1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/namei.h> 15 #include <linux/ctype.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/interrupt.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/mount.h> 24 #include <linux/dax.h> 25 26 #define DM_MSG_PREFIX "table" 27 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 /* 33 * Similar to ceiling(log_size(n)) 34 */ 35 static unsigned int int_log(unsigned int n, unsigned int base) 36 { 37 int result = 0; 38 39 while (n > 1) { 40 n = dm_div_up(n, base); 41 result++; 42 } 43 44 return result; 45 } 46 47 /* 48 * Calculate the index of the child node of the n'th node k'th key. 49 */ 50 static inline unsigned int get_child(unsigned int n, unsigned int k) 51 { 52 return (n * CHILDREN_PER_NODE) + k; 53 } 54 55 /* 56 * Return the n'th node of level l from table t. 57 */ 58 static inline sector_t *get_node(struct dm_table *t, 59 unsigned int l, unsigned int n) 60 { 61 return t->index[l] + (n * KEYS_PER_NODE); 62 } 63 64 /* 65 * Return the highest key that you could lookup from the n'th 66 * node on level l of the btree. 67 */ 68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 69 { 70 for (; l < t->depth - 1; l++) 71 n = get_child(n, CHILDREN_PER_NODE - 1); 72 73 if (n >= t->counts[l]) 74 return (sector_t) - 1; 75 76 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 77 } 78 79 /* 80 * Fills in a level of the btree based on the highs of the level 81 * below it. 82 */ 83 static int setup_btree_index(unsigned int l, struct dm_table *t) 84 { 85 unsigned int n, k; 86 sector_t *node; 87 88 for (n = 0U; n < t->counts[l]; n++) { 89 node = get_node(t, l, n); 90 91 for (k = 0U; k < KEYS_PER_NODE; k++) 92 node[k] = high(t, l + 1, get_child(n, k)); 93 } 94 95 return 0; 96 } 97 98 /* 99 * highs, and targets are managed as dynamic arrays during a 100 * table load. 101 */ 102 static int alloc_targets(struct dm_table *t, unsigned int num) 103 { 104 sector_t *n_highs; 105 struct dm_target *n_targets; 106 107 /* 108 * Allocate both the target array and offset array at once. 109 */ 110 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 111 GFP_KERNEL); 112 if (!n_highs) 113 return -ENOMEM; 114 115 n_targets = (struct dm_target *) (n_highs + num); 116 117 memset(n_highs, -1, sizeof(*n_highs) * num); 118 kvfree(t->highs); 119 120 t->num_allocated = num; 121 t->highs = n_highs; 122 t->targets = n_targets; 123 124 return 0; 125 } 126 127 int dm_table_create(struct dm_table **result, fmode_t mode, 128 unsigned num_targets, struct mapped_device *md) 129 { 130 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 131 132 if (!t) 133 return -ENOMEM; 134 135 INIT_LIST_HEAD(&t->devices); 136 137 if (!num_targets) 138 num_targets = KEYS_PER_NODE; 139 140 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 141 142 if (!num_targets) { 143 kfree(t); 144 return -ENOMEM; 145 } 146 147 if (alloc_targets(t, num_targets)) { 148 kfree(t); 149 return -ENOMEM; 150 } 151 152 t->type = DM_TYPE_NONE; 153 t->mode = mode; 154 t->md = md; 155 *result = t; 156 return 0; 157 } 158 159 static void free_devices(struct list_head *devices, struct mapped_device *md) 160 { 161 struct list_head *tmp, *next; 162 163 list_for_each_safe(tmp, next, devices) { 164 struct dm_dev_internal *dd = 165 list_entry(tmp, struct dm_dev_internal, list); 166 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 167 dm_device_name(md), dd->dm_dev->name); 168 dm_put_table_device(md, dd->dm_dev); 169 kfree(dd); 170 } 171 } 172 173 static void dm_table_destroy_crypto_profile(struct dm_table *t); 174 175 void dm_table_destroy(struct dm_table *t) 176 { 177 unsigned int i; 178 179 if (!t) 180 return; 181 182 /* free the indexes */ 183 if (t->depth >= 2) 184 kvfree(t->index[t->depth - 2]); 185 186 /* free the targets */ 187 for (i = 0; i < t->num_targets; i++) { 188 struct dm_target *tgt = t->targets + i; 189 190 if (tgt->type->dtr) 191 tgt->type->dtr(tgt); 192 193 dm_put_target_type(tgt->type); 194 } 195 196 kvfree(t->highs); 197 198 /* free the device list */ 199 free_devices(&t->devices, t->md); 200 201 dm_free_md_mempools(t->mempools); 202 203 dm_table_destroy_crypto_profile(t); 204 205 kfree(t); 206 } 207 208 /* 209 * See if we've already got a device in the list. 210 */ 211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 212 { 213 struct dm_dev_internal *dd; 214 215 list_for_each_entry (dd, l, list) 216 if (dd->dm_dev->bdev->bd_dev == dev) 217 return dd; 218 219 return NULL; 220 } 221 222 /* 223 * If possible, this checks an area of a destination device is invalid. 224 */ 225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 226 sector_t start, sector_t len, void *data) 227 { 228 struct queue_limits *limits = data; 229 struct block_device *bdev = dev->bdev; 230 sector_t dev_size = bdev_nr_sectors(bdev); 231 unsigned short logical_block_size_sectors = 232 limits->logical_block_size >> SECTOR_SHIFT; 233 234 if (!dev_size) 235 return 0; 236 237 if ((start >= dev_size) || (start + len > dev_size)) { 238 DMWARN("%s: %pg too small for target: " 239 "start=%llu, len=%llu, dev_size=%llu", 240 dm_device_name(ti->table->md), bdev, 241 (unsigned long long)start, 242 (unsigned long long)len, 243 (unsigned long long)dev_size); 244 return 1; 245 } 246 247 /* 248 * If the target is mapped to zoned block device(s), check 249 * that the zones are not partially mapped. 250 */ 251 if (bdev_is_zoned(bdev)) { 252 unsigned int zone_sectors = bdev_zone_sectors(bdev); 253 254 if (start & (zone_sectors - 1)) { 255 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %pg", 256 dm_device_name(ti->table->md), 257 (unsigned long long)start, 258 zone_sectors, bdev); 259 return 1; 260 } 261 262 /* 263 * Note: The last zone of a zoned block device may be smaller 264 * than other zones. So for a target mapping the end of a 265 * zoned block device with such a zone, len would not be zone 266 * aligned. We do not allow such last smaller zone to be part 267 * of the mapping here to ensure that mappings with multiple 268 * devices do not end up with a smaller zone in the middle of 269 * the sector range. 270 */ 271 if (len & (zone_sectors - 1)) { 272 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %pg", 273 dm_device_name(ti->table->md), 274 (unsigned long long)len, 275 zone_sectors, bdev); 276 return 1; 277 } 278 } 279 280 if (logical_block_size_sectors <= 1) 281 return 0; 282 283 if (start & (logical_block_size_sectors - 1)) { 284 DMWARN("%s: start=%llu not aligned to h/w " 285 "logical block size %u of %pg", 286 dm_device_name(ti->table->md), 287 (unsigned long long)start, 288 limits->logical_block_size, bdev); 289 return 1; 290 } 291 292 if (len & (logical_block_size_sectors - 1)) { 293 DMWARN("%s: len=%llu not aligned to h/w " 294 "logical block size %u of %pg", 295 dm_device_name(ti->table->md), 296 (unsigned long long)len, 297 limits->logical_block_size, bdev); 298 return 1; 299 } 300 301 return 0; 302 } 303 304 /* 305 * This upgrades the mode on an already open dm_dev, being 306 * careful to leave things as they were if we fail to reopen the 307 * device and not to touch the existing bdev field in case 308 * it is accessed concurrently. 