xref: /openbmc/linux/drivers/md/dm-table.c (revision 261a9af6)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	unsigned discards_supported:1;
58 	unsigned integrity_supported:1;
59 
60 	/*
61 	 * Indicates the rw permissions for the new logical
62 	 * device.  This should be a combination of FMODE_READ
63 	 * and FMODE_WRITE.
64 	 */
65 	fmode_t mode;
66 
67 	/* a list of devices used by this table */
68 	struct list_head devices;
69 
70 	/* events get handed up using this callback */
71 	void (*event_fn)(void *);
72 	void *event_context;
73 
74 	struct dm_md_mempools *mempools;
75 
76 	struct list_head target_callbacks;
77 };
78 
79 /*
80  * Similar to ceiling(log_size(n))
81  */
82 static unsigned int int_log(unsigned int n, unsigned int base)
83 {
84 	int result = 0;
85 
86 	while (n > 1) {
87 		n = dm_div_up(n, base);
88 		result++;
89 	}
90 
91 	return result;
92 }
93 
94 /*
95  * Calculate the index of the child node of the n'th node k'th key.
96  */
97 static inline unsigned int get_child(unsigned int n, unsigned int k)
98 {
99 	return (n * CHILDREN_PER_NODE) + k;
100 }
101 
102 /*
103  * Return the n'th node of level l from table t.
104  */
105 static inline sector_t *get_node(struct dm_table *t,
106 				 unsigned int l, unsigned int n)
107 {
108 	return t->index[l] + (n * KEYS_PER_NODE);
109 }
110 
111 /*
112  * Return the highest key that you could lookup from the n'th
113  * node on level l of the btree.
114  */
115 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
116 {
117 	for (; l < t->depth - 1; l++)
118 		n = get_child(n, CHILDREN_PER_NODE - 1);
119 
120 	if (n >= t->counts[l])
121 		return (sector_t) - 1;
122 
123 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
124 }
125 
126 /*
127  * Fills in a level of the btree based on the highs of the level
128  * below it.
129  */
130 static int setup_btree_index(unsigned int l, struct dm_table *t)
131 {
132 	unsigned int n, k;
133 	sector_t *node;
134 
135 	for (n = 0U; n < t->counts[l]; n++) {
136 		node = get_node(t, l, n);
137 
138 		for (k = 0U; k < KEYS_PER_NODE; k++)
139 			node[k] = high(t, l + 1, get_child(n, k));
140 	}
141 
142 	return 0;
143 }
144 
145 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
146 {
147 	unsigned long size;
148 	void *addr;
149 
150 	/*
151 	 * Check that we're not going to overflow.
152 	 */
153 	if (nmemb > (ULONG_MAX / elem_size))
154 		return NULL;
155 
156 	size = nmemb * elem_size;
157 	addr = vmalloc(size);
158 	if (addr)
159 		memset(addr, 0, size);
160 
161 	return addr;
162 }
163 
164 /*
165  * highs, and targets are managed as dynamic arrays during a
166  * table load.
167  */
168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 	sector_t *n_highs;
171 	struct dm_target *n_targets;
172 	int n = t->num_targets;
173 
174 	/*
175 	 * Allocate both the target array and offset array at once.
176 	 * Append an empty entry to catch sectors beyond the end of
177 	 * the device.
178 	 */
179 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 					  sizeof(sector_t));
181 	if (!n_highs)
182 		return -ENOMEM;
183 
184 	n_targets = (struct dm_target *) (n_highs + num);
185 
186 	if (n) {
187 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 	}
190 
191 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 	vfree(t->highs);
193 
194 	t->num_allocated = num;
195 	t->highs = n_highs;
196 	t->targets = n_targets;
197 
198 	return 0;
199 }
200 
201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 		    unsigned num_targets, struct mapped_device *md)
203 {
204 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205 
206 	if (!t)
207 		return -ENOMEM;
208 
209 	INIT_LIST_HEAD(&t->devices);
210 	INIT_LIST_HEAD(&t->target_callbacks);
211 	atomic_set(&t->holders, 0);
212 	t->discards_supported = 1;
213 
214 	if (!num_targets)
215 		num_targets = KEYS_PER_NODE;
216 
217 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
218 
219 	if (alloc_targets(t, num_targets)) {
220 		kfree(t);
221 		t = NULL;
222 		return -ENOMEM;
223 	}
224 
225 	t->mode = mode;
226 	t->md = md;
227 	*result = t;
228 	return 0;
229 }
230 
231 static void free_devices(struct list_head *devices)
232 {
233 	struct list_head *tmp, *next;
234 
235 	list_for_each_safe(tmp, next, devices) {
236 		struct dm_dev_internal *dd =
237 		    list_entry(tmp, struct dm_dev_internal, list);
238 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
239 		       dd->dm_dev.name);
240 		kfree(dd);
241 	}
242 }
243 
244 void dm_table_destroy(struct dm_table *t)
245 {
246 	unsigned int i;
247 
248 	if (!t)
249 		return;
250 
251 	while (atomic_read(&t->holders))
252 		msleep(1);
253 	smp_mb();
254 
255 	/* free the indexes */
256 	if (t->depth >= 2)
257 		vfree(t->index[t->depth - 2]);
258 
259 	/* free the targets */
260 	for (i = 0; i < t->num_targets; i++) {
261 		struct dm_target *tgt = t->targets + i;
262 
263 		if (tgt->type->dtr)
264 			tgt->type->dtr(tgt);
265 
266 		dm_put_target_type(tgt->type);
267 	}
268 
269 	vfree(t->highs);
270 
271 	/* free the device list */
272 	if (t->devices.next != &t->devices)
273 		free_devices(&t->devices);
274 
275 	dm_free_md_mempools(t->mempools);
276 
277 	kfree(t);
278 }
279 
280 void dm_table_get(struct dm_table *t)
281 {
282 	atomic_inc(&t->holders);
283 }
284 
285 void dm_table_put(struct dm_table *t)
286 {
287 	if (!t)
288 		return;
289 
290 	smp_mb__before_atomic_dec();
291 	atomic_dec(&t->holders);
292 }
293 
294 /*
295  * Checks to see if we need to extend highs or targets.
