = 0;
1892 		q->limits.discard_misaligned = 0;
1893 	} else
1894 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1895 
1896 	if (dm_table_supports_secure_erase(t))
1897 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1898 
1899 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1900 		wc = true;
1901 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1902 			fua = true;
1903 	}
1904 	blk_queue_write_cache(q, wc, fua);
1905 
1906 	if (dm_table_supports_dax(t))
1907 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1908 	else
1909 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1910 
1911 	if (dm_table_supports_dax_write_cache(t))
1912 		dax_write_cache(t->md->dax_dev, true);
1913 
1914 	/* Ensure that all underlying devices are non-rotational. */
1915 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1916 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1917 	else
1918 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1919 
1920 	if (!dm_table_supports_write_same(t))
1921 		q->limits.max_write_same_sectors = 0;
1922 	if (!dm_table_supports_write_zeroes(t))
1923 		q->limits.max_write_zeroes_sectors = 0;
1924 
1925 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1926 		blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1927 	else
1928 		blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1929 
1930 	dm_table_verify_integrity(t);
1931 
1932 	/*
1933 	 * Determine whether or not this queue's I/O timings contribute
1934 	 * to the entropy pool, Only request-based targets use this.
1935 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1936 	 * have it set.
1937 	 */
1938 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1939 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1940 }
1941 
1942 unsigned int dm_table_get_num_targets(struct dm_table *t)
1943 {
1944 	return t->num_targets;
1945 }
1946 
1947 struct list_head *dm_table_get_devices(struct dm_table *t)
1948 {
1949 	return &t->devices;
1950 }
1951 
1952 fmode_t dm_table_get_mode(struct dm_table *t)
1953 {
1954 	return t->mode;
1955 }
1956 EXPORT_SYMBOL(dm_table_get_mode);
1957 
1958 enum suspend_mode {
1959 	PRESUSPEND,
1960 	PRESUSPEND_UNDO,
1961 	POSTSUSPEND,
1962 };
1963 
1964 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1965 {
1966 	int i = t->num_targets;
1967 	struct dm_target *ti = t->targets;
1968 
1969 	lockdep_assert_held(&t->md->suspend_lock);
1970 
1971 	while (i--) {
1972 		switch (mode) {
1973 		case PRESUSPEND:
1974 			if (ti->type->presuspend)
1975 				ti->type->presuspend(ti);
1976 			break;
1977 		case PRESUSPEND_UNDO:
1978 			if (ti->type->presuspend_undo)
1979 				ti->type->presuspend_undo(ti);
1980 			break;
1981 		case POSTSUSPEND:
1982 			if (ti->type->postsuspend)
1983 				ti->type->postsuspend(ti);
1984 			break;
1985 		}
1986 		ti++;
1987 	}
1988 }
1989 
1990 void dm_table_presuspend_targets(struct dm_table *t)
1991 {
1992 	if (!t)
1993 		return;
1994 
1995 	suspend_targets(t, PRESUSPEND);
1996 }
1997 
1998 void dm_table_presuspend_undo_targets(struct dm_table *t)
1999 {
2000 	if (!t)
2001 		return;
2002 
2003 	suspend_targets(t, PRESUSPEND_UNDO);
2004 }
2005 
2006 void dm_table_postsuspend_targets(struct dm_table *t)
2007 {
2008 	if (!t)
2009 		return;
2010 
2011 	suspend_targets(t, POSTSUSPEND);
2012 }
2013 
2014 int dm_table_resume_targets(struct dm_table *t)
2015 {
2016 	int i, r = 0;
2017 
2018 	lockdep_assert_held(&t->md->suspend_lock);
2019 
2020 	for (i = 0; i < t->num_targets; i++) {
2021 		struct dm_target *ti = t->targets + i;
2022 
2023 		if (!ti->type->preresume)
2024 			continue;
2025 
2026 		r = ti->type->preresume(ti);
2027 		if (r) {
2028 			DMERR("%s: %s: preresume failed, error = %d",
2029 			      dm_device_name(t->md), ti->type->name, r);
2030 			return r;
2031 		}
2032 	}
2033 
2034 	for (i = 0; i < t->num_targets; i++) {
2035 		struct dm_target *ti = t->targets + i;
2036 
2037 		if (ti->type->resume)
2038 			ti->type->resume(ti);
2039 	}
2040 
2041 	return 0;
2042 }
2043 
2044 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2045 {
2046 	list_add(&cb->list, &t->target_callbacks);
2047 }
2048 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2049 
2050 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2051 {
2052 	struct dm_dev_internal *dd;
2053 	struct list_head *devices = dm_table_get_devices(t);
2054 	struct dm_target_callbacks *cb;
2055 	int r = 0;
2056 
2057 	list_for_each_entry(dd, devices, list) {
2058 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2059 		char b[BDEVNAME_SIZE];
2060 
2061 		if (likely(q))
2062 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2063 		else
2064 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2065 				     dm_device_name(t->md),
2066 				     bdevname(dd->dm_dev->bdev, b));
2067 	}
2068 
2069 	list_for_each_entry(cb, &t->target_callbacks, list)
2070 		if (cb->congested_fn)
2071 			r |= cb->congested_fn(cb, bdi_bits);
2072 
2073 	return r;
2074 }
2075 
2076 struct mapped_device *dm_table_get_md(struct dm_table *t)
2077 {
2078 	return t->md;
2079 }
2080 EXPORT_SYMBOL(dm_table_get_md);
2081 
2082 void dm_table_run_md_queue_async(struct dm_table *t)
2083 {
2084 	struct mapped_device *md;
2085 	struct request_queue *queue;
2086 	unsigned long flags;
2087 
2088 	if (!dm_table_request_based(t))
2089 		return;
2090 
2091 	md = dm_table_get_md(t);
2092 	queue = dm_get_md_queue(md);
2093 	if (queue) {
2094 		if (queue->mq_ops)
2095 			blk_mq_run_hw_queues(queue, true);
2096 		else {
2097 			spin_lock_irqsave(queue->queue_lock, flags);
2098 			blk_run_queue_async(queue);
2099 			spin_unlock_irqrestore(queue->queue_lock, flags);
2100 		}
2101 	}
2102 }
2103 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2104 
2105