309 */ 310 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 311 struct mapped_device *md) 312 { 313 int r; 314 struct dm_dev *old_dev, *new_dev; 315 316 old_dev = dd->dm_dev; 317 318 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 319 dd->dm_dev->mode | new_mode, &new_dev); 320 if (r) 321 return r; 322 323 dd->dm_dev = new_dev; 324 dm_put_table_device(md, old_dev); 325 326 return 0; 327 } 328 329 /* 330 * Convert the path to a device 331 */ 332 dev_t dm_get_dev_t(const char *path) 333 { 334 dev_t dev; 335 336 if (lookup_bdev(path, &dev)) 337 dev = name_to_dev_t(path); 338 return dev; 339 } 340 EXPORT_SYMBOL_GPL(dm_get_dev_t); 341 342 /* 343 * Add a device to the list, or just increment the usage count if 344 * it's already present. 345 */ 346 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 347 struct dm_dev **result) 348 { 349 int r; 350 dev_t dev; 351 unsigned int major, minor; 352 char dummy; 353 struct dm_dev_internal *dd; 354 struct dm_table *t = ti->table; 355 356 BUG_ON(!t); 357 358 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 359 /* Extract the major/minor numbers */ 360 dev = MKDEV(major, minor); 361 if (MAJOR(dev) != major || MINOR(dev) != minor) 362 return -EOVERFLOW; 363 } else { 364 dev = dm_get_dev_t(path); 365 if (!dev) 366 return -ENODEV; 367 } 368 369 dd = find_device(&t->devices, dev); 370 if (!dd) { 371 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 372 if (!dd) 373 return -ENOMEM; 374 375 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 376 kfree(dd); 377 return r; 378 } 379 380 refcount_set(&dd->count, 1); 381 list_add(&dd->list, &t->devices); 382 goto out; 383 384 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 385 r = upgrade_mode(dd, mode, t->md); 386 if (r) 387 return r; 388 } 389 refcount_inc(&dd->count); 390 out: 391 *result = dd->dm_dev; 392 return 0; 393 } 394 EXPORT_SYMBOL(dm_get_device); 395 396 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 397 sector_t start, sector_t len, void *data) 398 { 399 struct queue_limits *limits = data; 400 struct block_device *bdev = dev->bdev; 401 struct request_queue *q = bdev_get_queue(bdev); 402 403 if (unlikely(!q)) { 404 DMWARN("%s: Cannot set limits for nonexistent device %pg", 405 dm_device_name(ti->table->md), bdev); 406 return 0; 407 } 408 409 if (blk_stack_limits(limits, &q->limits, 410 get_start_sect(bdev) + start) < 0) 411 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 412 "physical_block_size=%u, logical_block_size=%u, " 413 "alignment_offset=%u, start=%llu", 414 dm_device_name(ti->table->md), bdev, 415 q->limits.physical_block_size, 416 q->limits.logical_block_size, 417 q->limits.alignment_offset, 418 (unsigned long long) start << SECTOR_SHIFT); 419 return 0; 420 } 421 422 /* 423 * Decrement a device's use count and remove it if necessary. 424 */ 425 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 426 { 427 int found = 0; 428 struct list_head *devices = &ti->table->devices; 429 struct dm_dev_internal *dd; 430 431 list_for_each_entry(dd, devices, list) { 432 if (dd->dm_dev == d) { 433 found = 1; 434 break; 435 } 436 } 437 if (!found) { 438 DMWARN("%s: device %s not in table devices list", 439 dm_device_name(ti->table->md), d->name); 440 return; 441 } 442 if (refcount_dec_and_test(&dd->count)) { 443 dm_put_table_device(ti->table->md, d); 444 list_del(&dd->list); 445 kfree(dd); 446 } 447 } 448 EXPORT_SYMBOL(dm_put_device); 449 450 /* 451 * Checks to see if the target joins onto the end of the table. 452 */ 453 static int adjoin(struct dm_table *table, struct dm_target *ti) 454 { 455 struct dm_target *prev; 456 457 if (!table->num_targets) 458 return !ti->begin; 459 460 prev = &table->targets[table->num_targets - 1]; 461 return (ti->begin == (prev->begin + prev->len)); 462 } 463 464 /* 465 * Used to dynamically allocate the arg array. 466 * 467 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 468 * process messages even if some device is suspended. These messages have a 469 * small fixed number of arguments. 470 * 471 * On the other hand, dm-switch needs to process bulk data using messages and 472 * excessive use of GFP_NOIO could cause trouble. 473 */ 474 static char **realloc_argv(unsigned *size, char **old_argv) 475 { 476 char **argv; 477 unsigned new_size; 478 gfp_t gfp; 479 480 if (*size) { 481 new_size = *size * 2; 482 gfp = GFP_KERNEL; 483 } else { 484 new_size = 8; 485 gfp = GFP_NOIO; 486 } 487 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 488 if (argv && old_argv) { 489 memcpy(argv, old_argv, *size * sizeof(*argv)); 490 *size = new_size; 491 } 492 493 kfree(old_argv); 494 return argv; 495 } 496 497 /* 498 * Destructively splits up the argument list to pass to ctr. 499 */ 500 int dm_split_args(int *argc, char ***argvp, char *input) 501 { 502 char *start, *end = input, *out, **argv = NULL; 503 unsigned array_size = 0; 504 505 *argc = 0; 506 507 if (!input) { 508 *argvp = NULL; 509 return 0; 510 } 511 512 argv = realloc_argv(&array_size, argv); 513 if (!argv) 514 return -ENOMEM; 515 516 while (1) { 517 /* Skip whitespace */ 518 start = skip_spaces(end); 519 520 if (!*start) 521 break; /* success, we hit the end */ 522 523 /* 'out' is used to remove any back-quotes */ 524 end = out = start; 525 while (*end) { 526 /* Everything apart from '\0' can be quoted */ 527 if (*end == '\\' && *(end + 1)) { 528 *out++ = *(end + 1); 529 end += 2; 530 continue; 531 } 532 533 if (isspace(*end)) 534 break; /* end of token */ 535 536 *out++ = *end++; 537 } 538 539 /* have we already filled the array ? */ 540 if ((*argc + 1) > array_size) { 541 argv = realloc_argv(&array_size, argv); 542 if (!argv) 543 return -ENOMEM; 544 } 545 546 /* we know this is whitespace */ 547 if (*end) 548 end++; 549 550 /* terminate the string and put it in the array */ 551 *out = '\0'; 552 argv[*argc] = start; 553 (*argc)++; 554 } 555 556 *argvp = argv; 557 return 0; 558 } 559 560 /* 561 * Impose necessary and sufficient conditions on a devices's table such 562 * that any incoming bio which respects its logical_block_size can be 563 * processed successfully. If it falls across the boundary between 564 * two or more targets, the size of each piece it gets split into must 565 * be compatible with the logical_block_size of the target processing it. 566 */ 567 static int validate_hardware_logical_block_alignment(struct dm_table *table, 568 struct queue_limits *limits) 569 { 570 /* 571 * This function uses arithmetic modulo the logical_block_size 572 * (in units of 512-byte sectors). 573 */ 574 unsigned short device_logical_block_size_sects = 575 limits->logical_block_size >> SECTOR_SHIFT; 576 577 /* 578 * Offset of the start of the next table entry, mod logical_block_size. 579 */ 580 unsigned short next_target_start = 0; 581 582 /* 583 * Given an aligned bio that extends beyond the end of a 584 * target, how many sectors must the next target handle? 585 */ 586 unsigned short remaining = 0; 587 588 struct dm_target *ti; 589 struct queue_limits ti_limits; 590 unsigned i; 591 592 /* 593 * Check each entry in the table in turn. 594 */ 595 for (i = 0; i < dm_table_get_num_targets(table); i++) { 596 ti = dm_table_get_target(table, i); 597 598 blk_set_stacking_limits(&ti_limits); 599 600 /* combine all target devices' limits */ 601 if (ti->type->iterate_devices) 602 ti->type->iterate_devices(ti, dm_set_device_limits, 603 &ti_limits); 604 605 /* 606 * If the remaining sectors fall entirely within this 607 * table entry are they compatible with its logical_block_size? 608 */ 609 if (remaining < ti->len && 610 remaining & ((ti_limits.logical_block_size >> 611 SECTOR_SHIFT) - 1)) 612 break; /* Error */ 613 614 next_target_start = 615 (unsigned short) ((next_target_start + ti->len) & 616 (device_logical_block_size_sects - 1)); 617 remaining = next_target_start ? 