296  */
297 static inline int check_space(struct dm_table *t)
298 {
299 	if (t->num_targets >= t->num_allocated)
300 		return alloc_targets(t, t->num_allocated * 2);
301 
302 	return 0;
303 }
304 
305 /*
306  * See if we've already got a device in the list.
307  */
308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309 {
310 	struct dm_dev_internal *dd;
311 
312 	list_for_each_entry (dd, l, list)
313 		if (dd->dm_dev.bdev->bd_dev == dev)
314 			return dd;
315 
316 	return NULL;
317 }
318 
319 /*
320  * Open a device so we can use it as a map destination.
321  */
322 static int open_dev(struct dm_dev_internal *d, dev_t dev,
323 		    struct mapped_device *md)
324 {
325 	static char *_claim_ptr = "I belong to device-mapper";
326 	struct block_device *bdev;
327 
328 	int r;
329 
330 	BUG_ON(d->dm_dev.bdev);
331 
332 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
333 	if (IS_ERR(bdev))
334 		return PTR_ERR(bdev);
335 
336 	r = bd_link_disk_holder(bdev, dm_disk(md));
337 	if (r) {
338 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
339 		return r;
340 	}
341 
342 	d->dm_dev.bdev = bdev;
343 	return 0;
344 }
345 
346 /*
347  * Close a device that we've been using.
348  */
349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350 {
351 	if (!d->dm_dev.bdev)
352 		return;
353 
354 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
355 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
356 	d->dm_dev.bdev = NULL;
357 }
358 
359 /*
360  * If possible, this checks an area of a destination device is invalid.
361  */
362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
363 				  sector_t start, sector_t len, void *data)
364 {
365 	struct request_queue *q;
366 	struct queue_limits *limits = data;
367 	struct block_device *bdev = dev->bdev;
368 	sector_t dev_size =
369 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
370 	unsigned short logical_block_size_sectors =
371 		limits->logical_block_size >> SECTOR_SHIFT;
372 	char b[BDEVNAME_SIZE];
373 
374 	/*
375 	 * Some devices exist without request functions,
376 	 * such as loop devices not yet bound to backing files.
377 	 * Forbid the use of such devices.
378 	 */
379 	q = bdev_get_queue(bdev);
380 	if (!q || !q->make_request_fn) {
381 		DMWARN("%s: %s is not yet initialised: "
382 		       "start=%llu, len=%llu, dev_size=%llu",
383 		       dm_device_name(ti->table->md), bdevname(bdev, b),
384 		       (unsigned long long)start,
385 		       (unsigned long long)len,
386 		       (unsigned long long)dev_size);
387 		return 1;
388 	}
389 
390 	if (!dev_size)
391 		return 0;
392 
393 	if ((start >= dev_size) || (start + len > dev_size)) {
394 		DMWARN("%s: %s too small for target: "
395 		       "start=%llu, len=%llu, dev_size=%llu",
396 		       dm_device_name(ti->table->md), bdevname(bdev, b),
397 		       (unsigned long long)start,
398 		       (unsigned long long)len,
399 		       (unsigned long long)dev_size);
400 		return 1;
401 	}
402 
403 	if (logical_block_size_sectors <= 1)
404 		return 0;
405 
406 	if (start & (logical_block_size_sectors - 1)) {
407 		DMWARN("%s: start=%llu not aligned to h/w "
408 		       "logical block size %u of %s",
409 		       dm_device_name(ti->table->md),
410 		       (unsigned long long)start,
411 		       limits->logical_block_size, bdevname(bdev, b));
412 		return 1;
413 	}
414 
415 	if (len & (logical_block_size_sectors - 1)) {
416 		DMWARN("%s: len=%llu not aligned to h/w "
417 		       "logical block size %u of %s",
418 		       dm_device_name(ti->table->md),
419 		       (unsigned long long)len,
420 		       limits->logical_block_size, bdevname(bdev, b));
421 		return 1;
422 	}
423 
424 	return 0;
425 }
426 
427 /*
428  * This upgrades the mode on an already open dm_dev, being
429  * careful to leave things as they were if we fail to reopen the
430  * device and not to touch the existing bdev field in case
431  * it is accessed concurrently inside dm_table_any_congested().
