xref: /openbmc/linux/drivers/md/dm-table.c (revision 301a1613)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 	unsigned long size;
100 	void *addr;
101 
102 	/*
103 	 * Check that we're not going to overflow.
104 	 */
105 	if (nmemb > (ULONG_MAX / elem_size))
106 		return NULL;
107 
108 	size = nmemb * elem_size;
109 	addr = vzalloc(size);
110 
111 	return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114 
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 	sector_t *n_highs;
122 	struct dm_target *n_targets;
123 
124 	/*
125 	 * Allocate both the target array and offset array at once.
126 	 */
127 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 					  sizeof(sector_t));
129 	if (!n_highs)
130 		return -ENOMEM;
131 
132 	n_targets = (struct dm_target *) (n_highs + num);
133 
134 	memset(n_highs, -1, sizeof(*n_highs) * num);
135 	vfree(t->highs);
136 
137 	t->num_allocated = num;
138 	t->highs = n_highs;
139 	t->targets = n_targets;
140 
141 	return 0;
142 }
143 
144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 		    unsigned num_targets, struct mapped_device *md)
146 {
147 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148 
149 	if (!t)
150 		return -ENOMEM;
151 
152 	INIT_LIST_HEAD(&t->devices);
153 
154 	if (!num_targets)
155 		num_targets = KEYS_PER_NODE;
156 
157 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158 
159 	if (!num_targets) {
160 		kfree(t);
161 		return -ENOMEM;
162 	}
163 
164 	if (alloc_targets(t, num_targets)) {
165 		kfree(t);
166 		return -ENOMEM;
167 	}
168 
169 	t->type = DM_TYPE_NONE;
170 	t->mode = mode;
171 	t->md = md;
172 	*result = t;
173 	return 0;
174 }
175 
176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178 	struct list_head *tmp, *next;
179 
180 	list_for_each_safe(tmp, next, devices) {
181 		struct dm_dev_internal *dd =
182 		    list_entry(tmp, struct dm_dev_internal, list);
183 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 		       dm_device_name(md), dd->dm_dev->name);
185 		dm_put_table_device(md, dd->dm_dev);
186 		kfree(dd);
187 	}
188 }
189 
190 void dm_table_destroy(struct dm_table *t)
191 {
192 	unsigned int i;
193 
194 	if (!t)
195 		return;
196 
197 	/* free the indexes */
198 	if (t->depth >= 2)
199 		vfree(t->index[t->depth - 2]);
200 
201 	/* free the targets */
202 	for (i = 0; i < t->num_targets; i++) {
203 		struct dm_target *tgt = t->targets + i;
204 
205 		if (tgt->type->dtr)
206 			tgt->type->dtr(tgt);
207 
208 		dm_put_target_type(tgt->type);
209 	}
210 
211 	vfree(t->highs);
212 
213 	/* free the device list */
214 	free_devices(&t->devices, t->md);
215 
216 	dm_free_md_mempools(t->mempools);
217 
218 	kfree(t);
219 }
220 
221 /*
222  * See if we've already got a device in the list.
223  */
224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
225 {
226 	struct dm_dev_internal *dd;
227 
228 	list_for_each_entry (dd, l, list)
229 		if (dd->dm_dev->bdev->bd_dev == dev)
230 			return dd;
231 
232 	return NULL;
233 }
234 
235 /*
236  * If possible, this checks an area of a destination device is invalid.
237  */
238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
239 				  sector_t start, sector_t len, void *data)
240 {
241 	struct queue_limits *limits = data;
242 	struct block_device *bdev = dev->bdev;
243 	sector_t dev_size =
244 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
245 	unsigned short logical_block_size_sectors =
246 		limits->logical_block_size >> SECTOR_SHIFT;
247 	char b[BDEVNAME_SIZE];
248 
249 	if (!dev_size)
250 		return 0;
251 
252 	if ((start >= dev_size) || (start + len > dev_size)) {
253 		DMWARN("%s: %s too small for target: "
254 		       "start=%llu, len=%llu, dev_size=%llu",
255 		       dm_device_name(ti->table->md), bdevname(bdev, b),
256 		       (unsigned long long)start,
257 		       (unsigned long long)len,
258 		       (unsigned long long)dev_size);
259 		return 1;
260 	}
261 
262 	/*
263 	 * If the target is mapped to zoned block device(s), check
264 	 * that the zones are not partially mapped.
265 	 */
266 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
267 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
268 
269 		if (start & (zone_sectors - 1)) {
270 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271 			       dm_device_name(ti->table->md),
272 			       (unsigned long long)start,
273 			       zone_sectors, bdevname(bdev, b));
274 			return 1;
275 		}
276 
277 		/*
278 		 * Note: The last zone of a zoned block device may be smaller
279 		 * than other zones. So for a target mapping the end of a
280 		 * zoned block device with such a zone, len would not be zone
281 		 * aligned. We do not allow such last smaller zone to be part
282 		 * of the mapping here to ensure that mappings with multiple
283 		 * devices do not end up with a smaller zone in the middle of
284 		 * the sector range.
285 		 */
286 		if (len & (zone_sectors - 1)) {
287 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288 			       dm_device_name(ti->table->md),
289 			       (unsigned long long)len,
290 			       zone_sectors, bdevname(bdev, b));
291 			return 1;
292 		}
293 	}
294 
295 	if (logical_block_size_sectors <= 1)
296 		return 0;
297 
298 	if (start & (logical_block_size_sectors - 1)) {
299 		DMWARN("%s: start=%llu not aligned to h/w "
300 		       "logical block size %u of %s",
301 		       dm_device_name(ti->table->md),
302 		       (unsigned long long)start,
303 		       limits->logical_block_size, bdevname(bdev, b));
304 		return 1;
305 	}
306 
307 	if (len & (logical_block_size_sectors - 1)) {
308 		DMWARN("%s: len=%llu not aligned to h/w "
309 		       "logical block size %u of %s",
310 		       dm_device_name(ti->table->md),
311 		       (unsigned long long)len,
312 		       limits->logical_block_size, bdevname(bdev, b));
313 		return 1;
314 	}
315 
316 	return 0;
317 }
318 
319 /*
320  * This upgrades the mode on an already open dm_dev, being
321  * careful to leave things as they were if we fail to reopen the
322  * device and not to touch the existing bdev field in case
323  * it is accessed concurrently.
324  */
325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
326 			struct mapped_device *md)
327 {
328 	int r;
329 	struct dm_dev *old_dev, *new_dev;
330 
331 	old_dev = dd->dm_dev;
332 
333 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
334 				dd->dm_dev->mode | new_mode, &new_dev);
335 	if (r)
336 		return r;
337 
338 	dd->dm_dev = new_dev;
339 	dm_put_table_device(md, old_dev);
340 
341 	return 0;
342 }
343 
344 /*
345  * Convert the path to a device
346  */
347 dev_t dm_get_dev_t(const char *path)
348 {
349 	dev_t dev;
350 
351 	if (lookup_bdev(path, &dev))
352 		dev = name_to_dev_t(path);
353 	return dev;
354 }
355 EXPORT_SYMBOL_GPL(dm_get_dev_t);
356 
357 /*
358  * Add a device to the list, or just increment the usage count if
359  * it's already present.
