xref: /openbmc/linux/drivers/md/dm-table.c (revision 2d972b6a)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	bool all_blk_mq:1;
51 	unsigned integrity_added:1;
52 
53 	/*
54 	 * Indicates the rw permissions for the new logical
55 	 * device.  This should be a combination of FMODE_READ
56 	 * and FMODE_WRITE.
57 	 */
58 	fmode_t mode;
59 
60 	/* a list of devices used by this table */
61 	struct list_head devices;
62 
63 	/* events get handed up using this callback */
64 	void (*event_fn)(void *);
65 	void *event_context;
66 
67 	struct dm_md_mempools *mempools;
68 
69 	struct list_head target_callbacks;
70 };
71 
72 /*
73  * Similar to ceiling(log_size(n))
74  */
75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77 	int result = 0;
78 
79 	while (n > 1) {
80 		n = dm_div_up(n, base);
81 		result++;
82 	}
83 
84 	return result;
85 }
86 
87 /*
88  * Calculate the index of the child node of the n'th node k'th key.
89  */
90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92 	return (n * CHILDREN_PER_NODE) + k;
93 }
94 
95 /*
96  * Return the n'th node of level l from table t.
97  */
98 static inline sector_t *get_node(struct dm_table *t,
99 				 unsigned int l, unsigned int n)
100 {
101 	return t->index[l] + (n * KEYS_PER_NODE);
102 }
103 
104 /*
105  * Return the highest key that you could lookup from the n'th
106  * node on level l of the btree.
107  */
108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110 	for (; l < t->depth - 1; l++)
111 		n = get_child(n, CHILDREN_PER_NODE - 1);
112 
113 	if (n >= t->counts[l])
114 		return (sector_t) - 1;
115 
116 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118 
119 /*
120  * Fills in a level of the btree based on the highs of the level
121  * below it.
122  */
123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125 	unsigned int n, k;
126 	sector_t *node;
127 
128 	for (n = 0U; n < t->counts[l]; n++) {
129 		node = get_node(t, l, n);
130 
131 		for (k = 0U; k < KEYS_PER_NODE; k++)
132 			node[k] = high(t, l + 1, get_child(n, k));
133 	}
134 
135 	return 0;
136 }
137 
138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140 	unsigned long size;
141 	void *addr;
142 
143 	/*
144 	 * Check that we're not going to overflow.
145 	 */
146 	if (nmemb > (ULONG_MAX / elem_size))
147 		return NULL;
148 
149 	size = nmemb * elem_size;
150 	addr = vzalloc(size);
151 
152 	return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155 
156 /*
157  * highs, and targets are managed as dynamic arrays during a
158  * table load.
159  */
160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162 	sector_t *n_highs;
163 	struct dm_target *n_targets;
164 
165 	/*
166 	 * Allocate both the target array and offset array at once.
167 	 * Append an empty entry to catch sectors beyond the end of
168 	 * the device.
169 	 */
170 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 					  sizeof(sector_t));
172 	if (!n_highs)
173 		return -ENOMEM;
174 
175 	n_targets = (struct dm_target *) (n_highs + num);
176 
177 	memset(n_highs, -1, sizeof(*n_highs) * num);
178 	vfree(t->highs);
179 
180 	t->num_allocated = num;
181 	t->highs = n_highs;
182 	t->targets = n_targets;
183 
184 	return 0;
185 }
186 
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 		    unsigned num_targets, struct mapped_device *md)
189 {
190 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191 
192 	if (!t)
193 		return -ENOMEM;
194 
195 	INIT_LIST_HEAD(&t->devices);
196 	INIT_LIST_HEAD(&t->target_callbacks);
197 
198 	if (!num_targets)
199 		num_targets = KEYS_PER_NODE;
200 
201 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202 
203 	if (!num_targets) {
204 		kfree(t);
205 		return -ENOMEM;
206 	}
207 
208 	if (alloc_targets(t, num_targets)) {
209 		kfree(t);
210 		return -ENOMEM;
211 	}
212 
213 	t->type = DM_TYPE_NONE;
214 	t->mode = mode;
215 	t->md = md;
216 	*result = t;
217 	return 0;
218 }
219 
220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222 	struct list_head *tmp, *next;
223 
224 	list_for_each_safe(tmp, next, devices) {
225 		struct dm_dev_internal *dd =
226 		    list_entry(tmp, struct dm_dev_internal, list);
227 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 		       dm_device_name(md), dd->dm_dev->name);
229 		dm_put_table_device(md, dd->dm_dev);
230 		kfree(dd);
231 	}
232 }
233 
234 void dm_table_destroy(struct dm_table *t)
235 {
236 	unsigned int i;
237 
238 	if (!t)
239 		return;
240 
241 	/* free the indexes */
242 	if (t->depth >= 2)
243 		vfree(t->index[t->depth - 2]);
244 
245 	/* free the targets */
246 	for (i = 0; i < t->num_targets; i++) {
247 		struct dm_target *tgt = t->targets + i;
248 
249 		if (tgt->type->dtr)
250 			tgt->type->dtr(tgt);
251 
252 		dm_put_target_type(tgt->type);
253 	}
254 
255 	vfree(t->highs);
256 
257 	/* free the device list */
258 	free_devices(&t->devices, t->md);
259 
260 	dm_free_md_mempools(t->mempools);
261 
262 	kfree(t);
263 }
264 
265 /*
266  * See if we've already got a device in the list.
267  */
268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270 	struct dm_dev_internal *dd;
271 
272 	list_for_each_entry (dd, l, list)
273 		if (dd->dm_dev->bdev->bd_dev == dev)
274 			return dd;
275 
276 	return NULL;
277 }
278 
279 /*
280  * If possible, this checks an area of a destination device is invalid.
281  */
282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 				  sector_t start, sector_t len, void *data)
284 {
285 	struct request_queue *q;
286 	struct queue_limits *limits = data;
287 	struct block_device *bdev = dev->bdev;
288 	sector_t dev_size =
289 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 	unsigned short logical_block_size_sectors =
291 		limits->logical_block_size >> SECTOR_SHIFT;
292 	char b[BDEVNAME_SIZE];
293 
294 	/*
295 	 * Some devices exist without request functions,
296 	 * such as loop devices not yet bound to backing files.
297 	 * Forbid the use of such devices.
298 	 */
299 	q = bdev_get_queue(bdev);
300 	if (!q || !q->make_request_fn) {
301 		DMWARN("%s: %s is not yet initialised: "
302 		       "start=%llu, len=%llu, dev_size=%llu",
303 		       dm_device_name(ti->table->md), bdevname(bdev, b),
304 		       (unsigned long long)start,
305 		       (unsigned long long)len,
306 		       (unsigned long long)dev_size);
307 		return 1;
308 	}
309 
310 	if (!dev_size)
311 		return 0;
312 
313 	if ((start >= dev_size) || (start + len > dev_size)) {
314 		DMWARN("%s: %s too small for target: "
315 		       "start=%llu, len=%llu, dev_size=%llu",
316 		       dm_device_name(ti->table->md), bdevname(bdev, b),
317 		       (unsigned long long)start,
318 		       (unsigned long long)len,
319 		       (unsigned long long)dev_size);
320 		return 1;
321 	}
322 
323 	/*
324 	 * If the target is mapped to zoned block device(s), check
325 	 * that the zones are not partially mapped.
