xref: /openbmc/linux/drivers/md/dm-table.c (revision 294299b3)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/namei.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25 
26 #define DM_MSG_PREFIX "table"
27 
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 /*
33  * Similar to ceiling(log_size(n))
34  */
35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37 	int result = 0;
38 
39 	while (n > 1) {
40 		n = dm_div_up(n, base);
41 		result++;
42 	}
43 
44 	return result;
45 }
46 
47 /*
48  * Calculate the index of the child node of the n'th node k'th key.
49  */
50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52 	return (n * CHILDREN_PER_NODE) + k;
53 }
54 
55 /*
56  * Return the n'th node of level l from table t.
57  */
58 static inline sector_t *get_node(struct dm_table *t,
59 				 unsigned int l, unsigned int n)
60 {
61 	return t->index[l] + (n * KEYS_PER_NODE);
62 }
63 
64 /*
65  * Return the highest key that you could lookup from the n'th
66  * node on level l of the btree.
67  */
68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70 	for (; l < t->depth - 1; l++)
71 		n = get_child(n, CHILDREN_PER_NODE - 1);
72 
73 	if (n >= t->counts[l])
74 		return (sector_t) - 1;
75 
76 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78 
79 /*
80  * Fills in a level of the btree based on the highs of the level
81  * below it.
82  */
83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85 	unsigned int n, k;
86 	sector_t *node;
87 
88 	for (n = 0U; n < t->counts[l]; n++) {
89 		node = get_node(t, l, n);
90 
91 		for (k = 0U; k < KEYS_PER_NODE; k++)
92 			node[k] = high(t, l + 1, get_child(n, k));
93 	}
94 
95 	return 0;
96 }
97 
98 /*
99  * highs, and targets are managed as dynamic arrays during a
100  * table load.
101  */
102 static int alloc_targets(struct dm_table *t, unsigned int num)
103 {
104 	sector_t *n_highs;
105 	struct dm_target *n_targets;
106 
107 	/*
108 	 * Allocate both the target array and offset array at once.
109 	 */
110 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
111 			   GFP_KERNEL);
112 	if (!n_highs)
113 		return -ENOMEM;
114 
115 	n_targets = (struct dm_target *) (n_highs + num);
116 
117 	memset(n_highs, -1, sizeof(*n_highs) * num);
118 	kvfree(t->highs);
119 
120 	t->num_allocated = num;
121 	t->highs = n_highs;
122 	t->targets = n_targets;
123 
124 	return 0;
125 }
126 
127 int dm_table_create(struct dm_table **result, fmode_t mode,
128 		    unsigned num_targets, struct mapped_device *md)
129 {
130 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
131 
132 	if (!t)
133 		return -ENOMEM;
134 
135 	INIT_LIST_HEAD(&t->devices);
136 
137 	if (!num_targets)
138 		num_targets = KEYS_PER_NODE;
139 
140 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
141 
142 	if (!num_targets) {
143 		kfree(t);
144 		return -ENOMEM;
145 	}
146 
147 	if (alloc_targets(t, num_targets)) {
148 		kfree(t);
149 		return -ENOMEM;
150 	}
151 
152 	t->type = DM_TYPE_NONE;
153 	t->mode = mode;
154 	t->md = md;
155 	*result = t;
156 	return 0;
157 }
158 
159 static void free_devices(struct list_head *devices, struct mapped_device *md)
160 {
161 	struct list_head *tmp, *next;
162 
163 	list_for_each_safe(tmp, next, devices) {
164 		struct dm_dev_internal *dd =
165 		    list_entry(tmp, struct dm_dev_internal, list);
166 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
167 		       dm_device_name(md), dd->dm_dev->name);
168 		dm_put_table_device(md, dd->dm_dev);
169 		kfree(dd);
170 	}
171 }
172 
173 static void dm_table_destroy_crypto_profile(struct dm_table *t);
174 
175 void dm_table_destroy(struct dm_table *t)
176 {
177 	unsigned int i;
178 
179 	if (!t)
180 		return;
181 
182 	/* free the indexes */
183 	if (t->depth >= 2)
184 		kvfree(t->index[t->depth - 2]);
185 
186 	/* free the targets */
187 	for (i = 0; i < t->num_targets; i++) {
188 		struct dm_target *tgt = t->targets + i;
189 
190 		if (tgt->type->dtr)
191 			tgt->type->dtr(tgt);
192 
193 		dm_put_target_type(tgt->type);
194 	}
195 
196 	kvfree(t->highs);
197 
198 	/* free the device list */
199 	free_devices(&t->devices, t->md);
200 
201 	dm_free_md_mempools(t->mempools);
202 
203 	dm_table_destroy_crypto_profile(t);
204 
205 	kfree(t);
206 }
207 
208 /*
209  * See if we've already got a device in the list.
210  */
211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213 	struct dm_dev_internal *dd;
214 
215 	list_for_each_entry (dd, l, list)
216 		if (dd->dm_dev->bdev->bd_dev == dev)
217 			return dd;
218 
219 	return NULL;
220 }
221 
222 /*
223  * If possible, this checks an area of a destination device is invalid.
224  */
225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226 				  sector_t start, sector_t len, void *data)
227 {
228 	struct queue_limits *limits = data;
229 	struct block_device *bdev = dev->bdev;
230 	sector_t dev_size = bdev_nr_sectors(bdev);
231 	unsigned short logical_block_size_sectors =
232 		limits->logical_block_size >> SECTOR_SHIFT;
233 
234 	if (!dev_size)
235 		return 0;
236 
237 	if ((start >= dev_size) || (start + len > dev_size)) {
238 		DMWARN("%s: %pg too small for target: "
239 		       "start=%llu, len=%llu, dev_size=%llu",
240 		       dm_device_name(ti->table->md), bdev,
241 		       (unsigned long long)start,
242 		       (unsigned long long)len,
243 		       (unsigned long long)dev_size);
244 		return 1;
245 	}
246 
247 	/*
248 	 * If the target is mapped to zoned block device(s), check
249 	 * that the zones are not partially mapped.
250 	 */
251 	if (bdev_is_zoned(bdev)) {
252 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
253 
254 		if (start & (zone_sectors - 1)) {
255 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %pg",
256 			       dm_device_name(ti->table->md),
257 			       (unsigned long long)start,
258 			       zone_sectors, bdev);
259 			return 1;
260 		}
261 
262 		/*
263 		 * Note: The last zone of a zoned block device may be smaller
264 		 * than other zones. So for a target mapping the end of a
265 		 * zoned block device with such a zone, len would not be zone
266 		 * aligned. We do not allow such last smaller zone to be part
267 		 * of the mapping here to ensure that mappings with multiple
268 		 * devices do not end up with a smaller zone in the middle of
269 		 * the sector range.
270 		 */
271 		if (len & (zone_sectors - 1)) {
272 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %pg",
273 			       dm_device_name(ti->table->md),
274 			       (unsigned long long)len,
275 			       zone_sectors, bdev);
276 			return 1;
277 		}
278 	}
279 
280 	if (logical_block_size_sectors <= 1)
281 		return 0;
282 
283 	if (start & (logical_block_size_sectors - 1)) {
284 		DMWARN("%s: start=%llu not aligned to h/w "
285 		       "logical block size %u of %pg",
286 		       dm_device_name(ti->table->md),
287 		       (unsigned long long)start,
288 		       limits->logical_block_size, bdev);
289 		return 1;
290 	}
291 
292 	if (len & (logical_block_size_sectors - 1)) {
293 		DMWARN("%s: len=%llu not aligned to h/w "
294 		       "logical block size %u of %pg",
295 		       dm_device_name(ti->table->md),
296 		       (unsigned long long)len,
297 		       limits->logical_block_size, bdev);
298 		return 1;
299 	}
300 
301 	return 0;
302 }
303 
304 /*
305  * This upgrades the mode on an already open dm_dev, being
306  * careful to leave things as they were if we fail to reopen the
307  * device and not to touch the existing bdev field in case
308  * it is accessed concurrently.