360  */
361 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
362 		  struct dm_dev **result)
363 {
364 	int r;
365 	dev_t dev;
366 	unsigned int major, minor;
367 	char dummy;
368 	struct dm_dev_internal *dd;
369 	struct dm_table *t = ti->table;
370 
371 	BUG_ON(!t);
372 
373 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
374 		/* Extract the major/minor numbers */
375 		dev = MKDEV(major, minor);
376 		if (MAJOR(dev) != major || MINOR(dev) != minor)
377 			return -EOVERFLOW;
378 	} else {
379 		dev = dm_get_dev_t(path);
380 		if (!dev)
381 			return -ENODEV;
382 	}
383 
384 	dd = find_device(&t->devices, dev);
385 	if (!dd) {
386 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
387 		if (!dd)
388 			return -ENOMEM;
389 
390 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
391 			kfree(dd);
392 			return r;
393 		}
394 
395 		refcount_set(&dd->count, 1);
396 		list_add(&dd->list, &t->devices);
397 		goto out;
398 
399 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
400 		r = upgrade_mode(dd, mode, t->md);
401 		if (r)
402 			return r;
403 	}
404 	refcount_inc(&dd->count);
405 out:
406 	*result = dd->dm_dev;
407 	return 0;
408 }
409 EXPORT_SYMBOL(dm_get_device);
410 
411 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
412 				sector_t start, sector_t len, void *data)
413 {
414 	struct queue_limits *limits = data;
415 	struct block_device *bdev = dev->bdev;
416 	struct request_queue *q = bdev_get_queue(bdev);
417 	char b[BDEVNAME_SIZE];
418 
419 	if (unlikely(!q)) {
420 		DMWARN("%s: Cannot set limits for nonexistent device %s",
421 		       dm_device_name(ti->table->md), bdevname(bdev, b));
422 		return 0;
423 	}
424 
425 	if (blk_stack_limits(limits, &q->limits,
426 			get_start_sect(bdev) + start) < 0)
427 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
428 		       "physical_block_size=%u, logical_block_size=%u, "
429 		       "alignment_offset=%u, start=%llu",
430 		       dm_device_name(ti->table->md), bdevname(bdev, b),
431 		       q->limits.physical_block_size,
432 		       q->limits.logical_block_size,
433 		       q->limits.alignment_offset,
434 		       (unsigned long long) start << SECTOR_SHIFT);
435 	return 0;
436 }
437 
438 /*
439  * Decrement a device's use count and remove it if necessary.
440  */
441 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
442 {
443 	int found = 0;
444 	struct list_head *devices = &ti->table->devices;
445 	struct dm_dev_internal *dd;
446 
447 	list_for_each_entry(dd, devices, list) {
448 		if (dd->dm_dev == d) {
449 			found = 1;
450 			break;
451 		}
452 	}
453 	if (!found) {
454 		DMWARN("%s: device %s not in table devices list",
455 		       dm_device_name(ti->table->md), d->name);
456 		return;
457 	}
458 	if (refcount_dec_and_test(&dd->count)) {
459 		dm_put_table_device(ti->table->md, d);
460 		list_del(&dd->list);
461 		kfree(dd);
462 	}
463 }
464 EXPORT_SYMBOL(dm_put_device);
465 
466 /*
467  * Checks to see if the target joins onto the end of the table.
468  */
469 static int adjoin(struct dm_table *table, struct dm_target *ti)
470 {
471 	struct dm_target *prev;
472 
473 	if (!table->num_targets)
474 		return !ti->begin;
475 
476 	prev = &table->targets[table->num_targets - 1];
477 	return (ti->begin == (prev->begin + prev->len));
478 }
479 
480 /*
481  * Used to dynamically allocate the arg array.
482  *
483  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
484  * process messages even if some device is suspended. These messages have a
485  * small fixed number of arguments.
486  *
487  * On the other hand, dm-switch needs to process bulk data using messages and
488  * excessive use of GFP_NOIO could cause trouble.
489  */
490 static char **realloc_argv(unsigned *size, char **old_argv)
491 {
492 	char **argv;
493 	unsigned new_size;
494 	gfp_t gfp;
495 
496 	if (*size) {
497 		new_size = *size * 2;
498 		gfp = GFP_KERNEL;
499 	} else {
500 		new_size = 8;
501 		gfp = GFP_NOIO;
502 	}
503 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
504 	if (argv && old_argv) {
505 		memcpy(argv, old_argv, *size * sizeof(*argv));
506 		*size = new_size;
507 	}
508 
509 	kfree(old_argv);
510 	return argv;
511 }
512 
513 /*
514  * Destructively splits up the argument list to pass to ctr.
515  */
516 int dm_split_args(int *argc, char ***argvp, char *input)
517 {
518 	char *start, *end = input, *out, **argv = NULL;
519 	unsigned array_size = 0;
520 
521 	*argc = 0;
522 
523 	if (!input) {
524 		*argvp = NULL;
525 		return 0;
526 	}
527 
528 	argv = realloc_argv(&array_size, argv);
529 	if (!argv)
530 		return -ENOMEM;
531 
532 	while (1) {
533 		/* Skip whitespace */
534 		start = skip_spaces(end);
535 
536 		if (!*start)
537 			break;	/* success, we hit the end */
538 
539 		/* 'out' is used to remove any back-quotes */
540 		end = out = start;
541 		while (*end) {
542 			/* Everything apart from '\0' can be quoted */
543 			if (*end == '\\' && *(end + 1)) {
544 				*out++ = *(end + 1);
545 				end += 2;
546 				continue;
547 			}
548 
549 			if (isspace(*end))
550 				break;	/* end of token */
551 
552 			*out++ = *end++;
553 		}
554 
555 		/* have we already filled the array ? */
556 		if ((*argc + 1) > array_size) {
557 			argv = realloc_argv(&array_size, argv);
558 			if (!argv)
559 				return -ENOMEM;
560 		}
561 
562 		/* we know this is whitespace */
563 		if (*end)
564 			end++;
565 
566 		/* terminate the string and put it in the array */
567 		*out = '\0';
568 		argv[*argc] = start;
569 		(*argc)++;
570 	}
571 
572 	*argvp = argv;
573 	return 0;
574 }
575 
576 /*
577  * Impose necessary and sufficient conditions on a devices's table such
578  * that any incoming bio which respects its logical_block_size can be
579  * processed successfully.  If it falls across the boundary between
580  * two or more targets, the size of each piece it gets split into must
581  * be compatible with the logical_block_size of the target processing it.
582  */
583 static int validate_hardware_logical_block_alignment(struct dm_table *table,
584 						 struct queue_limits *limits)
585 {
586 	/*
587 	 * This function uses arithmetic modulo the logical_block_size
588 	 * (in units of 512-byte sectors).