326 	 */
327 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
329 
330 		if (start & (zone_sectors - 1)) {
331 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 			       dm_device_name(ti->table->md),
333 			       (unsigned long long)start,
334 			       zone_sectors, bdevname(bdev, b));
335 			return 1;
336 		}
337 
338 		/*
339 		 * Note: The last zone of a zoned block device may be smaller
340 		 * than other zones. So for a target mapping the end of a
341 		 * zoned block device with such a zone, len would not be zone
342 		 * aligned. We do not allow such last smaller zone to be part
343 		 * of the mapping here to ensure that mappings with multiple
344 		 * devices do not end up with a smaller zone in the middle of
345 		 * the sector range.
346 		 */
347 		if (len & (zone_sectors - 1)) {
348 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 			       dm_device_name(ti->table->md),
350 			       (unsigned long long)len,
351 			       zone_sectors, bdevname(bdev, b));
352 			return 1;
353 		}
354 	}
355 
356 	if (logical_block_size_sectors <= 1)
357 		return 0;
358 
359 	if (start & (logical_block_size_sectors - 1)) {
360 		DMWARN("%s: start=%llu not aligned to h/w "
361 		       "logical block size %u of %s",
362 		       dm_device_name(ti->table->md),
363 		       (unsigned long long)start,
364 		       limits->logical_block_size, bdevname(bdev, b));
365 		return 1;
366 	}
367 
368 	if (len & (logical_block_size_sectors - 1)) {
369 		DMWARN("%s: len=%llu not aligned to h/w "
370 		       "logical block size %u of %s",
371 		       dm_device_name(ti->table->md),
372 		       (unsigned long long)len,
373 		       limits->logical_block_size, bdevname(bdev, b));
374 		return 1;
375 	}
376 
377 	return 0;
378 }
379 
380 /*
381  * This upgrades the mode on an already open dm_dev, being
382  * careful to leave things as they were if we fail to reopen the
383  * device and not to touch the existing bdev field in case
384  * it is accessed concurrently inside dm_table_any_congested().
385  */
386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 			struct mapped_device *md)
388 {
389 	int r;
390 	struct dm_dev *old_dev, *new_dev;
391 
392 	old_dev = dd->dm_dev;
393 
394 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 				dd->dm_dev->mode | new_mode, &new_dev);
396 	if (r)
397 		return r;
398 
399 	dd->dm_dev = new_dev;
400 	dm_put_table_device(md, old_dev);
401 
402 	return 0;
403 }
404 
405 /*
406  * Convert the path to a device
407  */
408 dev_t dm_get_dev_t(const char *path)
409 {
410 	dev_t dev;
411 	struct block_device *bdev;
412 
413 	bdev = lookup_bdev(path);
414 	if (IS_ERR(bdev))
415 		dev = name_to_dev_t(path);
416 	else {
417 		dev = bdev->bd_dev;
418 		bdput(bdev);
419 	}
420 
421 	return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424 
425 /*
426  * Add a device to the list, or just increment the usage count if
427  * it's already present.
428  */
429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 		  struct dm_dev **result)
431 {
432 	int r;
433 	dev_t dev;
434 	struct dm_dev_internal *dd;
435 	struct dm_table *t = ti->table;
436 
437 	BUG_ON(!t);
438 
439 	dev = dm_get_dev_t(path);
440 	if (!dev)
441 		return -ENODEV;
442 
443 	dd = find_device(&t->devices, dev);
444 	if (!dd) {
445 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 		if (!dd)
447 			return -ENOMEM;
448 
449 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 			kfree(dd);
451 			return r;
452 		}
453 
454 		refcount_set(&dd->count, 1);
455 		list_add(&dd->list, &t->devices);
456 		goto out;
457 
458 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 		r = upgrade_mode(dd, mode, t->md);
460 		if (r)
461 			return r;
462 	}
463 	refcount_inc(&dd->count);
464 out:
465 	*result = dd->dm_dev;
466 	return 0;
467 }
468 EXPORT_SYMBOL(dm_get_device);
469 
470 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 				sector_t start, sector_t len, void *data)
472 {
473 	struct queue_limits *limits = data;
474 	struct block_device *bdev = dev->bdev;
475 	struct request_queue *q = bdev_get_queue(bdev);
476 	char b[BDEVNAME_SIZE];
477 
478 	if (unlikely(!q)) {
479 		DMWARN("%s: Cannot set limits for nonexistent device %s",
480 		       dm_device_name(ti->table->md), bdevname(bdev, b));
481 		return 0;
482 	}
483 
484 	if (bdev_stack_limits(limits, bdev, start) < 0)
485 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 		       "physical_block_size=%u, logical_block_size=%u, "
487 		       "alignment_offset=%u, start=%llu",
488 		       dm_device_name(ti->table->md), bdevname(bdev, b),
489 		       q->limits.physical_block_size,
490 		       q->limits.logical_block_size,
491 		       q->limits.alignment_offset,
492 		       (unsigned long long) start << SECTOR_SHIFT);
493 
494 	limits->zoned = blk_queue_zoned_model(q);
495 
496 	return 0;
497 }
498 
499 /*
500  * Decrement a device's use count and remove it if necessary.
501  */
502 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503 {
504 	int found = 0;
505 	struct list_head *devices = &ti->table->devices;
506 	struct dm_dev_internal *dd;
507 
508 	list_for_each_entry(dd, devices, list) {
509 		if (dd->dm_dev == d) {
510 			found = 1;
511 			break;
512 		}
513 	}
514 	if (!found) {
515 		DMWARN("%s: device %s not in table devices list",
516 		       dm_device_name(ti->table->md), d->name);
517 		return;
518 	}
519 	if (refcount_dec_and_test(&dd->count)) {
520 		dm_put_table_device(ti->table->md, d);
521 		list_del(&dd->list);
522 		kfree(dd);
523 	}
524 }
525 EXPORT_SYMBOL(dm_put_device);
526 
527 /*
528  * Checks to see if the target joins onto the end of the table.
529  */
530 static int adjoin(struct dm_table *table, struct dm_target *ti)
531 {
532 	struct dm_target *prev;
533 
534 	if (!table->num_targets)
535 		return !ti->begin;
536 
537 	prev = &table->targets[table->num_targets - 1];
538 	return (ti->begin == (prev->begin + prev->len));
539 }
540 
541 /*
542  * Used to dynamically allocate the arg array.
543  *
544  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545  * process messages even if some device is suspended. These messages have a
546  * small fixed number of arguments.
547  *
548  * On the other hand, dm-switch needs to process bulk data using messages and
549  * excessive use of GFP_NOIO could cause trouble.
550  */
551 static char **realloc_argv(unsigned *array_size, char **old_argv)
552 {
553 	char **argv;
554 	unsigned new_size;
555 	gfp_t gfp;
556 
557 	if (*array_size) {
558 		new_size = *array_size * 2;
559 		gfp = GFP_KERNEL;
560 	} else {
561 		new_size = 8;
562 		gfp = GFP_NOIO;
563 	}
564 	argv = kmalloc(new_size * sizeof(*argv), gfp);
565 	if (argv) {
566 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
567 		*array_size = new_size;
568 	}
569 
570 	kfree(old_argv);
571 	return argv;
572 }
573 
574 /*
575  * Destructively splits up the argument list to pass to ctr.