309  */
310 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
311 			struct mapped_device *md)
312 {
313 	int r;
314 	struct dm_dev *old_dev, *new_dev;
315 
316 	old_dev = dd->dm_dev;
317 
318 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
319 				dd->dm_dev->mode | new_mode, &new_dev);
320 	if (r)
321 		return r;
322 
323 	dd->dm_dev = new_dev;
324 	dm_put_table_device(md, old_dev);
325 
326 	return 0;
327 }
328 
329 /*
330  * Convert the path to a device
331  */
332 dev_t dm_get_dev_t(const char *path)
333 {
334 	dev_t dev;
335 
336 	if (lookup_bdev(path, &dev))
337 		dev = name_to_dev_t(path);
338 	return dev;
339 }
340 EXPORT_SYMBOL_GPL(dm_get_dev_t);
341 
342 /*
343  * Add a device to the list, or just increment the usage count if
344  * it's already present.
345  */
346 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
347 		  struct dm_dev **result)
348 {
349 	int r;
350 	dev_t dev;
351 	unsigned int major, minor;
352 	char dummy;
353 	struct dm_dev_internal *dd;
354 	struct dm_table *t = ti->table;
355 
356 	BUG_ON(!t);
357 
358 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
359 		/* Extract the major/minor numbers */
360 		dev = MKDEV(major, minor);
361 		if (MAJOR(dev) != major || MINOR(dev) != minor)
362 			return -EOVERFLOW;
363 	} else {
364 		dev = dm_get_dev_t(path);
365 		if (!dev)
366 			return -ENODEV;
367 	}
368 
369 	dd = find_device(&t->devices, dev);
370 	if (!dd) {
371 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
372 		if (!dd)
373 			return -ENOMEM;
374 
375 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
376 			kfree(dd);
377 			return r;
378 		}
379 
380 		refcount_set(&dd->count, 1);
381 		list_add(&dd->list, &t->devices);
382 		goto out;
383 
384 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
385 		r = upgrade_mode(dd, mode, t->md);
386 		if (r)
387 			return r;
388 	}
389 	refcount_inc(&dd->count);
390 out:
391 	*result = dd->dm_dev;
392 	return 0;
393 }
394 EXPORT_SYMBOL(dm_get_device);
395 
396 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
397 				sector_t start, sector_t len, void *data)
398 {
399 	struct queue_limits *limits = data;
400 	struct block_device *bdev = dev->bdev;
401 	struct request_queue *q = bdev_get_queue(bdev);
402 
403 	if (unlikely(!q)) {
404 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
405 		       dm_device_name(ti->table->md), bdev);
406 		return 0;
407 	}
408 
409 	if (blk_stack_limits(limits, &q->limits,
410 			get_start_sect(bdev) + start) < 0)
411 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
412 		       "physical_block_size=%u, logical_block_size=%u, "
413 		       "alignment_offset=%u, start=%llu",
414 		       dm_device_name(ti->table->md), bdev,
415 		       q->limits.physical_block_size,
416 		       q->limits.logical_block_size,
417 		       q->limits.alignment_offset,
418 		       (unsigned long long) start << SECTOR_SHIFT);
419 	return 0;
420 }
421 
422 /*
423  * Decrement a device's use count and remove it if necessary.
424  */
425 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
426 {
427 	int found = 0;
428 	struct list_head *devices = &ti->table->devices;
429 	struct dm_dev_internal *dd;
430 
431 	list_for_each_entry(dd, devices, list) {
432 		if (dd->dm_dev == d) {
433 			found = 1;
434 			break;
435 		}
436 	}
437 	if (!found) {
438 		DMWARN("%s: device %s not in table devices list",
439 		       dm_device_name(ti->table->md), d->name);
440 		return;
441 	}
442 	if (refcount_dec_and_test(&dd->count)) {
443 		dm_put_table_device(ti->table->md, d);
444 		list_del(&dd->list);
445 		kfree(dd);
446 	}
447 }
448 EXPORT_SYMBOL(dm_put_device);
449 
450 /*
451  * Checks to see if the target joins onto the end of the table.
452  */
453 static int adjoin(struct dm_table *table, struct dm_target *ti)
454 {
455 	struct dm_target *prev;
456 
457 	if (!table->num_targets)
458 		return !ti->begin;
459 
460 	prev = &table->targets[table->num_targets - 1];
461 	return (ti->begin == (prev->begin + prev->len));
462 }
463 
464 /*
465  * Used to dynamically allocate the arg array.
466  *
467  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
468  * process messages even if some device is suspended. These messages have a
469  * small fixed number of arguments.
470  *
471  * On the other hand, dm-switch needs to process bulk data using messages and
472  * excessive use of GFP_NOIO could cause trouble.
473  */
474 static char **realloc_argv(unsigned *size, char **old_argv)
475 {
476 	char **argv;
477 	unsigned new_size;
478 	gfp_t gfp;
479 
480 	if (*size) {
481 		new_size = *size * 2;
482 		gfp = GFP_KERNEL;
483 	} else {
484 		new_size = 8;
485 		gfp = GFP_NOIO;
486 	}
487 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
488 	if (argv && old_argv) {
489 		memcpy(argv, old_argv, *size * sizeof(*argv));
490 		*size = new_size;
491 	}
492 
493 	kfree(old_argv);
494 	return argv;
495 }
496 
497 /*
498  * Destructively splits up the argument list to pass to ctr.
499  */
500 int dm_split_args(int *argc, char ***argvp, char *input)
501 {
502 	char *start, *end = input, *out, **argv = NULL;
503 	unsigned array_size = 0;
504 
505 	*argc = 0;
506 
507 	if (!input) {
508 		*argvp = NULL;
509 		return 0;
510 	}
511 
512 	argv = realloc_argv(&array_size, argv);
513 	if (!argv)
514 		return -ENOMEM;
515 
516 	while (1) {
517 		/* Skip whitespace */
518 		start = skip_spaces(end);
519 
520 		if (!*start)
521 			break;	/* success, we hit the end */
522 
523 		/* 'out' is used to remove any back-quotes */
524 		end = out = start;
525 		while (*end) {
526 			/* Everything apart from '\0' can be quoted */
527 			if (*end == '\\' && *(end + 1)) {
528 				*out++ = *(end + 1);
529 				end += 2;
530 				continue;
531 			}
532 
533 			if (isspace(*end))
534 				break;	/* end of token */
535 
536 			*out++ = *end++;
537 		}
538 
539 		/* have we already filled the array ? */
540 		if ((*argc + 1) > array_size) {
541 			argv = realloc_argv(&array_size, argv);
542 			if (!argv)
543 				return -ENOMEM;
544 		}
545 
546 		/* we know this is whitespace */
547 		if (*end)
548 			end++;
549 
550 		/* terminate the string and put it in the array */
551 		*out = '\0';
552 		argv[*argc] = start;
553 		(*argc)++;
554 	}
555 
556 	*argvp = argv;
557 	return 0;
558 }
559 
560 /*
561  * Impose necessary and sufficient conditions on a devices's table such
562  * that any incoming bio which respects its logical_block_size can be
563  * processed successfully.  If it falls across the boundary between
564  * two or more targets, the size of each piece it gets split into must
565  * be compatible with the logical_block_size of the target processing it.
566  */
567 static int validate_hardware_logical_block_alignment(struct dm_table *table,
568 						 struct queue_limits *limits)
569 {
570 	/*
571 	 * This function uses arithmetic modulo the logical_block_size
572 	 * (in units of 512-byte sectors).
573 	 */
574 	unsigned short device_logical_block_size_sects =
575 		limits->logical_block_size >> SECTOR_SHIFT;
576 
577 	/*
578 	 * Offset of the start of the next table entry, mod logical_block_size.
579 	 */
580 	unsigned short next_target_start = 0;
581 
582 	/*
583 	 * Given an aligned bio that extends beyond the end of a
584 	 * target, how many sectors must the next target handle?
