xref: /openbmc/linux/drivers/md/dm-table.c (revision 31e67366)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 	unsigned long size;
100 	void *addr;
101 
102 	/*
103 	 * Check that we're not going to overflow.
104 	 */
105 	if (nmemb > (ULONG_MAX / elem_size))
106 		return NULL;
107 
108 	size = nmemb * elem_size;
109 	addr = vzalloc(size);
110 
111 	return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114 
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 	sector_t *n_highs;
122 	struct dm_target *n_targets;
123 
124 	/*
125 	 * Allocate both the target array and offset array at once.
126 	 */
127 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 					  sizeof(sector_t));
129 	if (!n_highs)
130 		return -ENOMEM;
131 
132 	n_targets = (struct dm_target *) (n_highs + num);
133 
134 	memset(n_highs, -1, sizeof(*n_highs) * num);
135 	vfree(t->highs);
136 
137 	t->num_allocated = num;
138 	t->highs = n_highs;
139 	t->targets = n_targets;
140 
141 	return 0;
142 }
143 
144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 		    unsigned num_targets, struct mapped_device *md)
146 {
147 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148 
149 	if (!t)
150 		return -ENOMEM;
151 
152 	INIT_LIST_HEAD(&t->devices);
153 
154 	if (!num_targets)
155 		num_targets = KEYS_PER_NODE;
156 
157 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158 
159 	if (!num_targets) {
160 		kfree(t);
161 		return -ENOMEM;
162 	}
163 
164 	if (alloc_targets(t, num_targets)) {
165 		kfree(t);
166 		return -ENOMEM;
167 	}
168 
169 	t->type = DM_TYPE_NONE;
170 	t->mode = mode;
171 	t->md = md;
172 	*result = t;
173 	return 0;
174 }
175 
176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178 	struct list_head *tmp, *next;
179 
180 	list_for_each_safe(tmp, next, devices) {
181 		struct dm_dev_internal *dd =
182 		    list_entry(tmp, struct dm_dev_internal, list);
183 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 		       dm_device_name(md), dd->dm_dev->name);
185 		dm_put_table_device(md, dd->dm_dev);
186 		kfree(dd);
187 	}
188 }
189 
190 static void dm_table_destroy_keyslot_manager(struct dm_table *t);
191 
192 void dm_table_destroy(struct dm_table *t)
193 {
194 	unsigned int i;
195 
196 	if (!t)
197 		return;
198 
199 	/* free the indexes */
200 	if (t->depth >= 2)
201 		vfree(t->index[t->depth - 2]);
202 
203 	/* free the targets */
204 	for (i = 0; i < t->num_targets; i++) {
205 		struct dm_target *tgt = t->targets + i;
206 
207 		if (tgt->type->dtr)
208 			tgt->type->dtr(tgt);
209 
210 		dm_put_target_type(tgt->type);
211 	}
212 
213 	vfree(t->highs);
214 
215 	/* free the device list */
216 	free_devices(&t->devices, t->md);
217 
218 	dm_free_md_mempools(t->mempools);
219 
220 	dm_table_destroy_keyslot_manager(t);
221 
222 	kfree(t);
223 }
224 
225 /*
226  * See if we've already got a device in the list.
227  */
228 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
229 {
230 	struct dm_dev_internal *dd;
231 
232 	list_for_each_entry (dd, l, list)
233 		if (dd->dm_dev->bdev->bd_dev == dev)
234 			return dd;
235 
236 	return NULL;
237 }
238 
239 /*
240  * If possible, this checks an area of a destination device is invalid.
241  */
242 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
243 				  sector_t start, sector_t len, void *data)
244 {
245 	struct queue_limits *limits = data;
246 	struct block_device *bdev = dev->bdev;
247 	sector_t dev_size =
248 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
249 	unsigned short logical_block_size_sectors =
250 		limits->logical_block_size >> SECTOR_SHIFT;
251 	char b[BDEVNAME_SIZE];
252 
253 	if (!dev_size)
254 		return 0;
255 
256 	if ((start >= dev_size) || (start + len > dev_size)) {
257 		DMWARN("%s: %s too small for target: "
258 		       "start=%llu, len=%llu, dev_size=%llu",
259 		       dm_device_name(ti->table->md), bdevname(bdev, b),
260 		       (unsigned long long)start,
261 		       (unsigned long long)len,
262 		       (unsigned long long)dev_size);
263 		return 1;
264 	}
265 
266 	/*
267 	 * If the target is mapped to zoned block device(s), check
268 	 * that the zones are not partially mapped.
269 	 */
270 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
271 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
272 
273 		if (start & (zone_sectors - 1)) {
274 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
275 			       dm_device_name(ti->table->md),
276 			       (unsigned long long)start,
277 			       zone_sectors, bdevname(bdev, b));
278 			return 1;
279 		}
280 
281 		/*
282 		 * Note: The last zone of a zoned block device may be smaller
283 		 * than other zones. So for a target mapping the end of a
284 		 * zoned block device with such a zone, len would not be zone
285 		 * aligned. We do not allow such last smaller zone to be part
286 		 * of the mapping here to ensure that mappings with multiple
287 		 * devices do not end up with a smaller zone in the middle of
288 		 * the sector range.
289 		 */
290 		if (len & (zone_sectors - 1)) {
291 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
292 			       dm_device_name(ti->table->md),
293 			       (unsigned long long)len,
294 			       zone_sectors, bdevname(bdev, b));
295 			return 1;
296 		}
297 	}
298 
299 	if (logical_block_size_sectors <= 1)
300 		return 0;
301 
302 	if (start & (logical_block_size_sectors - 1)) {
303 		DMWARN("%s: start=%llu not aligned to h/w "
304 		       "logical block size %u of %s",
305 		       dm_device_name(ti->table->md),
306 		       (unsigned long long)start,
307 		       limits->logical_block_size, bdevname(bdev, b));
308 		return 1;
309 	}
310 
311 	if (len & (logical_block_size_sectors - 1)) {
312 		DMWARN("%s: len=%llu not aligned to h/w "
313 		       "logical block size %u of %s",
314 		       dm_device_name(ti->table->md),
315 		       (unsigned long long)len,
316 		       limits->logical_block_size, bdevname(bdev, b));
317 		return 1;
318 	}
319 
320 	return 0;
321 }
322 
323 /*
324  * This upgrades the mode on an already open dm_dev, being
325  * careful to leave things as they were if we fail to reopen the
326  * device and not to touch the existing bdev field in case
327  * it is accessed concurrently.
328  */
329 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
330 			struct mapped_device *md)
331 {
332 	int r;
333 	struct dm_dev *old_dev, *new_dev;
334 
335 	old_dev = dd->dm_dev;
336 
337 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
338 				dd->dm_dev->mode | new_mode, &new_dev);
339 	if (r)
340 		return r;
341 
342 	dd->dm_dev = new_dev;
343 	dm_put_table_device(md, old_dev);
344 
345 	return 0;
346 }
347 
348 /*
349  * Convert the path to a device
350  */
351 dev_t dm_get_dev_t(const char *path)
352 {
353 	dev_t dev;
354 
355 	if (lookup_bdev(path, &dev))
356 		dev = name_to_dev_t(path);
357 	return dev;
358 }
359 EXPORT_SYMBOL_GPL(dm_get_dev_t);
360 
361 /*
362  * Add a device to the list, or just increment the usage count if
363  * it's already present.