576  */
577 int dm_split_args(int *argc, char ***argvp, char *input)
578 {
579 	char *start, *end = input, *out, **argv = NULL;
580 	unsigned array_size = 0;
581 
582 	*argc = 0;
583 
584 	if (!input) {
585 		*argvp = NULL;
586 		return 0;
587 	}
588 
589 	argv = realloc_argv(&array_size, argv);
590 	if (!argv)
591 		return -ENOMEM;
592 
593 	while (1) {
594 		/* Skip whitespace */
595 		start = skip_spaces(end);
596 
597 		if (!*start)
598 			break;	/* success, we hit the end */
599 
600 		/* 'out' is used to remove any back-quotes */
601 		end = out = start;
602 		while (*end) {
603 			/* Everything apart from '\0' can be quoted */
604 			if (*end == '\\' && *(end + 1)) {
605 				*out++ = *(end + 1);
606 				end += 2;
607 				continue;
608 			}
609 
610 			if (isspace(*end))
611 				break;	/* end of token */
612 
613 			*out++ = *end++;
614 		}
615 
616 		/* have we already filled the array ? */
617 		if ((*argc + 1) > array_size) {
618 			argv = realloc_argv(&array_size, argv);
619 			if (!argv)
620 				return -ENOMEM;
621 		}
622 
623 		/* we know this is whitespace */
624 		if (*end)
625 			end++;
626 
627 		/* terminate the string and put it in the array */
628 		*out = '\0';
629 		argv[*argc] = start;
630 		(*argc)++;
631 	}
632 
633 	*argvp = argv;
634 	return 0;
635 }
636 
637 /*
638  * Impose necessary and sufficient conditions on a devices's table such
639  * that any incoming bio which respects its logical_block_size can be
640  * processed successfully.  If it falls across the boundary between
641  * two or more targets, the size of each piece it gets split into must
642  * be compatible with the logical_block_size of the target processing it.
643  */
644 static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 						 struct queue_limits *limits)
646 {
647 	/*
648 	 * This function uses arithmetic modulo the logical_block_size
649 	 * (in units of 512-byte sectors).
650 	 */
651 	unsigned short device_logical_block_size_sects =
652 		limits->logical_block_size >> SECTOR_SHIFT;
653 
654 	/*
655 	 * Offset of the start of the next table entry, mod logical_block_size.
656 	 */
657 	unsigned short next_target_start = 0;
658 
659 	/*
660 	 * Given an aligned bio that extends beyond the end of a
661 	 * target, how many sectors must the next target handle?
662 	 */
663 	unsigned short remaining = 0;
664 
665 	struct dm_target *uninitialized_var(ti);
666 	struct queue_limits ti_limits;
667 	unsigned i;
668 
669 	/*
670 	 * Check each entry in the table in turn.
671 	 */
672 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 		ti = dm_table_get_target(table, i);
674 
675 		blk_set_stacking_limits(&ti_limits);
676 
677 		/* combine all target devices' limits */
678 		if (ti->type->iterate_devices)
679 			ti->type->iterate_devices(ti, dm_set_device_limits,
680 						  &ti_limits);
681 
682 		/*
683 		 * If the remaining sectors fall entirely within this
684 		 * table entry are they compatible with its logical_block_size?
685 		 */
686 		if (remaining < ti->len &&
687 		    remaining & ((ti_limits.logical_block_size >>
688 				  SECTOR_SHIFT) - 1))
689 			break;	/* Error */
690 
691 		next_target_start =
692 		    (unsigned short) ((next_target_start + ti->len) &
693 				      (device_logical_block_size_sects - 1));
694 		remaining = next_target_start ?
695 		    device_logical_block_size_sects - next_target_start : 0;
696 	}
697 
698 	if (remaining) {
699 		DMWARN("%s: table line %u (start sect %llu len %llu) "
700 		       "not aligned to h/w logical block size %u",
701 		       dm_device_name(table->md), i,
702 		       (unsigned long long) ti->begin,
703 		       (unsigned long long) ti->len,
704 		       limits->logical_block_size);
705 		return -EINVAL;
706 	}
707 
708 	return 0;
709 }
710 
711 int dm_table_add_target(struct dm_table *t, const char *type,
712 			sector_t start, sector_t len, char *params)
713 {
714 	int r = -EINVAL, argc;
715 	char **argv;
716 	struct dm_target *tgt;
717 
718 	if (t->singleton) {
719 		DMERR("%s: target type %s must appear alone in table",
720 		      dm_device_name(t->md), t->targets->type->name);
721 		return -EINVAL;
722 	}
723 
724 	BUG_ON(t->num_targets >= t->num_allocated);
725 
726 	tgt = t->targets + t->num_targets;
727 	memset(tgt, 0, sizeof(*tgt));
728 
729 	if (!len) {
730 		DMERR("%s: zero-length target", dm_device_name(t->md));
731 		return -EINVAL;
732 	}
733 
734 	tgt->type = dm_get_target_type(type);
735 	if (!tgt->type) {
736 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 		return -EINVAL;
738 	}
739 
740 	if (dm_target_needs_singleton(tgt->type)) {
741 		if (t->num_targets) {
742 			tgt->error = "singleton target type must appear alone in table";
743 			goto bad;
744 		}
745 		t->singleton = true;
746 	}
747 
748 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 		tgt->error = "target type may not be included in a read-only table";
750 		goto bad;
751 	}
752 
753 	if (t->immutable_target_type) {
754 		if (t->immutable_target_type != tgt->type) {
755 			tgt->error = "immutable target type cannot be mixed with other target types";
756 			goto bad;
757 		}
758 	} else if (dm_target_is_immutable(tgt->type)) {
759 		if (t->num_targets) {
760 			tgt->error = "immutable target type cannot be mixed with other target types";
761 			goto bad;
762 		}
763 		t->immutable_target_type = tgt->type;
764 	}
765 
766 	if (dm_target_has_integrity(tgt->type))
767 		t->integrity_added = 1;
768 
769 	tgt->table = t;
770 	tgt->begin = start;
771 	tgt->len = len;
772 	tgt->error = "Unknown error";
773 
774 	/*
775 	 * Does this target adjoin the previous one ?
776 	 */
777 	if (!adjoin(t, tgt)) {
778 		tgt->error = "Gap in table";
779 		goto bad;
780 	}
781 
782 	r = dm_split_args(&argc, &argv, params);
783 	if (r) {
784 		tgt->error = "couldn't split parameters (insufficient memory)";
785 		goto bad;
786 	}
787 
788 	r = tgt->type->ctr(tgt, argc, argv);
789 	kfree(argv);
790 	if (r)
791 		goto bad;
792 
793 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794 
795 	if (!tgt->num_discard_bios && tgt->discards_supported)
796 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 		       dm_device_name(t->md), type);
798 
799 	return 0;
800 
801  bad:
802 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 	dm_put_target_type(tgt->type);
804 	return r;
805 }
806 
807 /*
808  * Target argument parsing helpers.