585 	 */
586 	unsigned short remaining = 0;
587 
588 	struct dm_target *ti;
589 	struct queue_limits ti_limits;
590 	unsigned i;
591 
592 	/*
593 	 * Check each entry in the table in turn.
594 	 */
595 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
596 		ti = dm_table_get_target(table, i);
597 
598 		blk_set_stacking_limits(&ti_limits);
599 
600 		/* combine all target devices' limits */
601 		if (ti->type->iterate_devices)
602 			ti->type->iterate_devices(ti, dm_set_device_limits,
603 						  &ti_limits);
604 
605 		/*
606 		 * If the remaining sectors fall entirely within this
607 		 * table entry are they compatible with its logical_block_size?
608 		 */
609 		if (remaining < ti->len &&
610 		    remaining & ((ti_limits.logical_block_size >>
611 				  SECTOR_SHIFT) - 1))
612 			break;	/* Error */
613 
614 		next_target_start =
615 		    (unsigned short) ((next_target_start + ti->len) &
616 				      (device_logical_block_size_sects - 1));
617 		remaining = next_target_start ?
618 		    device_logical_block_size_sects - next_target_start : 0;
619 	}
620 
621 	if (remaining) {
622 		DMWARN("%s: table line %u (start sect %llu len %llu) "
623 		       "not aligned to h/w logical block size %u",
624 		       dm_device_name(table->md), i,
625 		       (unsigned long long) ti->begin,
626 		       (unsigned long long) ti->len,
627 		       limits->logical_block_size);
628 		return -EINVAL;
629 	}
630 
631 	return 0;
632 }
633 
634 int dm_table_add_target(struct dm_table *t, const char *type,
635 			sector_t start, sector_t len, char *params)
636 {
637 	int r = -EINVAL, argc;
638 	char **argv;
639 	struct dm_target *tgt;
640 
641 	if (t->singleton) {
642 		DMERR("%s: target type %s must appear alone in table",
643 		      dm_device_name(t->md), t->targets->type->name);
644 		return -EINVAL;
645 	}
646 
647 	BUG_ON(t->num_targets >= t->num_allocated);
648 
649 	tgt = t->targets + t->num_targets;
650 	memset(tgt, 0, sizeof(*tgt));
651 
652 	if (!len) {
653 		DMERR("%s: zero-length target", dm_device_name(t->md));
654 		return -EINVAL;
655 	}
656 
657 	tgt->type = dm_get_target_type(type);
658 	if (!tgt->type) {
659 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
660 		return -EINVAL;
661 	}
662 
663 	if (dm_target_needs_singleton(tgt->type)) {
664 		if (t->num_targets) {
665 			tgt->error = "singleton target type must appear alone in table";
666 			goto bad;
667 		}
668 		t->singleton = true;
669 	}
670 
671 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
672 		tgt->error = "target type may not be included in a read-only table";
673 		goto bad;
674 	}
675 
676 	if (t->immutable_target_type) {
677 		if (t->immutable_target_type != tgt->type) {
678 			tgt->error = "immutable target type cannot be mixed with other target types";
679 			goto bad;
680 		}
681 	} else if (dm_target_is_immutable(tgt->type)) {
682 		if (t->num_targets) {
683 			tgt->error = "immutable target type cannot be mixed with other target types";
684 			goto bad;
685 		}
686 		t->immutable_target_type = tgt->type;
687 	}
688 
689 	if (dm_target_has_integrity(tgt->type))
690 		t->integrity_added = 1;
691 
692 	tgt->table = t;
693 	tgt->begin = start;
694 	tgt->len = len;
695 	tgt->error = "Unknown error";
696 
697 	/*
698 	 * Does this target adjoin the previous one ?
699 	 */
700 	if (!adjoin(t, tgt)) {
701 		tgt->error = "Gap in table";
702 		goto bad;
703 	}
704 
705 	r = dm_split_args(&argc, &argv, params);
706 	if (r) {
707 		tgt->error = "couldn't split parameters";
708 		goto bad;
709 	}
710 
711 	r = tgt->type->ctr(tgt, argc, argv);
712 	kfree(argv);
713 	if (r)
714 		goto bad;
715 
716 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
717 
718 	if (!tgt->num_discard_bios && tgt->discards_supported)
719 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
720 		       dm_device_name(t->md), type);
721 
722 	return 0;
723 
724  bad:
725 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r));
726 	dm_put_target_type(tgt->type);
727 	return r;
728 }
729 
730 /*
731  * Target argument parsing helpers.
732  */
733 static int validate_next_arg(const struct dm_arg *arg,
734 			     struct dm_arg_set *arg_set,
735 			     unsigned *value, char **error, unsigned grouped)
736 {
737 	const char *arg_str = dm_shift_arg(arg_set);
738 	char dummy;
739 
740 	if (!arg_str ||
741 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
742 	    (*value < arg->min) ||
743 	    (*value > arg->max) ||
744 	    (grouped && arg_set->argc < *value)) {
745 		*error = arg->error;
746 		return -EINVAL;
747 	}
748 
749 	return 0;
750 }
751 
752 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753 		unsigned *value, char **error)
754 {
755 	return validate_next_arg(arg, arg_set, value, error, 0);
756 }
757 EXPORT_SYMBOL(dm_read_arg);
758 
759 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
760 		      unsigned *value, char **error)
761 {
762 	return validate_next_arg(arg, arg_set, value, error, 1);
763 }
764 EXPORT_SYMBOL(dm_read_arg_group);
765 
766 const char *dm_shift_arg(struct dm_arg_set *as)
767 {
768 	char *r;
769 
770 	if (as->argc) {
771 		as->argc--;
772 		r = *as->argv;
773 		as->argv++;
774 		return r;
775 	}
776 
777 	return NULL;
778 }
779 EXPORT_SYMBOL(dm_shift_arg);
780 
781 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
782 {
783 	BUG_ON(as->argc < num_args);
784 	as->argc -= num_args;
785 	as->argv += num_args;
786 }
787 EXPORT_SYMBOL(dm_consume_args);
788 
789 static bool __table_type_bio_based(enum dm_queue_mode table_type)
790 {
791 	return (table_type == DM_TYPE_BIO_BASED ||
792 		table_type == DM_TYPE_DAX_BIO_BASED);
793 }
794 
795 static bool __table_type_request_based(enum dm_queue_mode table_type)
796 {
797 	return table_type == DM_TYPE_REQUEST_BASED;
798 }
799 
800 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
801 {
802 	t->type = type;
803 }
804 EXPORT_SYMBOL_GPL(dm_table_set_type);
805 
806 /* validate the dax capability of the target device span */
807 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
808 			sector_t start, sector_t len, void *data)
809 {
810 	if (dev->dax_dev)
811 		return false;
812 
813 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
814 	return true;
815 }
816 
817 /* Check devices support synchronous DAX */
818 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
819 					      sector_t start, sector_t len, void *data)
820 {
821 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
822 }
823 
824 static bool dm_table_supports_dax(struct dm_table *t,
825 			   iterate_devices_callout_fn iterate_fn)
826 {
827 	struct dm_target *ti;
828 	unsigned i;
829 
830 	/* Ensure that all targets support DAX. */
831 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
832 		ti = dm_table_get_target(t, i);
833 
834 		if (!ti->type->direct_access)
835 			return false;
836 
837 		if (!ti->type->iterate_devices ||
838 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
839 			return false;
840 	}
841 
842 	return true;
843 }
844 
845 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
846 				  sector_t start, sector_t len, void *data)
847 {
848 	struct block_device *bdev = dev->bdev;
849 	struct request_queue *q = bdev_get_queue(bdev);
850 
851 	/* request-based cannot stack on partitions! */
852 	if (bdev_is_partition(bdev))
853 		return false;
854 
855 	return queue_is_mq(q);
856 }
857 
858 static int dm_table_determine_type(struct dm_table *t)
859 {
860 	unsigned i;
861 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
862 	struct dm_target *tgt;
863 	struct list_head *devices = dm_table_get_devices(t);
864 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
865 
866 	if (t->type != DM_TYPE_NONE) {
867 		/* target already set the table's type */
868 		if (t->type == DM_TYPE_BIO_BASED) {
869 			/* possibly upgrade to a variant of bio-based */
870 			goto verify_bio_based;
871 		}
872 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
873 		goto verify_rq_based;
874 	}
875 
876 	for (i = 0; i < t->num_targets; i++) {
877 		tgt = t->targets + i;
878 		if (dm_target_hybrid(tgt))
879 			hybrid = 1;
880 		else if (dm_target_request_based(tgt))
881 			request_based = 1;
882 		else
883 			bio_based = 1;
884 
885 		if (bio_based && request_based) {
886 			DMERR("Inconsistent table: different target types"
887 			      " can't be mixed up");
888 			return -EINVAL;
889 		}
890 	}
891 
892 	if (hybrid && !bio_based && !request_based) {
893 		/*
894 		 * The targets can work either way.