589 	 */
590 	unsigned short device_logical_block_size_sects =
591 		limits->logical_block_size >> SECTOR_SHIFT;
592 
593 	/*
594 	 * Offset of the start of the next table entry, mod logical_block_size.
595 	 */
596 	unsigned short next_target_start = 0;
597 
598 	/*
599 	 * Given an aligned bio that extends beyond the end of a
600 	 * target, how many sectors must the next target handle?
601 	 */
602 	unsigned short remaining = 0;
603 
604 	struct dm_target *ti;
605 	struct queue_limits ti_limits;
606 	unsigned i;
607 
608 	/*
609 	 * Check each entry in the table in turn.
610 	 */
611 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
612 		ti = dm_table_get_target(table, i);
613 
614 		blk_set_stacking_limits(&ti_limits);
615 
616 		/* combine all target devices' limits */
617 		if (ti->type->iterate_devices)
618 			ti->type->iterate_devices(ti, dm_set_device_limits,
619 						  &ti_limits);
620 
621 		/*
622 		 * If the remaining sectors fall entirely within this
623 		 * table entry are they compatible with its logical_block_size?
624 		 */
625 		if (remaining < ti->len &&
626 		    remaining & ((ti_limits.logical_block_size >>
627 				  SECTOR_SHIFT) - 1))
628 			break;	/* Error */
629 
630 		next_target_start =
631 		    (unsigned short) ((next_target_start + ti->len) &
632 				      (device_logical_block_size_sects - 1));
633 		remaining = next_target_start ?
634 		    device_logical_block_size_sects - next_target_start : 0;
635 	}
636 
637 	if (remaining) {
638 		DMWARN("%s: table line %u (start sect %llu len %llu) "
639 		       "not aligned to h/w logical block size %u",
640 		       dm_device_name(table->md), i,
641 		       (unsigned long long) ti->begin,
642 		       (unsigned long long) ti->len,
643 		       limits->logical_block_size);
644 		return -EINVAL;
645 	}
646 
647 	return 0;
648 }
649 
650 int dm_table_add_target(struct dm_table *t, const char *type,
651 			sector_t start, sector_t len, char *params)
652 {
653 	int r = -EINVAL, argc;
654 	char **argv;
655 	struct dm_target *tgt;
656 
657 	if (t->singleton) {
658 		DMERR("%s: target type %s must appear alone in table",
659 		      dm_device_name(t->md), t->targets->type->name);
660 		return -EINVAL;
661 	}
662 
663 	BUG_ON(t->num_targets >= t->num_allocated);
664 
665 	tgt = t->targets + t->num_targets;
666 	memset(tgt, 0, sizeof(*tgt));
667 
668 	if (!len) {
669 		DMERR("%s: zero-length target", dm_device_name(t->md));
670 		return -EINVAL;
671 	}
672 
673 	tgt->type = dm_get_target_type(type);
674 	if (!tgt->type) {
675 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
676 		return -EINVAL;
677 	}
678 
679 	if (dm_target_needs_singleton(tgt->type)) {
680 		if (t->num_targets) {
681 			tgt->error = "singleton target type must appear alone in table";
682 			goto bad;
683 		}
684 		t->singleton = true;
685 	}
686 
687 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
688 		tgt->error = "target type may not be included in a read-only table";
689 		goto bad;
690 	}
691 
692 	if (t->immutable_target_type) {
693 		if (t->immutable_target_type != tgt->type) {
694 			tgt->error = "immutable target type cannot be mixed with other target types";
695 			goto bad;
696 		}
697 	} else if (dm_target_is_immutable(tgt->type)) {
698 		if (t->num_targets) {
699 			tgt->error = "immutable target type cannot be mixed with other target types";
700 			goto bad;
701 		}
702 		t->immutable_target_type = tgt->type;
703 	}
704 
705 	if (dm_target_has_integrity(tgt->type))
706 		t->integrity_added = 1;
707 
708 	tgt->table = t;
709 	tgt->begin = start;
710 	tgt->len = len;
711 	tgt->error = "Unknown error";
712 
713 	/*
714 	 * Does this target adjoin the previous one ?
715 	 */
716 	if (!adjoin(t, tgt)) {
717 		tgt->error = "Gap in table";
718 		goto bad;
719 	}
720 
721 	r = dm_split_args(&argc, &argv, params);
722 	if (r) {
723 		tgt->error = "couldn't split parameters (insufficient memory)";
724 		goto bad;
725 	}
726 
727 	r = tgt->type->ctr(tgt, argc, argv);
728 	kfree(argv);
729 	if (r)
730 		goto bad;
731 
732 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
733 
734 	if (!tgt->num_discard_bios && tgt->discards_supported)
735 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736 		       dm_device_name(t->md), type);
737 
738 	return 0;
739 
740  bad:
741 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
742 	dm_put_target_type(tgt->type);
743 	return r;
744 }
745 
746 /*
747  * Target argument parsing helpers.