618 device_logical_block_size_sects - next_target_start : 0; 619 } 620 621 if (remaining) { 622 DMWARN("%s: table line %u (start sect %llu len %llu) " 623 "not aligned to h/w logical block size %u", 624 dm_device_name(table->md), i, 625 (unsigned long long) ti->begin, 626 (unsigned long long) ti->len, 627 limits->logical_block_size); 628 return -EINVAL; 629 } 630 631 return 0; 632 } 633 634 int dm_table_add_target(struct dm_table *t, const char *type, 635 sector_t start, sector_t len, char *params) 636 { 637 int r = -EINVAL, argc; 638 char **argv; 639 struct dm_target *tgt; 640 641 if (t->singleton) { 642 DMERR("%s: target type %s must appear alone in table", 643 dm_device_name(t->md), t->targets->type->name); 644 return -EINVAL; 645 } 646 647 BUG_ON(t->num_targets >= t->num_allocated); 648 649 tgt = t->targets + t->num_targets; 650 memset(tgt, 0, sizeof(*tgt)); 651 652 if (!len) { 653 DMERR("%s: zero-length target", dm_device_name(t->md)); 654 return -EINVAL; 655 } 656 657 tgt->type = dm_get_target_type(type); 658 if (!tgt->type) { 659 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 660 return -EINVAL; 661 } 662 663 if (dm_target_needs_singleton(tgt->type)) { 664 if (t->num_targets) { 665 tgt->error = "singleton target type must appear alone in table"; 666 goto bad; 667 } 668 t->singleton = true; 669 } 670 671 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 672 tgt->error = "target type may not be included in a read-only table"; 673 goto bad; 674 } 675 676 if (t->immutable_target_type) { 677 if (t->immutable_target_type != tgt->type) { 678 tgt->error = "immutable target type cannot be mixed with other target types"; 679 goto bad; 680 } 681 } else if (dm_target_is_immutable(tgt->type)) { 682 if (t->num_targets) { 683 tgt->error = "immutable target type cannot be mixed with other target types"; 684 goto bad; 685 } 686 t->immutable_target_type = tgt->type; 687 } 688 689 if (dm_target_has_integrity(tgt->type)) 690 t->integrity_added = 1; 691 692 tgt->table = t; 693 tgt->begin = start; 694 tgt->len = len; 695 tgt->error = "Unknown error"; 696 697 /* 698 * Does this target adjoin the previous one ? 699 */ 700 if (!adjoin(t, tgt)) { 701 tgt->error = "Gap in table"; 702 goto bad; 703 } 704 705 r = dm_split_args(&argc, &argv, params); 706 if (r) { 707 tgt->error = "couldn't split parameters"; 708 goto bad; 709 } 710 711 r = tgt->type->ctr(tgt, argc, argv); 712 kfree(argv); 713 if (r) 714 goto bad; 715 716 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 717 718 if (!tgt->num_discard_bios && tgt->discards_supported) 719 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 720 dm_device_name(t->md), type); 721 722 if (tgt->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 723 static_branch_enable(&swap_bios_enabled); 724 725 return 0; 726 727 bad: 728 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r)); 729 dm_put_target_type(tgt->type); 730 return r; 731 } 732 733 /* 734 * Target argument parsing helpers. 735 */ 736 static int validate_next_arg(const struct dm_arg *arg, 737 struct dm_arg_set *arg_set, 738 unsigned *value, char **error, unsigned grouped) 739 { 740 const char *arg_str = dm_shift_arg(arg_set); 741 char dummy; 742 743 if (!arg_str || 744 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 745 (*value < arg->min) || 746 (*value > arg->max) || 747 (grouped && arg_set->argc < *value)) { 748 *error = arg->error; 749 return -EINVAL; 750 } 751 752 return 0; 753 } 754 755 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 756 unsigned *value, char **error) 757 { 758 return validate_next_arg(arg, arg_set, value, error, 0); 759 } 760 EXPORT_SYMBOL(dm_read_arg); 761 762 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 763 unsigned *value, char **error) 764 { 765 return validate_next_arg(arg, arg_set, value, error, 1); 766 } 767 EXPORT_SYMBOL(dm_read_arg_group); 768 769 const char *dm_shift_arg(struct dm_arg_set *as) 770 { 771 char *r; 772 773 if (as->argc) { 774 as->argc--; 775 r = *as->argv; 776 as->argv++; 777 return r; 778 } 779 780 return NULL; 781 } 782 EXPORT_SYMBOL(dm_shift_arg); 783 784 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 785 { 786 BUG_ON(as->argc < num_args); 787 as->argc -= num_args; 788 as->argv += num_args; 789 } 790 EXPORT_SYMBOL(dm_consume_args); 791 792 static bool __table_type_bio_based(enum dm_queue_mode table_type) 793 { 794 return (table_type == DM_TYPE_BIO_BASED || 795 table_type == DM_TYPE_DAX_BIO_BASED); 796 } 797 798 static bool __table_type_request_based(enum dm_queue_mode table_type) 799 { 800 return table_type == DM_TYPE_REQUEST_BASED; 801 } 802 803 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 804 { 805 t->type = type; 806 } 807 EXPORT_SYMBOL_GPL(dm_table_set_type); 808 809 /* validate the dax capability of the target device span */ 810 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 811 sector_t start, sector_t len, void *data) 812 { 813 if (dev->dax_dev) 814 return false; 815 816 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 817 return true; 818 } 819 820 /* Check devices support synchronous DAX */ 821 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 822 sector_t start, sector_t len, void *data) 823 { 824 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 825 } 826 827 static bool dm_table_supports_dax(struct dm_table *t, 828 iterate_devices_callout_fn iterate_fn) 829 { 830 struct dm_target *ti; 831 unsigned i; 832 833 /* Ensure that all targets support DAX. */ 834 for (i = 0; i < dm_table_get_num_targets(t); i++) { 835 ti = dm_table_get_target(t, i); 836 837 if (!ti->type->direct_access) 838 return false; 839 840 if (!ti->type->iterate_devices || 841 ti->type->iterate_devices(ti, iterate_fn, NULL)) 842 return false; 843 } 844 845 return true; 846 } 847 848 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 849 sector_t start, sector_t len, void *data) 850 { 851 struct block_device *bdev = dev->bdev; 852 struct request_queue *q = bdev_get_queue(bdev); 853 854 /* request-based cannot stack on partitions! */ 855 if (bdev_is_partition(bdev)) 856 return false; 857 858 return queue_is_mq(q); 859 } 860 861 static int dm_table_determine_type(struct dm_table *t) 862 { 863 unsigned i; 864 unsigned bio_based = 0, request_based = 0, hybrid = 0; 865 struct dm_target *tgt; 866 struct list_head *devices = dm_table_get_devices(t); 867 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 868 869 if (t->type != DM_TYPE_NONE) { 870 /* target already set the table's type */ 871 if (t->type == DM_TYPE_BIO_BASED) { 872 /* possibly upgrade to a variant of bio-based */ 873 goto verify_bio_based; 874 } 875 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 876 goto verify_rq_based; 877 } 878 879 for (i = 0; i < t->num_targets; i++) { 880 tgt = t->targets + i; 881 if (dm_target_hybrid(tgt)) 882 hybrid = 1; 883 else if (dm_target_request_based(tgt)) 884 request_based = 1; 885 else 886 bio_based = 1; 887 888 if (bio_based && request_based) { 889 DMERR("Inconsistent table: different target types" 890 " can't be mixed up"); 891 return -EINVAL; 892 } 893 } 894 895 if (hybrid && !bio_based && !request_based) { 896 /* 897 * The targets can work either way. 898 * Determine the type from the live device. 