432  */
433 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
434 			struct mapped_device *md)
435 {
436 	int r;
437 	struct dm_dev_internal dd_new, dd_old;
438 
439 	dd_new = dd_old = *dd;
440 
441 	dd_new.dm_dev.mode |= new_mode;
442 	dd_new.dm_dev.bdev = NULL;
443 
444 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
445 	if (r)
446 		return r;
447 
448 	dd->dm_dev.mode |= new_mode;
449 	close_dev(&dd_old, md);
450 
451 	return 0;
452 }
453 
454 /*
455  * Add a device to the list, or just increment the usage count if
456  * it's already present.
457  */
458 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
459 		      const char *path, fmode_t mode, struct dm_dev **result)
460 {
461 	int r;
462 	dev_t uninitialized_var(dev);
463 	struct dm_dev_internal *dd;
464 	unsigned int major, minor;
465 
466 	BUG_ON(!t);
467 
468 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
469 		/* Extract the major/minor numbers */
470 		dev = MKDEV(major, minor);
471 		if (MAJOR(dev) != major || MINOR(dev) != minor)
472 			return -EOVERFLOW;
473 	} else {
474 		/* convert the path to a device */
475 		struct block_device *bdev = lookup_bdev(path);
476 
477 		if (IS_ERR(bdev))
478 			return PTR_ERR(bdev);
479 		dev = bdev->bd_dev;
480 		bdput(bdev);
481 	}
482 
483 	dd = find_device(&t->devices, dev);
484 	if (!dd) {
485 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
486 		if (!dd)
487 			return -ENOMEM;
488 
489 		dd->dm_dev.mode = mode;
490 		dd->dm_dev.bdev = NULL;
491 
492 		if ((r = open_dev(dd, dev, t->md))) {
493 			kfree(dd);
494 			return r;
495 		}
496 
497 		format_dev_t(dd->dm_dev.name, dev);
498 
499 		atomic_set(&dd->count, 0);
500 		list_add(&dd->list, &t->devices);
501 
502 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
503 		r = upgrade_mode(dd, mode, t->md);
504 		if (r)
505 			return r;
506 	}
507 	atomic_inc(&dd->count);
508 
509 	*result = &dd->dm_dev;
510 	return 0;
511 }
512 
513 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
514 			 sector_t start, sector_t len, void *data)
515 {
516 	struct queue_limits *limits = data;
517 	struct block_device *bdev = dev->bdev;
518 	struct request_queue *q = bdev_get_queue(bdev);
519 	char b[BDEVNAME_SIZE];
520 
521 	if (unlikely(!q)) {
522 		DMWARN("%s: Cannot set limits for nonexistent device %s",
523 		       dm_device_name(ti->table->md), bdevname(bdev, b));
524 		return 0;
525 	}
526 
527 	if (bdev_stack_limits(limits, bdev, start) < 0)
528 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
529 		       "physical_block_size=%u, logical_block_size=%u, "
530 		       "alignment_offset=%u, start=%llu",
531 		       dm_device_name(ti->table->md), bdevname(bdev, b),
532 		       q->limits.physical_block_size,
533 		       q->limits.logical_block_size,
534 		       q->limits.alignment_offset,
535 		       (unsigned long long) start << SECTOR_SHIFT);
536 
537 	/*
538 	 * Check if merge fn is supported.
539 	 * If not we'll force DM to use PAGE_SIZE or
540 	 * smaller I/O, just to be safe.
541 	 */
542 
543 	if (q->merge_bvec_fn && !ti->type->merge)
544 		blk_limits_max_hw_sectors(limits,
545 					  (unsigned int) (PAGE_SIZE >> 9));
546 	return 0;
547 }
548 EXPORT_SYMBOL_GPL(dm_set_device_limits);
549 
550 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
551 		  struct dm_dev **result)
552 {
553 	return __table_get_device(ti->table, ti, path, mode, result);
554 }
555 
556 
557 /*
558  * Decrement a devices use count and remove it if necessary.
559  */
560 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
561 {
562 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
563 						  dm_dev);
564 
565 	if (atomic_dec_and_test(&dd->count)) {
566 		close_dev(dd, ti->table->md);
567 		list_del(&dd->list);
568 		kfree(dd);
569 	}
570 }
571 
572 /*
573  * Checks to see if the target joins onto the end of the table.