748  */
749 static int validate_next_arg(const struct dm_arg *arg,
750 			     struct dm_arg_set *arg_set,
751 			     unsigned *value, char **error, unsigned grouped)
752 {
753 	const char *arg_str = dm_shift_arg(arg_set);
754 	char dummy;
755 
756 	if (!arg_str ||
757 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
758 	    (*value < arg->min) ||
759 	    (*value > arg->max) ||
760 	    (grouped && arg_set->argc < *value)) {
761 		*error = arg->error;
762 		return -EINVAL;
763 	}
764 
765 	return 0;
766 }
767 
768 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
769 		unsigned *value, char **error)
770 {
771 	return validate_next_arg(arg, arg_set, value, error, 0);
772 }
773 EXPORT_SYMBOL(dm_read_arg);
774 
775 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
776 		      unsigned *value, char **error)
777 {
778 	return validate_next_arg(arg, arg_set, value, error, 1);
779 }
780 EXPORT_SYMBOL(dm_read_arg_group);
781 
782 const char *dm_shift_arg(struct dm_arg_set *as)
783 {
784 	char *r;
785 
786 	if (as->argc) {
787 		as->argc--;
788 		r = *as->argv;
789 		as->argv++;
790 		return r;
791 	}
792 
793 	return NULL;
794 }
795 EXPORT_SYMBOL(dm_shift_arg);
796 
797 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
798 {
799 	BUG_ON(as->argc < num_args);
800 	as->argc -= num_args;
801 	as->argv += num_args;
802 }
803 EXPORT_SYMBOL(dm_consume_args);
804 
805 static bool __table_type_bio_based(enum dm_queue_mode table_type)
806 {
807 	return (table_type == DM_TYPE_BIO_BASED ||
808 		table_type == DM_TYPE_DAX_BIO_BASED);
809 }
810 
811 static bool __table_type_request_based(enum dm_queue_mode table_type)
812 {
813 	return table_type == DM_TYPE_REQUEST_BASED;
814 }
815 
816 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
817 {
818 	t->type = type;
819 }
820 EXPORT_SYMBOL_GPL(dm_table_set_type);
821 
822 /* validate the dax capability of the target device span */
823 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
824 			sector_t start, sector_t len, void *data)
825 {
826 	int blocksize = *(int *) data, id;
827 	bool rc;
828 
829 	id = dax_read_lock();
830 	rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
831 	dax_read_unlock(id);
832 
833 	return rc;
834 }
835 
836 /* Check devices support synchronous DAX */
837 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
838 				  sector_t start, sector_t len, void *data)
839 {
840 	return dev->dax_dev && dax_synchronous(dev->dax_dev);
841 }
842 
843 bool dm_table_supports_dax(struct dm_table *t,
844 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
845 {
846 	struct dm_target *ti;
847 	unsigned i;
848 
849 	/* Ensure that all targets support DAX. */
850 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
851 		ti = dm_table_get_target(t, i);
852 
853 		if (!ti->type->direct_access)
854 			return false;
855 
856 		if (!ti->type->iterate_devices ||
857 		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
858 			return false;
859 	}
860 
861 	return true;
862 }
863 
864 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
865 				  sector_t start, sector_t len, void *data)
866 {
867 	struct block_device *bdev = dev->bdev;
868 	struct request_queue *q = bdev_get_queue(bdev);
869 
870 	/* request-based cannot stack on partitions! */
871 	if (bdev_is_partition(bdev))
872 		return false;
873 
874 	return queue_is_mq(q);
875 }
876 
877 static int dm_table_determine_type(struct dm_table *t)
878 {
879 	unsigned i;
880 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
881 	struct dm_target *tgt;
882 	struct list_head *devices = dm_table_get_devices(t);
883 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
884 	int page_size = PAGE_SIZE;
885 
886 	if (t->type != DM_TYPE_NONE) {
887 		/* target already set the table's type */
888 		if (t->type == DM_TYPE_BIO_BASED) {
889 			/* possibly upgrade to a variant of bio-based */
890 			goto verify_bio_based;
891 		}
892 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
893 		goto verify_rq_based;
894 	}
895 
896 	for (i = 0; i < t->num_targets; i++) {
897 		tgt = t->targets + i;
898 		if (dm_target_hybrid(tgt))
899 			hybrid = 1;
900 		else if (dm_target_request_based(tgt))
901 			request_based = 1;
902 		else
903 			bio_based = 1;
904 
905 		if (bio_based && request_based) {
906 			DMERR("Inconsistent table: different target types"
907 			      " can't be mixed up");
908 			return -EINVAL;
909 		}
910 	}
911 
912 	if (hybrid && !bio_based && !request_based) {
913 		/*
914 		 * The targets can work either way.
915 		 * Determine the type from the live device.
916 		 * Default to bio-based if device is new.
917 		 */
918 		if (__table_type_request_based(live_md_type))
919 			request_based = 1;
920 		else
921 			bio_based = 1;
922 	}
923 
924 	if (bio_based) {
925 verify_bio_based:
926 		/* We must use this table as bio-based */
927 		t->type = DM_TYPE_BIO_BASED;
928 		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
929 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
930 			t->type = DM_TYPE_DAX_BIO_BASED;
931 		}
932 		return 0;
933 	}
934 
935 	BUG_ON(!request_based); /* No targets in this table */
936 
937 	t->type = DM_TYPE_REQUEST_BASED;
938 
939 verify_rq_based:
940 	/*
941 	 * Request-based dm supports only tables that have a single target now.
942 	 * To support multiple targets, request splitting support is needed,
943 	 * and that needs lots of changes in the block-layer.
944 	 * (e.g. request completion process for partial completion.)
945 	 */
946 	if (t->num_targets > 1) {
947 		DMERR("request-based DM doesn't support multiple targets");
948 		return -EINVAL;
949 	}
950 
951 	if (list_empty(devices)) {
952 		int srcu_idx;
953 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
954 
955 		/* inherit live table's type */
956 		if (live_table)
957 			t->type = live_table->type;
958 		dm_put_live_table(t->md, srcu_idx);
959 		return 0;
960 	}
961 
962 	tgt = dm_table_get_immutable_target(t);
963 	if (!tgt) {
964 		DMERR("table load rejected: immutable target is required");
965 		return -EINVAL;
966 	} else if (tgt->max_io_len) {
967 		DMERR("table load rejected: immutable target that splits IO is not supported");
968 		return -EINVAL;
969 	}
970 
971 	/* Non-request-stackable devices can't be used for request-based dm */
972 	if (!tgt->type->iterate_devices ||
973 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
974 		DMERR("table load rejected: including non-request-stackable devices");
975 		return -EINVAL;
976 	}
977 
978 	return 0;
979 }
980 
981 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
982 {
983 	return t->type;
984 }
985 
986 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
987 {
988 	return t->immutable_target_type;
989 }
990 
991 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
992 {
993 	/* Immutable target is implicitly a singleton */
994 	if (t->num_targets > 1 ||
995 	    !dm_target_is_immutable(t->targets[0].type))
996 		return NULL;
997 
998 	return t->targets;
999 }
1000 
1001 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1002 {
1003 	struct dm_target *ti;
1004 	unsigned i;
1005 
1006 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1007 		ti = dm_table_get_target(t, i);
1008 		if (dm_target_is_wildcard(ti->type))
1009 			return ti;
1010 	}
1011 
1012 	return NULL;
1013 }
1014 
1015 bool dm_table_bio_based(struct dm_table *t)
1016 {
1017 	return __table_type_bio_based(dm_table_get_type(t));
1018 }
1019 
1020 bool dm_table_request_based(struct dm_table *t)
1021 {
1022 	return __table_type_request_based(dm_table_get_type(t));
1023 }
1024 
1025 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1026 {
1027 	enum dm_queue_mode type = dm_table_get_type(t);
1028 	unsigned per_io_data_size = 0;
1029 	unsigned min_pool_size = 0;
1030 	struct dm_target *ti;
1031 	unsigned i;
1032 
1033 	if (unlikely(type == DM_TYPE_NONE)) {
1034 		DMWARN("no table type is set, can't allocate mempools");
1035 		return -EINVAL;
1036 	}
1037 
1038 	if (__table_type_bio_based(type))
1039 		for (i = 0; i < t->num_targets; i++) {
1040 			ti = t->targets + i;
1041 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1042 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1043 		}
1044 
1045 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1046 					   per_io_data_size, min_pool_size);
1047 	if (!t->mempools)
1048 		return -ENOMEM;
1049 
1050 	return 0;
1051 }
1052 
1053 void dm_table_free_md_mempools(struct dm_table *t)
1054 {
1055 	dm_free_md_mempools(t->mempools);
1056 	t->mempools = NULL;
1057 }
1058 
1059 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1060 {
1061 	return t->mempools;
1062 }
1063 
1064 static int setup_indexes(struct dm_table *t)
1065 {
1066 	int i;
1067 	unsigned int total = 0;
1068 	sector_t *indexes;
1069 
1070 	/* allocate the space for *all* the indexes */
1071 	for (i = t->depth - 2; i >= 0; i--) {
1072 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1073 		total += t->counts[i];
1074 	}
1075 
1076 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1077 	if (!indexes)
1078 		return -ENOMEM;
1079 
1080 	/* set up internal nodes, bottom-up */
1081 	for (i = t->depth - 2; i >= 0; i--) {
1082 		t->index[i] = indexes;
1083 		indexes += (KEYS_PER_NODE * t->counts[i]);
1084 		setup_btree_index(i, t);
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 /*
1091  * Builds the btree to index the map.