809  */
810 static int validate_next_arg(const struct dm_arg *arg,
811 			     struct dm_arg_set *arg_set,
812 			     unsigned *value, char **error, unsigned grouped)
813 {
814 	const char *arg_str = dm_shift_arg(arg_set);
815 	char dummy;
816 
817 	if (!arg_str ||
818 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 	    (*value < arg->min) ||
820 	    (*value > arg->max) ||
821 	    (grouped && arg_set->argc < *value)) {
822 		*error = arg->error;
823 		return -EINVAL;
824 	}
825 
826 	return 0;
827 }
828 
829 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 		unsigned *value, char **error)
831 {
832 	return validate_next_arg(arg, arg_set, value, error, 0);
833 }
834 EXPORT_SYMBOL(dm_read_arg);
835 
836 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 		      unsigned *value, char **error)
838 {
839 	return validate_next_arg(arg, arg_set, value, error, 1);
840 }
841 EXPORT_SYMBOL(dm_read_arg_group);
842 
843 const char *dm_shift_arg(struct dm_arg_set *as)
844 {
845 	char *r;
846 
847 	if (as->argc) {
848 		as->argc--;
849 		r = *as->argv;
850 		as->argv++;
851 		return r;
852 	}
853 
854 	return NULL;
855 }
856 EXPORT_SYMBOL(dm_shift_arg);
857 
858 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859 {
860 	BUG_ON(as->argc < num_args);
861 	as->argc -= num_args;
862 	as->argv += num_args;
863 }
864 EXPORT_SYMBOL(dm_consume_args);
865 
866 static bool __table_type_bio_based(enum dm_queue_mode table_type)
867 {
868 	return (table_type == DM_TYPE_BIO_BASED ||
869 		table_type == DM_TYPE_DAX_BIO_BASED ||
870 		table_type == DM_TYPE_NVME_BIO_BASED);
871 }
872 
873 static bool __table_type_request_based(enum dm_queue_mode table_type)
874 {
875 	return (table_type == DM_TYPE_REQUEST_BASED ||
876 		table_type == DM_TYPE_MQ_REQUEST_BASED);
877 }
878 
879 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
880 {
881 	t->type = type;
882 }
883 EXPORT_SYMBOL_GPL(dm_table_set_type);
884 
885 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
886 			       sector_t start, sector_t len, void *data)
887 {
888 	struct request_queue *q = bdev_get_queue(dev->bdev);
889 
890 	return q && blk_queue_dax(q);
891 }
892 
893 static bool dm_table_supports_dax(struct dm_table *t)
894 {
895 	struct dm_target *ti;
896 	unsigned i;
897 
898 	/* Ensure that all targets support DAX. */
899 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
900 		ti = dm_table_get_target(t, i);
901 
902 		if (!ti->type->direct_access)
903 			return false;
904 
905 		if (!ti->type->iterate_devices ||
906 		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
907 			return false;
908 	}
909 
910 	return true;
911 }
912 
913 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
914 
915 struct verify_rq_based_data {
916 	unsigned sq_count;
917 	unsigned mq_count;
918 };
919 
920 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
921 			      sector_t start, sector_t len, void *data)
922 {
923 	struct request_queue *q = bdev_get_queue(dev->bdev);
924 	struct verify_rq_based_data *v = data;
925 
926 	if (q->mq_ops)
927 		v->mq_count++;
928 	else
929 		v->sq_count++;
930 
931 	return queue_is_rq_based(q);
932 }
933 
934 static int dm_table_determine_type(struct dm_table *t)
935 {
936 	unsigned i;
937 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 	struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
939 	struct dm_target *tgt;
940 	struct list_head *devices = dm_table_get_devices(t);
941 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
942 
943 	if (t->type != DM_TYPE_NONE) {
944 		/* target already set the table's type */
945 		if (t->type == DM_TYPE_BIO_BASED) {
946 			/* possibly upgrade to a variant of bio-based */
947 			goto verify_bio_based;
948 		}
949 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 		goto verify_rq_based;
952 	}
953 
954 	for (i = 0; i < t->num_targets; i++) {
955 		tgt = t->targets + i;
956 		if (dm_target_hybrid(tgt))
957 			hybrid = 1;
958 		else if (dm_target_request_based(tgt))
959 			request_based = 1;
960 		else
961 			bio_based = 1;
962 
963 		if (bio_based && request_based) {
964 			DMERR("Inconsistent table: different target types"
965 			      " can't be mixed up");
966 			return -EINVAL;
967 		}
968 	}
969 
970 	if (hybrid && !bio_based && !request_based) {
971 		/*
972 		 * The targets can work either way.
973 		 * Determine the type from the live device.
974 		 * Default to bio-based if device is new.
975 		 */
976 		if (__table_type_request_based(live_md_type))
977 			request_based = 1;
978 		else
979 			bio_based = 1;
980 	}
981 
982 	if (bio_based) {
983 verify_bio_based:
984 		/* We must use this table as bio-based */
985 		t->type = DM_TYPE_BIO_BASED;
986 		if (dm_table_supports_dax(t) ||
987 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 			t->type = DM_TYPE_DAX_BIO_BASED;
989 		} else {
990 			/* Check if upgrading to NVMe bio-based is valid or required */
991 			tgt = dm_table_get_immutable_target(t);
992 			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 				t->type = DM_TYPE_NVME_BIO_BASED;
994 				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 				t->type = DM_TYPE_NVME_BIO_BASED;
997 			}
998 		}
999 		return 0;
1000 	}
1001 
1002 	BUG_ON(!request_based); /* No targets in this table */
1003 
1004 	/*
1005 	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1006 	 * having a compatible target use dm_table_set_type.
1007 	 */
1008 	t->type = DM_TYPE_REQUEST_BASED;
1009 
1010 verify_rq_based:
1011 	/*
1012 	 * Request-based dm supports only tables that have a single target now.
1013 	 * To support multiple targets, request splitting support is needed,
1014 	 * and that needs lots of changes in the block-layer.
1015 	 * (e.g. request completion process for partial completion.)