364  */
365 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
366 		  struct dm_dev **result)
367 {
368 	int r;
369 	dev_t dev;
370 	unsigned int major, minor;
371 	char dummy;
372 	struct dm_dev_internal *dd;
373 	struct dm_table *t = ti->table;
374 
375 	BUG_ON(!t);
376 
377 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
378 		/* Extract the major/minor numbers */
379 		dev = MKDEV(major, minor);
380 		if (MAJOR(dev) != major || MINOR(dev) != minor)
381 			return -EOVERFLOW;
382 	} else {
383 		dev = dm_get_dev_t(path);
384 		if (!dev)
385 			return -ENODEV;
386 	}
387 
388 	dd = find_device(&t->devices, dev);
389 	if (!dd) {
390 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
391 		if (!dd)
392 			return -ENOMEM;
393 
394 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
395 			kfree(dd);
396 			return r;
397 		}
398 
399 		refcount_set(&dd->count, 1);
400 		list_add(&dd->list, &t->devices);
401 		goto out;
402 
403 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
404 		r = upgrade_mode(dd, mode, t->md);
405 		if (r)
406 			return r;
407 	}
408 	refcount_inc(&dd->count);
409 out:
410 	*result = dd->dm_dev;
411 	return 0;
412 }
413 EXPORT_SYMBOL(dm_get_device);
414 
415 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
416 				sector_t start, sector_t len, void *data)
417 {
418 	struct queue_limits *limits = data;
419 	struct block_device *bdev = dev->bdev;
420 	struct request_queue *q = bdev_get_queue(bdev);
421 	char b[BDEVNAME_SIZE];
422 
423 	if (unlikely(!q)) {
424 		DMWARN("%s: Cannot set limits for nonexistent device %s",
425 		       dm_device_name(ti->table->md), bdevname(bdev, b));
426 		return 0;
427 	}
428 
429 	if (blk_stack_limits(limits, &q->limits,
430 			get_start_sect(bdev) + start) < 0)
431 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
432 		       "physical_block_size=%u, logical_block_size=%u, "
433 		       "alignment_offset=%u, start=%llu",
434 		       dm_device_name(ti->table->md), bdevname(bdev, b),
435 		       q->limits.physical_block_size,
436 		       q->limits.logical_block_size,
437 		       q->limits.alignment_offset,
438 		       (unsigned long long) start << SECTOR_SHIFT);
439 	return 0;
440 }
441 
442 /*
443  * Decrement a device's use count and remove it if necessary.
444  */
445 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
446 {
447 	int found = 0;
448 	struct list_head *devices = &ti->table->devices;
449 	struct dm_dev_internal *dd;
450 
451 	list_for_each_entry(dd, devices, list) {
452 		if (dd->dm_dev == d) {
453 			found = 1;
454 			break;
455 		}
456 	}
457 	if (!found) {
458 		DMWARN("%s: device %s not in table devices list",
459 		       dm_device_name(ti->table->md), d->name);
460 		return;
461 	}
462 	if (refcount_dec_and_test(&dd->count)) {
463 		dm_put_table_device(ti->table->md, d);
464 		list_del(&dd->list);
465 		kfree(dd);
466 	}
467 }
468 EXPORT_SYMBOL(dm_put_device);
469 
470 /*
471  * Checks to see if the target joins onto the end of the table.
472  */
473 static int adjoin(struct dm_table *table, struct dm_target *ti)
474 {
475 	struct dm_target *prev;
476 
477 	if (!table->num_targets)
478 		return !ti->begin;
479 
480 	prev = &table->targets[table->num_targets - 1];
481 	return (ti->begin == (prev->begin + prev->len));
482 }
483 
484 /*
485  * Used to dynamically allocate the arg array.
486  *
487  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
488  * process messages even if some device is suspended. These messages have a
489  * small fixed number of arguments.
490  *
491  * On the other hand, dm-switch needs to process bulk data using messages and
492  * excessive use of GFP_NOIO could cause trouble.
493  */
494 static char **realloc_argv(unsigned *size, char **old_argv)
495 {
496 	char **argv;
497 	unsigned new_size;
498 	gfp_t gfp;
499 
500 	if (*size) {
501 		new_size = *size * 2;
502 		gfp = GFP_KERNEL;
503 	} else {
504 		new_size = 8;
505 		gfp = GFP_NOIO;
506 	}
507 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
508 	if (argv && old_argv) {
509 		memcpy(argv, old_argv, *size * sizeof(*argv));
510 		*size = new_size;
511 	}
512 
513 	kfree(old_argv);
514 	return argv;
515 }
516 
517 /*
518  * Destructively splits up the argument list to pass to ctr.
519  */
520 int dm_split_args(int *argc, char ***argvp, char *input)
521 {
522 	char *start, *end = input, *out, **argv = NULL;
523 	unsigned array_size = 0;
524 
525 	*argc = 0;
526 
527 	if (!input) {
528 		*argvp = NULL;
529 		return 0;
530 	}
531 
532 	argv = realloc_argv(&array_size, argv);
533 	if (!argv)
534 		return -ENOMEM;
535 
536 	while (1) {
537 		/* Skip whitespace */
538 		start = skip_spaces(end);
539 
540 		if (!*start)
541 			break;	/* success, we hit the end */
542 
543 		/* 'out' is used to remove any back-quotes */
544 		end = out = start;
545 		while (*end) {
546 			/* Everything apart from '\0' can be quoted */
547 			if (*end == '\\' && *(end + 1)) {
548 				*out++ = *(end + 1);
549 				end += 2;
550 				continue;
551 			}
552 
553 			if (isspace(*end))
554 				break;	/* end of token */
555 
556 			*out++ = *end++;
557 		}
558 
559 		/* have we already filled the array ? */
560 		if ((*argc + 1) > array_size) {
561 			argv = realloc_argv(&array_size, argv);
562 			if (!argv)
563 				return -ENOMEM;
564 		}
565 
566 		/* we know this is whitespace */
567 		if (*end)
568 			end++;
569 
570 		/* terminate the string and put it in the array */
571 		*out = '\0';
572 		argv[*argc] = start;
573 		(*argc)++;
574 	}
575 
576 	*argvp = argv;
577 	return 0;
578 }
579 
580 /*
581  * Impose necessary and sufficient conditions on a devices's table such
582  * that any incoming bio which respects its logical_block_size can be
583  * processed successfully.  If it falls across the boundary between
584  * two or more targets, the size of each piece it gets split into must
585  * be compatible with the logical_block_size of the target processing it.
586  */
587 static int validate_hardware_logical_block_alignment(struct dm_table *table,
588 						 struct queue_limits *limits)
589 {
590 	/*
591 	 * This function uses arithmetic modulo the logical_block_size
592 	 * (in units of 512-byte sectors).
593 	 */
594 	unsigned short device_logical_block_size_sects =
595 		limits->logical_block_size >> SECTOR_SHIFT;
596 
597 	/*
598 	 * Offset of the start of the next table entry, mod logical_block_size.
599 	 */
600 	unsigned short next_target_start = 0;
601 
602 	/*
603 	 * Given an aligned bio that extends beyond the end of a
604 	 * target, how many sectors must the next target handle?
605 	 */
606 	unsigned short remaining = 0;
607 
608 	struct dm_target *ti;
609 	struct queue_limits ti_limits;
610 	unsigned i;
611 
612 	/*
613 	 * Check each entry in the table in turn.
614 	 */
615 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
616 		ti = dm_table_get_target(table, i);
617 
618 		blk_set_stacking_limits(&ti_limits);
619 
620 		/* combine all target devices' limits */
621 		if (ti->type->iterate_devices)
622 			ti->type->iterate_devices(ti, dm_set_device_limits,
623 						  &ti_limits);
624 
625 		/*
626 		 * If the remaining sectors fall entirely within this
627 		 * table entry are they compatible with its logical_block_size?
628 		 */
629 		if (remaining < ti->len &&
630 		    remaining & ((ti_limits.logical_block_size >>
631 				  SECTOR_SHIFT) - 1))
632 			break;	/* Error */
633 
634 		next_target_start =
635 		    (unsigned short) ((next_target_start + ti->len) &
636 				      (device_logical_block_size_sects - 1));
637 		remaining = next_target_start ?