1092  */
1093 static int dm_table_build_index(struct dm_table *t)
1094 {
1095 	int r = 0;
1096 	unsigned int leaf_nodes;
1097 
1098 	/* how many indexes will the btree have ? */
1099 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1100 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1101 
1102 	/* leaf layer has already been set up */
1103 	t->counts[t->depth - 1] = leaf_nodes;
1104 	t->index[t->depth - 1] = t->highs;
1105 
1106 	if (t->depth >= 2)
1107 		r = setup_indexes(t);
1108 
1109 	return r;
1110 }
1111 
1112 static bool integrity_profile_exists(struct gendisk *disk)
1113 {
1114 	return !!blk_get_integrity(disk);
1115 }
1116 
1117 /*
1118  * Get a disk whose integrity profile reflects the table's profile.
1119  * Returns NULL if integrity support was inconsistent or unavailable.
1120  */
1121 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1122 {
1123 	struct list_head *devices = dm_table_get_devices(t);
1124 	struct dm_dev_internal *dd = NULL;
1125 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1126 	unsigned i;
1127 
1128 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1129 		struct dm_target *ti = dm_table_get_target(t, i);
1130 		if (!dm_target_passes_integrity(ti->type))
1131 			goto no_integrity;
1132 	}
1133 
1134 	list_for_each_entry(dd, devices, list) {
1135 		template_disk = dd->dm_dev->bdev->bd_disk;
1136 		if (!integrity_profile_exists(template_disk))
1137 			goto no_integrity;
1138 		else if (prev_disk &&
1139 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1140 			goto no_integrity;
1141 		prev_disk = template_disk;
1142 	}
1143 
1144 	return template_disk;
1145 
1146 no_integrity:
1147 	if (prev_disk)
1148 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1149 		       dm_device_name(t->md),
1150 		       prev_disk->disk_name,
1151 		       template_disk->disk_name);
1152 	return NULL;
1153 }
1154 
1155 /*
1156  * Register the mapped device for blk_integrity support if the
1157  * underlying devices have an integrity profile.  But all devices may
1158  * not have matching profiles (checking all devices isn't reliable
1159  * during table load because this table may use other DM device(s) which
1160  * must be resumed before they will have an initialized integity
1161  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1162  * profile validation: First pass during table load, final pass during
1163  * resume.
1164  */
1165 static int dm_table_register_integrity(struct dm_table *t)
1166 {
1167 	struct mapped_device *md = t->md;
1168 	struct gendisk *template_disk = NULL;
1169 
1170 	/* If target handles integrity itself do not register it here. */
1171 	if (t->integrity_added)
1172 		return 0;
1173 
1174 	template_disk = dm_table_get_integrity_disk(t);
1175 	if (!template_disk)
1176 		return 0;
1177 
1178 	if (!integrity_profile_exists(dm_disk(md))) {
1179 		t->integrity_supported = true;
1180 		/*
1181 		 * Register integrity profile during table load; we can do
1182 		 * this because the final profile must match during resume.
1183 		 */
1184 		blk_integrity_register(dm_disk(md),
1185 				       blk_get_integrity(template_disk));
1186 		return 0;
1187 	}
1188 
1189 	/*
1190 	 * If DM device already has an initialized integrity
1191 	 * profile the new profile should not conflict.
1192 	 */
1193 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1194 		DMWARN("%s: conflict with existing integrity profile: "
1195 		       "%s profile mismatch",
1196 		       dm_device_name(t->md),
1197 		       template_disk->disk_name);
1198 		return 1;
1199 	}
1200 
1201 	/* Preserve existing integrity profile */
1202 	t->integrity_supported = true;
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Prepares the table for use by building the indices,
1208  * setting the type, and allocating mempools.
1209  */
1210 int dm_table_complete(struct dm_table *t)
1211 {
1212 	int r;
1213 
1214 	r = dm_table_determine_type(t);
1215 	if (r) {
1216 		DMERR("unable to determine table type");
1217 		return r;
1218 	}
1219 
1220 	r = dm_table_build_index(t);
1221 	if (r) {
1222 		DMERR("unable to build btrees");
1223 		return r;
1224 	}
1225 
1226 	r = dm_table_register_integrity(t);
1227 	if (r) {
1228 		DMERR("could not register integrity profile.");
1229 		return r;
1230 	}
1231 
1232 	r = dm_table_alloc_md_mempools(t, t->md);
1233 	if (r)
1234 		DMERR("unable to allocate mempools");
1235 
1236 	return r;
1237 }
1238 
1239 static DEFINE_MUTEX(_event_lock);
1240 void dm_table_event_callback(struct dm_table *t,
1241 			     void (*fn)(void *), void *context)
1242 {
1243 	mutex_lock(&_event_lock);
1244 	t->event_fn = fn;
1245 	t->event_context = context;
1246 	mutex_unlock(&_event_lock);
1247 }
1248 
1249 void dm_table_event(struct dm_table *t)
1250 {
1251 	mutex_lock(&_event_lock);
1252 	if (t->event_fn)
1253 		t->event_fn(t->event_context);
1254 	mutex_unlock(&_event_lock);
1255 }
1256 EXPORT_SYMBOL(dm_table_event);
1257 
1258 inline sector_t dm_table_get_size(struct dm_table *t)
1259 {
1260 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1261 }
1262 EXPORT_SYMBOL(dm_table_get_size);
1263 
1264 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1265 {
1266 	if (index >= t->num_targets)
1267 		return NULL;
1268 
1269 	return t->targets + index;
1270 }
1271 
1272 /*
1273  * Search the btree for the correct target.
1274  *
1275  * Caller should check returned pointer for NULL
1276  * to trap I/O beyond end of device.
1277  */
1278 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1279 {
1280 	unsigned int l, n = 0, k = 0;
1281 	sector_t *node;
1282 
1283 	if (unlikely(sector >= dm_table_get_size(t)))
1284 		return NULL;
1285 
1286 	for (l = 0; l < t->depth; l++) {
1287 		n = get_child(n, k);
1288 		node = get_node(t, l, n);
1289 
1290 		for (k = 0; k < KEYS_PER_NODE; k++)
1291 			if (node[k] >= sector)
1292 				break;
1293 	}
1294 
1295 	return &t->targets[(KEYS_PER_NODE * n) + k];
1296 }
1297 
1298 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1299 			sector_t start, sector_t len, void *data)
1300 {
1301 	unsigned *num_devices = data;
1302 
1303 	(*num_devices)++;
1304 
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Check whether a table has no data devices attached using each
1310  * target's iterate_devices method.