574  */
575 static int adjoin(struct dm_table *table, struct dm_target *ti)
576 {
577 	struct dm_target *prev;
578 
579 	if (!table->num_targets)
580 		return !ti->begin;
581 
582 	prev = &table->targets[table->num_targets - 1];
583 	return (ti->begin == (prev->begin + prev->len));
584 }
585 
586 /*
587  * Used to dynamically allocate the arg array.
588  */
589 static char **realloc_argv(unsigned *array_size, char **old_argv)
590 {
591 	char **argv;
592 	unsigned new_size;
593 
594 	new_size = *array_size ? *array_size * 2 : 64;
595 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
596 	if (argv) {
597 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
598 		*array_size = new_size;
599 	}
600 
601 	kfree(old_argv);
602 	return argv;
603 }
604 
605 /*
606  * Destructively splits up the argument list to pass to ctr.
607  */
608 int dm_split_args(int *argc, char ***argvp, char *input)
609 {
610 	char *start, *end = input, *out, **argv = NULL;
611 	unsigned array_size = 0;
612 
613 	*argc = 0;
614 
615 	if (!input) {
616 		*argvp = NULL;
617 		return 0;
618 	}
619 
620 	argv = realloc_argv(&array_size, argv);
621 	if (!argv)
622 		return -ENOMEM;
623 
624 	while (1) {
625 		/* Skip whitespace */
626 		start = skip_spaces(end);
627 
628 		if (!*start)
629 			break;	/* success, we hit the end */
630 
631 		/* 'out' is used to remove any back-quotes */
632 		end = out = start;
633 		while (*end) {
634 			/* Everything apart from '\0' can be quoted */
635 			if (*end == '\\' && *(end + 1)) {
636 				*out++ = *(end + 1);
637 				end += 2;
638 				continue;
639 			}
640 
641 			if (isspace(*end))
642 				break;	/* end of token */
643 
644 			*out++ = *end++;
645 		}
646 
647 		/* have we already filled the array ? */
648 		if ((*argc + 1) > array_size) {
649 			argv = realloc_argv(&array_size, argv);
650 			if (!argv)
651 				return -ENOMEM;
652 		}
653 
654 		/* we know this is whitespace */
655 		if (*end)
656 			end++;
657 
658 		/* terminate the string and put it in the array */
659 		*out = '\0';
660 		argv[*argc] = start;
661 		(*argc)++;
662 	}
663 
664 	*argvp = argv;
665 	return 0;
666 }
667 
668 /*
669  * Impose necessary and sufficient conditions on a devices's table such
670  * that any incoming bio which respects its logical_block_size can be
671  * processed successfully.  If it falls across the boundary between
672  * two or more targets, the size of each piece it gets split into must
673  * be compatible with the logical_block_size of the target processing it.
674  */
675 static int validate_hardware_logical_block_alignment(struct dm_table *table,
676 						 struct queue_limits *limits)
677 {
678 	/*
679 	 * This function uses arithmetic modulo the logical_block_size
680 	 * (in units of 512-byte sectors).
681 	 */
682 	unsigned short device_logical_block_size_sects =
683 		limits->logical_block_size >> SECTOR_SHIFT;
684 
685 	/*
686 	 * Offset of the start of the next table entry, mod logical_block_size.
687 	 */
688 	unsigned short next_target_start = 0;
689 
690 	/*
691 	 * Given an aligned bio that extends beyond the end of a
692 	 * target, how many sectors must the next target handle?
693 	 */
694 	unsigned short remaining = 0;
695 
696 	struct dm_target *uninitialized_var(ti);
697 	struct queue_limits ti_limits;
698 	unsigned i = 0;
699 
700 	/*
701 	 * Check each entry in the table in turn.
702 	 */
703 	while (i < dm_table_get_num_targets(table)) {
704 		ti = dm_table_get_target(table, i++);
705 
706 		blk_set_default_limits(&ti_limits);
707 
708 		/* combine all target devices' limits */
709 		if (ti->type->iterate_devices)
710 			ti->type->iterate_devices(ti, dm_set_device_limits,
711 						  &ti_limits);
712 
713 		/*
714 		 * If the remaining sectors fall entirely within this
715 		 * table entry are they compatible with its logical_block_size?
716 		 */
717 		if (remaining < ti->len &&
718 		    remaining & ((ti_limits.logical_block_size >>
719 				  SECTOR_SHIFT) - 1))
720 			break;	/* Error */
721 
722 		next_target_start =
723 		    (unsigned short) ((next_target_start + ti->len) &
724 				      (device_logical_block_size_sects - 1));
725 		remaining = next_target_start ?