638 		    device_logical_block_size_sects - next_target_start : 0;
639 	}
640 
641 	if (remaining) {
642 		DMWARN("%s: table line %u (start sect %llu len %llu) "
643 		       "not aligned to h/w logical block size %u",
644 		       dm_device_name(table->md), i,
645 		       (unsigned long long) ti->begin,
646 		       (unsigned long long) ti->len,
647 		       limits->logical_block_size);
648 		return -EINVAL;
649 	}
650 
651 	return 0;
652 }
653 
654 int dm_table_add_target(struct dm_table *t, const char *type,
655 			sector_t start, sector_t len, char *params)
656 {
657 	int r = -EINVAL, argc;
658 	char **argv;
659 	struct dm_target *tgt;
660 
661 	if (t->singleton) {
662 		DMERR("%s: target type %s must appear alone in table",
663 		      dm_device_name(t->md), t->targets->type->name);
664 		return -EINVAL;
665 	}
666 
667 	BUG_ON(t->num_targets >= t->num_allocated);
668 
669 	tgt = t->targets + t->num_targets;
670 	memset(tgt, 0, sizeof(*tgt));
671 
672 	if (!len) {
673 		DMERR("%s: zero-length target", dm_device_name(t->md));
674 		return -EINVAL;
675 	}
676 
677 	tgt->type = dm_get_target_type(type);
678 	if (!tgt->type) {
679 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
680 		return -EINVAL;
681 	}
682 
683 	if (dm_target_needs_singleton(tgt->type)) {
684 		if (t->num_targets) {
685 			tgt->error = "singleton target type must appear alone in table";
686 			goto bad;
687 		}
688 		t->singleton = true;
689 	}
690 
691 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
692 		tgt->error = "target type may not be included in a read-only table";
693 		goto bad;
694 	}
695 
696 	if (t->immutable_target_type) {
697 		if (t->immutable_target_type != tgt->type) {
698 			tgt->error = "immutable target type cannot be mixed with other target types";
699 			goto bad;
700 		}
701 	} else if (dm_target_is_immutable(tgt->type)) {
702 		if (t->num_targets) {
703 			tgt->error = "immutable target type cannot be mixed with other target types";
704 			goto bad;
705 		}
706 		t->immutable_target_type = tgt->type;
707 	}
708 
709 	if (dm_target_has_integrity(tgt->type))
710 		t->integrity_added = 1;
711 
712 	tgt->table = t;
713 	tgt->begin = start;
714 	tgt->len = len;
715 	tgt->error = "Unknown error";
716 
717 	/*
718 	 * Does this target adjoin the previous one ?
719 	 */
720 	if (!adjoin(t, tgt)) {
721 		tgt->error = "Gap in table";
722 		goto bad;
723 	}
724 
725 	r = dm_split_args(&argc, &argv, params);
726 	if (r) {
727 		tgt->error = "couldn't split parameters (insufficient memory)";
728 		goto bad;
729 	}
730 
731 	r = tgt->type->ctr(tgt, argc, argv);
732 	kfree(argv);
733 	if (r)
734 		goto bad;
735 
736 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
737 
738 	if (!tgt->num_discard_bios && tgt->discards_supported)
739 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
740 		       dm_device_name(t->md), type);
741 
742 	return 0;
743 
744  bad:
745 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
746 	dm_put_target_type(tgt->type);
747 	return r;
748 }
749 
750 /*
751  * Target argument parsing helpers.
752  */
753 static int validate_next_arg(const struct dm_arg *arg,
754 			     struct dm_arg_set *arg_set,
755 			     unsigned *value, char **error, unsigned grouped)
756 {
757 	const char *arg_str = dm_shift_arg(arg_set);
758 	char dummy;
759 
760 	if (!arg_str ||
761 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
762 	    (*value < arg->min) ||
763 	    (*value > arg->max) ||
764 	    (grouped && arg_set->argc < *value)) {
765 		*error = arg->error;
766 		return -EINVAL;
767 	}
768 
769 	return 0;
770 }
771 
772 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
773 		unsigned *value, char **error)
774 {
775 	return validate_next_arg(arg, arg_set, value, error, 0);
776 }
777 EXPORT_SYMBOL(dm_read_arg);
778 
779 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
780 		      unsigned *value, char **error)
781 {
782 	return validate_next_arg(arg, arg_set, value, error, 1);
783 }
784 EXPORT_SYMBOL(dm_read_arg_group);
785 
786 const char *dm_shift_arg(struct dm_arg_set *as)
787 {
788 	char *r;
789 
790 	if (as->argc) {
791 		as->argc--;
792 		r = *as->argv;
793 		as->argv++;
794 		return r;
795 	}
796 
797 	return NULL;
798 }
799 EXPORT_SYMBOL(dm_shift_arg);
800 
801 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
802 {
803 	BUG_ON(as->argc < num_args);
804 	as->argc -= num_args;
805 	as->argv += num_args;
806 }
807 EXPORT_SYMBOL(dm_consume_args);
808 
809 static bool __table_type_bio_based(enum dm_queue_mode table_type)
810 {
811 	return (table_type == DM_TYPE_BIO_BASED ||
812 		table_type == DM_TYPE_DAX_BIO_BASED);
813 }
814 
815 static bool __table_type_request_based(enum dm_queue_mode table_type)
816 {
817 	return table_type == DM_TYPE_REQUEST_BASED;
818 }
819 
820 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
821 {
822 	t->type = type;
823 }
824 EXPORT_SYMBOL_GPL(dm_table_set_type);
825 
826 /* validate the dax capability of the target device span */
827 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
828 			sector_t start, sector_t len, void *data)
829 {
830 	int blocksize = *(int *) data, id;
831 	bool rc;
832 
833 	id = dax_read_lock();
834 	rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
835 	dax_read_unlock(id);
836 
837 	return rc;
838 }
839 
840 /* Check devices support synchronous DAX */
841 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
842 					      sector_t start, sector_t len, void *data)
843 {
844 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
845 }
846 
847 bool dm_table_supports_dax(struct dm_table *t,
848 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
849 {
850 	struct dm_target *ti;
851 	unsigned i;
852 
853 	/* Ensure that all targets support DAX. */
854 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
855 		ti = dm_table_get_target(t, i);
856 
857 		if (!ti->type->direct_access)
858 			return false;
859 
860 		if (!ti->type->iterate_devices ||
861 		    ti->type->iterate_devices(ti, iterate_fn, blocksize))
862 			return false;
863 	}
864 
865 	return true;
866 }
867 
868 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
869 				  sector_t start, sector_t len, void *data)
870 {
871 	struct block_device *bdev = dev->bdev;
872 	struct request_queue *q = bdev_get_queue(bdev);
873 
874 	/* request-based cannot stack on partitions! */
875 	if (bdev_is_partition(bdev))
876 		return false;
877 
878 	return queue_is_mq(q);
879 }
880 
881 static int dm_table_determine_type(struct dm_table *t)
882 {
883 	unsigned i;
884 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
885 	struct dm_target *tgt;
886 	struct list_head *devices = dm_table_get_devices(t);
887 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
888 	int page_size = PAGE_SIZE;
889 
890 	if (t->type != DM_TYPE_NONE) {
891 		/* target already set the table's type */
892 		if (t->type == DM_TYPE_BIO_BASED) {
893 			/* possibly upgrade to a variant of bio-based */
894 			goto verify_bio_based;
895 		}
896 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
897 		goto verify_rq_based;
898 	}
899 
900 	for (i = 0; i < t->num_targets; i++) {
901 		tgt = t->targets + i;
902 		if (dm_target_hybrid(tgt))
903 			hybrid = 1;
904 		else if (dm_target_request_based(tgt))
905 			request_based = 1;
906 		else
907 			bio_based = 1;
908 
909 		if (bio_based && request_based) {
910 			DMERR("Inconsistent table: different target types"
911 			      " can't be mixed up");
912 			return -EINVAL;
913 		}
914 	}
915 
916 	if (hybrid && !bio_based && !request_based) {
917 		/*
918 		 * The targets can work either way.