1311  * Returns false if the result is unknown because a target doesn't
1312  * support iterate_devices.
1313  */
1314 bool dm_table_has_no_data_devices(struct dm_table *table)
1315 {
1316 	struct dm_target *ti;
1317 	unsigned i, num_devices;
1318 
1319 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1320 		ti = dm_table_get_target(table, i);
1321 
1322 		if (!ti->type->iterate_devices)
1323 			return false;
1324 
1325 		num_devices = 0;
1326 		ti->type->iterate_devices(ti, count_device, &num_devices);
1327 		if (num_devices)
1328 			return false;
1329 	}
1330 
1331 	return true;
1332 }
1333 
1334 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1335 				 sector_t start, sector_t len, void *data)
1336 {
1337 	struct request_queue *q = bdev_get_queue(dev->bdev);
1338 	enum blk_zoned_model *zoned_model = data;
1339 
1340 	return q && blk_queue_zoned_model(q) == *zoned_model;
1341 }
1342 
1343 static bool dm_table_supports_zoned_model(struct dm_table *t,
1344 					  enum blk_zoned_model zoned_model)
1345 {
1346 	struct dm_target *ti;
1347 	unsigned i;
1348 
1349 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1350 		ti = dm_table_get_target(t, i);
1351 
1352 		if (zoned_model == BLK_ZONED_HM &&
1353 		    !dm_target_supports_zoned_hm(ti->type))
1354 			return false;
1355 
1356 		if (!ti->type->iterate_devices ||
1357 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1358 			return false;
1359 	}
1360 
1361 	return true;
1362 }
1363 
1364 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1365 				       sector_t start, sector_t len, void *data)
1366 {
1367 	struct request_queue *q = bdev_get_queue(dev->bdev);
1368 	unsigned int *zone_sectors = data;
1369 
1370 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1371 }
1372 
1373 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1374 					  unsigned int zone_sectors)
1375 {
1376 	struct dm_target *ti;
1377 	unsigned i;
1378 
1379 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1380 		ti = dm_table_get_target(t, i);
1381 
1382 		if (!ti->type->iterate_devices ||
1383 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1384 			return false;
1385 	}
1386 
1387 	return true;
1388 }
1389 
1390 static int validate_hardware_zoned_model(struct dm_table *table,
1391 					 enum blk_zoned_model zoned_model,
1392 					 unsigned int zone_sectors)
1393 {
1394 	if (zoned_model == BLK_ZONED_NONE)
1395 		return 0;
1396 
1397 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1398 		DMERR("%s: zoned model is not consistent across all devices",
1399 		      dm_device_name(table->md));
1400 		return -EINVAL;
1401 	}
1402 
1403 	/* Check zone size validity and compatibility */
1404 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1405 		return -EINVAL;
1406 
1407 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1408 		DMERR("%s: zone sectors is not consistent across all devices",
1409 		      dm_device_name(table->md));
1410 		return -EINVAL;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 /*
1417  * Establish the new table's queue_limits and validate them.
1418  */
1419 int dm_calculate_queue_limits(struct dm_table *table,
1420 			      struct queue_limits *limits)
1421 {
1422 	struct dm_target *ti;
1423 	struct queue_limits ti_limits;
1424 	unsigned i;
1425 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1426 	unsigned int zone_sectors = 0;
1427 
1428 	blk_set_stacking_limits(limits);
1429 
1430 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1431 		blk_set_stacking_limits(&ti_limits);
1432 
1433 		ti = dm_table_get_target(table, i);
1434 
1435 		if (!ti->type->iterate_devices)
1436 			goto combine_limits;
1437 
1438 		/*
1439 		 * Combine queue limits of all the devices this target uses.
1440 		 */
1441 		ti->type->iterate_devices(ti, dm_set_device_limits,
1442 					  &ti_limits);
1443 
1444 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1445 			/*
1446 			 * After stacking all limits, validate all devices
1447 			 * in table support this zoned model and zone sectors.
1448 			 */
1449 			zoned_model = ti_limits.zoned;
1450 			zone_sectors = ti_limits.chunk_sectors;
1451 		}
1452 
1453 		/* Set I/O hints portion of queue limits */
1454 		if (ti->type->io_hints)
1455 			ti->type->io_hints(ti, &ti_limits);
1456 
1457 		/*
1458 		 * Check each device area is consistent with the target's
1459 		 * overall queue limits.
1460 		 */
1461 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1462 					      &ti_limits))
1463 			return -EINVAL;
1464 
1465 combine_limits:
1466 		/*
1467 		 * Merge this target's queue limits into the overall limits
1468 		 * for the table.
1469 		 */
1470 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1471 			DMWARN("%s: adding target device "
1472 			       "(start sect %llu len %llu) "
1473 			       "caused an alignment inconsistency",
1474 			       dm_device_name(table->md),
1475 			       (unsigned long long) ti->begin,
1476 			       (unsigned long long) ti->len);
1477 	}
1478 
1479 	/*
1480 	 * Verify that the zoned model and zone sectors, as determined before
1481 	 * any .io_hints override, are the same across all devices in the table.
1482 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1483 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1484 	 * BUT...
1485 	 */
1486 	if (limits->zoned != BLK_ZONED_NONE) {
1487 		/*
1488 		 * ...IF the above limits stacking determined a zoned model
1489 		 * validate that all of the table's devices conform to it.
1490 		 */
1491 		zoned_model = limits->zoned;
1492 		zone_sectors = limits->chunk_sectors;
1493 	}
1494 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1495 		return -EINVAL;
1496 
1497 	return validate_hardware_logical_block_alignment(table, limits);
1498 }
1499 
1500 /*
1501  * Verify that all devices have an integrity profile that matches the
1502  * DM device's registered integrity profile.  If the profiles don't
1503  * match then unregister the DM device's integrity profile.
1504  */
1505 static void dm_table_verify_integrity(struct dm_table *t)
1506 {
1507 	struct gendisk *template_disk = NULL;
1508 
1509 	if (t->integrity_added)
1510 		return;
1511 
1512 	if (t->integrity_supported) {
1513 		/*
1514 		 * Verify that the original integrity profile
1515 		 * matches all the devices in this table.
1516 		 */
1517 		template_disk = dm_table_get_integrity_disk(t);
1518 		if (template_disk &&
1519 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1520 			return;
1521 	}
1522 
1523 	if (integrity_profile_exists(dm_disk(t->md))) {
1524 		DMWARN("%s: unable to establish an integrity profile",
1525 		       dm_device_name(t->md));
1526 		blk_integrity_unregister(dm_disk(t->md));
1527 	}
1528 }
1529 
1530 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1531 				sector_t start, sector_t len, void *data)
1532 {
1533 	unsigned long flush = (unsigned long) data;
1534 	struct request_queue *q = bdev_get_queue(dev->bdev);
1535 
1536 	return q && (q->queue_flags & flush);
1537 }
1538 
1539 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1540 {
1541 	struct dm_target *ti;
1542 	unsigned i;
1543 
1544 	/*
1545 	 * Require at least one underlying device to support flushes.