899 * Default to bio-based if device is new. 900 */ 901 if (__table_type_request_based(live_md_type)) 902 request_based = 1; 903 else 904 bio_based = 1; 905 } 906 907 if (bio_based) { 908 verify_bio_based: 909 /* We must use this table as bio-based */ 910 t->type = DM_TYPE_BIO_BASED; 911 if (dm_table_supports_dax(t, device_not_dax_capable) || 912 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 913 t->type = DM_TYPE_DAX_BIO_BASED; 914 } 915 return 0; 916 } 917 918 BUG_ON(!request_based); /* No targets in this table */ 919 920 t->type = DM_TYPE_REQUEST_BASED; 921 922 verify_rq_based: 923 /* 924 * Request-based dm supports only tables that have a single target now. 925 * To support multiple targets, request splitting support is needed, 926 * and that needs lots of changes in the block-layer. 927 * (e.g. request completion process for partial completion.) 928 */ 929 if (t->num_targets > 1) { 930 DMERR("request-based DM doesn't support multiple targets"); 931 return -EINVAL; 932 } 933 934 if (list_empty(devices)) { 935 int srcu_idx; 936 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 937 938 /* inherit live table's type */ 939 if (live_table) 940 t->type = live_table->type; 941 dm_put_live_table(t->md, srcu_idx); 942 return 0; 943 } 944 945 tgt = dm_table_get_immutable_target(t); 946 if (!tgt) { 947 DMERR("table load rejected: immutable target is required"); 948 return -EINVAL; 949 } else if (tgt->max_io_len) { 950 DMERR("table load rejected: immutable target that splits IO is not supported"); 951 return -EINVAL; 952 } 953 954 /* Non-request-stackable devices can't be used for request-based dm */ 955 if (!tgt->type->iterate_devices || 956 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 957 DMERR("table load rejected: including non-request-stackable devices"); 958 return -EINVAL; 959 } 960 961 return 0; 962 } 963 964 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 965 { 966 return t->type; 967 } 968 969 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 970 { 971 return t->immutable_target_type; 972 } 973 974 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 975 { 976 /* Immutable target is implicitly a singleton */ 977 if (t->num_targets > 1 || 978 !dm_target_is_immutable(t->targets[0].type)) 979 return NULL; 980 981 return t->targets; 982 } 983 984 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 985 { 986 struct dm_target *ti; 987 unsigned i; 988 989 for (i = 0; i < dm_table_get_num_targets(t); i++) { 990 ti = dm_table_get_target(t, i); 991 if (dm_target_is_wildcard(ti->type)) 992 return ti; 993 } 994 995 return NULL; 996 } 997 998 bool dm_table_bio_based(struct dm_table *t) 999 { 1000 return __table_type_bio_based(dm_table_get_type(t)); 1001 } 1002 1003 bool dm_table_request_based(struct dm_table *t) 1004 { 1005 return __table_type_request_based(dm_table_get_type(t)); 1006 } 1007 1008 static bool dm_table_supports_poll(struct dm_table *t); 1009 1010 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1011 { 1012 enum dm_queue_mode type = dm_table_get_type(t); 1013 unsigned per_io_data_size = 0; 1014 unsigned min_pool_size = 0; 1015 struct dm_target *ti; 1016 unsigned i; 1017 bool poll_supported = false; 1018 1019 if (unlikely(type == DM_TYPE_NONE)) { 1020 DMWARN("no table type is set, can't allocate mempools"); 1021 return -EINVAL; 1022 } 1023 1024 if (__table_type_bio_based(type)) { 1025 for (i = 0; i < t->num_targets; i++) { 1026 ti = t->targets + i; 1027 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1028 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1029 } 1030 poll_supported = dm_table_supports_poll(t); 1031 } 1032 1033 t->mempools = dm_alloc_md_mempools(md, type, per_io_data_size, min_pool_size, 1034 t->integrity_supported, poll_supported); 1035 if (!t->mempools) 1036 return -ENOMEM; 1037 1038 return 0; 1039 } 1040 1041 void dm_table_free_md_mempools(struct dm_table *t) 1042 { 1043 dm_free_md_mempools(t->mempools); 1044 t->mempools = NULL; 1045 } 1046 1047 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1048 { 1049 return t->mempools; 1050 } 1051 1052 static int setup_indexes(struct dm_table *t) 1053 { 1054 int i; 1055 unsigned int total = 0; 1056 sector_t *indexes; 1057 1058 /* allocate the space for *all* the indexes */ 1059 for (i = t->depth - 2; i >= 0; i--) { 1060 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1061 total += t->counts[i]; 1062 } 1063 1064 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1065 if (!indexes) 1066 return -ENOMEM; 1067 1068 /* set up internal nodes, bottom-up */ 1069 for (i = t->depth - 2; i >= 0; i--) { 1070 t->index[i] = indexes; 1071 indexes += (KEYS_PER_NODE * t->counts[i]); 1072 setup_btree_index(i, t); 1073 } 1074 1075 return 0; 1076 } 1077 1078 /* 1079 * Builds the btree to index the map. 1080 */ 1081 static int dm_table_build_index(struct dm_table *t) 1082 { 1083 int r = 0; 1084 unsigned int leaf_nodes; 1085 1086 /* how many indexes will the btree have ? */ 1087 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1088 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1089 1090 /* leaf layer has already been set up */ 1091 t->counts[t->depth - 1] = leaf_nodes; 1092 t->index[t->depth - 1] = t->highs; 1093 1094 if (t->depth >= 2) 1095 r = setup_indexes(t); 1096 1097 return r; 1098 } 1099 1100 static bool integrity_profile_exists(struct gendisk *disk) 1101 { 1102 return !!blk_get_integrity(disk); 1103 } 1104 1105 /* 1106 * Get a disk whose integrity profile reflects the table's profile. 1107 * Returns NULL if integrity support was inconsistent or unavailable. 1108 */ 1109 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1110 { 1111 struct list_head *devices = dm_table_get_devices(t); 1112 struct dm_dev_internal *dd = NULL; 1113 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1114 unsigned i; 1115 1116 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1117 struct dm_target *ti = dm_table_get_target(t, i); 1118 if (!dm_target_passes_integrity(ti->type)) 1119 goto no_integrity; 1120 } 1121 1122 list_for_each_entry(dd, devices, list) { 1123 template_disk = dd->dm_dev->bdev->bd_disk; 1124 if (!integrity_profile_exists(template_disk)) 1125 goto no_integrity; 1126 else if (prev_disk && 1127 blk_integrity_compare(prev_disk, template_disk) < 0) 1128 goto no_integrity; 1129 prev_disk = template_disk; 1130 } 1131 1132 return template_disk; 1133 1134 no_integrity: 1135 if (prev_disk) 1136 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1137 dm_device_name(t->md), 1138 prev_disk->disk_name, 1139 template_disk->disk_name); 1140 return NULL; 1141 } 1142 1143 /* 1144 * Register the mapped device for blk_integrity support if the 1145 * underlying devices have an integrity profile. But all devices may 1146 * not have matching profiles (checking all devices isn't reliable 1147 * during table load because this table may use other DM device(s) which 1148 * must be resumed before they will have an initialized integity 1149 * profile). Consequently, stacked DM devices force a 2 stage integrity 1150 * profile validation: First pass during table load, final pass during 1151 * resume. 