1016 	 */
1017 	if (t->num_targets > 1) {
1018 		DMERR("%s DM doesn't support multiple targets",
1019 		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1020 		return -EINVAL;
1021 	}
1022 
1023 	if (list_empty(devices)) {
1024 		int srcu_idx;
1025 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1026 
1027 		/* inherit live table's type and all_blk_mq */
1028 		if (live_table) {
1029 			t->type = live_table->type;
1030 			t->all_blk_mq = live_table->all_blk_mq;
1031 		}
1032 		dm_put_live_table(t->md, srcu_idx);
1033 		return 0;
1034 	}
1035 
1036 	tgt = dm_table_get_immutable_target(t);
1037 	if (!tgt) {
1038 		DMERR("table load rejected: immutable target is required");
1039 		return -EINVAL;
1040 	} else if (tgt->max_io_len) {
1041 		DMERR("table load rejected: immutable target that splits IO is not supported");
1042 		return -EINVAL;
1043 	}
1044 
1045 	/* Non-request-stackable devices can't be used for request-based dm */
1046 	if (!tgt->type->iterate_devices ||
1047 	    !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1048 		DMERR("table load rejected: including non-request-stackable devices");
1049 		return -EINVAL;
1050 	}
1051 	if (v.sq_count && v.mq_count) {
1052 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1053 		return -EINVAL;
1054 	}
1055 	t->all_blk_mq = v.mq_count > 0;
1056 
1057 	if (!t->all_blk_mq &&
1058 	    (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1059 		DMERR("table load rejected: all devices are not blk-mq request-stackable");
1060 		return -EINVAL;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1067 {
1068 	return t->type;
1069 }
1070 
1071 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1072 {
1073 	return t->immutable_target_type;
1074 }
1075 
1076 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1077 {
1078 	/* Immutable target is implicitly a singleton */
1079 	if (t->num_targets > 1 ||
1080 	    !dm_target_is_immutable(t->targets[0].type))
1081 		return NULL;
1082 
1083 	return t->targets;
1084 }
1085 
1086 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1087 {
1088 	struct dm_target *ti;
1089 	unsigned i;
1090 
1091 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1092 		ti = dm_table_get_target(t, i);
1093 		if (dm_target_is_wildcard(ti->type))
1094 			return ti;
1095 	}
1096 
1097 	return NULL;
1098 }
1099 
1100 bool dm_table_bio_based(struct dm_table *t)
1101 {
1102 	return __table_type_bio_based(dm_table_get_type(t));
1103 }
1104 
1105 bool dm_table_request_based(struct dm_table *t)
1106 {
1107 	return __table_type_request_based(dm_table_get_type(t));
1108 }
1109 
1110 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1111 {
1112 	return t->all_blk_mq;
1113 }
1114 
1115 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1116 {
1117 	enum dm_queue_mode type = dm_table_get_type(t);
1118 	unsigned per_io_data_size = 0;
1119 	unsigned min_pool_size = 0;
1120 	struct dm_target *ti;
1121 	unsigned i;
1122 
1123 	if (unlikely(type == DM_TYPE_NONE)) {
1124 		DMWARN("no table type is set, can't allocate mempools");
1125 		return -EINVAL;
1126 	}
1127 
1128 	if (__table_type_bio_based(type))
1129 		for (i = 0; i < t->num_targets; i++) {
1130 			ti = t->targets + i;
1131 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1132 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1133 		}
1134 
1135 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1136 					   per_io_data_size, min_pool_size);
1137 	if (!t->mempools)
1138 		return -ENOMEM;
1139 
1140 	return 0;
1141 }
1142 
1143 void dm_table_free_md_mempools(struct dm_table *t)
1144 {
1145 	dm_free_md_mempools(t->mempools);
1146 	t->mempools = NULL;
1147 }
1148 
1149 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1150 {
1151 	return t->mempools;
1152 }
1153 
1154 static int setup_indexes(struct dm_table *t)
1155 {
1156 	int i;
1157 	unsigned int total = 0;
1158 	sector_t *indexes;
1159 
1160 	/* allocate the space for *all* the indexes */
1161 	for (i = t->depth - 2; i >= 0; i--) {
1162 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1163 		total += t->counts[i];
1164 	}
1165 
1166 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1167 	if (!indexes)
1168 		return -ENOMEM;
1169 
1170 	/* set up internal nodes, bottom-up */
1171 	for (i = t->depth - 2; i >= 0; i--) {
1172 		t->index[i] = indexes;
1173 		indexes += (KEYS_PER_NODE * t->counts[i]);
1174 		setup_btree_index(i, t);
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * Builds the btree to index the map.
1182  */
1183 static int dm_table_build_index(struct dm_table *t)
1184 {
1185 	int r = 0;
1186 	unsigned int leaf_nodes;
1187 
1188 	/* how many indexes will the btree have ? */
1189 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1190 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1191 
1192 	/* leaf layer has already been set up */
1193 	t->counts[t->depth - 1] = leaf_nodes;
1194 	t->index[t->depth - 1] = t->highs;
1195 
1196 	if (t->depth >= 2)
1197 		r = setup_indexes(t);
1198 
1199 	return r;
1200 }
1201 
1202 static bool integrity_profile_exists(struct gendisk *disk)
1203 {
1204 	return !!blk_get_integrity(disk);
1205 }
1206 
1207 /*
1208  * Get a disk whose integrity profile reflects the table's profile.
1209  * Returns NULL if integrity support was inconsistent or unavailable.
1210  */
1211 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1212 {
1213 	struct list_head *devices = dm_table_get_devices(t);
1214 	struct dm_dev_internal *dd = NULL;
1215 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1216 	unsigned i;
1217 
1218 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1219 		struct dm_target *ti = dm_table_get_target(t, i);
1220 		if (!dm_target_passes_integrity(ti->type))
1221 			goto no_integrity;
1222 	}
1223 
1224 	list_for_each_entry(dd, devices, list) {
1225 		template_disk = dd->dm_dev->bdev->bd_disk;
1226 		if (!integrity_profile_exists(template_disk))
1227 			goto no_integrity;
1228 		else if (prev_disk &&
1229 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1230 			goto no_integrity;
1231 		prev_disk = template_disk;
1232 	}
1233 
1234 	return template_disk;
1235 
1236 no_integrity:
1237 	if (prev_disk)
1238 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1239 		       dm_device_name(t->md),
1240 		       prev_disk->disk_name,
1241 		       template_disk->disk_name);
1242 	return NULL;
1243 }
1244 
1245 /*
1246  * Register the mapped device for blk_integrity support if the
1247  * underlying devices have an integrity profile.  But all devices may
1248  * not have matching profiles (checking all devices isn't reliable
1249  * during table load because this table may use other DM device(s) which
1250  * must be resumed before they will have an initialized integity
1251  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1252  * profile validation: First pass during table load, final pass during
1253  * resume.
1254  */
1255 static int dm_table_register_integrity(struct dm_table *t)
1256 {
1257 	struct mapped_device *md = t->md;
1258 	struct gendisk *template_disk = NULL;
1259 
1260 	/* If target handles integrity itself do not register it here. */
1261 	if (t->integrity_added)
1262 		return 0;
1263 
1264 	template_disk = dm_table_get_integrity_disk(t);
1265 	if (!template_disk)
1266 		return 0;
1267 
1268 	if (!integrity_profile_exists(dm_disk(md))) {
1269 		t->integrity_supported = true;
1270 		/*
1271 		 * Register integrity profile during table load; we can do
1272 		 * this because the final profile must match during resume.
1273 		 */
1274 		blk_integrity_register(dm_disk(md),
1275 				       blk_get_integrity(template_disk));
1276 		return 0;
1277 	}
1278 
1279 	/*
1280 	 * If DM device already has an initialized integrity
1281 	 * profile the new profile should not conflict.
1282 	 */
1283 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1284 		DMWARN("%s: conflict with existing integrity profile: "
1285 		       "%s profile mismatch",
1286 		       dm_device_name(t->md),
1287 		       template_disk->disk_name);
1288 		return 1;
1289 	}
1290 
1291 	/* Preserve existing integrity profile */
1292 	t->integrity_supported = true;
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Prepares the table for use by building the indices,
1298  * setting the type, and allocating mempools.
1299  */
1300 int dm_table_complete(struct dm_table *t)
1301 {
1302 	int r;
1303 
1304 	r = dm_table_determine_type(t);
1305 	if (r) {
1306 		DMERR("unable to determine table type");
1307 		return r;
1308 	}
1309 
1310 	r = dm_table_build_index(t);
1311 	if (r) {
1312 		DMERR("unable to build btrees");
1313 		return r;
1314 	}
1315 
1316 	r = dm_table_register_integrity(t);
1317 	if (r) {
1318 		DMERR("could not register integrity profile.");
1319 		return r;
1320 	}
1321 
1322 	r = dm_table_alloc_md_mempools(t, t->md);
1323 	if (r)
1324 		DMERR("unable to allocate mempools");
1325 
1326 	return r;
1327 }
1328 
1329 static DEFINE_MUTEX(_event_lock);
1330 void dm_table_event_callback(struct dm_table *t,
1331 			     void (*fn)(void *), void *context)
1332 {
1333 	mutex_lock(&_event_lock);
1334 	t->event_fn = fn;
1335 	t->event_context = context;
1336 	mutex_unlock(&_event_lock);
1337 }
1338 
1339 void dm_table_event(struct dm_table *t)
1340 {
1341 	/*
1342 	 * You can no longer call dm_table_event() from interrupt
1343 	 * context, use a bottom half instead.