1546 	 * t->devices includes internal dm devices such as mirror logs
1547 	 * so we need to use iterate_devices here, which targets
1548 	 * supporting flushes must provide.
1549 	 */
1550 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1551 		ti = dm_table_get_target(t, i);
1552 
1553 		if (!ti->num_flush_bios)
1554 			continue;
1555 
1556 		if (ti->flush_supported)
1557 			return true;
1558 
1559 		if (ti->type->iterate_devices &&
1560 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1561 			return true;
1562 	}
1563 
1564 	return false;
1565 }
1566 
1567 static int device_dax_write_cache_enabled(struct dm_target *ti,
1568 					  struct dm_dev *dev, sector_t start,
1569 					  sector_t len, void *data)
1570 {
1571 	struct dax_device *dax_dev = dev->dax_dev;
1572 
1573 	if (!dax_dev)
1574 		return false;
1575 
1576 	if (dax_write_cache_enabled(dax_dev))
1577 		return true;
1578 	return false;
1579 }
1580 
1581 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1582 {
1583 	struct dm_target *ti;
1584 	unsigned i;
1585 
1586 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1587 		ti = dm_table_get_target(t, i);
1588 
1589 		if (ti->type->iterate_devices &&
1590 		    ti->type->iterate_devices(ti,
1591 				device_dax_write_cache_enabled, NULL))
1592 			return true;
1593 	}
1594 
1595 	return false;
1596 }
1597 
1598 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1599 			    sector_t start, sector_t len, void *data)
1600 {
1601 	struct request_queue *q = bdev_get_queue(dev->bdev);
1602 
1603 	return q && blk_queue_nonrot(q);
1604 }
1605 
1606 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1607 			     sector_t start, sector_t len, void *data)
1608 {
1609 	struct request_queue *q = bdev_get_queue(dev->bdev);
1610 
1611 	return q && !blk_queue_add_random(q);
1612 }
1613 
1614 static bool dm_table_all_devices_attribute(struct dm_table *t,
1615 					   iterate_devices_callout_fn func)
1616 {
1617 	struct dm_target *ti;
1618 	unsigned i;
1619 
1620 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1621 		ti = dm_table_get_target(t, i);
1622 
1623 		if (!ti->type->iterate_devices ||
1624 		    !ti->type->iterate_devices(ti, func, NULL))
1625 			return false;
1626 	}
1627 
1628 	return true;
1629 }
1630 
1631 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1632 					 sector_t start, sector_t len, void *data)
1633 {
1634 	struct request_queue *q = bdev_get_queue(dev->bdev);
1635 
1636 	return q && !q->limits.max_write_same_sectors;
1637 }
1638 
1639 static bool dm_table_supports_write_same(struct dm_table *t)
1640 {
1641 	struct dm_target *ti;
1642 	unsigned i;
1643 
1644 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1645 		ti = dm_table_get_target(t, i);
1646 
1647 		if (!ti->num_write_same_bios)
1648 			return false;
1649 
1650 		if (!ti->type->iterate_devices ||
1651 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1652 			return false;
1653 	}
1654 
1655 	return true;
1656 }
1657 
1658 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1659 					   sector_t start, sector_t len, void *data)
1660 {
1661 	struct request_queue *q = bdev_get_queue(dev->bdev);
1662 
1663 	return q && !q->limits.max_write_zeroes_sectors;
1664 }
1665 
1666 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1667 {
1668 	struct dm_target *ti;
1669 	unsigned i = 0;
1670 
1671 	while (i < dm_table_get_num_targets(t)) {
1672 		ti = dm_table_get_target(t, i++);
1673 
1674 		if (!ti->num_write_zeroes_bios)
1675 			return false;
1676 
1677 		if (!ti->type->iterate_devices ||
1678 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1679 			return false;
1680 	}
1681 
1682 	return true;
1683 }
1684 
1685 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1686 				     sector_t start, sector_t len, void *data)
1687 {
1688 	struct request_queue *q = bdev_get_queue(dev->bdev);
1689 
1690 	return q && !blk_queue_nowait(q);
1691 }
1692 
1693 static bool dm_table_supports_nowait(struct dm_table *t)
1694 {
1695 	struct dm_target *ti;
1696 	unsigned i = 0;
1697 
1698 	while (i < dm_table_get_num_targets(t)) {
1699 		ti = dm_table_get_target(t, i++);
1700 
1701 		if (!dm_target_supports_nowait(ti->type))
1702 			return false;
1703 
1704 		if (!ti->type->iterate_devices ||
1705 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1706 			return false;
1707 	}
1708 
1709 	return true;
1710 }
1711 
1712 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1713 				      sector_t start, sector_t len, void *data)
1714 {
1715 	struct request_queue *q = bdev_get_queue(dev->bdev);
1716 
1717 	return q && !blk_queue_discard(q);
1718 }
1719 
1720 static bool dm_table_supports_discards(struct dm_table *t)
1721 {
1722 	struct dm_target *ti;
1723 	unsigned i;
1724 
1725 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1726 		ti = dm_table_get_target(t, i);
1727 
1728 		if (!ti->num_discard_bios)
1729 			return false;
1730 
1731 		/*
1732 		 * Either the target provides discard support (as implied by setting
1733 		 * 'discards_supported') or it relies on _all_ data devices having
1734 		 * discard support.
1735 		 */
1736 		if (!ti->discards_supported &&
1737 		    (!ti->type->iterate_devices ||
1738 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1739 			return false;
1740 	}
1741 
1742 	return true;
1743 }
1744 
1745 static int device_not_secure_erase_capable(struct dm_target *ti,
1746 					   struct dm_dev *dev, sector_t start,
1747 					   sector_t len, void *data)
1748 {
1749 	struct request_queue *q = bdev_get_queue(dev->bdev);
1750 
1751 	return q && !blk_queue_secure_erase(q);
1752 }
1753 
1754 static bool dm_table_supports_secure_erase(struct dm_table *t)
1755 {
1756 	struct dm_target *ti;
1757 	unsigned int i;
1758 
1759 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1760 		ti = dm_table_get_target(t, i);
1761 
1762 		if (!ti->num_secure_erase_bios)
1763 			return false;
1764 
1765 		if (!ti->type->iterate_devices ||
1766 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1767 			return false;
1768 	}
1769 
1770 	return true;
1771 }
1772 
1773 static int device_requires_stable_pages(struct dm_target *ti,
1774 					struct dm_dev *dev, sector_t start,
1775 					sector_t len, void *data)
1776 {
1777 	struct request_queue *q = bdev_get_queue(dev->bdev);
1778 
1779 	return q && blk_queue_stable_writes(q);
1780 }
1781 
1782 /*
1783  * If any underlying device requires stable pages, a table must require
1784  * them as well.  Only targets that support iterate_devices are considered:
1785  * don't want error, zero, etc to require stable pages.