726 		    device_logical_block_size_sects - next_target_start : 0;
727 	}
728 
729 	if (remaining) {
730 		DMWARN("%s: table line %u (start sect %llu len %llu) "
731 		       "not aligned to h/w logical block size %u",
732 		       dm_device_name(table->md), i,
733 		       (unsigned long long) ti->begin,
734 		       (unsigned long long) ti->len,
735 		       limits->logical_block_size);
736 		return -EINVAL;
737 	}
738 
739 	return 0;
740 }
741 
742 int dm_table_add_target(struct dm_table *t, const char *type,
743 			sector_t start, sector_t len, char *params)
744 {
745 	int r = -EINVAL, argc;
746 	char **argv;
747 	struct dm_target *tgt;
748 
749 	if ((r = check_space(t)))
750 		return r;
751 
752 	tgt = t->targets + t->num_targets;
753 	memset(tgt, 0, sizeof(*tgt));
754 
755 	if (!len) {
756 		DMERR("%s: zero-length target", dm_device_name(t->md));
757 		return -EINVAL;
758 	}
759 
760 	tgt->type = dm_get_target_type(type);
761 	if (!tgt->type) {
762 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
763 		      type);
764 		return -EINVAL;
765 	}
766 
767 	tgt->table = t;
768 	tgt->begin = start;
769 	tgt->len = len;
770 	tgt->error = "Unknown error";
771 
772 	/*
773 	 * Does this target adjoin the previous one ?
774 	 */
775 	if (!adjoin(t, tgt)) {
776 		tgt->error = "Gap in table";
777 		r = -EINVAL;
778 		goto bad;
779 	}
780 
781 	r = dm_split_args(&argc, &argv, params);
782 	if (r) {
783 		tgt->error = "couldn't split parameters (insufficient memory)";
784 		goto bad;
785 	}
786 
787 	r = tgt->type->ctr(tgt, argc, argv);
788 	kfree(argv);
789 	if (r)
790 		goto bad;
791 
792 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793 
794 	if (!tgt->num_discard_requests)
795 		t->discards_supported = 0;
796 
797 	return 0;
798 
799  bad:
800 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
801 	dm_put_target_type(tgt->type);
802 	return r;
803 }
804 
805 static int dm_table_set_type(struct dm_table *t)
806 {
807 	unsigned i;
808 	unsigned bio_based = 0, request_based = 0;
809 	struct dm_target *tgt;
810 	struct dm_dev_internal *dd;
811 	struct list_head *devices;
812 
813 	for (i = 0; i < t->num_targets; i++) {
814 		tgt = t->targets + i;
815 		if (dm_target_request_based(tgt))
816 			request_based = 1;
817 		else
818 			bio_based = 1;
819 
820 		if (bio_based && request_based) {
821 			DMWARN("Inconsistent table: different target types"
822 			       " can't be mixed up");
823 			return -EINVAL;
824 		}
825 	}
826 
827 	if (bio_based) {
828 		/* We must use this table as bio-based */
829 		t->type = DM_TYPE_BIO_BASED;
830 		return 0;
831 	}
832 
833 	BUG_ON(!request_based); /* No targets in this table */
834 
835 	/* Non-request-stackable devices can't be used for request-based dm */
836 	devices = dm_table_get_devices(t);
837 	list_for_each_entry(dd, devices, list) {
838 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
839 			DMWARN("table load rejected: including"
840 			       " non-request-stackable devices");
841 			return -EINVAL;
842 		}
843 	}
844 
845 	/*
846 	 * Request-based dm supports only tables that have a single target now.
847 	 * To support multiple targets, request splitting support is needed,
848 	 * and that needs lots of changes in the block-layer.
849 	 * (e.g. request completion process for partial completion.)
850 	 */
851 	if (t->num_targets > 1) {
852 		DMWARN("Request-based dm doesn't support multiple targets yet");
853 		return -EINVAL;
854 	}
855 
856 	t->type = DM_TYPE_REQUEST_BASED;
857 
858 	return 0;
859 }
860 
861 unsigned dm_table_get_type(struct dm_table *t)
862 {
863 	return t->type;
864 }
865 
866 bool dm_table_request_based(struct dm_table *t)
867 {
868 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
869 }
870 
871 int dm_table_alloc_md_mempools(struct dm_table *t)
872 {
873 	unsigned type = dm_table_get_type(t);
874 
875 	if (unlikely(type == DM_TYPE_NONE)) {
876 		DMWARN("no table type is set, can't allocate mempools");
877 		return -EINVAL;
878 	}
879 
880 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
881 	if (!t->mempools)
882 		return -ENOMEM;
883 
884 	return 0;
885 }
886 
887 void dm_table_free_md_mempools(struct dm_table *t)
888 {
889 	dm_free_md_mempools(t->mempools);
890 	t->mempools = NULL;
891 }
892 
893 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
894 {
895 	return t->mempools;
896 }
897 
898 static int setup_indexes(struct dm_table *t)
899 {
900 	int i;
901 	unsigned int total = 0;
902 	sector_t *indexes;
903 
904 	/* allocate the space for *all* the indexes */
905 	for (i = t->depth - 2; i >= 0; i--) {
906 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
907 		total += t->counts[i];
908 	}
909 
910 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
911 	if (!indexes)
912 		return -ENOMEM;
913 
914 	/* set up internal nodes, bottom-up */
915 	for (i = t->depth - 2; i >= 0; i--) {
916 		t->index[i] = indexes;
917 		indexes += (KEYS_PER_NODE * t->counts[i]);
918 		setup_btree_index(i, t);
919 	}
920 
921 	return 0;
922 }
923 
924 /*
925  * Builds the btree to index the map.