895 		 * Determine the type from the live device.
896 		 * Default to bio-based if device is new.
897 		 */
898 		if (__table_type_request_based(live_md_type))
899 			request_based = 1;
900 		else
901 			bio_based = 1;
902 	}
903 
904 	if (bio_based) {
905 verify_bio_based:
906 		/* We must use this table as bio-based */
907 		t->type = DM_TYPE_BIO_BASED;
908 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
909 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
910 			t->type = DM_TYPE_DAX_BIO_BASED;
911 		}
912 		return 0;
913 	}
914 
915 	BUG_ON(!request_based); /* No targets in this table */
916 
917 	t->type = DM_TYPE_REQUEST_BASED;
918 
919 verify_rq_based:
920 	/*
921 	 * Request-based dm supports only tables that have a single target now.
922 	 * To support multiple targets, request splitting support is needed,
923 	 * and that needs lots of changes in the block-layer.
924 	 * (e.g. request completion process for partial completion.)
925 	 */
926 	if (t->num_targets > 1) {
927 		DMERR("request-based DM doesn't support multiple targets");
928 		return -EINVAL;
929 	}
930 
931 	if (list_empty(devices)) {
932 		int srcu_idx;
933 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
934 
935 		/* inherit live table's type */
936 		if (live_table)
937 			t->type = live_table->type;
938 		dm_put_live_table(t->md, srcu_idx);
939 		return 0;
940 	}
941 
942 	tgt = dm_table_get_immutable_target(t);
943 	if (!tgt) {
944 		DMERR("table load rejected: immutable target is required");
945 		return -EINVAL;
946 	} else if (tgt->max_io_len) {
947 		DMERR("table load rejected: immutable target that splits IO is not supported");
948 		return -EINVAL;
949 	}
950 
951 	/* Non-request-stackable devices can't be used for request-based dm */
952 	if (!tgt->type->iterate_devices ||
953 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
954 		DMERR("table load rejected: including non-request-stackable devices");
955 		return -EINVAL;
956 	}
957 
958 	return 0;
959 }
960 
961 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
962 {
963 	return t->type;
964 }
965 
966 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
967 {
968 	return t->immutable_target_type;
969 }
970 
971 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
972 {
973 	/* Immutable target is implicitly a singleton */
974 	if (t->num_targets > 1 ||
975 	    !dm_target_is_immutable(t->targets[0].type))
976 		return NULL;
977 
978 	return t->targets;
979 }
980 
981 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
982 {
983 	struct dm_target *ti;
984 	unsigned i;
985 
986 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
987 		ti = dm_table_get_target(t, i);
988 		if (dm_target_is_wildcard(ti->type))
989 			return ti;
990 	}
991 
992 	return NULL;
993 }
994 
995 bool dm_table_bio_based(struct dm_table *t)
996 {
997 	return __table_type_bio_based(dm_table_get_type(t));
998 }
999 
1000 bool dm_table_request_based(struct dm_table *t)
1001 {
1002 	return __table_type_request_based(dm_table_get_type(t));
1003 }
1004 
1005 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1006 {
1007 	enum dm_queue_mode type = dm_table_get_type(t);
1008 	unsigned per_io_data_size = 0;
1009 	unsigned min_pool_size = 0;
1010 	struct dm_target *ti;
1011 	unsigned i;
1012 
1013 	if (unlikely(type == DM_TYPE_NONE)) {
1014 		DMWARN("no table type is set, can't allocate mempools");
1015 		return -EINVAL;
1016 	}
1017 
1018 	if (__table_type_bio_based(type))
1019 		for (i = 0; i < t->num_targets; i++) {
1020 			ti = t->targets + i;
1021 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1022 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1023 		}
1024 
1025 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1026 					   per_io_data_size, min_pool_size);
1027 	if (!t->mempools)
1028 		return -ENOMEM;
1029 
1030 	return 0;
1031 }
1032 
1033 void dm_table_free_md_mempools(struct dm_table *t)
1034 {
1035 	dm_free_md_mempools(t->mempools);
1036 	t->mempools = NULL;
1037 }
1038 
1039 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1040 {
1041 	return t->mempools;
1042 }
1043 
1044 static int setup_indexes(struct dm_table *t)
1045 {
1046 	int i;
1047 	unsigned int total = 0;
1048 	sector_t *indexes;
1049 
1050 	/* allocate the space for *all* the indexes */
1051 	for (i = t->depth - 2; i >= 0; i--) {
1052 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1053 		total += t->counts[i];
1054 	}
1055 
1056 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1057 	if (!indexes)
1058 		return -ENOMEM;
1059 
1060 	/* set up internal nodes, bottom-up */
1061 	for (i = t->depth - 2; i >= 0; i--) {
1062 		t->index[i] = indexes;
1063 		indexes += (KEYS_PER_NODE * t->counts[i]);
1064 		setup_btree_index(i, t);
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Builds the btree to index the map.
1072  */
1073 static int dm_table_build_index(struct dm_table *t)
1074 {
1075 	int r = 0;
1076 	unsigned int leaf_nodes;
1077 
1078 	/* how many indexes will the btree have ? */
1079 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1080 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1081 
1082 	/* leaf layer has already been set up */
1083 	t->counts[t->depth - 1] = leaf_nodes;
1084 	t->index[t->depth - 1] = t->highs;
1085 
1086 	if (t->depth >= 2)
1087 		r = setup_indexes(t);
1088 
1089 	return r;
1090 }
1091 
1092 static bool integrity_profile_exists(struct gendisk *disk)
1093 {
1094 	return !!blk_get_integrity(disk);
1095 }
1096 
1097 /*
1098  * Get a disk whose integrity profile reflects the table's profile.
1099  * Returns NULL if integrity support was inconsistent or unavailable.
1100  */
1101 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1102 {
1103 	struct list_head *devices = dm_table_get_devices(t);
1104 	struct dm_dev_internal *dd = NULL;
1105 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1106 	unsigned i;
1107 
1108 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1109 		struct dm_target *ti = dm_table_get_target(t, i);
1110 		if (!dm_target_passes_integrity(ti->type))
1111 			goto no_integrity;
1112 	}
1113 
1114 	list_for_each_entry(dd, devices, list) {
1115 		template_disk = dd->dm_dev->bdev->bd_disk;
1116 		if (!integrity_profile_exists(template_disk))
1117 			goto no_integrity;
1118 		else if (prev_disk &&
1119 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1120 			goto no_integrity;
1121 		prev_disk = template_disk;
1122 	}
1123 
1124 	return template_disk;
1125 
1126 no_integrity:
1127 	if (prev_disk)
1128 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1129 		       dm_device_name(t->md),
1130 		       prev_disk->disk_name,
1131 		       template_disk->disk_name);
1132 	return NULL;
1133 }
1134 
1135 /*
1136  * Register the mapped device for blk_integrity support if the
1137  * underlying devices have an integrity profile.  But all devices may
1138  * not have matching profiles (checking all devices isn't reliable
1139  * during table load because this table may use other DM device(s) which
1140  * must be resumed before they will have an initialized integity
1141  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1142  * profile validation: First pass during table load, final pass during
1143  * resume.