1786  */
1787 static bool dm_table_requires_stable_pages(struct dm_table *t)
1788 {
1789 	struct dm_target *ti;
1790 	unsigned i;
1791 
1792 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1793 		ti = dm_table_get_target(t, i);
1794 
1795 		if (ti->type->iterate_devices &&
1796 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1797 			return true;
1798 	}
1799 
1800 	return false;
1801 }
1802 
1803 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1804 			       struct queue_limits *limits)
1805 {
1806 	bool wc = false, fua = false;
1807 	int page_size = PAGE_SIZE;
1808 
1809 	/*
1810 	 * Copy table's limits to the DM device's request_queue
1811 	 */
1812 	q->limits = *limits;
1813 
1814 	if (dm_table_supports_nowait(t))
1815 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1816 	else
1817 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1818 
1819 	if (!dm_table_supports_discards(t)) {
1820 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1821 		/* Must also clear discard limits... */
1822 		q->limits.max_discard_sectors = 0;
1823 		q->limits.max_hw_discard_sectors = 0;
1824 		q->limits.discard_granularity = 0;
1825 		q->limits.discard_alignment = 0;
1826 		q->limits.discard_misaligned = 0;
1827 	} else
1828 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1829 
1830 	if (dm_table_supports_secure_erase(t))
1831 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1832 
1833 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1834 		wc = true;
1835 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1836 			fua = true;
1837 	}
1838 	blk_queue_write_cache(q, wc, fua);
1839 
1840 	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1841 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1842 		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1843 			set_dax_synchronous(t->md->dax_dev);
1844 	}
1845 	else
1846 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1847 
1848 	if (dm_table_supports_dax_write_cache(t))
1849 		dax_write_cache(t->md->dax_dev, true);
1850 
1851 	/* Ensure that all underlying devices are non-rotational. */
1852 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1853 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1854 	else
1855 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1856 
1857 	if (!dm_table_supports_write_same(t))
1858 		q->limits.max_write_same_sectors = 0;
1859 	if (!dm_table_supports_write_zeroes(t))
1860 		q->limits.max_write_zeroes_sectors = 0;
1861 
1862 	dm_table_verify_integrity(t);
1863 
1864 	/*
1865 	 * Some devices don't use blk_integrity but still want stable pages
1866 	 * because they do their own checksumming.
1867 	 */
1868 	if (dm_table_requires_stable_pages(t))
1869 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1870 	else
1871 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1872 
1873 	/*
1874 	 * Determine whether or not this queue's I/O timings contribute
1875 	 * to the entropy pool, Only request-based targets use this.
1876 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1877 	 * have it set.
1878 	 */
1879 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1880 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1881 
1882 	/*
1883 	 * For a zoned target, the number of zones should be updated for the
1884 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1885 	 * target, this is all that is needed.
1886 	 */
1887 #ifdef CONFIG_BLK_DEV_ZONED
1888 	if (blk_queue_is_zoned(q)) {
1889 		WARN_ON_ONCE(queue_is_mq(q));
1890 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1891 	}
1892 #endif
1893 
1894 	blk_queue_update_readahead(q);
1895 }
1896 
1897 unsigned int dm_table_get_num_targets(struct dm_table *t)
1898 {
1899 	return t->num_targets;
1900 }
1901 
1902 struct list_head *dm_table_get_devices(struct dm_table *t)
1903 {
1904 	return &t->devices;
1905 }
1906 
1907 fmode_t dm_table_get_mode(struct dm_table *t)
1908 {
1909 	return t->mode;
1910 }
1911 EXPORT_SYMBOL(dm_table_get_mode);
1912 
1913 enum suspend_mode {
1914 	PRESUSPEND,
1915 	PRESUSPEND_UNDO,
1916 	POSTSUSPEND,
1917 };
1918 
1919 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1920 {
1921 	int i = t->num_targets;
1922 	struct dm_target *ti = t->targets;
1923 
1924 	lockdep_assert_held(&t->md->suspend_lock);
1925 
1926 	while (i--) {
1927 		switch (mode) {
1928 		case PRESUSPEND:
1929 			if (ti->type->presuspend)
1930 				ti->type->presuspend(ti);
1931 			break;
1932 		case PRESUSPEND_UNDO:
1933 			if (ti->type->presuspend_undo)
1934 				ti->type->presuspend_undo(ti);
1935 			break;
1936 		case POSTSUSPEND:
1937 			if (ti->type->postsuspend)
1938 				ti->type->postsuspend(ti);
1939 			break;
1940 		}
1941 		ti++;
1942 	}
1943 }
1944 
1945 void dm_table_presuspend_targets(struct dm_table *t)
1946 {
1947 	if (!t)
1948 		return;
1949 
1950 	suspend_targets(t, PRESUSPEND);
1951 }
1952 
1953 void dm_table_presuspend_undo_targets(struct dm_table *t)
1954 {
1955 	if (!t)
1956 		return;
1957 
1958 	suspend_targets(t, PRESUSPEND_UNDO);
1959 }
1960 
1961 void dm_table_postsuspend_targets(struct dm_table *t)
1962 {
1963 	if (!t)
1964 		return;
1965 
1966 	suspend_targets(t, POSTSUSPEND);
1967 }
1968 
1969 int dm_table_resume_targets(struct dm_table *t)
1970 {
1971 	int i, r = 0;
1972 
1973 	lockdep_assert_held(&t->md->suspend_lock);
1974 
1975 	for (i = 0; i < t->num_targets; i++) {
1976 		struct dm_target *ti = t->targets + i;
1977 
1978 		if (!ti->type->preresume)
1979 			continue;
1980 
1981 		r = ti->type->preresume(ti);
1982 		if (r) {
1983 			DMERR("%s: %s: preresume failed, error = %d",
1984 			      dm_device_name(t->md), ti->type->name, r);
1985 			return r;
1986 		}
1987 	}
1988 
1989 	for (i = 0; i < t->num_targets; i++) {
1990 		struct dm_target *ti = t->targets + i;
1991 
1992 		if (ti->type->resume)
1993 			ti->type->resume(ti);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 struct mapped_device *dm_table_get_md(struct dm_table *t)
2000 {
2001 	return t->md;
2002 }
2003 EXPORT_SYMBOL(dm_table_get_md);
2004 
2005 const char *dm_table_device_name(struct dm_table *t)
2006 {
2007 	return dm_device_name(t->md);
2008 }
2009 EXPORT_SYMBOL_GPL(dm_table_device_name);
2010 
2011 void dm_table_run_md_queue_async(struct dm_table *t)
2012 {
2013 	if (!dm_table_request_based(t))
2014 		return;
2015 
2016 	if (t->md->queue)
2017 		blk_mq_run_hw_queues(t->md->queue, true);
2018 }
2019 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2020 
2021