926  */
927 static int dm_table_build_index(struct dm_table *t)
928 {
929 	int r = 0;
930 	unsigned int leaf_nodes;
931 
932 	/* how many indexes will the btree have ? */
933 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
934 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
935 
936 	/* leaf layer has already been set up */
937 	t->counts[t->depth - 1] = leaf_nodes;
938 	t->index[t->depth - 1] = t->highs;
939 
940 	if (t->depth >= 2)
941 		r = setup_indexes(t);
942 
943 	return r;
944 }
945 
946 /*
947  * Get a disk whose integrity profile reflects the table's profile.
948  * If %match_all is true, all devices' profiles must match.
949  * If %match_all is false, all devices must at least have an
950  * allocated integrity profile; but uninitialized is ok.
951  * Returns NULL if integrity support was inconsistent or unavailable.
952  */
953 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
954 						    bool match_all)
955 {
956 	struct list_head *devices = dm_table_get_devices(t);
957 	struct dm_dev_internal *dd = NULL;
958 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
959 
960 	list_for_each_entry(dd, devices, list) {
961 		template_disk = dd->dm_dev.bdev->bd_disk;
962 		if (!blk_get_integrity(template_disk))
963 			goto no_integrity;
964 		if (!match_all && !blk_integrity_is_initialized(template_disk))
965 			continue; /* skip uninitialized profiles */
966 		else if (prev_disk &&
967 			 blk_integrity_compare(prev_disk, template_disk) < 0)
968 			goto no_integrity;
969 		prev_disk = template_disk;
970 	}
971 
972 	return template_disk;
973 
974 no_integrity:
975 	if (prev_disk)
976 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
977 		       dm_device_name(t->md),
978 		       prev_disk->disk_name,
979 		       template_disk->disk_name);
980 	return NULL;
981 }
982 
983 /*
984  * Register the mapped device for blk_integrity support if
985  * the underlying devices have an integrity profile.  But all devices
986  * may not have matching profiles (checking all devices isn't reliable
987  * during table load because this table may use other DM device(s) which
988  * must be resumed before they will have an initialized integity profile).
989  * Stacked DM devices force a 2 stage integrity profile validation:
990  * 1 - during load, validate all initialized integrity profiles match
991  * 2 - during resume, validate all integrity profiles match
992  */
993 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
994 {
995 	struct gendisk *template_disk = NULL;
996 
997 	template_disk = dm_table_get_integrity_disk(t, false);
998 	if (!template_disk)
999 		return 0;
1000 
1001 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1002 		t->integrity_supported = 1;
1003 		return blk_integrity_register(dm_disk(md), NULL);
1004 	}
1005 
1006 	/*
1007 	 * If DM device already has an initalized integrity
1008 	 * profile the new profile should not conflict.
1009 	 */
1010 	if (blk_integrity_is_initialized(template_disk) &&
1011 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1012 		DMWARN("%s: conflict with existing integrity profile: "
1013 		       "%s profile mismatch",
1014 		       dm_device_name(t->md),
1015 		       template_disk->disk_name);
1016 		return 1;
1017 	}
1018 
1019 	/* Preserve existing initialized integrity profile */
1020 	t->integrity_supported = 1;
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Prepares the table for use by building the indices,
1026  * setting the type, and allocating mempools.
1027  */
1028 int dm_table_complete(struct dm_table *t)
1029 {
1030 	int r;
1031 
1032 	r = dm_table_set_type(t);
1033 	if (r) {
1034 		DMERR("unable to set table type");
1035 		return r;
1036 	}
1037 
1038 	r = dm_table_build_index(t);
1039 	if (r) {
1040 		DMERR("unable to build btrees");
1041 		return r;
1042 	}
1043 
1044 	r = dm_table_prealloc_integrity(t, t->md);
1045 	if (r) {
1046 		DMERR("could not register integrity profile.");
1047 		return r;
1048 	}
1049 
1050 	r = dm_table_alloc_md_mempools(t);
1051 	if (r)
1052 		DMERR("unable to allocate mempools");
1053 
1054 	return r;
1055 }
1056 
1057 static DEFINE_MUTEX(_event_lock);
1058 void dm_table_event_callback(struct dm_table *t,
1059 			     void (*fn)(void *), void *context)
1060 {
1061 	mutex_lock(&_event_lock);
1062 	t->event_fn = fn;
1063 	t->event_context = context;
1064 	mutex_unlock(&_event_lock);
1065 }
1066 
1067 void dm_table_event(struct dm_table *t)
1068 {
1069 	/*
1070 	 * You can no longer call dm_table_event() from interrupt
1071 	 * context, use a bottom half instead.