919 		 * Determine the type from the live device.
920 		 * Default to bio-based if device is new.
921 		 */
922 		if (__table_type_request_based(live_md_type))
923 			request_based = 1;
924 		else
925 			bio_based = 1;
926 	}
927 
928 	if (bio_based) {
929 verify_bio_based:
930 		/* We must use this table as bio-based */
931 		t->type = DM_TYPE_BIO_BASED;
932 		if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
933 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
934 			t->type = DM_TYPE_DAX_BIO_BASED;
935 		}
936 		return 0;
937 	}
938 
939 	BUG_ON(!request_based); /* No targets in this table */
940 
941 	t->type = DM_TYPE_REQUEST_BASED;
942 
943 verify_rq_based:
944 	/*
945 	 * Request-based dm supports only tables that have a single target now.
946 	 * To support multiple targets, request splitting support is needed,
947 	 * and that needs lots of changes in the block-layer.
948 	 * (e.g. request completion process for partial completion.)
949 	 */
950 	if (t->num_targets > 1) {
951 		DMERR("request-based DM doesn't support multiple targets");
952 		return -EINVAL;
953 	}
954 
955 	if (list_empty(devices)) {
956 		int srcu_idx;
957 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
958 
959 		/* inherit live table's type */
960 		if (live_table)
961 			t->type = live_table->type;
962 		dm_put_live_table(t->md, srcu_idx);
963 		return 0;
964 	}
965 
966 	tgt = dm_table_get_immutable_target(t);
967 	if (!tgt) {
968 		DMERR("table load rejected: immutable target is required");
969 		return -EINVAL;
970 	} else if (tgt->max_io_len) {
971 		DMERR("table load rejected: immutable target that splits IO is not supported");
972 		return -EINVAL;
973 	}
974 
975 	/* Non-request-stackable devices can't be used for request-based dm */
976 	if (!tgt->type->iterate_devices ||
977 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
978 		DMERR("table load rejected: including non-request-stackable devices");
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
986 {
987 	return t->type;
988 }
989 
990 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
991 {
992 	return t->immutable_target_type;
993 }
994 
995 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
996 {
997 	/* Immutable target is implicitly a singleton */
998 	if (t->num_targets > 1 ||
999 	    !dm_target_is_immutable(t->targets[0].type))
1000 		return NULL;
1001 
1002 	return t->targets;
1003 }
1004 
1005 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1006 {
1007 	struct dm_target *ti;
1008 	unsigned i;
1009 
1010 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1011 		ti = dm_table_get_target(t, i);
1012 		if (dm_target_is_wildcard(ti->type))
1013 			return ti;
1014 	}
1015 
1016 	return NULL;
1017 }
1018 
1019 bool dm_table_bio_based(struct dm_table *t)
1020 {
1021 	return __table_type_bio_based(dm_table_get_type(t));
1022 }
1023 
1024 bool dm_table_request_based(struct dm_table *t)
1025 {
1026 	return __table_type_request_based(dm_table_get_type(t));
1027 }
1028 
1029 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1030 {
1031 	enum dm_queue_mode type = dm_table_get_type(t);
1032 	unsigned per_io_data_size = 0;
1033 	unsigned min_pool_size = 0;
1034 	struct dm_target *ti;
1035 	unsigned i;
1036 
1037 	if (unlikely(type == DM_TYPE_NONE)) {
1038 		DMWARN("no table type is set, can't allocate mempools");
1039 		return -EINVAL;
1040 	}
1041 
1042 	if (__table_type_bio_based(type))
1043 		for (i = 0; i < t->num_targets; i++) {
1044 			ti = t->targets + i;
1045 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1046 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1047 		}
1048 
1049 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1050 					   per_io_data_size, min_pool_size);
1051 	if (!t->mempools)
1052 		return -ENOMEM;
1053 
1054 	return 0;
1055 }
1056 
1057 void dm_table_free_md_mempools(struct dm_table *t)
1058 {
1059 	dm_free_md_mempools(t->mempools);
1060 	t->mempools = NULL;
1061 }
1062 
1063 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1064 {
1065 	return t->mempools;
1066 }
1067 
1068 static int setup_indexes(struct dm_table *t)
1069 {
1070 	int i;
1071 	unsigned int total = 0;
1072 	sector_t *indexes;
1073 
1074 	/* allocate the space for *all* the indexes */
1075 	for (i = t->depth - 2; i >= 0; i--) {
1076 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1077 		total += t->counts[i];
1078 	}
1079 
1080 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1081 	if (!indexes)
1082 		return -ENOMEM;
1083 
1084 	/* set up internal nodes, bottom-up */
1085 	for (i = t->depth - 2; i >= 0; i--) {
1086 		t->index[i] = indexes;
1087 		indexes += (KEYS_PER_NODE * t->counts[i]);
1088 		setup_btree_index(i, t);
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Builds the btree to index the map.
1096  */
1097 static int dm_table_build_index(struct dm_table *t)
1098 {
1099 	int r = 0;
1100 	unsigned int leaf_nodes;
1101 
1102 	/* how many indexes will the btree have ? */
1103 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1104 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1105 
1106 	/* leaf layer has already been set up */
1107 	t->counts[t->depth - 1] = leaf_nodes;
1108 	t->index[t->depth - 1] = t->highs;
1109 
1110 	if (t->depth >= 2)
1111 		r = setup_indexes(t);
1112 
1113 	return r;
1114 }
1115 
1116 static bool integrity_profile_exists(struct gendisk *disk)
1117 {
1118 	return !!blk_get_integrity(disk);
1119 }
1120 
1121 /*
1122  * Get a disk whose integrity profile reflects the table's profile.
1123  * Returns NULL if integrity support was inconsistent or unavailable.
1124  */
1125 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1126 {
1127 	struct list_head *devices = dm_table_get_devices(t);
1128 	struct dm_dev_internal *dd = NULL;
1129 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1130 	unsigned i;
1131 
1132 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1133 		struct dm_target *ti = dm_table_get_target(t, i);
1134 		if (!dm_target_passes_integrity(ti->type))
1135 			goto no_integrity;
1136 	}
1137 
1138 	list_for_each_entry(dd, devices, list) {
1139 		template_disk = dd->dm_dev->bdev->bd_disk;
1140 		if (!integrity_profile_exists(template_disk))
1141 			goto no_integrity;
1142 		else if (prev_disk &&
1143 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1144 			goto no_integrity;
1145 		prev_disk = template_disk;
1146 	}
1147 
1148 	return template_disk;
1149 
1150 no_integrity:
1151 	if (prev_disk)
1152 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1153 		       dm_device_name(t->md),
1154 		       prev_disk->disk_name,
1155 		       template_disk->disk_name);
1156 	return NULL;
1157 }
1158 
1159 /*
1160  * Register the mapped device for blk_integrity support if the
1161  * underlying devices have an integrity profile.  But all devices may
1162  * not have matching profiles (checking all devices isn't reliable
1163  * during table load because this table may use other DM device(s) which
1164  * must be resumed before they will have an initialized integity
1165  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1166  * profile validation: First pass during table load, final pass during
1167  * resume.