1344 	 */
1345 	BUG_ON(in_interrupt());
1346 
1347 	mutex_lock(&_event_lock);
1348 	if (t->event_fn)
1349 		t->event_fn(t->event_context);
1350 	mutex_unlock(&_event_lock);
1351 }
1352 EXPORT_SYMBOL(dm_table_event);
1353 
1354 sector_t dm_table_get_size(struct dm_table *t)
1355 {
1356 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1357 }
1358 EXPORT_SYMBOL(dm_table_get_size);
1359 
1360 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1361 {
1362 	if (index >= t->num_targets)
1363 		return NULL;
1364 
1365 	return t->targets + index;
1366 }
1367 
1368 /*
1369  * Search the btree for the correct target.
1370  *
1371  * Caller should check returned pointer with dm_target_is_valid()
1372  * to trap I/O beyond end of device.
1373  */
1374 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1375 {
1376 	unsigned int l, n = 0, k = 0;
1377 	sector_t *node;
1378 
1379 	for (l = 0; l < t->depth; l++) {
1380 		n = get_child(n, k);
1381 		node = get_node(t, l, n);
1382 
1383 		for (k = 0; k < KEYS_PER_NODE; k++)
1384 			if (node[k] >= sector)
1385 				break;
1386 	}
1387 
1388 	return &t->targets[(KEYS_PER_NODE * n) + k];
1389 }
1390 
1391 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1392 			sector_t start, sector_t len, void *data)
1393 {
1394 	unsigned *num_devices = data;
1395 
1396 	(*num_devices)++;
1397 
1398 	return 0;
1399 }
1400 
1401 /*
1402  * Check whether a table has no data devices attached using each
1403  * target's iterate_devices method.
1404  * Returns false if the result is unknown because a target doesn't
1405  * support iterate_devices.
1406  */
1407 bool dm_table_has_no_data_devices(struct dm_table *table)
1408 {
1409 	struct dm_target *ti;
1410 	unsigned i, num_devices;
1411 
1412 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1413 		ti = dm_table_get_target(table, i);
1414 
1415 		if (!ti->type->iterate_devices)
1416 			return false;
1417 
1418 		num_devices = 0;
1419 		ti->type->iterate_devices(ti, count_device, &num_devices);
1420 		if (num_devices)
1421 			return false;
1422 	}
1423 
1424 	return true;
1425 }
1426 
1427 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1428 				 sector_t start, sector_t len, void *data)
1429 {
1430 	struct request_queue *q = bdev_get_queue(dev->bdev);
1431 	enum blk_zoned_model *zoned_model = data;
1432 
1433 	return q && blk_queue_zoned_model(q) == *zoned_model;
1434 }
1435 
1436 static bool dm_table_supports_zoned_model(struct dm_table *t,
1437 					  enum blk_zoned_model zoned_model)
1438 {
1439 	struct dm_target *ti;
1440 	unsigned i;
1441 
1442 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1443 		ti = dm_table_get_target(t, i);
1444 
1445 		if (zoned_model == BLK_ZONED_HM &&
1446 		    !dm_target_supports_zoned_hm(ti->type))
1447 			return false;
1448 
1449 		if (!ti->type->iterate_devices ||
1450 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1451 			return false;
1452 	}
1453 
1454 	return true;
1455 }
1456 
1457 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1458 				       sector_t start, sector_t len, void *data)
1459 {
1460 	struct request_queue *q = bdev_get_queue(dev->bdev);
1461 	unsigned int *zone_sectors = data;
1462 
1463 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1464 }
1465 
1466 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1467 					  unsigned int zone_sectors)
1468 {
1469 	struct dm_target *ti;
1470 	unsigned i;
1471 
1472 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1473 		ti = dm_table_get_target(t, i);
1474 
1475 		if (!ti->type->iterate_devices ||
1476 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1477 			return false;
1478 	}
1479 
1480 	return true;
1481 }
1482 
1483 static int validate_hardware_zoned_model(struct dm_table *table,
1484 					 enum blk_zoned_model zoned_model,
1485 					 unsigned int zone_sectors)
1486 {
1487 	if (zoned_model == BLK_ZONED_NONE)
1488 		return 0;
1489 
1490 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1491 		DMERR("%s: zoned model is not consistent across all devices",
1492 		      dm_device_name(table->md));
1493 		return -EINVAL;
1494 	}
1495 
1496 	/* Check zone size validity and compatibility */
1497 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1498 		return -EINVAL;
1499 
1500 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1501 		DMERR("%s: zone sectors is not consistent across all devices",
1502 		      dm_device_name(table->md));
1503 		return -EINVAL;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 /*
1510  * Establish the new table's queue_limits and validate them.
1511  */
1512 int dm_calculate_queue_limits(struct dm_table *table,
1513 			      struct queue_limits *limits)
1514 {
1515 	struct dm_target *ti;
1516 	struct queue_limits ti_limits;
1517 	unsigned i;
1518 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1519 	unsigned int zone_sectors = 0;
1520 
1521 	blk_set_stacking_limits(limits);
1522 
1523 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1524 		blk_set_stacking_limits(&ti_limits);
1525 
1526 		ti = dm_table_get_target(table, i);
1527 
1528 		if (!ti->type->iterate_devices)
1529 			goto combine_limits;
1530 
1531 		/*
1532 		 * Combine queue limits of all the devices this target uses.
1533 		 */
1534 		ti->type->iterate_devices(ti, dm_set_device_limits,
1535 					  &ti_limits);
1536 
1537 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1538 			/*
1539 			 * After stacking all limits, validate all devices
1540 			 * in table support this zoned model and zone sectors.
1541 			 */
1542 			zoned_model = ti_limits.zoned;
1543 			zone_sectors = ti_limits.chunk_sectors;
1544 		}
1545 
1546 		/* Set I/O hints portion of queue limits */
1547 		if (ti->type->io_hints)
1548 			ti->type->io_hints(ti, &ti_limits);
1549 
1550 		/*
1551 		 * Check each device area is consistent with the target's
1552 		 * overall queue limits.
1553 		 */
1554 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1555 					      &ti_limits))
1556 			return -EINVAL;
1557 
1558 combine_limits:
1559 		/*
1560 		 * Merge this target's queue limits into the overall limits
1561 		 * for the table.
1562 		 */
1563 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1564 			DMWARN("%s: adding target device "
1565 			       "(start sect %llu len %llu) "
1566 			       "caused an alignment inconsistency",
1567 			       dm_device_name(table->md),
1568 			       (unsigned long long) ti->begin,
1569 			       (unsigned long long) ti->len);
1570 
1571 		/*
1572 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1573 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1574 		 */
1575 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1576 			/*
1577 			 * By default, the stacked limits zoned model is set to
1578 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1579 			 * this model using the first target model reported
1580 			 * that is not BLK_ZONED_NONE. This will be either the
1581 			 * first target device zoned model or the model reported
1582 			 * by the target .io_hints.
1583 			 */
1584 			limits->zoned = ti_limits.zoned;
1585 		}
1586 	}
1587 
1588 	/*
1589 	 * Verify that the zoned model and zone sectors, as determined before
1590 	 * any .io_hints override, are the same across all devices in the table.