1144  */
1145 static int dm_table_register_integrity(struct dm_table *t)
1146 {
1147 	struct mapped_device *md = t->md;
1148 	struct gendisk *template_disk = NULL;
1149 
1150 	/* If target handles integrity itself do not register it here. */
1151 	if (t->integrity_added)
1152 		return 0;
1153 
1154 	template_disk = dm_table_get_integrity_disk(t);
1155 	if (!template_disk)
1156 		return 0;
1157 
1158 	if (!integrity_profile_exists(dm_disk(md))) {
1159 		t->integrity_supported = true;
1160 		/*
1161 		 * Register integrity profile during table load; we can do
1162 		 * this because the final profile must match during resume.
1163 		 */
1164 		blk_integrity_register(dm_disk(md),
1165 				       blk_get_integrity(template_disk));
1166 		return 0;
1167 	}
1168 
1169 	/*
1170 	 * If DM device already has an initialized integrity
1171 	 * profile the new profile should not conflict.
1172 	 */
1173 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1174 		DMWARN("%s: conflict with existing integrity profile: "
1175 		       "%s profile mismatch",
1176 		       dm_device_name(t->md),
1177 		       template_disk->disk_name);
1178 		return 1;
1179 	}
1180 
1181 	/* Preserve existing integrity profile */
1182 	t->integrity_supported = true;
1183 	return 0;
1184 }
1185 
1186 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1187 
1188 struct dm_crypto_profile {
1189 	struct blk_crypto_profile profile;
1190 	struct mapped_device *md;
1191 };
1192 
1193 struct dm_keyslot_evict_args {
1194 	const struct blk_crypto_key *key;
1195 	int err;
1196 };
1197 
1198 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1199 				     sector_t start, sector_t len, void *data)
1200 {
1201 	struct dm_keyslot_evict_args *args = data;
1202 	int err;
1203 
1204 	err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1205 	if (!args->err)
1206 		args->err = err;
1207 	/* Always try to evict the key from all devices. */
1208 	return 0;
1209 }
1210 
1211 /*
1212  * When an inline encryption key is evicted from a device-mapper device, evict
1213  * it from all the underlying devices.
1214  */
1215 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1216 			    const struct blk_crypto_key *key, unsigned int slot)
1217 {
1218 	struct mapped_device *md =
1219 		container_of(profile, struct dm_crypto_profile, profile)->md;
1220 	struct dm_keyslot_evict_args args = { key };
1221 	struct dm_table *t;
1222 	int srcu_idx;
1223 	int i;
1224 	struct dm_target *ti;
1225 
1226 	t = dm_get_live_table(md, &srcu_idx);
1227 	if (!t)
1228 		return 0;
1229 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1230 		ti = dm_table_get_target(t, i);
1231 		if (!ti->type->iterate_devices)
1232 			continue;
1233 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1234 	}
1235 	dm_put_live_table(md, srcu_idx);
1236 	return args.err;
1237 }
1238 
1239 static int
1240 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1241 				     sector_t start, sector_t len, void *data)
1242 {
1243 	struct blk_crypto_profile *parent = data;
1244 	struct blk_crypto_profile *child =
1245 		bdev_get_queue(dev->bdev)->crypto_profile;
1246 
1247 	blk_crypto_intersect_capabilities(parent, child);
1248 	return 0;
1249 }
1250 
1251 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1252 {
1253 	struct dm_crypto_profile *dmcp = container_of(profile,
1254 						      struct dm_crypto_profile,
1255 						      profile);
1256 
1257 	if (!profile)
1258 		return;
1259 
1260 	blk_crypto_profile_destroy(profile);
1261 	kfree(dmcp);
1262 }
1263 
1264 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1265 {
1266 	dm_destroy_crypto_profile(t->crypto_profile);
1267 	t->crypto_profile = NULL;
1268 }
1269 
1270 /*
1271  * Constructs and initializes t->crypto_profile with a crypto profile that
1272  * represents the common set of crypto capabilities of the devices described by
1273  * the dm_table.  However, if the constructed crypto profile doesn't support all
1274  * crypto capabilities that are supported by the current mapped_device, it
1275  * returns an error instead, since we don't support removing crypto capabilities
1276  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1277  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1278  */
1279 static int dm_table_construct_crypto_profile(struct dm_table *t)
1280 {
1281 	struct dm_crypto_profile *dmcp;
1282 	struct blk_crypto_profile *profile;
1283 	struct dm_target *ti;
1284 	unsigned int i;
1285 	bool empty_profile = true;
1286 
1287 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1288 	if (!dmcp)
1289 		return -ENOMEM;
1290 	dmcp->md = t->md;
1291 
1292 	profile = &dmcp->profile;
1293 	blk_crypto_profile_init(profile, 0);
1294 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1295 	profile->max_dun_bytes_supported = UINT_MAX;
1296 	memset(profile->modes_supported, 0xFF,
1297 	       sizeof(profile->modes_supported));
1298 
1299 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1300 		ti = dm_table_get_target(t, i);
1301 
1302 		if (!dm_target_passes_crypto(ti->type)) {
1303 			blk_crypto_intersect_capabilities(profile, NULL);
1304 			break;
1305 		}
1306 		if (!ti->type->iterate_devices)
1307 			continue;
1308 		ti->type->iterate_devices(ti,
1309 					  device_intersect_crypto_capabilities,
1310 					  profile);
1311 	}
1312 
1313 	if (t->md->queue &&
1314 	    !blk_crypto_has_capabilities(profile,
1315 					 t->md->queue->crypto_profile)) {
1316 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1317 		dm_destroy_crypto_profile(profile);
1318 		return -EINVAL;
1319 	}
1320 
1321 	/*
1322 	 * If the new profile doesn't actually support any crypto capabilities,
1323 	 * we may as well represent it with a NULL profile.
1324 	 */
1325 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1326 		if (profile->modes_supported[i]) {
1327 			empty_profile = false;
1328 			break;
1329 		}
1330 	}
1331 
1332 	if (empty_profile) {
1333 		dm_destroy_crypto_profile(profile);
1334 		profile = NULL;
1335 	}
1336 
1337 	/*
1338 	 * t->crypto_profile is only set temporarily while the table is being
1339 	 * set up, and it gets set to NULL after the profile has been
1340 	 * transferred to the request_queue.
1341 	 */
1342 	t->crypto_profile = profile;
1343 
1344 	return 0;
1345 }
1346 
1347 static void dm_update_crypto_profile(struct request_queue *q,
1348 				     struct dm_table *t)
1349 {
1350 	if (!t->crypto_profile)
1351 		return;
1352 
1353 	/* Make the crypto profile less restrictive. */
1354 	if (!q->crypto_profile) {
1355 		blk_crypto_register(t->crypto_profile, q);
1356 	} else {
1357 		blk_crypto_update_capabilities(q->crypto_profile,
1358 					       t->crypto_profile);
1359 		dm_destroy_crypto_profile(t->crypto_profile);
1360 	}
1361 	t->crypto_profile = NULL;
1362 }
1363 
1364 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1365 
1366 static int dm_table_construct_crypto_profile(struct dm_table *t)
1367 {
1368 	return 0;
1369 }
1370 
1371 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1372 {
1373 }
1374 
1375 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1376 {
1377 }
1378 
1379 static void dm_update_crypto_profile(struct request_queue *q,
1380 				     struct dm_table *t)
1381 {
1382 }
1383 
1384 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1385 
1386 /*
1387  * Prepares the table for use by building the indices,
1388  * setting the type, and allocating mempools.