1152 */ 1153 static int dm_table_register_integrity(struct dm_table *t) 1154 { 1155 struct mapped_device *md = t->md; 1156 struct gendisk *template_disk = NULL; 1157 1158 /* If target handles integrity itself do not register it here. */ 1159 if (t->integrity_added) 1160 return 0; 1161 1162 template_disk = dm_table_get_integrity_disk(t); 1163 if (!template_disk) 1164 return 0; 1165 1166 if (!integrity_profile_exists(dm_disk(md))) { 1167 t->integrity_supported = true; 1168 /* 1169 * Register integrity profile during table load; we can do 1170 * this because the final profile must match during resume. 1171 */ 1172 blk_integrity_register(dm_disk(md), 1173 blk_get_integrity(template_disk)); 1174 return 0; 1175 } 1176 1177 /* 1178 * If DM device already has an initialized integrity 1179 * profile the new profile should not conflict. 1180 */ 1181 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1182 DMWARN("%s: conflict with existing integrity profile: " 1183 "%s profile mismatch", 1184 dm_device_name(t->md), 1185 template_disk->disk_name); 1186 return 1; 1187 } 1188 1189 /* Preserve existing integrity profile */ 1190 t->integrity_supported = true; 1191 return 0; 1192 } 1193 1194 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1195 1196 struct dm_crypto_profile { 1197 struct blk_crypto_profile profile; 1198 struct mapped_device *md; 1199 }; 1200 1201 struct dm_keyslot_evict_args { 1202 const struct blk_crypto_key *key; 1203 int err; 1204 }; 1205 1206 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1207 sector_t start, sector_t len, void *data) 1208 { 1209 struct dm_keyslot_evict_args *args = data; 1210 int err; 1211 1212 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key); 1213 if (!args->err) 1214 args->err = err; 1215 /* Always try to evict the key from all devices. */ 1216 return 0; 1217 } 1218 1219 /* 1220 * When an inline encryption key is evicted from a device-mapper device, evict 1221 * it from all the underlying devices. 1222 */ 1223 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1224 const struct blk_crypto_key *key, unsigned int slot) 1225 { 1226 struct mapped_device *md = 1227 container_of(profile, struct dm_crypto_profile, profile)->md; 1228 struct dm_keyslot_evict_args args = { key }; 1229 struct dm_table *t; 1230 int srcu_idx; 1231 int i; 1232 struct dm_target *ti; 1233 1234 t = dm_get_live_table(md, &srcu_idx); 1235 if (!t) 1236 return 0; 1237 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1238 ti = dm_table_get_target(t, i); 1239 if (!ti->type->iterate_devices) 1240 continue; 1241 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args); 1242 } 1243 dm_put_live_table(md, srcu_idx); 1244 return args.err; 1245 } 1246 1247 static int 1248 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1249 sector_t start, sector_t len, void *data) 1250 { 1251 struct blk_crypto_profile *parent = data; 1252 struct blk_crypto_profile *child = 1253 bdev_get_queue(dev->bdev)->crypto_profile; 1254 1255 blk_crypto_intersect_capabilities(parent, child); 1256 return 0; 1257 } 1258 1259 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1260 { 1261 struct dm_crypto_profile *dmcp = container_of(profile, 1262 struct dm_crypto_profile, 1263 profile); 1264 1265 if (!profile) 1266 return; 1267 1268 blk_crypto_profile_destroy(profile); 1269 kfree(dmcp); 1270 } 1271 1272 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1273 { 1274 dm_destroy_crypto_profile(t->crypto_profile); 1275 t->crypto_profile = NULL; 1276 } 1277 1278 /* 1279 * Constructs and initializes t->crypto_profile with a crypto profile that 1280 * represents the common set of crypto capabilities of the devices described by 1281 * the dm_table. However, if the constructed crypto profile doesn't support all 1282 * crypto capabilities that are supported by the current mapped_device, it 1283 * returns an error instead, since we don't support removing crypto capabilities 1284 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1285 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1286 */ 1287 static int dm_table_construct_crypto_profile(struct dm_table *t) 1288 { 1289 struct dm_crypto_profile *dmcp; 1290 struct blk_crypto_profile *profile; 1291 struct dm_target *ti; 1292 unsigned int i; 1293 bool empty_profile = true; 1294 1295 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1296 if (!dmcp) 1297 return -ENOMEM; 1298 dmcp->md = t->md; 1299 1300 profile = &dmcp->profile; 1301 blk_crypto_profile_init(profile, 0); 1302 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1303 profile->max_dun_bytes_supported = UINT_MAX; 1304 memset(profile->modes_supported, 0xFF, 1305 sizeof(profile->modes_supported)); 1306 1307 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1308 ti = dm_table_get_target(t, i); 1309 1310 if (!dm_target_passes_crypto(ti->type)) { 1311 blk_crypto_intersect_capabilities(profile, NULL); 1312 break; 1313 } 1314 if (!ti->type->iterate_devices) 1315 continue; 1316 ti->type->iterate_devices(ti, 1317 device_intersect_crypto_capabilities, 1318 profile); 1319 } 1320 1321 if (t->md->queue && 1322 !blk_crypto_has_capabilities(profile, 1323 t->md->queue->crypto_profile)) { 1324 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1325 dm_destroy_crypto_profile(profile); 1326 return -EINVAL; 1327 } 1328 1329 /* 1330 * If the new profile doesn't actually support any crypto capabilities, 1331 * we may as well represent it with a NULL profile. 1332 */ 1333 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1334 if (profile->modes_supported[i]) { 1335 empty_profile = false; 1336 break; 1337 } 1338 } 1339 1340 if (empty_profile) { 1341 dm_destroy_crypto_profile(profile); 1342 profile = NULL; 1343 } 1344 1345 /* 1346 * t->crypto_profile is only set temporarily while the table is being 1347 * set up, and it gets set to NULL after the profile has been 1348 * transferred to the request_queue. 1349 */ 1350 t->crypto_profile = profile; 1351 1352 return 0; 1353 } 1354 1355 static void dm_update_crypto_profile(struct request_queue *q, 1356 struct dm_table *t) 1357 { 1358 if (!t->crypto_profile) 1359 return; 1360 1361 /* Make the crypto profile less restrictive. */ 1362 if (!q->crypto_profile) { 1363 blk_crypto_register(t->crypto_profile, q); 1364 } else { 1365 blk_crypto_update_capabilities(q->crypto_profile, 1366 t->crypto_profile); 1367 dm_destroy_crypto_profile(t->crypto_profile); 1368 } 1369 t->crypto_profile = NULL; 1370 } 1371 1372 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1373 1374 static int dm_table_construct_crypto_profile(struct dm_table *t) 1375 { 1376 return 0; 1377 } 1378 1379 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1380 { 1381 } 1382 1383 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1384 { 1385 } 1386 1387 static void dm_update_crypto_profile(struct request_queue *q, 1388 struct dm_table *t) 1389 { 1390 } 1391 1392 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1393 1394 /* 1395 * Prepares the table for use by building the indices, 1396 * setting the type, and allocating mempools. 