1168  */
1169 static int dm_table_register_integrity(struct dm_table *t)
1170 {
1171 	struct mapped_device *md = t->md;
1172 	struct gendisk *template_disk = NULL;
1173 
1174 	/* If target handles integrity itself do not register it here. */
1175 	if (t->integrity_added)
1176 		return 0;
1177 
1178 	template_disk = dm_table_get_integrity_disk(t);
1179 	if (!template_disk)
1180 		return 0;
1181 
1182 	if (!integrity_profile_exists(dm_disk(md))) {
1183 		t->integrity_supported = true;
1184 		/*
1185 		 * Register integrity profile during table load; we can do
1186 		 * this because the final profile must match during resume.
1187 		 */
1188 		blk_integrity_register(dm_disk(md),
1189 				       blk_get_integrity(template_disk));
1190 		return 0;
1191 	}
1192 
1193 	/*
1194 	 * If DM device already has an initialized integrity
1195 	 * profile the new profile should not conflict.
1196 	 */
1197 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1198 		DMWARN("%s: conflict with existing integrity profile: "
1199 		       "%s profile mismatch",
1200 		       dm_device_name(t->md),
1201 		       template_disk->disk_name);
1202 		return 1;
1203 	}
1204 
1205 	/* Preserve existing integrity profile */
1206 	t->integrity_supported = true;
1207 	return 0;
1208 }
1209 
1210 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1211 
1212 struct dm_keyslot_manager {
1213 	struct blk_keyslot_manager ksm;
1214 	struct mapped_device *md;
1215 };
1216 
1217 struct dm_keyslot_evict_args {
1218 	const struct blk_crypto_key *key;
1219 	int err;
1220 };
1221 
1222 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223 				     sector_t start, sector_t len, void *data)
1224 {
1225 	struct dm_keyslot_evict_args *args = data;
1226 	int err;
1227 
1228 	err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1229 	if (!args->err)
1230 		args->err = err;
1231 	/* Always try to evict the key from all devices. */
1232 	return 0;
1233 }
1234 
1235 /*
1236  * When an inline encryption key is evicted from a device-mapper device, evict
1237  * it from all the underlying devices.
1238  */
1239 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1240 			    const struct blk_crypto_key *key, unsigned int slot)
1241 {
1242 	struct dm_keyslot_manager *dksm = container_of(ksm,
1243 						       struct dm_keyslot_manager,
1244 						       ksm);
1245 	struct mapped_device *md = dksm->md;
1246 	struct dm_keyslot_evict_args args = { key };
1247 	struct dm_table *t;
1248 	int srcu_idx;
1249 	int i;
1250 	struct dm_target *ti;
1251 
1252 	t = dm_get_live_table(md, &srcu_idx);
1253 	if (!t)
1254 		return 0;
1255 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1256 		ti = dm_table_get_target(t, i);
1257 		if (!ti->type->iterate_devices)
1258 			continue;
1259 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1260 	}
1261 	dm_put_live_table(md, srcu_idx);
1262 	return args.err;
1263 }
1264 
1265 static struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1266 	.keyslot_evict = dm_keyslot_evict,
1267 };
1268 
1269 static int device_intersect_crypto_modes(struct dm_target *ti,
1270 					 struct dm_dev *dev, sector_t start,
1271 					 sector_t len, void *data)
1272 {
1273 	struct blk_keyslot_manager *parent = data;
1274 	struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1275 
1276 	blk_ksm_intersect_modes(parent, child);
1277 	return 0;
1278 }
1279 
1280 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1281 {
1282 	struct dm_keyslot_manager *dksm = container_of(ksm,
1283 						       struct dm_keyslot_manager,
1284 						       ksm);
1285 
1286 	if (!ksm)
1287 		return;
1288 
1289 	blk_ksm_destroy(ksm);
1290 	kfree(dksm);
1291 }
1292 
1293 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1294 {
1295 	dm_destroy_keyslot_manager(t->ksm);
1296 	t->ksm = NULL;
1297 }
1298 
1299 /*
1300  * Constructs and initializes t->ksm with a keyslot manager that
1301  * represents the common set of crypto capabilities of the devices
1302  * described by the dm_table. However, if the constructed keyslot
1303  * manager does not support a superset of the crypto capabilities
1304  * supported by the current keyslot manager of the mapped_device,
1305  * it returns an error instead, since we don't support restricting
1306  * crypto capabilities on table changes. Finally, if the constructed
1307  * keyslot manager doesn't actually support any crypto modes at all,
1308  * it just returns NULL.
1309  */
1310 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1311 {
1312 	struct dm_keyslot_manager *dksm;
1313 	struct blk_keyslot_manager *ksm;
1314 	struct dm_target *ti;
1315 	unsigned int i;
1316 	bool ksm_is_empty = true;
1317 
1318 	dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1319 	if (!dksm)
1320 		return -ENOMEM;
1321 	dksm->md = t->md;
1322 
1323 	ksm = &dksm->ksm;
1324 	blk_ksm_init_passthrough(ksm);
1325 	ksm->ksm_ll_ops = dm_ksm_ll_ops;
1326 	ksm->max_dun_bytes_supported = UINT_MAX;
1327 	memset(ksm->crypto_modes_supported, 0xFF,
1328 	       sizeof(ksm->crypto_modes_supported));
1329 
1330 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1331 		ti = dm_table_get_target(t, i);
1332 
1333 		if (!dm_target_passes_crypto(ti->type)) {
1334 			blk_ksm_intersect_modes(ksm, NULL);
1335 			break;
1336 		}
1337 		if (!ti->type->iterate_devices)
1338 			continue;
1339 		ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1340 					  ksm);
1341 	}
1342 
1343 	if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1344 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1345 		dm_destroy_keyslot_manager(ksm);
1346 		return -EINVAL;
1347 	}
1348 
1349 	/*
1350 	 * If the new KSM doesn't actually support any crypto modes, we may as
1351 	 * well represent it with a NULL ksm.
1352 	 */
1353 	ksm_is_empty = true;
1354 	for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1355 		if (ksm->crypto_modes_supported[i]) {
1356 			ksm_is_empty = false;
1357 			break;
1358 		}
1359 	}
1360 
1361 	if (ksm_is_empty) {
1362 		dm_destroy_keyslot_manager(ksm);
1363 		ksm = NULL;
1364 	}
1365 
1366 	/*
1367 	 * t->ksm is only set temporarily while the table is being set
1368 	 * up, and it gets set to NULL after the capabilities have
1369 	 * been transferred to the request_queue.
1370 	 */
1371 	t->ksm = ksm;
1372 
1373 	return 0;
1374 }
1375 
1376 static void dm_update_keyslot_manager(struct request_queue *q,
1377 				      struct dm_table *t)
1378 {
1379 	if (!t->ksm)
1380 		return;
1381 
1382 	/* Make the ksm less restrictive */
1383 	if (!q->ksm) {
1384 		blk_ksm_register(t->ksm, q);
1385 	} else {
1386 		blk_ksm_update_capabilities(q->ksm, t->ksm);
1387 		dm_destroy_keyslot_manager(t->ksm);
1388 	}
1389 	t->ksm = NULL;
1390 }
1391 
1392 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1393 
1394 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1395 {
1396 	return 0;
1397 }
1398 
1399 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1400 {
1401 }
1402 
1403 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1404 {
1405 }
1406 
1407 static void dm_update_keyslot_manager(struct request_queue *q,
1408 				      struct dm_table *t)
1409 {
1410 }
1411 
1412 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1413 
1414 /*
1415  * Prepares the table for use by building the indices,
1416  * setting the type, and allocating mempools.