1072 	 */
1073 	BUG_ON(in_interrupt());
1074 
1075 	mutex_lock(&_event_lock);
1076 	if (t->event_fn)
1077 		t->event_fn(t->event_context);
1078 	mutex_unlock(&_event_lock);
1079 }
1080 
1081 sector_t dm_table_get_size(struct dm_table *t)
1082 {
1083 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1084 }
1085 
1086 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1087 {
1088 	if (index >= t->num_targets)
1089 		return NULL;
1090 
1091 	return t->targets + index;
1092 }
1093 
1094 /*
1095  * Search the btree for the correct target.
1096  *
1097  * Caller should check returned pointer with dm_target_is_valid()
1098  * to trap I/O beyond end of device.
1099  */
1100 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1101 {
1102 	unsigned int l, n = 0, k = 0;
1103 	sector_t *node;
1104 
1105 	for (l = 0; l < t->depth; l++) {
1106 		n = get_child(n, k);
1107 		node = get_node(t, l, n);
1108 
1109 		for (k = 0; k < KEYS_PER_NODE; k++)
1110 			if (node[k] >= sector)
1111 				break;
1112 	}
1113 
1114 	return &t->targets[(KEYS_PER_NODE * n) + k];
1115 }
1116 
1117 /*
1118  * Establish the new table's queue_limits and validate them.
1119  */
1120 int dm_calculate_queue_limits(struct dm_table *table,
1121 			      struct queue_limits *limits)
1122 {
1123 	struct dm_target *uninitialized_var(ti);
1124 	struct queue_limits ti_limits;
1125 	unsigned i = 0;
1126 
1127 	blk_set_default_limits(limits);
1128 
1129 	while (i < dm_table_get_num_targets(table)) {
1130 		blk_set_default_limits(&ti_limits);
1131 
1132 		ti = dm_table_get_target(table, i++);
1133 
1134 		if (!ti->type->iterate_devices)
1135 			goto combine_limits;
1136 
1137 		/*
1138 		 * Combine queue limits of all the devices this target uses.
1139 		 */
1140 		ti->type->iterate_devices(ti, dm_set_device_limits,
1141 					  &ti_limits);
1142 
1143 		/* Set I/O hints portion of queue limits */
1144 		if (ti->type->io_hints)
1145 			ti->type->io_hints(ti, &ti_limits);
1146 
1147 		/*
1148 		 * Check each device area is consistent with the target's
1149 		 * overall queue limits.
1150 		 */
1151 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1152 					      &ti_limits))
1153 			return -EINVAL;
1154 
1155 combine_limits:
1156 		/*
1157 		 * Merge this target's queue limits into the overall limits
1158 		 * for the table.
1159 		 */
1160 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1161 			DMWARN("%s: adding target device "
1162 			       "(start sect %llu len %llu) "
1163 			       "caused an alignment inconsistency",
1164 			       dm_device_name(table->md),
1165 			       (unsigned long long) ti->begin,
1166 			       (unsigned long long) ti->len);
1167 	}
1168 
1169 	return validate_hardware_logical_block_alignment(table, limits);
1170 }
1171 
1172 /*
1173  * Set the integrity profile for this device if all devices used have
1174  * matching profiles.  We're quite deep in the resume path but still
1175  * don't know if all devices (particularly DM devices this device
1176  * may be stacked on) have matching profiles.  Even if the profiles
1177  * don't match we have no way to fail (to resume) at this point.
1178  */
1179 static void dm_table_set_integrity(struct dm_table *t)
1180 {
1181 	struct gendisk *template_disk = NULL;
1182 
1183 	if (!blk_get_integrity(dm_disk(t->md)))
1184 		return;
1185 
1186 	template_disk = dm_table_get_integrity_disk(t, true);
1187 	if (!template_disk &&
1188 	    blk_integrity_is_initialized(dm_disk(t->md))) {
1189 		DMWARN("%s: device no longer has a valid integrity profile",
1190 		       dm_device_name(t->md));
1191 		return;
1192 	}
1193 	blk_integrity_register(dm_disk(t->md),
1194 			       blk_get_integrity(template_disk));
1195 }
1196 
1197 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1198 			       struct queue_limits *limits)
1199 {
1200 	/*
1201 	 * Copy table's limits to the DM device's request_queue
1202 	 */
1203 	q->limits = *limits;
1204 
1205 	if (!dm_table_supports_discards(t))
1206 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1207 	else
1208 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1209 
1210 	dm_table_set_integrity(t);
1211 
1212 	/*
1213 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1214 	 * visible to other CPUs because, once the flag is set, incoming bios
1215 	 * are processed by request-based dm, which refers to the queue
1216 	 * settings.
1217 	 * Until the flag set, bios are passed to bio-based dm and queued to
1218 	 * md->deferred where queue settings are not needed yet.
1219 	 * Those bios are passed to request-based dm at the resume time.