1397 */ 1398 int dm_table_complete(struct dm_table *t) 1399 { 1400 int r; 1401 1402 r = dm_table_determine_type(t); 1403 if (r) { 1404 DMERR("unable to determine table type"); 1405 return r; 1406 } 1407 1408 r = dm_table_build_index(t); 1409 if (r) { 1410 DMERR("unable to build btrees"); 1411 return r; 1412 } 1413 1414 r = dm_table_register_integrity(t); 1415 if (r) { 1416 DMERR("could not register integrity profile."); 1417 return r; 1418 } 1419 1420 r = dm_table_construct_crypto_profile(t); 1421 if (r) { 1422 DMERR("could not construct crypto profile."); 1423 return r; 1424 } 1425 1426 r = dm_table_alloc_md_mempools(t, t->md); 1427 if (r) 1428 DMERR("unable to allocate mempools"); 1429 1430 return r; 1431 } 1432 1433 static DEFINE_MUTEX(_event_lock); 1434 void dm_table_event_callback(struct dm_table *t, 1435 void (*fn)(void *), void *context) 1436 { 1437 mutex_lock(&_event_lock); 1438 t->event_fn = fn; 1439 t->event_context = context; 1440 mutex_unlock(&_event_lock); 1441 } 1442 1443 void dm_table_event(struct dm_table *t) 1444 { 1445 mutex_lock(&_event_lock); 1446 if (t->event_fn) 1447 t->event_fn(t->event_context); 1448 mutex_unlock(&_event_lock); 1449 } 1450 EXPORT_SYMBOL(dm_table_event); 1451 1452 inline sector_t dm_table_get_size(struct dm_table *t) 1453 { 1454 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1455 } 1456 EXPORT_SYMBOL(dm_table_get_size); 1457 1458 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1459 { 1460 if (index >= t->num_targets) 1461 return NULL; 1462 1463 return t->targets + index; 1464 } 1465 1466 /* 1467 * Search the btree for the correct target. 1468 * 1469 * Caller should check returned pointer for NULL 1470 * to trap I/O beyond end of device. 1471 */ 1472 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1473 { 1474 unsigned int l, n = 0, k = 0; 1475 sector_t *node; 1476 1477 if (unlikely(sector >= dm_table_get_size(t))) 1478 return NULL; 1479 1480 for (l = 0; l < t->depth; l++) { 1481 n = get_child(n, k); 1482 node = get_node(t, l, n); 1483 1484 for (k = 0; k < KEYS_PER_NODE; k++) 1485 if (node[k] >= sector) 1486 break; 1487 } 1488 1489 return &t->targets[(KEYS_PER_NODE * n) + k]; 1490 } 1491 1492 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, 1493 sector_t start, sector_t len, void *data) 1494 { 1495 struct request_queue *q = bdev_get_queue(dev->bdev); 1496 1497 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); 1498 } 1499 1500 /* 1501 * type->iterate_devices() should be called when the sanity check needs to 1502 * iterate and check all underlying data devices. iterate_devices() will 1503 * iterate all underlying data devices until it encounters a non-zero return 1504 * code, returned by whether the input iterate_devices_callout_fn, or 1505 * iterate_devices() itself internally. 1506 * 1507 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1508 * iterate multiple underlying devices internally, in which case a non-zero 1509 * return code returned by iterate_devices_callout_fn will stop the iteration 1510 * in advance. 1511 * 1512 * Cases requiring _any_ underlying device supporting some kind of attribute, 1513 * should use the iteration structure like dm_table_any_dev_attr(), or call 1514 * it directly. @func should handle semantics of positive examples, e.g. 1515 * capable of something. 1516 * 1517 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1518 * should use the iteration structure like dm_table_supports_nowait() or 1519 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1520 * uses an @anti_func that handle semantics of counter examples, e.g. not 1521 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1522 */ 1523 static bool dm_table_any_dev_attr(struct dm_table *t, 1524 iterate_devices_callout_fn func, void *data) 1525 { 1526 struct dm_target *ti; 1527 unsigned int i; 1528 1529 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1530 ti = dm_table_get_target(t, i); 1531 1532 if (ti->type->iterate_devices && 1533 ti->type->iterate_devices(ti, func, data)) 1534 return true; 1535 } 1536 1537 return false; 1538 } 1539 1540 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1541 sector_t start, sector_t len, void *data) 1542 { 1543 unsigned *num_devices = data; 1544 1545 (*num_devices)++; 1546 1547 return 0; 1548 } 1549 1550 static bool dm_table_supports_poll(struct dm_table *t) 1551 { 1552 struct dm_target *ti; 1553 unsigned i = 0; 1554 1555 while (i < dm_table_get_num_targets(t)) { 1556 ti = dm_table_get_target(t, i++); 1557 1558 if (!ti->type->iterate_devices || 1559 ti->type->iterate_devices(ti, device_not_poll_capable, NULL)) 1560 return false; 1561 } 1562 1563 return true; 1564 } 1565 1566 /* 1567 * Check whether a table has no data devices attached using each 1568 * target's iterate_devices method. 1569 * Returns false if the result is unknown because a target doesn't 1570 * support iterate_devices. 1571 */ 1572 bool dm_table_has_no_data_devices(struct dm_table *table) 1573 { 1574 struct dm_target *ti; 1575 unsigned i, num_devices; 1576 1577 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1578 ti = dm_table_get_target(table, i); 1579 1580 if (!ti->type->iterate_devices) 1581 return false; 1582 1583 num_devices = 0; 1584 ti->type->iterate_devices(ti, count_device, &num_devices); 1585 if (num_devices) 1586 return false; 1587 } 1588 1589 return true; 1590 } 1591 1592 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1593 sector_t start, sector_t len, void *data) 1594 { 1595 struct request_queue *q = bdev_get_queue(dev->bdev); 1596 enum blk_zoned_model *zoned_model = data; 1597 1598 return blk_queue_zoned_model(q) != *zoned_model; 1599 } 1600 1601 /* 1602 * Check the device zoned model based on the target feature flag. If the target 1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1604 * also accepted but all devices must have the same zoned model. If the target 1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1606 * zoned model with all zoned devices having the same zone size. 1607 */ 1608 static bool dm_table_supports_zoned_model(struct dm_table *t, 1609 enum blk_zoned_model zoned_model) 1610 { 1611 struct dm_target *ti; 1612 unsigned i; 1613 1614 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1615 ti = dm_table_get_target(t, i); 1616 1617 if (dm_target_supports_zoned_hm(ti->type)) { 1618 if (!ti->type->iterate_devices || 1619 ti->type->iterate_devices(ti, device_not_zoned_model, 1620 &zoned_model)) 1621 return false; 1622 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1623 if (zoned_model == BLK_ZONED_HM) 1624 return false; 1625 } 1626 } 1627 1628 return true; 1629 } 1630 1631 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1632 sector_t start, sector_t len, void *data) 1633 { 1634 struct request_queue *q = bdev_get_queue(dev->bdev); 1635 unsigned int *zone_sectors = data; 1636 1637 if (!blk_queue_is_zoned(q)) 1638 return 0; 1639 1640 return blk_queue_zone_sectors(q) != *zone_sectors; 1641 } 1642 1643 /* 1644 * Check consistency of zoned model and zone sectors across all targets. For 1645 * zone sectors, if the destination device is a zoned block device, it shall 1646 * have the specified zone_sectors. 