1389  */
1390 int dm_table_complete(struct dm_table *t)
1391 {
1392 	int r;
1393 
1394 	r = dm_table_determine_type(t);
1395 	if (r) {
1396 		DMERR("unable to determine table type");
1397 		return r;
1398 	}
1399 
1400 	r = dm_table_build_index(t);
1401 	if (r) {
1402 		DMERR("unable to build btrees");
1403 		return r;
1404 	}
1405 
1406 	r = dm_table_register_integrity(t);
1407 	if (r) {
1408 		DMERR("could not register integrity profile.");
1409 		return r;
1410 	}
1411 
1412 	r = dm_table_construct_crypto_profile(t);
1413 	if (r) {
1414 		DMERR("could not construct crypto profile.");
1415 		return r;
1416 	}
1417 
1418 	r = dm_table_alloc_md_mempools(t, t->md);
1419 	if (r)
1420 		DMERR("unable to allocate mempools");
1421 
1422 	return r;
1423 }
1424 
1425 static DEFINE_MUTEX(_event_lock);
1426 void dm_table_event_callback(struct dm_table *t,
1427 			     void (*fn)(void *), void *context)
1428 {
1429 	mutex_lock(&_event_lock);
1430 	t->event_fn = fn;
1431 	t->event_context = context;
1432 	mutex_unlock(&_event_lock);
1433 }
1434 
1435 void dm_table_event(struct dm_table *t)
1436 {
1437 	mutex_lock(&_event_lock);
1438 	if (t->event_fn)
1439 		t->event_fn(t->event_context);
1440 	mutex_unlock(&_event_lock);
1441 }
1442 EXPORT_SYMBOL(dm_table_event);
1443 
1444 inline sector_t dm_table_get_size(struct dm_table *t)
1445 {
1446 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1447 }
1448 EXPORT_SYMBOL(dm_table_get_size);
1449 
1450 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1451 {
1452 	if (index >= t->num_targets)
1453 		return NULL;
1454 
1455 	return t->targets + index;
1456 }
1457 
1458 /*
1459  * Search the btree for the correct target.
1460  *
1461  * Caller should check returned pointer for NULL
1462  * to trap I/O beyond end of device.
1463  */
1464 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1465 {
1466 	unsigned int l, n = 0, k = 0;
1467 	sector_t *node;
1468 
1469 	if (unlikely(sector >= dm_table_get_size(t)))
1470 		return NULL;
1471 
1472 	for (l = 0; l < t->depth; l++) {
1473 		n = get_child(n, k);
1474 		node = get_node(t, l, n);
1475 
1476 		for (k = 0; k < KEYS_PER_NODE; k++)
1477 			if (node[k] >= sector)
1478 				break;
1479 	}
1480 
1481 	return &t->targets[(KEYS_PER_NODE * n) + k];
1482 }
1483 
1484 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1485 				   sector_t start, sector_t len, void *data)
1486 {
1487 	struct request_queue *q = bdev_get_queue(dev->bdev);
1488 
1489 	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1490 }
1491 
1492 /*
1493  * type->iterate_devices() should be called when the sanity check needs to
1494  * iterate and check all underlying data devices. iterate_devices() will
1495  * iterate all underlying data devices until it encounters a non-zero return
1496  * code, returned by whether the input iterate_devices_callout_fn, or
1497  * iterate_devices() itself internally.
1498  *
1499  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1500  * iterate multiple underlying devices internally, in which case a non-zero
1501  * return code returned by iterate_devices_callout_fn will stop the iteration
1502  * in advance.
1503  *
1504  * Cases requiring _any_ underlying device supporting some kind of attribute,
1505  * should use the iteration structure like dm_table_any_dev_attr(), or call
1506  * it directly. @func should handle semantics of positive examples, e.g.
1507  * capable of something.
1508  *
1509  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1510  * should use the iteration structure like dm_table_supports_nowait() or
1511  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1512  * uses an @anti_func that handle semantics of counter examples, e.g. not
1513  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1514  */
1515 static bool dm_table_any_dev_attr(struct dm_table *t,
1516 				  iterate_devices_callout_fn func, void *data)
1517 {
1518 	struct dm_target *ti;
1519 	unsigned int i;
1520 
1521 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1522 		ti = dm_table_get_target(t, i);
1523 
1524 		if (ti->type->iterate_devices &&
1525 		    ti->type->iterate_devices(ti, func, data))
1526 			return true;
1527         }
1528 
1529 	return false;
1530 }
1531 
1532 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1533 			sector_t start, sector_t len, void *data)
1534 {
1535 	unsigned *num_devices = data;
1536 
1537 	(*num_devices)++;
1538 
1539 	return 0;
1540 }
1541 
1542 static int dm_table_supports_poll(struct dm_table *t)
1543 {
1544 	return !dm_table_any_dev_attr(t, device_not_poll_capable, NULL);
1545 }
1546 
1547 /*
1548  * Check whether a table has no data devices attached using each
1549  * target's iterate_devices method.
1550  * Returns false if the result is unknown because a target doesn't
1551  * support iterate_devices.
1552  */
1553 bool dm_table_has_no_data_devices(struct dm_table *table)
1554 {
1555 	struct dm_target *ti;
1556 	unsigned i, num_devices;
1557 
1558 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1559 		ti = dm_table_get_target(table, i);
1560 
1561 		if (!ti->type->iterate_devices)
1562 			return false;
1563 
1564 		num_devices = 0;
1565 		ti->type->iterate_devices(ti, count_device, &num_devices);
1566 		if (num_devices)
1567 			return false;
1568 	}
1569 
1570 	return true;
1571 }
1572 
1573 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1574 				  sector_t start, sector_t len, void *data)
1575 {
1576 	struct request_queue *q = bdev_get_queue(dev->bdev);
1577 	enum blk_zoned_model *zoned_model = data;
1578 
1579 	return blk_queue_zoned_model(q) != *zoned_model;
1580 }
1581 
1582 /*
1583  * Check the device zoned model based on the target feature flag. If the target
1584  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1585  * also accepted but all devices must have the same zoned model. If the target
1586  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1587  * zoned model with all zoned devices having the same zone size.
1588  */
1589 static bool dm_table_supports_zoned_model(struct dm_table *t,
1590 					  enum blk_zoned_model zoned_model)
1591 {
1592 	struct dm_target *ti;
1593 	unsigned i;
1594 
1595 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1596 		ti = dm_table_get_target(t, i);
1597 
1598 		if (dm_target_supports_zoned_hm(ti->type)) {
1599 			if (!ti->type->iterate_devices ||
1600 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1601 						      &zoned_model))
1602 				return false;
1603 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1604 			if (zoned_model == BLK_ZONED_HM)
1605 				return false;
1606 		}
1607 	}
1608 
1609 	return true;
1610 }
1611 
1612 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1613 					   sector_t start, sector_t len, void *data)
1614 {
1615 	struct request_queue *q = bdev_get_queue(dev->bdev);
1616 	unsigned int *zone_sectors = data;
1617 
1618 	if (!blk_queue_is_zoned(q))
1619 		return 0;
1620 
1621 	return blk_queue_zone_sectors(q) != *zone_sectors;
1622 }
1623 
1624 /*
1625  * Check consistency of zoned model and zone sectors across all targets. For
1626  * zone sectors, if the destination device is a zoned block device, it shall
1627  * have the specified zone_sectors.
1628  */
1629 static int validate_hardware_zoned_model(struct dm_table *table,
1630 					 enum blk_zoned_model zoned_model,
1631 					 unsigned int zone_sectors)
1632 {
1633 	if (zoned_model == BLK_ZONED_NONE)
1634 		return 0;
1635 
1636 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1637 		DMERR("%s: zoned model is not consistent across all devices",
1638 		      dm_device_name(table->md));
1639 		return -EINVAL;
1640 	}
1641 
1642 	/* Check zone size validity and compatibility */
1643 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1644 		return -EINVAL;
1645 
1646 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1647 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1648 		      dm_device_name(table->md));
1649 		return -EINVAL;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 /*
1656  * Establish the new table's queue_limits and validate them.