1220 	 */
1221 	smp_mb();
1222 	if (dm_table_request_based(t))
1223 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1224 }
1225 
1226 unsigned int dm_table_get_num_targets(struct dm_table *t)
1227 {
1228 	return t->num_targets;
1229 }
1230 
1231 struct list_head *dm_table_get_devices(struct dm_table *t)
1232 {
1233 	return &t->devices;
1234 }
1235 
1236 fmode_t dm_table_get_mode(struct dm_table *t)
1237 {
1238 	return t->mode;
1239 }
1240 
1241 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1242 {
1243 	int i = t->num_targets;
1244 	struct dm_target *ti = t->targets;
1245 
1246 	while (i--) {
1247 		if (postsuspend) {
1248 			if (ti->type->postsuspend)
1249 				ti->type->postsuspend(ti);
1250 		} else if (ti->type->presuspend)
1251 			ti->type->presuspend(ti);
1252 
1253 		ti++;
1254 	}
1255 }
1256 
1257 void dm_table_presuspend_targets(struct dm_table *t)
1258 {
1259 	if (!t)
1260 		return;
1261 
1262 	suspend_targets(t, 0);
1263 }
1264 
1265 void dm_table_postsuspend_targets(struct dm_table *t)
1266 {
1267 	if (!t)
1268 		return;
1269 
1270 	suspend_targets(t, 1);
1271 }
1272 
1273 int dm_table_resume_targets(struct dm_table *t)
1274 {
1275 	int i, r = 0;
1276 
1277 	for (i = 0; i < t->num_targets; i++) {
1278 		struct dm_target *ti = t->targets + i;
1279 
1280 		if (!ti->type->preresume)
1281 			continue;
1282 
1283 		r = ti->type->preresume(ti);
1284 		if (r)
1285 			return r;
1286 	}
1287 
1288 	for (i = 0; i < t->num_targets; i++) {
1289 		struct dm_target *ti = t->targets + i;
1290 
1291 		if (ti->type->resume)
1292 			ti->type->resume(ti);
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1299 {
1300 	list_add(&cb->list, &t->target_callbacks);
1301 }
1302 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1303 
1304 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1305 {
1306 	struct dm_dev_internal *dd;
1307 	struct list_head *devices = dm_table_get_devices(t);
1308 	struct dm_target_callbacks *cb;
1309 	int r = 0;
1310 
1311 	list_for_each_entry(dd, devices, list) {
1312 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1313 		char b[BDEVNAME_SIZE];
1314 
1315 		if (likely(q))
1316 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1317 		else
1318 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1319 				     dm_device_name(t->md),
1320 				     bdevname(dd->dm_dev.bdev, b));
1321 	}
1322 
1323 	list_for_each_entry(cb, &t->target_callbacks, list)
1324 		if (cb->congested_fn)
1325 			r |= cb->congested_fn(cb, bdi_bits);
1326 
1327 	return r;
1328 }
1329 
1330 int dm_table_any_busy_target(struct dm_table *t)
1331 {
1332 	unsigned i;
1333 	struct dm_target *ti;
1334 
1335 	for (i = 0; i < t->num_targets; i++) {
1336 		ti = t->targets + i;
1337 		if (ti->type->busy && ti->type->busy(ti))
1338 			return 1;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 struct mapped_device *dm_table_get_md(struct dm_table *t)
1345 {
1346 	return t->md;
1347 }
1348 
1349 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1350 				  sector_t start, sector_t len, void *data)
1351 {
1352 	struct request_queue *q = bdev_get_queue(dev->bdev);
1353 
1354 	return q && blk_queue_discard(q);
1355 }
1356 
1357 bool dm_table_supports_discards(struct dm_table *t)
1358 {
1359 	struct dm_target *ti;
1360 	unsigned i = 0;
1361 
1362 	if (!t->discards_supported)
1363 		return 0;
1364 
1365 	/*
1366 	 * Unless any target used by the table set discards_supported,
1367 	 * require at least one underlying device to support discards.
1368 	 * t->devices includes internal dm devices such as mirror logs
1369 	 * so we need to use iterate_devices here, which targets
1370 	 * supporting discard must provide.
1371 	 */
1372 	while (i < dm_table_get_num_targets(t)) {
1373 		ti = dm_table_get_target(t, i++);
1374 
1375 		if (ti->discards_supported)
1376 			return 1;
1377 
1378 		if (ti->type->iterate_devices &&
1379 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1380 			return 1;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 EXPORT_SYMBOL(dm_vcalloc);
1387 EXPORT_SYMBOL(dm_get_device);
1388 EXPORT_SYMBOL(dm_put_device);
1389 EXPORT_SYMBOL(dm_table_event);
1390 EXPORT_SYMBOL(dm_table_get_size);
1391 EXPORT_SYMBOL(dm_table_get_mode);
1392 EXPORT_SYMBOL(dm_table_get_md);
1393 EXPORT_SYMBOL(dm_table_put);
1394 EXPORT_SYMBOL(dm_table_get);
1395