1647 */ 1648 static int validate_hardware_zoned_model(struct dm_table *table, 1649 enum blk_zoned_model zoned_model, 1650 unsigned int zone_sectors) 1651 { 1652 if (zoned_model == BLK_ZONED_NONE) 1653 return 0; 1654 1655 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1656 DMERR("%s: zoned model is not consistent across all devices", 1657 dm_device_name(table->md)); 1658 return -EINVAL; 1659 } 1660 1661 /* Check zone size validity and compatibility */ 1662 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1663 return -EINVAL; 1664 1665 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { 1666 DMERR("%s: zone sectors is not consistent across all zoned devices", 1667 dm_device_name(table->md)); 1668 return -EINVAL; 1669 } 1670 1671 return 0; 1672 } 1673 1674 /* 1675 * Establish the new table's queue_limits and validate them. 1676 */ 1677 int dm_calculate_queue_limits(struct dm_table *table, 1678 struct queue_limits *limits) 1679 { 1680 struct dm_target *ti; 1681 struct queue_limits ti_limits; 1682 unsigned i; 1683 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1684 unsigned int zone_sectors = 0; 1685 1686 blk_set_stacking_limits(limits); 1687 1688 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1689 blk_set_stacking_limits(&ti_limits); 1690 1691 ti = dm_table_get_target(table, i); 1692 1693 if (!ti->type->iterate_devices) 1694 goto combine_limits; 1695 1696 /* 1697 * Combine queue limits of all the devices this target uses. 1698 */ 1699 ti->type->iterate_devices(ti, dm_set_device_limits, 1700 &ti_limits); 1701 1702 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1703 /* 1704 * After stacking all limits, validate all devices 1705 * in table support this zoned model and zone sectors. 1706 */ 1707 zoned_model = ti_limits.zoned; 1708 zone_sectors = ti_limits.chunk_sectors; 1709 } 1710 1711 /* Set I/O hints portion of queue limits */ 1712 if (ti->type->io_hints) 1713 ti->type->io_hints(ti, &ti_limits); 1714 1715 /* 1716 * Check each device area is consistent with the target's 1717 * overall queue limits. 1718 */ 1719 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1720 &ti_limits)) 1721 return -EINVAL; 1722 1723 combine_limits: 1724 /* 1725 * Merge this target's queue limits into the overall limits 1726 * for the table. 1727 */ 1728 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1729 DMWARN("%s: adding target device " 1730 "(start sect %llu len %llu) " 1731 "caused an alignment inconsistency", 1732 dm_device_name(table->md), 1733 (unsigned long long) ti->begin, 1734 (unsigned long long) ti->len); 1735 } 1736 1737 /* 1738 * Verify that the zoned model and zone sectors, as determined before 1739 * any .io_hints override, are the same across all devices in the table. 1740 * - this is especially relevant if .io_hints is emulating a disk-managed 1741 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1742 * BUT... 1743 */ 1744 if (limits->zoned != BLK_ZONED_NONE) { 1745 /* 1746 * ...IF the above limits stacking determined a zoned model 1747 * validate that all of the table's devices conform to it. 1748 */ 1749 zoned_model = limits->zoned; 1750 zone_sectors = limits->chunk_sectors; 1751 } 1752 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1753 return -EINVAL; 1754 1755 return validate_hardware_logical_block_alignment(table, limits); 1756 } 1757 1758 /* 1759 * Verify that all devices have an integrity profile that matches the 1760 * DM device's registered integrity profile. If the profiles don't 1761 * match then unregister the DM device's integrity profile. 1762 */ 1763 static void dm_table_verify_integrity(struct dm_table *t) 1764 { 1765 struct gendisk *template_disk = NULL; 1766 1767 if (t->integrity_added) 1768 return; 1769 1770 if (t->integrity_supported) { 1771 /* 1772 * Verify that the original integrity profile 1773 * matches all the devices in this table. 1774 */ 1775 template_disk = dm_table_get_integrity_disk(t); 1776 if (template_disk && 1777 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1778 return; 1779 } 1780 1781 if (integrity_profile_exists(dm_disk(t->md))) { 1782 DMWARN("%s: unable to establish an integrity profile", 1783 dm_device_name(t->md)); 1784 blk_integrity_unregister(dm_disk(t->md)); 1785 } 1786 } 1787 1788 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1789 sector_t start, sector_t len, void *data) 1790 { 1791 unsigned long flush = (unsigned long) data; 1792 struct request_queue *q = bdev_get_queue(dev->bdev); 1793 1794 return (q->queue_flags & flush); 1795 } 1796 1797 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1798 { 1799 struct dm_target *ti; 1800 unsigned i; 1801 1802 /* 1803 * Require at least one underlying device to support flushes. 1804 * t->devices includes internal dm devices such as mirror logs 1805 * so we need to use iterate_devices here, which targets 1806 * supporting flushes must provide. 1807 */ 1808 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1809 ti = dm_table_get_target(t, i); 1810 1811 if (!ti->num_flush_bios) 1812 continue; 1813 1814 if (ti->flush_supported) 1815 return true; 1816 1817 if (ti->type->iterate_devices && 1818 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1819 return true; 1820 } 1821 1822 return false; 1823 } 1824 1825 static int device_dax_write_cache_enabled(struct dm_target *ti, 1826 struct dm_dev *dev, sector_t start, 1827 sector_t len, void *data) 1828 { 1829 struct dax_device *dax_dev = dev->dax_dev; 1830 1831 if (!dax_dev) 1832 return false; 1833 1834 if (dax_write_cache_enabled(dax_dev)) 1835 return true; 1836 return false; 1837 } 1838 1839 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1840 sector_t start, sector_t len, void *data) 1841 { 1842 return !bdev_nonrot(dev->bdev); 1843 } 1844 1845 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1846 sector_t start, sector_t len, void *data) 1847 { 1848 struct request_queue *q = bdev_get_queue(dev->bdev); 1849 1850 return !blk_queue_add_random(q); 1851 } 1852 1853 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1854 sector_t start, sector_t len, void *data) 1855 { 1856 struct request_queue *q = bdev_get_queue(dev->bdev); 1857 1858 return !q->limits.max_write_zeroes_sectors; 1859 } 1860 1861 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1862 { 1863 struct dm_target *ti; 1864 unsigned i = 0; 1865 1866 while (i < dm_table_get_num_targets(t)) { 1867 ti = dm_table_get_target(t, i++); 1868 1869 if (!ti->num_write_zeroes_bios) 1870 return false; 1871 1872 if (!ti->type->iterate_devices || 1873 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1874 return false; 1875 } 1876 1877 return true; 1878 } 1879 1880 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1881 sector_t start, sector_t len, void *data) 1882 { 1883 struct request_queue *q = bdev_get_queue(dev->bdev); 1884 1885 return !blk_queue_nowait(q); 1886 } 1887 1888 static bool dm_table_supports_nowait(struct dm_table *t) 1889 { 1890 struct dm_target *ti; 1891 unsigned i = 0; 1892 1893 while (i < dm_table_get_num_targets(t)) { 1894 ti = dm_table_get_target(t, i++); 1895 1896 if (!dm_target_supports_nowait(ti->type)) 1897 return false; 1898 1899 if (!ti->type->iterate_devices || 1900 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1901 return false; 1902 } 1903 1904 return true; 1905 } 1906 1907 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1908 sector_t start, sector_t len, void *data) 1909 { 1910 return !bdev_max_discard_sectors(dev->bdev); 1911 } 1912 1913 static bool dm_table_supports_discards(struct dm_table *t) 1914 { 1915 struct dm_target *ti; 1916 unsigned i; 1917 1918 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1919 ti = dm_table_get_target(t, i); 1920 1921 if (!ti->num_discard_bios) 1922 return false; 1923 1924 /* 1925 * Either the target provides discard support (as implied by setting 1926 * 'discards_supported') or it relies on _all_ data devices having 1927 * discard support. 