1657  */
1658 int dm_calculate_queue_limits(struct dm_table *table,
1659 			      struct queue_limits *limits)
1660 {
1661 	struct dm_target *ti;
1662 	struct queue_limits ti_limits;
1663 	unsigned i;
1664 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1665 	unsigned int zone_sectors = 0;
1666 
1667 	blk_set_stacking_limits(limits);
1668 
1669 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1670 		blk_set_stacking_limits(&ti_limits);
1671 
1672 		ti = dm_table_get_target(table, i);
1673 
1674 		if (!ti->type->iterate_devices)
1675 			goto combine_limits;
1676 
1677 		/*
1678 		 * Combine queue limits of all the devices this target uses.
1679 		 */
1680 		ti->type->iterate_devices(ti, dm_set_device_limits,
1681 					  &ti_limits);
1682 
1683 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1684 			/*
1685 			 * After stacking all limits, validate all devices
1686 			 * in table support this zoned model and zone sectors.
1687 			 */
1688 			zoned_model = ti_limits.zoned;
1689 			zone_sectors = ti_limits.chunk_sectors;
1690 		}
1691 
1692 		/* Set I/O hints portion of queue limits */
1693 		if (ti->type->io_hints)
1694 			ti->type->io_hints(ti, &ti_limits);
1695 
1696 		/*
1697 		 * Check each device area is consistent with the target's
1698 		 * overall queue limits.
1699 		 */
1700 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1701 					      &ti_limits))
1702 			return -EINVAL;
1703 
1704 combine_limits:
1705 		/*
1706 		 * Merge this target's queue limits into the overall limits
1707 		 * for the table.
1708 		 */
1709 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1710 			DMWARN("%s: adding target device "
1711 			       "(start sect %llu len %llu) "
1712 			       "caused an alignment inconsistency",
1713 			       dm_device_name(table->md),
1714 			       (unsigned long long) ti->begin,
1715 			       (unsigned long long) ti->len);
1716 	}
1717 
1718 	/*
1719 	 * Verify that the zoned model and zone sectors, as determined before
1720 	 * any .io_hints override, are the same across all devices in the table.
1721 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1722 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1723 	 * BUT...
1724 	 */
1725 	if (limits->zoned != BLK_ZONED_NONE) {
1726 		/*
1727 		 * ...IF the above limits stacking determined a zoned model
1728 		 * validate that all of the table's devices conform to it.
1729 		 */
1730 		zoned_model = limits->zoned;
1731 		zone_sectors = limits->chunk_sectors;
1732 	}
1733 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1734 		return -EINVAL;
1735 
1736 	return validate_hardware_logical_block_alignment(table, limits);
1737 }
1738 
1739 /*
1740  * Verify that all devices have an integrity profile that matches the
1741  * DM device's registered integrity profile.  If the profiles don't
1742  * match then unregister the DM device's integrity profile.
1743  */
1744 static void dm_table_verify_integrity(struct dm_table *t)
1745 {
1746 	struct gendisk *template_disk = NULL;
1747 
1748 	if (t->integrity_added)
1749 		return;
1750 
1751 	if (t->integrity_supported) {
1752 		/*
1753 		 * Verify that the original integrity profile
1754 		 * matches all the devices in this table.
1755 		 */
1756 		template_disk = dm_table_get_integrity_disk(t);
1757 		if (template_disk &&
1758 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1759 			return;
1760 	}
1761 
1762 	if (integrity_profile_exists(dm_disk(t->md))) {
1763 		DMWARN("%s: unable to establish an integrity profile",
1764 		       dm_device_name(t->md));
1765 		blk_integrity_unregister(dm_disk(t->md));
1766 	}
1767 }
1768 
1769 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1770 				sector_t start, sector_t len, void *data)
1771 {
1772 	unsigned long flush = (unsigned long) data;
1773 	struct request_queue *q = bdev_get_queue(dev->bdev);
1774 
1775 	return (q->queue_flags & flush);
1776 }
1777 
1778 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1779 {
1780 	struct dm_target *ti;
1781 	unsigned i;
1782 
1783 	/*
1784 	 * Require at least one underlying device to support flushes.
1785 	 * t->devices includes internal dm devices such as mirror logs
1786 	 * so we need to use iterate_devices here, which targets
1787 	 * supporting flushes must provide.
1788 	 */
1789 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1790 		ti = dm_table_get_target(t, i);
1791 
1792 		if (!ti->num_flush_bios)
1793 			continue;
1794 
1795 		if (ti->flush_supported)
1796 			return true;
1797 
1798 		if (ti->type->iterate_devices &&
1799 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1800 			return true;
1801 	}
1802 
1803 	return false;
1804 }
1805 
1806 static int device_dax_write_cache_enabled(struct dm_target *ti,
1807 					  struct dm_dev *dev, sector_t start,
1808 					  sector_t len, void *data)
1809 {
1810 	struct dax_device *dax_dev = dev->dax_dev;
1811 
1812 	if (!dax_dev)
1813 		return false;
1814 
1815 	if (dax_write_cache_enabled(dax_dev))
1816 		return true;
1817 	return false;
1818 }
1819 
1820 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1821 				sector_t start, sector_t len, void *data)
1822 {
1823 	struct request_queue *q = bdev_get_queue(dev->bdev);
1824 
1825 	return !blk_queue_nonrot(q);
1826 }
1827 
1828 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1829 			     sector_t start, sector_t len, void *data)
1830 {
1831 	struct request_queue *q = bdev_get_queue(dev->bdev);
1832 
1833 	return !blk_queue_add_random(q);
1834 }
1835 
1836 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1837 					   sector_t start, sector_t len, void *data)
1838 {
1839 	struct request_queue *q = bdev_get_queue(dev->bdev);
1840 
1841 	return !q->limits.max_write_zeroes_sectors;
1842 }
1843 
1844 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1845 {
1846 	struct dm_target *ti;
1847 	unsigned i = 0;
1848 
1849 	while (i < dm_table_get_num_targets(t)) {
1850 		ti = dm_table_get_target(t, i++);
1851 
1852 		if (!ti->num_write_zeroes_bios)
1853 			return false;
1854 
1855 		if (!ti->type->iterate_devices ||
1856 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1857 			return false;
1858 	}
1859 
1860 	return true;
1861 }
1862 
1863 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1864 				     sector_t start, sector_t len, void *data)
1865 {
1866 	struct request_queue *q = bdev_get_queue(dev->bdev);
1867 
1868 	return !blk_queue_nowait(q);
1869 }
1870 
1871 static bool dm_table_supports_nowait(struct dm_table *t)
1872 {
1873 	struct dm_target *ti;
1874 	unsigned i = 0;
1875 
1876 	while (i < dm_table_get_num_targets(t)) {
1877 		ti = dm_table_get_target(t, i++);
1878 
1879 		if (!dm_target_supports_nowait(ti->type))
1880 			return false;
1881 
1882 		if (!ti->type->iterate_devices ||
1883 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1884 			return false;
1885 	}
1886 
1887 	return true;
1888 }
1889 
1890 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1891 				      sector_t start, sector_t len, void *data)
1892 {
1893 	struct request_queue *q = bdev_get_queue(dev->bdev);
1894 
1895 	return !blk_queue_discard(q);
1896 }
1897 
1898 static bool dm_table_supports_discards(struct dm_table *t)
1899 {
1900 	struct dm_target *ti;
1901 	unsigned i;
1902 
1903 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1904 		ti = dm_table_get_target(t, i);
1905 
1906 		if (!ti->num_discard_bios)
1907 			return false;
1908 
1909 		/*
1910 		 * Either the target provides discard support (as implied by setting
1911 		 * 'discards_supported') or it relies on _all_ data devices having
1912 		 * discard support.