1417  */
1418 int dm_table_complete(struct dm_table *t)
1419 {
1420 	int r;
1421 
1422 	r = dm_table_determine_type(t);
1423 	if (r) {
1424 		DMERR("unable to determine table type");
1425 		return r;
1426 	}
1427 
1428 	r = dm_table_build_index(t);
1429 	if (r) {
1430 		DMERR("unable to build btrees");
1431 		return r;
1432 	}
1433 
1434 	r = dm_table_register_integrity(t);
1435 	if (r) {
1436 		DMERR("could not register integrity profile.");
1437 		return r;
1438 	}
1439 
1440 	r = dm_table_construct_keyslot_manager(t);
1441 	if (r) {
1442 		DMERR("could not construct keyslot manager.");
1443 		return r;
1444 	}
1445 
1446 	r = dm_table_alloc_md_mempools(t, t->md);
1447 	if (r)
1448 		DMERR("unable to allocate mempools");
1449 
1450 	return r;
1451 }
1452 
1453 static DEFINE_MUTEX(_event_lock);
1454 void dm_table_event_callback(struct dm_table *t,
1455 			     void (*fn)(void *), void *context)
1456 {
1457 	mutex_lock(&_event_lock);
1458 	t->event_fn = fn;
1459 	t->event_context = context;
1460 	mutex_unlock(&_event_lock);
1461 }
1462 
1463 void dm_table_event(struct dm_table *t)
1464 {
1465 	mutex_lock(&_event_lock);
1466 	if (t->event_fn)
1467 		t->event_fn(t->event_context);
1468 	mutex_unlock(&_event_lock);
1469 }
1470 EXPORT_SYMBOL(dm_table_event);
1471 
1472 inline sector_t dm_table_get_size(struct dm_table *t)
1473 {
1474 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1475 }
1476 EXPORT_SYMBOL(dm_table_get_size);
1477 
1478 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1479 {
1480 	if (index >= t->num_targets)
1481 		return NULL;
1482 
1483 	return t->targets + index;
1484 }
1485 
1486 /*
1487  * Search the btree for the correct target.
1488  *
1489  * Caller should check returned pointer for NULL
1490  * to trap I/O beyond end of device.
1491  */
1492 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1493 {
1494 	unsigned int l, n = 0, k = 0;
1495 	sector_t *node;
1496 
1497 	if (unlikely(sector >= dm_table_get_size(t)))
1498 		return NULL;
1499 
1500 	for (l = 0; l < t->depth; l++) {
1501 		n = get_child(n, k);
1502 		node = get_node(t, l, n);
1503 
1504 		for (k = 0; k < KEYS_PER_NODE; k++)
1505 			if (node[k] >= sector)
1506 				break;
1507 	}
1508 
1509 	return &t->targets[(KEYS_PER_NODE * n) + k];
1510 }
1511 
1512 /*
1513  * type->iterate_devices() should be called when the sanity check needs to
1514  * iterate and check all underlying data devices. iterate_devices() will
1515  * iterate all underlying data devices until it encounters a non-zero return
1516  * code, returned by whether the input iterate_devices_callout_fn, or
1517  * iterate_devices() itself internally.
1518  *
1519  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1520  * iterate multiple underlying devices internally, in which case a non-zero
1521  * return code returned by iterate_devices_callout_fn will stop the iteration
1522  * in advance.
1523  *
1524  * Cases requiring _any_ underlying device supporting some kind of attribute,
1525  * should use the iteration structure like dm_table_any_dev_attr(), or call
1526  * it directly. @func should handle semantics of positive examples, e.g.
1527  * capable of something.
1528  *
1529  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1530  * should use the iteration structure like dm_table_supports_nowait() or
1531  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1532  * uses an @anti_func that handle semantics of counter examples, e.g. not
1533  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1534  */
1535 static bool dm_table_any_dev_attr(struct dm_table *t,
1536 				  iterate_devices_callout_fn func, void *data)
1537 {
1538 	struct dm_target *ti;
1539 	unsigned int i;
1540 
1541 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1542 		ti = dm_table_get_target(t, i);
1543 
1544 		if (ti->type->iterate_devices &&
1545 		    ti->type->iterate_devices(ti, func, data))
1546 			return true;
1547         }
1548 
1549 	return false;
1550 }
1551 
1552 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1553 			sector_t start, sector_t len, void *data)
1554 {
1555 	unsigned *num_devices = data;
1556 
1557 	(*num_devices)++;
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Check whether a table has no data devices attached using each
1564  * target's iterate_devices method.
1565  * Returns false if the result is unknown because a target doesn't
1566  * support iterate_devices.
1567  */
1568 bool dm_table_has_no_data_devices(struct dm_table *table)
1569 {
1570 	struct dm_target *ti;
1571 	unsigned i, num_devices;
1572 
1573 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1574 		ti = dm_table_get_target(table, i);
1575 
1576 		if (!ti->type->iterate_devices)
1577 			return false;
1578 
1579 		num_devices = 0;
1580 		ti->type->iterate_devices(ti, count_device, &num_devices);
1581 		if (num_devices)
1582 			return false;
1583 	}
1584 
1585 	return true;
1586 }
1587 
1588 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1589 				  sector_t start, sector_t len, void *data)
1590 {
1591 	struct request_queue *q = bdev_get_queue(dev->bdev);
1592 	enum blk_zoned_model *zoned_model = data;
1593 
1594 	return blk_queue_zoned_model(q) != *zoned_model;
1595 }
1596 
1597 static bool dm_table_supports_zoned_model(struct dm_table *t,
1598 					  enum blk_zoned_model zoned_model)
1599 {
1600 	struct dm_target *ti;
1601 	unsigned i;
1602 
1603 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1604 		ti = dm_table_get_target(t, i);
1605 
1606 		if (zoned_model == BLK_ZONED_HM &&
1607 		    !dm_target_supports_zoned_hm(ti->type))
1608 			return false;
1609 
1610 		if (!ti->type->iterate_devices ||
1611 		    ti->type->iterate_devices(ti, device_not_zoned_model, &zoned_model))
1612 			return false;
1613 	}
1614 
1615 	return true;
1616 }
1617 
1618 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1619 					   sector_t start, sector_t len, void *data)
1620 {
1621 	struct request_queue *q = bdev_get_queue(dev->bdev);
1622 	unsigned int *zone_sectors = data;
1623 
1624 	return blk_queue_zone_sectors(q) != *zone_sectors;
1625 }
1626 
1627 static int validate_hardware_zoned_model(struct dm_table *table,
1628 					 enum blk_zoned_model zoned_model,
1629 					 unsigned int zone_sectors)
1630 {
1631 	if (zoned_model == BLK_ZONED_NONE)
1632 		return 0;
1633 
1634 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1635 		DMERR("%s: zoned model is not consistent across all devices",
1636 		      dm_device_name(table->md));
1637 		return -EINVAL;
1638 	}
1639 
1640 	/* Check zone size validity and compatibility */
1641 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1642 		return -EINVAL;
1643 
1644 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1645 		DMERR("%s: zone sectors is not consistent across all devices",
1646 		      dm_device_name(table->md));
1647 		return -EINVAL;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 /*
1654  * Establish the new table's queue_limits and validate them.
1655  */
1656 int dm_calculate_queue_limits(struct dm_table *table,
1657 			      struct queue_limits *limits)
1658 {
1659 	struct dm_target *ti;
1660 	struct queue_limits ti_limits;
1661 	unsigned i;
1662 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1663 	unsigned int zone_sectors = 0;
1664 
1665 	blk_set_stacking_limits(limits);
1666 
1667 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1668 		blk_set_stacking_limits(&ti_limits);
1669 
1670 		ti = dm_table_get_target(table, i);
1671 
1672 		if (!ti->type->iterate_devices)
1673 			goto combine_limits;
1674 
1675 		/*
1676 		 * Combine queue limits of all the devices this target uses.
1677 		 */
1678 		ti->type->iterate_devices(ti, dm_set_device_limits,
1679 					  &ti_limits);
1680 
1681 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1682 			/*
1683 			 * After stacking all limits, validate all devices
1684 			 * in table support this zoned model and zone sectors.