1928 */ 1929 if (!ti->discards_supported && 1930 (!ti->type->iterate_devices || 1931 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1932 return false; 1933 } 1934 1935 return true; 1936 } 1937 1938 static int device_not_secure_erase_capable(struct dm_target *ti, 1939 struct dm_dev *dev, sector_t start, 1940 sector_t len, void *data) 1941 { 1942 return !bdev_max_secure_erase_sectors(dev->bdev); 1943 } 1944 1945 static bool dm_table_supports_secure_erase(struct dm_table *t) 1946 { 1947 struct dm_target *ti; 1948 unsigned int i; 1949 1950 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1951 ti = dm_table_get_target(t, i); 1952 1953 if (!ti->num_secure_erase_bios) 1954 return false; 1955 1956 if (!ti->type->iterate_devices || 1957 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1958 return false; 1959 } 1960 1961 return true; 1962 } 1963 1964 static int device_requires_stable_pages(struct dm_target *ti, 1965 struct dm_dev *dev, sector_t start, 1966 sector_t len, void *data) 1967 { 1968 return bdev_stable_writes(dev->bdev); 1969 } 1970 1971 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1972 struct queue_limits *limits) 1973 { 1974 bool wc = false, fua = false; 1975 int r; 1976 1977 /* 1978 * Copy table's limits to the DM device's request_queue 1979 */ 1980 q->limits = *limits; 1981 1982 if (dm_table_supports_nowait(t)) 1983 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1984 else 1985 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1986 1987 if (!dm_table_supports_discards(t)) { 1988 q->limits.max_discard_sectors = 0; 1989 q->limits.max_hw_discard_sectors = 0; 1990 q->limits.discard_granularity = 0; 1991 q->limits.discard_alignment = 0; 1992 q->limits.discard_misaligned = 0; 1993 } 1994 1995 if (!dm_table_supports_secure_erase(t)) 1996 q->limits.max_secure_erase_sectors = 0; 1997 1998 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1999 wc = true; 2000 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 2001 fua = true; 2002 } 2003 blk_queue_write_cache(q, wc, fua); 2004 2005 if (dm_table_supports_dax(t, device_not_dax_capable)) { 2006 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 2007 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 2008 set_dax_synchronous(t->md->dax_dev); 2009 } 2010 else 2011 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 2012 2013 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2014 dax_write_cache(t->md->dax_dev, true); 2015 2016 /* Ensure that all underlying devices are non-rotational. */ 2017 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 2018 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2019 else 2020 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2021 2022 if (!dm_table_supports_write_zeroes(t)) 2023 q->limits.max_write_zeroes_sectors = 0; 2024 2025 dm_table_verify_integrity(t); 2026 2027 /* 2028 * Some devices don't use blk_integrity but still want stable pages 2029 * because they do their own checksumming. 2030 * If any underlying device requires stable pages, a table must require 2031 * them as well. Only targets that support iterate_devices are considered: 2032 * don't want error, zero, etc to require stable pages. 2033 */ 2034 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2035 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2036 else 2037 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2038 2039 /* 2040 * Determine whether or not this queue's I/O timings contribute 2041 * to the entropy pool, Only request-based targets use this. 2042 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2043 * have it set. 2044 */ 2045 if (blk_queue_add_random(q) && 2046 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2047 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2048 2049 /* 2050 * For a zoned target, setup the zones related queue attributes 2051 * and resources necessary for zone append emulation if necessary. 2052 */ 2053 if (blk_queue_is_zoned(q)) { 2054 r = dm_set_zones_restrictions(t, q); 2055 if (r) 2056 return r; 2057 if (!static_key_enabled(&zoned_enabled.key)) 2058 static_branch_enable(&zoned_enabled); 2059 } 2060 2061 dm_update_crypto_profile(q, t); 2062 disk_update_readahead(t->md->disk); 2063 2064 /* 2065 * Check for request-based device is left to 2066 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). 2067 * 2068 * For bio-based device, only set QUEUE_FLAG_POLL when all 2069 * underlying devices supporting polling. 2070 */ 2071 if (__table_type_bio_based(t->type)) { 2072 if (dm_table_supports_poll(t)) 2073 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2074 else 2075 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 2076 } 2077 2078 return 0; 2079 } 2080 2081 unsigned int dm_table_get_num_targets(struct dm_table *t) 2082 { 2083 return t->num_targets; 2084 } 2085 2086 struct list_head *dm_table_get_devices(struct dm_table *t) 2087 { 2088 return &t->devices; 2089 } 2090 2091 fmode_t dm_table_get_mode(struct dm_table *t) 2092 { 2093 return t->mode; 2094 } 2095 EXPORT_SYMBOL(dm_table_get_mode); 2096 2097 enum suspend_mode { 2098 PRESUSPEND, 2099 PRESUSPEND_UNDO, 2100 POSTSUSPEND, 2101 }; 2102 2103 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2104 { 2105 int i = t->num_targets; 2106 struct dm_target *ti = t->targets; 2107 2108 lockdep_assert_held(&t->md->suspend_lock); 2109 2110 while (i--) { 2111 switch (mode) { 2112 case PRESUSPEND: 2113 if (ti->type->presuspend) 2114 ti->type->presuspend(ti); 2115 break; 2116 case PRESUSPEND_UNDO: 2117 if (ti->type->presuspend_undo) 2118 ti->type->presuspend_undo(ti); 2119 break; 2120 case POSTSUSPEND: 2121 if (ti->type->postsuspend) 2122 ti->type->postsuspend(ti); 2123 break; 2124 } 2125 ti++; 2126 } 2127 } 2128 2129 void dm_table_presuspend_targets(struct dm_table *t) 2130 { 2131 if (!t) 2132 return; 2133 2134 suspend_targets(t, PRESUSPEND); 2135 } 2136 2137 void dm_table_presuspend_undo_targets(struct dm_table *t) 2138 { 2139 if (!t) 2140 return; 2141 2142 suspend_targets(t, PRESUSPEND_UNDO); 2143 } 2144 2145 void dm_table_postsuspend_targets(struct dm_table *t) 2146 { 2147 if (!t) 2148 return; 2149 2150 suspend_targets(t, POSTSUSPEND); 2151 } 2152 2153 int dm_table_resume_targets(struct dm_table *t) 2154 { 2155 int i, r = 0; 2156 2157 lockdep_assert_held(&t->md->suspend_lock); 2158 2159 for (i = 0; i < t->num_targets; i++) { 2160 struct dm_target *ti = t->targets + i; 2161 2162 if (!ti->type->preresume) 2163 continue; 2164 2165 r = ti->type->preresume(ti); 2166 if (r) { 2167 DMERR("%s: %s: preresume failed, error = %d", 2168 dm_device_name(t->md), ti->type->name, r); 2169 return r; 2170 } 2171 } 2172 2173 for (i = 0; i < t->num_targets; i++) { 2174 struct dm_target *ti = t->targets + i; 2175 2176 if (ti->type->resume) 2177 ti->type->resume(ti); 2178 } 2179 2180 return 0; 2181 } 2182 2183 struct mapped_device *dm_table_get_md(struct dm_table *t) 2184 { 2185 return t->md; 2186 } 2187 EXPORT_SYMBOL(dm_table_get_md); 2188 2189 const char *dm_table_device_name(struct dm_table *t) 2190 { 2191 return dm_device_name(t->md); 2192 } 2193 EXPORT_SYMBOL_GPL(dm_table_device_name); 2194 2195 void dm_table_run_md_queue_async(struct dm_table *t) 2196 { 2197 if (!dm_table_request_based(t)) 2198 return; 2199 2200 if (t->md->queue) 2201 blk_mq_run_hw_queues(t->md->queue, true); 2202 } 2203 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2204 2205