1913 		 */
1914 		if (!ti->discards_supported &&
1915 		    (!ti->type->iterate_devices ||
1916 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1917 			return false;
1918 	}
1919 
1920 	return true;
1921 }
1922 
1923 static int device_not_secure_erase_capable(struct dm_target *ti,
1924 					   struct dm_dev *dev, sector_t start,
1925 					   sector_t len, void *data)
1926 {
1927 	struct request_queue *q = bdev_get_queue(dev->bdev);
1928 
1929 	return !blk_queue_secure_erase(q);
1930 }
1931 
1932 static bool dm_table_supports_secure_erase(struct dm_table *t)
1933 {
1934 	struct dm_target *ti;
1935 	unsigned int i;
1936 
1937 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1938 		ti = dm_table_get_target(t, i);
1939 
1940 		if (!ti->num_secure_erase_bios)
1941 			return false;
1942 
1943 		if (!ti->type->iterate_devices ||
1944 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1945 			return false;
1946 	}
1947 
1948 	return true;
1949 }
1950 
1951 static int device_requires_stable_pages(struct dm_target *ti,
1952 					struct dm_dev *dev, sector_t start,
1953 					sector_t len, void *data)
1954 {
1955 	struct request_queue *q = bdev_get_queue(dev->bdev);
1956 
1957 	return blk_queue_stable_writes(q);
1958 }
1959 
1960 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961 			      struct queue_limits *limits)
1962 {
1963 	bool wc = false, fua = false;
1964 	int r;
1965 
1966 	/*
1967 	 * Copy table's limits to the DM device's request_queue
1968 	 */
1969 	q->limits = *limits;
1970 
1971 	if (dm_table_supports_nowait(t))
1972 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973 	else
1974 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975 
1976 	if (!dm_table_supports_discards(t)) {
1977 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1978 		/* Must also clear discard limits... */
1979 		q->limits.max_discard_sectors = 0;
1980 		q->limits.max_hw_discard_sectors = 0;
1981 		q->limits.discard_granularity = 0;
1982 		q->limits.discard_alignment = 0;
1983 		q->limits.discard_misaligned = 0;
1984 	} else
1985 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1986 
1987 	if (dm_table_supports_secure_erase(t))
1988 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1989 
1990 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1991 		wc = true;
1992 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1993 			fua = true;
1994 	}
1995 	blk_queue_write_cache(q, wc, fua);
1996 
1997 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1998 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1999 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
2000 			set_dax_synchronous(t->md->dax_dev);
2001 	}
2002 	else
2003 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2004 
2005 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2006 		dax_write_cache(t->md->dax_dev, true);
2007 
2008 	/* Ensure that all underlying devices are non-rotational. */
2009 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2010 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2011 	else
2012 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2013 
2014 	if (!dm_table_supports_write_zeroes(t))
2015 		q->limits.max_write_zeroes_sectors = 0;
2016 
2017 	dm_table_verify_integrity(t);
2018 
2019 	/*
2020 	 * Some devices don't use blk_integrity but still want stable pages
2021 	 * because they do their own checksumming.
2022 	 * If any underlying device requires stable pages, a table must require
2023 	 * them as well.  Only targets that support iterate_devices are considered:
2024 	 * don't want error, zero, etc to require stable pages.
2025 	 */
2026 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2027 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2028 	else
2029 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2030 
2031 	/*
2032 	 * Determine whether or not this queue's I/O timings contribute
2033 	 * to the entropy pool, Only request-based targets use this.
2034 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2035 	 * have it set.
2036 	 */
2037 	if (blk_queue_add_random(q) &&
2038 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2039 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2040 
2041 	/*
2042 	 * For a zoned target, setup the zones related queue attributes
2043 	 * and resources necessary for zone append emulation if necessary.
2044 	 */
2045 	if (blk_queue_is_zoned(q)) {
2046 		r = dm_set_zones_restrictions(t, q);
2047 		if (r)
2048 			return r;
2049 	}
2050 
2051 	dm_update_crypto_profile(q, t);
2052 	disk_update_readahead(t->md->disk);
2053 
2054 	/*
2055 	 * Check for request-based device is left to
2056 	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2057 	 *
2058 	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2059 	 * underlying devices supporting polling.
2060 	 */
2061 	if (__table_type_bio_based(t->type)) {
2062 		if (dm_table_supports_poll(t))
2063 			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2064 		else
2065 			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 unsigned int dm_table_get_num_targets(struct dm_table *t)
2072 {
2073 	return t->num_targets;
2074 }
2075 
2076 struct list_head *dm_table_get_devices(struct dm_table *t)
2077 {
2078 	return &t->devices;
2079 }
2080 
2081 fmode_t dm_table_get_mode(struct dm_table *t)
2082 {
2083 	return t->mode;
2084 }
2085 EXPORT_SYMBOL(dm_table_get_mode);
2086 
2087 enum suspend_mode {
2088 	PRESUSPEND,
2089 	PRESUSPEND_UNDO,
2090 	POSTSUSPEND,
2091 };
2092 
2093 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2094 {
2095 	int i = t->num_targets;
2096 	struct dm_target *ti = t->targets;
2097 
2098 	lockdep_assert_held(&t->md->suspend_lock);
2099 
2100 	while (i--) {
2101 		switch (mode) {
2102 		case PRESUSPEND:
2103 			if (ti->type->presuspend)
2104 				ti->type->presuspend(ti);
2105 			break;
2106 		case PRESUSPEND_UNDO:
2107 			if (ti->type->presuspend_undo)
2108 				ti->type->presuspend_undo(ti);
2109 			break;
2110 		case POSTSUSPEND:
2111 			if (ti->type->postsuspend)
2112 				ti->type->postsuspend(ti);
2113 			break;
2114 		}
2115 		ti++;
2116 	}
2117 }
2118 
2119 void dm_table_presuspend_targets(struct dm_table *t)
2120 {
2121 	if (!t)
2122 		return;
2123 
2124 	suspend_targets(t, PRESUSPEND);
2125 }
2126 
2127 void dm_table_presuspend_undo_targets(struct dm_table *t)
2128 {
2129 	if (!t)
2130 		return;
2131 
2132 	suspend_targets(t, PRESUSPEND_UNDO);
2133 }
2134 
2135 void dm_table_postsuspend_targets(struct dm_table *t)
2136 {
2137 	if (!t)
2138 		return;
2139 
2140 	suspend_targets(t, POSTSUSPEND);
2141 }
2142 
2143 int dm_table_resume_targets(struct dm_table *t)
2144 {
2145 	int i, r = 0;
2146 
2147 	lockdep_assert_held(&t->md->suspend_lock);
2148 
2149 	for (i = 0; i < t->num_targets; i++) {
2150 		struct dm_target *ti = t->targets + i;
2151 
2152 		if (!ti->type->preresume)
2153 			continue;
2154 
2155 		r = ti->type->preresume(ti);
2156 		if (r) {
2157 			DMERR("%s: %s: preresume failed, error = %d",
2158 			      dm_device_name(t->md), ti->type->name, r);
2159 			return r;
2160 		}
2161 	}
2162 
2163 	for (i = 0; i < t->num_targets; i++) {
2164 		struct dm_target *ti = t->targets + i;
2165 
2166 		if (ti->type->resume)
2167 			ti->type->resume(ti);
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 struct mapped_device *dm_table_get_md(struct dm_table *t)
2174 {
2175 	return t->md;
2176 }
2177 EXPORT_SYMBOL(dm_table_get_md);
2178 
2179 const char *dm_table_device_name(struct dm_table *t)
2180 {
2181 	return dm_device_name(t->md);
2182 }
2183 EXPORT_SYMBOL_GPL(dm_table_device_name);
2184 
2185 void dm_table_run_md_queue_async(struct dm_table *t)
2186 {
2187 	if (!dm_table_request_based(t))
2188 		return;
2189 
2190 	if (t->md->queue)
2191 		blk_mq_run_hw_queues(t->md->queue, true);
2192 }
2193 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2194 
2195