1685 			 */
1686 			zoned_model = ti_limits.zoned;
1687 			zone_sectors = ti_limits.chunk_sectors;
1688 		}
1689 
1690 		/* Set I/O hints portion of queue limits */
1691 		if (ti->type->io_hints)
1692 			ti->type->io_hints(ti, &ti_limits);
1693 
1694 		/*
1695 		 * Check each device area is consistent with the target's
1696 		 * overall queue limits.
1697 		 */
1698 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1699 					      &ti_limits))
1700 			return -EINVAL;
1701 
1702 combine_limits:
1703 		/*
1704 		 * Merge this target's queue limits into the overall limits
1705 		 * for the table.
1706 		 */
1707 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1708 			DMWARN("%s: adding target device "
1709 			       "(start sect %llu len %llu) "
1710 			       "caused an alignment inconsistency",
1711 			       dm_device_name(table->md),
1712 			       (unsigned long long) ti->begin,
1713 			       (unsigned long long) ti->len);
1714 	}
1715 
1716 	/*
1717 	 * Verify that the zoned model and zone sectors, as determined before
1718 	 * any .io_hints override, are the same across all devices in the table.
1719 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1720 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1721 	 * BUT...
1722 	 */
1723 	if (limits->zoned != BLK_ZONED_NONE) {
1724 		/*
1725 		 * ...IF the above limits stacking determined a zoned model
1726 		 * validate that all of the table's devices conform to it.
1727 		 */
1728 		zoned_model = limits->zoned;
1729 		zone_sectors = limits->chunk_sectors;
1730 	}
1731 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1732 		return -EINVAL;
1733 
1734 	return validate_hardware_logical_block_alignment(table, limits);
1735 }
1736 
1737 /*
1738  * Verify that all devices have an integrity profile that matches the
1739  * DM device's registered integrity profile.  If the profiles don't
1740  * match then unregister the DM device's integrity profile.
1741  */
1742 static void dm_table_verify_integrity(struct dm_table *t)
1743 {
1744 	struct gendisk *template_disk = NULL;
1745 
1746 	if (t->integrity_added)
1747 		return;
1748 
1749 	if (t->integrity_supported) {
1750 		/*
1751 		 * Verify that the original integrity profile
1752 		 * matches all the devices in this table.
1753 		 */
1754 		template_disk = dm_table_get_integrity_disk(t);
1755 		if (template_disk &&
1756 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1757 			return;
1758 	}
1759 
1760 	if (integrity_profile_exists(dm_disk(t->md))) {
1761 		DMWARN("%s: unable to establish an integrity profile",
1762 		       dm_device_name(t->md));
1763 		blk_integrity_unregister(dm_disk(t->md));
1764 	}
1765 }
1766 
1767 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1768 				sector_t start, sector_t len, void *data)
1769 {
1770 	unsigned long flush = (unsigned long) data;
1771 	struct request_queue *q = bdev_get_queue(dev->bdev);
1772 
1773 	return (q->queue_flags & flush);
1774 }
1775 
1776 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1777 {
1778 	struct dm_target *ti;
1779 	unsigned i;
1780 
1781 	/*
1782 	 * Require at least one underlying device to support flushes.
1783 	 * t->devices includes internal dm devices such as mirror logs
1784 	 * so we need to use iterate_devices here, which targets
1785 	 * supporting flushes must provide.
1786 	 */
1787 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1788 		ti = dm_table_get_target(t, i);
1789 
1790 		if (!ti->num_flush_bios)
1791 			continue;
1792 
1793 		if (ti->flush_supported)
1794 			return true;
1795 
1796 		if (ti->type->iterate_devices &&
1797 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1798 			return true;
1799 	}
1800 
1801 	return false;
1802 }
1803 
1804 static int device_dax_write_cache_enabled(struct dm_target *ti,
1805 					  struct dm_dev *dev, sector_t start,
1806 					  sector_t len, void *data)
1807 {
1808 	struct dax_device *dax_dev = dev->dax_dev;
1809 
1810 	if (!dax_dev)
1811 		return false;
1812 
1813 	if (dax_write_cache_enabled(dax_dev))
1814 		return true;
1815 	return false;
1816 }
1817 
1818 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1819 				sector_t start, sector_t len, void *data)
1820 {
1821 	struct request_queue *q = bdev_get_queue(dev->bdev);
1822 
1823 	return !blk_queue_nonrot(q);
1824 }
1825 
1826 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1827 			     sector_t start, sector_t len, void *data)
1828 {
1829 	struct request_queue *q = bdev_get_queue(dev->bdev);
1830 
1831 	return !blk_queue_add_random(q);
1832 }
1833 
1834 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1835 					 sector_t start, sector_t len, void *data)
1836 {
1837 	struct request_queue *q = bdev_get_queue(dev->bdev);
1838 
1839 	return !q->limits.max_write_same_sectors;
1840 }
1841 
1842 static bool dm_table_supports_write_same(struct dm_table *t)
1843 {
1844 	struct dm_target *ti;
1845 	unsigned i;
1846 
1847 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1848 		ti = dm_table_get_target(t, i);
1849 
1850 		if (!ti->num_write_same_bios)
1851 			return false;
1852 
1853 		if (!ti->type->iterate_devices ||
1854 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1855 			return false;
1856 	}
1857 
1858 	return true;
1859 }
1860 
1861 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1862 					   sector_t start, sector_t len, void *data)
1863 {
1864 	struct request_queue *q = bdev_get_queue(dev->bdev);
1865 
1866 	return !q->limits.max_write_zeroes_sectors;
1867 }
1868 
1869 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1870 {
1871 	struct dm_target *ti;
1872 	unsigned i = 0;
1873 
1874 	while (i < dm_table_get_num_targets(t)) {
1875 		ti = dm_table_get_target(t, i++);
1876 
1877 		if (!ti->num_write_zeroes_bios)
1878 			return false;
1879 
1880 		if (!ti->type->iterate_devices ||
1881 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1882 			return false;
1883 	}
1884 
1885 	return true;
1886 }
1887 
1888 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1889 				     sector_t start, sector_t len, void *data)
1890 {
1891 	struct request_queue *q = bdev_get_queue(dev->bdev);
1892 
1893 	return !blk_queue_nowait(q);
1894 }
1895 
1896 static bool dm_table_supports_nowait(struct dm_table *t)
1897 {
1898 	struct dm_target *ti;
1899 	unsigned i = 0;
1900 
1901 	while (i < dm_table_get_num_targets(t)) {
1902 		ti = dm_table_get_target(t, i++);
1903 
1904 		if (!dm_target_supports_nowait(ti->type))
1905 			return false;
1906 
1907 		if (!ti->type->iterate_devices ||
1908 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1909 			return false;
1910 	}
1911 
1912 	return true;
1913 }
1914 
1915 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1916 				      sector_t start, sector_t len, void *data)
1917 {
1918 	struct request_queue *q = bdev_get_queue(dev->bdev);
1919 
1920 	return !blk_queue_discard(q);
1921 }
1922 
1923 static bool dm_table_supports_discards(struct dm_table *t)
1924 {
1925 	struct dm_target *ti;
1926 	unsigned i;
1927 
1928 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1929 		ti = dm_table_get_target(t, i);
1930 
1931 		if (!ti->num_discard_bios)
1932 			return false;
1933 
1934 		/*
1935 		 * Either the target provides discard support (as implied by setting
1936 		 * 'discards_supported') or it relies on _all_ data devices having
1937 		 * discard support.