1591 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1592 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1593 	 * BUT...
1594 	 */
1595 	if (limits->zoned != BLK_ZONED_NONE) {
1596 		/*
1597 		 * ...IF the above limits stacking determined a zoned model
1598 		 * validate that all of the table's devices conform to it.
1599 		 */
1600 		zoned_model = limits->zoned;
1601 		zone_sectors = limits->chunk_sectors;
1602 	}
1603 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1604 		return -EINVAL;
1605 
1606 	return validate_hardware_logical_block_alignment(table, limits);
1607 }
1608 
1609 /*
1610  * Verify that all devices have an integrity profile that matches the
1611  * DM device's registered integrity profile.  If the profiles don't
1612  * match then unregister the DM device's integrity profile.
1613  */
1614 static void dm_table_verify_integrity(struct dm_table *t)
1615 {
1616 	struct gendisk *template_disk = NULL;
1617 
1618 	if (t->integrity_added)
1619 		return;
1620 
1621 	if (t->integrity_supported) {
1622 		/*
1623 		 * Verify that the original integrity profile
1624 		 * matches all the devices in this table.
1625 		 */
1626 		template_disk = dm_table_get_integrity_disk(t);
1627 		if (template_disk &&
1628 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1629 			return;
1630 	}
1631 
1632 	if (integrity_profile_exists(dm_disk(t->md))) {
1633 		DMWARN("%s: unable to establish an integrity profile",
1634 		       dm_device_name(t->md));
1635 		blk_integrity_unregister(dm_disk(t->md));
1636 	}
1637 }
1638 
1639 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1640 				sector_t start, sector_t len, void *data)
1641 {
1642 	unsigned long flush = (unsigned long) data;
1643 	struct request_queue *q = bdev_get_queue(dev->bdev);
1644 
1645 	return q && (q->queue_flags & flush);
1646 }
1647 
1648 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1649 {
1650 	struct dm_target *ti;
1651 	unsigned i;
1652 
1653 	/*
1654 	 * Require at least one underlying device to support flushes.
1655 	 * t->devices includes internal dm devices such as mirror logs
1656 	 * so we need to use iterate_devices here, which targets
1657 	 * supporting flushes must provide.
1658 	 */
1659 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1660 		ti = dm_table_get_target(t, i);
1661 
1662 		if (!ti->num_flush_bios)
1663 			continue;
1664 
1665 		if (ti->flush_supported)
1666 			return true;
1667 
1668 		if (ti->type->iterate_devices &&
1669 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1670 			return true;
1671 	}
1672 
1673 	return false;
1674 }
1675 
1676 static int device_dax_write_cache_enabled(struct dm_target *ti,
1677 					  struct dm_dev *dev, sector_t start,
1678 					  sector_t len, void *data)
1679 {
1680 	struct dax_device *dax_dev = dev->dax_dev;
1681 
1682 	if (!dax_dev)
1683 		return false;
1684 
1685 	if (dax_write_cache_enabled(dax_dev))
1686 		return true;
1687 	return false;
1688 }
1689 
1690 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1691 {
1692 	struct dm_target *ti;
1693 	unsigned i;
1694 
1695 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696 		ti = dm_table_get_target(t, i);
1697 
1698 		if (ti->type->iterate_devices &&
1699 		    ti->type->iterate_devices(ti,
1700 				device_dax_write_cache_enabled, NULL))
1701 			return true;
1702 	}
1703 
1704 	return false;
1705 }
1706 
1707 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1708 			    sector_t start, sector_t len, void *data)
1709 {
1710 	struct request_queue *q = bdev_get_queue(dev->bdev);
1711 
1712 	return q && blk_queue_nonrot(q);
1713 }
1714 
1715 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1716 			     sector_t start, sector_t len, void *data)
1717 {
1718 	struct request_queue *q = bdev_get_queue(dev->bdev);
1719 
1720 	return q && !blk_queue_add_random(q);
1721 }
1722 
1723 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1724 				   sector_t start, sector_t len, void *data)
1725 {
1726 	struct request_queue *q = bdev_get_queue(dev->bdev);
1727 
1728 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1729 }
1730 
1731 static bool dm_table_all_devices_attribute(struct dm_table *t,
1732 					   iterate_devices_callout_fn func)
1733 {
1734 	struct dm_target *ti;
1735 	unsigned i;
1736 
1737 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1738 		ti = dm_table_get_target(t, i);
1739 
1740 		if (!ti->type->iterate_devices ||
1741 		    !ti->type->iterate_devices(ti, func, NULL))
1742 			return false;
1743 	}
1744 
1745 	return true;
1746 }
1747 
1748 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1749 					sector_t start, sector_t len, void *data)
1750 {
1751 	char b[BDEVNAME_SIZE];
1752 
1753 	/* For now, NVMe devices are the only devices of this class */
1754 	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1755 }
1756 
1757 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1758 {
1759 	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1760 }
1761 
1762 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1763 					 sector_t start, sector_t len, void *data)
1764 {
1765 	struct request_queue *q = bdev_get_queue(dev->bdev);
1766 
1767 	return q && !q->limits.max_write_same_sectors;
1768 }
1769 
1770 static bool dm_table_supports_write_same(struct dm_table *t)
1771 {
1772 	struct dm_target *ti;
1773 	unsigned i;
1774 
1775 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 		ti = dm_table_get_target(t, i);
1777 
1778 		if (!ti->num_write_same_bios)
1779 			return false;
1780 
1781 		if (!ti->type->iterate_devices ||
1782 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1783 			return false;
1784 	}
1785 
1786 	return true;
1787 }
1788 
1789 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1790 					   sector_t start, sector_t len, void *data)
1791 {
1792 	struct request_queue *q = bdev_get_queue(dev->bdev);
1793 
1794 	return q && !q->limits.max_write_zeroes_sectors;
1795 }
1796 
1797 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1798 {
1799 	struct dm_target *ti;
1800 	unsigned i = 0;
1801 
1802 	while (i < dm_table_get_num_targets(t)) {
1803 		ti = dm_table_get_target(t, i++);
1804 
1805 		if (!ti->num_write_zeroes_bios)
1806 			return false;
1807 
1808 		if (!ti->type->iterate_devices ||
1809 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1810 			return false;
1811 	}
1812 
1813 	return true;
1814 }
1815 
1816 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1817 				      sector_t start, sector_t len, void *data)
1818 {
1819 	struct request_queue *q = bdev_get_queue(dev->bdev);
1820 
1821 	return q && !blk_queue_discard(q);
1822 }
1823 
1824 static bool dm_table_supports_discards(struct dm_table *t)
1825 {
1826 	struct dm_target *ti;
1827 	unsigned i;
1828 
1829 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1830 		ti = dm_table_get_target(t, i);
1831 
1832 		if (!ti->num_discard_bios)
1833 			return false;
1834 
1835 		/*
1836 		 * Either the target provides discard support (as implied by setting
1837 		 * 'discards_supported') or it relies on _all_ data devices having
1838 		 * discard support.