1938 		 */
1939 		if (!ti->discards_supported &&
1940 		    (!ti->type->iterate_devices ||
1941 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1942 			return false;
1943 	}
1944 
1945 	return true;
1946 }
1947 
1948 static int device_not_secure_erase_capable(struct dm_target *ti,
1949 					   struct dm_dev *dev, sector_t start,
1950 					   sector_t len, void *data)
1951 {
1952 	struct request_queue *q = bdev_get_queue(dev->bdev);
1953 
1954 	return !blk_queue_secure_erase(q);
1955 }
1956 
1957 static bool dm_table_supports_secure_erase(struct dm_table *t)
1958 {
1959 	struct dm_target *ti;
1960 	unsigned int i;
1961 
1962 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1963 		ti = dm_table_get_target(t, i);
1964 
1965 		if (!ti->num_secure_erase_bios)
1966 			return false;
1967 
1968 		if (!ti->type->iterate_devices ||
1969 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1970 			return false;
1971 	}
1972 
1973 	return true;
1974 }
1975 
1976 static int device_requires_stable_pages(struct dm_target *ti,
1977 					struct dm_dev *dev, sector_t start,
1978 					sector_t len, void *data)
1979 {
1980 	struct request_queue *q = bdev_get_queue(dev->bdev);
1981 
1982 	return blk_queue_stable_writes(q);
1983 }
1984 
1985 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1986 			       struct queue_limits *limits)
1987 {
1988 	bool wc = false, fua = false;
1989 	int page_size = PAGE_SIZE;
1990 
1991 	/*
1992 	 * Copy table's limits to the DM device's request_queue
1993 	 */
1994 	q->limits = *limits;
1995 
1996 	if (dm_table_supports_nowait(t))
1997 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1998 	else
1999 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2000 
2001 	if (!dm_table_supports_discards(t)) {
2002 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2003 		/* Must also clear discard limits... */
2004 		q->limits.max_discard_sectors = 0;
2005 		q->limits.max_hw_discard_sectors = 0;
2006 		q->limits.discard_granularity = 0;
2007 		q->limits.discard_alignment = 0;
2008 		q->limits.discard_misaligned = 0;
2009 	} else
2010 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2011 
2012 	if (dm_table_supports_secure_erase(t))
2013 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2014 
2015 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2016 		wc = true;
2017 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2018 			fua = true;
2019 	}
2020 	blk_queue_write_cache(q, wc, fua);
2021 
2022 	if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2023 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2024 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2025 			set_dax_synchronous(t->md->dax_dev);
2026 	}
2027 	else
2028 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2029 
2030 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2031 		dax_write_cache(t->md->dax_dev, true);
2032 
2033 	/* Ensure that all underlying devices are non-rotational. */
2034 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2035 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2036 	else
2037 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2038 
2039 	if (!dm_table_supports_write_same(t))
2040 		q->limits.max_write_same_sectors = 0;
2041 	if (!dm_table_supports_write_zeroes(t))
2042 		q->limits.max_write_zeroes_sectors = 0;
2043 
2044 	dm_table_verify_integrity(t);
2045 
2046 	/*
2047 	 * Some devices don't use blk_integrity but still want stable pages
2048 	 * because they do their own checksumming.
2049 	 * If any underlying device requires stable pages, a table must require
2050 	 * them as well.  Only targets that support iterate_devices are considered:
2051 	 * don't want error, zero, etc to require stable pages.
2052 	 */
2053 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2054 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2055 	else
2056 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2057 
2058 	/*
2059 	 * Determine whether or not this queue's I/O timings contribute
2060 	 * to the entropy pool, Only request-based targets use this.
2061 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2062 	 * have it set.
2063 	 */
2064 	if (blk_queue_add_random(q) &&
2065 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2066 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2067 
2068 	/*
2069 	 * For a zoned target, the number of zones should be updated for the
2070 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
2071 	 * target, this is all that is needed.
2072 	 */
2073 #ifdef CONFIG_BLK_DEV_ZONED
2074 	if (blk_queue_is_zoned(q)) {
2075 		WARN_ON_ONCE(queue_is_mq(q));
2076 		q->nr_zones = blkdev_nr_zones(t->md->disk);
2077 	}
2078 #endif
2079 
2080 	dm_update_keyslot_manager(q, t);
2081 	blk_queue_update_readahead(q);
2082 }
2083 
2084 unsigned int dm_table_get_num_targets(struct dm_table *t)
2085 {
2086 	return t->num_targets;
2087 }
2088 
2089 struct list_head *dm_table_get_devices(struct dm_table *t)
2090 {
2091 	return &t->devices;
2092 }
2093 
2094 fmode_t dm_table_get_mode(struct dm_table *t)
2095 {
2096 	return t->mode;
2097 }
2098 EXPORT_SYMBOL(dm_table_get_mode);
2099 
2100 enum suspend_mode {
2101 	PRESUSPEND,
2102 	PRESUSPEND_UNDO,
2103 	POSTSUSPEND,
2104 };
2105 
2106 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2107 {
2108 	int i = t->num_targets;
2109 	struct dm_target *ti = t->targets;
2110 
2111 	lockdep_assert_held(&t->md->suspend_lock);
2112 
2113 	while (i--) {
2114 		switch (mode) {
2115 		case PRESUSPEND:
2116 			if (ti->type->presuspend)
2117 				ti->type->presuspend(ti);
2118 			break;
2119 		case PRESUSPEND_UNDO:
2120 			if (ti->type->presuspend_undo)
2121 				ti->type->presuspend_undo(ti);
2122 			break;
2123 		case POSTSUSPEND:
2124 			if (ti->type->postsuspend)
2125 				ti->type->postsuspend(ti);
2126 			break;
2127 		}
2128 		ti++;
2129 	}
2130 }
2131 
2132 void dm_table_presuspend_targets(struct dm_table *t)
2133 {
2134 	if (!t)
2135 		return;
2136 
2137 	suspend_targets(t, PRESUSPEND);
2138 }
2139 
2140 void dm_table_presuspend_undo_targets(struct dm_table *t)
2141 {
2142 	if (!t)
2143 		return;
2144 
2145 	suspend_targets(t, PRESUSPEND_UNDO);
2146 }
2147 
2148 void dm_table_postsuspend_targets(struct dm_table *t)
2149 {
2150 	if (!t)
2151 		return;
2152 
2153 	suspend_targets(t, POSTSUSPEND);
2154 }
2155 
2156 int dm_table_resume_targets(struct dm_table *t)
2157 {
2158 	int i, r = 0;
2159 
2160 	lockdep_assert_held(&t->md->suspend_lock);
2161 
2162 	for (i = 0; i < t->num_targets; i++) {
2163 		struct dm_target *ti = t->targets + i;
2164 
2165 		if (!ti->type->preresume)
2166 			continue;
2167 
2168 		r = ti->type->preresume(ti);
2169 		if (r) {
2170 			DMERR("%s: %s: preresume failed, error = %d",
2171 			      dm_device_name(t->md), ti->type->name, r);
2172 			return r;
2173 		}
2174 	}
2175 
2176 	for (i = 0; i < t->num_targets; i++) {
2177 		struct dm_target *ti = t->targets + i;
2178 
2179 		if (ti->type->resume)
2180 			ti->type->resume(ti);
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 struct mapped_device *dm_table_get_md(struct dm_table *t)
2187 {
2188 	return t->md;
2189 }
2190 EXPORT_SYMBOL(dm_table_get_md);
2191 
2192 const char *dm_table_device_name(struct dm_table *t)
2193 {
2194 	return dm_device_name(t->md);
2195 }
2196 EXPORT_SYMBOL_GPL(dm_table_device_name);
2197 
2198 void dm_table_run_md_queue_async(struct dm_table *t)
2199 {
2200 	if (!dm_table_request_based(t))
2201 		return;
2202 
2203 	if (t->md->queue)
2204 		blk_mq_run_hw_queues(t->md->queue, true);
2205 }
2206 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2207 
2208