1839 		 */
1840 		if (!ti->discards_supported &&
1841 		    (!ti->type->iterate_devices ||
1842 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1843 			return false;
1844 	}
1845 
1846 	return true;
1847 }
1848 
1849 static int device_not_secure_erase_capable(struct dm_target *ti,
1850 					   struct dm_dev *dev, sector_t start,
1851 					   sector_t len, void *data)
1852 {
1853 	struct request_queue *q = bdev_get_queue(dev->bdev);
1854 
1855 	return q && !blk_queue_secure_erase(q);
1856 }
1857 
1858 static bool dm_table_supports_secure_erase(struct dm_table *t)
1859 {
1860 	struct dm_target *ti;
1861 	unsigned int i;
1862 
1863 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1864 		ti = dm_table_get_target(t, i);
1865 
1866 		if (!ti->num_secure_erase_bios)
1867 			return false;
1868 
1869 		if (!ti->type->iterate_devices ||
1870 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1871 			return false;
1872 	}
1873 
1874 	return true;
1875 }
1876 
1877 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1878 			       struct queue_limits *limits)
1879 {
1880 	bool wc = false, fua = false;
1881 
1882 	/*
1883 	 * Copy table's limits to the DM device's request_queue
1884 	 */
1885 	q->limits = *limits;
1886 
1887 	if (!dm_table_supports_discards(t)) {
1888 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1889 		/* Must also clear discard limits... */
1890 		q->limits.max_discard_sectors = 0;
1891 		q->limits.max_hw_discard_sectors = 0;
1892 		q->limits.discard_granularity = 0;
1893 		q->limits.discard_alignment = 0;
1894 		q->limits.discard_misaligned = 0;
1895 	} else
1896 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1897 
1898 	if (dm_table_supports_secure_erase(t))
1899 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1900 
1901 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1902 		wc = true;
1903 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1904 			fua = true;
1905 	}
1906 	blk_queue_write_cache(q, wc, fua);
1907 
1908 	if (dm_table_supports_dax(t))
1909 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1910 	if (dm_table_supports_dax_write_cache(t))
1911 		dax_write_cache(t->md->dax_dev, true);
1912 
1913 	/* Ensure that all underlying devices are non-rotational. */
1914 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1915 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1916 	else
1917 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1918 
1919 	if (!dm_table_supports_write_same(t))
1920 		q->limits.max_write_same_sectors = 0;
1921 	if (!dm_table_supports_write_zeroes(t))
1922 		q->limits.max_write_zeroes_sectors = 0;
1923 
1924 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1925 		blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1926 	else
1927 		blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1928 
1929 	dm_table_verify_integrity(t);
1930 
1931 	/*
1932 	 * Determine whether or not this queue's I/O timings contribute
1933 	 * to the entropy pool, Only request-based targets use this.
1934 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1935 	 * have it set.
1936 	 */
1937 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1938 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1939 }
1940 
1941 unsigned int dm_table_get_num_targets(struct dm_table *t)
1942 {
1943 	return t->num_targets;
1944 }
1945 
1946 struct list_head *dm_table_get_devices(struct dm_table *t)
1947 {
1948 	return &t->devices;
1949 }
1950 
1951 fmode_t dm_table_get_mode(struct dm_table *t)
1952 {
1953 	return t->mode;
1954 }
1955 EXPORT_SYMBOL(dm_table_get_mode);
1956 
1957 enum suspend_mode {
1958 	PRESUSPEND,
1959 	PRESUSPEND_UNDO,
1960 	POSTSUSPEND,
1961 };
1962 
1963 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1964 {
1965 	int i = t->num_targets;
1966 	struct dm_target *ti = t->targets;
1967 
1968 	lockdep_assert_held(&t->md->suspend_lock);
1969 
1970 	while (i--) {
1971 		switch (mode) {
1972 		case PRESUSPEND:
1973 			if (ti->type->presuspend)
1974 				ti->type->presuspend(ti);
1975 			break;
1976 		case PRESUSPEND_UNDO:
1977 			if (ti->type->presuspend_undo)
1978 				ti->type->presuspend_undo(ti);
1979 			break;
1980 		case POSTSUSPEND:
1981 			if (ti->type->postsuspend)
1982 				ti->type->postsuspend(ti);
1983 			break;
1984 		}
1985 		ti++;
1986 	}
1987 }
1988 
1989 void dm_table_presuspend_targets(struct dm_table *t)
1990 {
1991 	if (!t)
1992 		return;
1993 
1994 	suspend_targets(t, PRESUSPEND);
1995 }
1996 
1997 void dm_table_presuspend_undo_targets(struct dm_table *t)
1998 {
1999 	if (!t)
2000 		return;
2001 
2002 	suspend_targets(t, PRESUSPEND_UNDO);
2003 }
2004 
2005 void dm_table_postsuspend_targets(struct dm_table *t)
2006 {
2007 	if (!t)
2008 		return;
2009 
2010 	suspend_targets(t, POSTSUSPEND);
2011 }
2012 
2013 int dm_table_resume_targets(struct dm_table *t)
2014 {
2015 	int i, r = 0;
2016 
2017 	lockdep_assert_held(&t->md->suspend_lock);
2018 
2019 	for (i = 0; i < t->num_targets; i++) {
2020 		struct dm_target *ti = t->targets + i;
2021 
2022 		if (!ti->type->preresume)
2023 			continue;
2024 
2025 		r = ti->type->preresume(ti);
2026 		if (r) {
2027 			DMERR("%s: %s: preresume failed, error = %d",
2028 			      dm_device_name(t->md), ti->type->name, r);
2029 			return r;
2030 		}
2031 	}
2032 
2033 	for (i = 0; i < t->num_targets; i++) {
2034 		struct dm_target *ti = t->targets + i;
2035 
2036 		if (ti->type->resume)
2037 			ti->type->resume(ti);
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2044 {
2045 	list_add(&cb->list, &t->target_callbacks);
2046 }
2047 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2048 
2049 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2050 {
2051 	struct dm_dev_internal *dd;
2052 	struct list_head *devices = dm_table_get_devices(t);
2053 	struct dm_target_callbacks *cb;
2054 	int r = 0;
2055 
2056 	list_for_each_entry(dd, devices, list) {
2057 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2058 		char b[BDEVNAME_SIZE];
2059 
2060 		if (likely(q))
2061 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2062 		else
2063 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2064 				     dm_device_name(t->md),
2065 				     bdevname(dd->dm_dev->bdev, b));
2066 	}
2067 
2068 	list_for_each_entry(cb, &t->target_callbacks, list)
2069 		if (cb->congested_fn)
2070 			r |= cb->congested_fn(cb, bdi_bits);
2071 
2072 	return r;
2073 }
2074 
2075 struct mapped_device *dm_table_get_md(struct dm_table *t)
2076 {
2077 	return t->md;
2078 }
2079 EXPORT_SYMBOL(dm_table_get_md);
2080 
2081 void dm_table_run_md_queue_async(struct dm_table *t)
2082 {
2083 	struct mapped_device *md;
2084 	struct request_queue *queue;
2085 	unsigned long flags;
2086 
2087 	if (!dm_table_request_based(t))
2088 		return;
2089 
2090 	md = dm_table_get_md(t);
2091 	queue = dm_get_md_queue(md);
2092 	if (queue) {
2093 		if (queue->mq_ops)
2094 			blk_mq_run_hw_queues(queue, true);
2095 		else {
2096 			spin_lock_irqsave(queue->queue_lock, flags);
2097 			blk_run_queue_async(queue);
2098 			spin_unlock_irqrestore(queue->queue_lock, flags);
2099 		}
2100 	}
2101 }
2102 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2103 
2104