1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <asm/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 unsigned discards_supported:1; 58 unsigned integrity_supported:1; 59 60 /* 61 * Indicates the rw permissions for the new logical 62 * device. This should be a combination of FMODE_READ 63 * and FMODE_WRITE. 64 */ 65 fmode_t mode; 66 67 /* a list of devices used by this table */ 68 struct list_head devices; 69 70 /* events get handed up using this callback */ 71 void (*event_fn)(void *); 72 void *event_context; 73 74 struct dm_md_mempools *mempools; 75 76 struct list_head target_callbacks; 77 }; 78 79 /* 80 * Similar to ceiling(log_size(n)) 81 */ 82 static unsigned int int_log(unsigned int n, unsigned int base) 83 { 84 int result = 0; 85 86 while (n > 1) { 87 n = dm_div_up(n, base); 88 result++; 89 } 90 91 return result; 92 } 93 94 /* 95 * Calculate the index of the child node of the n'th node k'th key. 96 */ 97 static inline unsigned int get_child(unsigned int n, unsigned int k) 98 { 99 return (n * CHILDREN_PER_NODE) + k; 100 } 101 102 /* 103 * Return the n'th node of level l from table t. 104 */ 105 static inline sector_t *get_node(struct dm_table *t, 106 unsigned int l, unsigned int n) 107 { 108 return t->index[l] + (n * KEYS_PER_NODE); 109 } 110 111 /* 112 * Return the highest key that you could lookup from the n'th 113 * node on level l of the btree. 114 */ 115 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 116 { 117 for (; l < t->depth - 1; l++) 118 n = get_child(n, CHILDREN_PER_NODE - 1); 119 120 if (n >= t->counts[l]) 121 return (sector_t) - 1; 122 123 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 124 } 125 126 /* 127 * Fills in a level of the btree based on the highs of the level 128 * below it. 129 */ 130 static int setup_btree_index(unsigned int l, struct dm_table *t) 131 { 132 unsigned int n, k; 133 sector_t *node; 134 135 for (n = 0U; n < t->counts[l]; n++) { 136 node = get_node(t, l, n); 137 138 for (k = 0U; k < KEYS_PER_NODE; k++) 139 node[k] = high(t, l + 1, get_child(n, k)); 140 } 141 142 return 0; 143 } 144 145 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 146 { 147 unsigned long size; 148 void *addr; 149 150 /* 151 * Check that we're not going to overflow. 152 */ 153 if (nmemb > (ULONG_MAX / elem_size)) 154 return NULL; 155 156 size = nmemb * elem_size; 157 addr = vmalloc(size); 158 if (addr) 159 memset(addr, 0, size); 160 161 return addr; 162 } 163 164 /* 165 * highs, and targets are managed as dynamic arrays during a 166 * table load. 167 */ 168 static int alloc_targets(struct dm_table *t, unsigned int num) 169 { 170 sector_t *n_highs; 171 struct dm_target *n_targets; 172 int n = t->num_targets; 173 174 /* 175 * Allocate both the target array and offset array at once. 176 * Append an empty entry to catch sectors beyond the end of 177 * the device. 178 */ 179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 180 sizeof(sector_t)); 181 if (!n_highs) 182 return -ENOMEM; 183 184 n_targets = (struct dm_target *) (n_highs + num); 185 186 if (n) { 187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 189 } 190 191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 192 vfree(t->highs); 193 194 t->num_allocated = num; 195 t->highs = n_highs; 196 t->targets = n_targets; 197 198 return 0; 199 } 200 201 int dm_table_create(struct dm_table **result, fmode_t mode, 202 unsigned num_targets, struct mapped_device *md) 203 { 204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 205 206 if (!t) 207 return -ENOMEM; 208 209 INIT_LIST_HEAD(&t->devices); 210 INIT_LIST_HEAD(&t->target_callbacks); 211 atomic_set(&t->holders, 0); 212 t->discards_supported = 1; 213 214 if (!num_targets) 215 num_targets = KEYS_PER_NODE; 216 217 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 218 219 if (alloc_targets(t, num_targets)) { 220 kfree(t); 221 t = NULL; 222 return -ENOMEM; 223 } 224 225 t->mode = mode; 226 t->md = md; 227 *result = t; 228 return 0; 229 } 230 231 static void free_devices(struct list_head *devices) 232 { 233 struct list_head *tmp, *next; 234 235 list_for_each_safe(tmp, next, devices) { 236 struct dm_dev_internal *dd = 237 list_entry(tmp, struct dm_dev_internal, list); 238 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 239 dd->dm_dev.name); 240 kfree(dd); 241 } 242 } 243 244 void dm_table_destroy(struct dm_table *t) 245 { 246 unsigned int i; 247 248 if (!t) 249 return; 250 251 while (atomic_read(&t->holders)) 252 msleep(1); 253 smp_mb(); 254 255 /* free the indexes */ 256 if (t->depth >= 2) 257 vfree(t->index[t->depth - 2]); 258 259 /* free the targets */ 260 for (i = 0; i < t->num_targets; i++) { 261 struct dm_target *tgt = t->targets + i; 262 263 if (tgt->type->dtr) 264 tgt->type->dtr(tgt); 265 266 dm_put_target_type(tgt->type); 267 } 268 269 vfree(t->highs); 270 271 /* free the device list */ 272 if (t->devices.next != &t->devices) 273 free_devices(&t->devices); 274 275 dm_free_md_mempools(t->mempools); 276 277 kfree(t); 278 } 279 280 void dm_table_get(struct dm_table *t) 281 { 282 atomic_inc(&t->holders); 283 } 284 285 void dm_table_put(struct dm_table *t) 286 { 287 if (!t) 288 return; 289 290 smp_mb__before_atomic_dec(); 291 atomic_dec(&t->holders); 292 } 293 294 /* 295 * Checks to see if we need to extend highs or targets. 296 */ 297 static inline int check_space(struct dm_table *t) 298 { 299 if (t->num_targets >= t->num_allocated) 300 return alloc_targets(t, t->num_allocated * 2); 301 302 return 0; 303 } 304 305 /* 306 * See if we've already got a device in the list. 307 */ 308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 309 { 310 struct dm_dev_internal *dd; 311 312 list_for_each_entry (dd, l, list) 313 if (dd->dm_dev.bdev->bd_dev == dev) 314 return dd; 315 316 return NULL; 317 } 318 319 /* 320 * Open a device so we can use it as a map destination. 321 */ 322 static int open_dev(struct dm_dev_internal *d, dev_t dev, 323 struct mapped_device *md) 324 { 325 static char *_claim_ptr = "I belong to device-mapper"; 326 struct block_device *bdev; 327 328 int r; 329 330 BUG_ON(d->dm_dev.bdev); 331 332 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 333 if (IS_ERR(bdev)) 334 return PTR_ERR(bdev); 335 336 r = bd_link_disk_holder(bdev, dm_disk(md)); 337 if (r) { 338 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 339 return r; 340 } 341 342 d->dm_dev.bdev = bdev; 343 return 0; 344 } 345 346 /* 347 * Close a device that we've been using. 348 */ 349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 350 { 351 if (!d->dm_dev.bdev) 352 return; 353 354 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 355 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 356 d->dm_dev.bdev = NULL; 357 } 358 359 /* 360 * If possible, this checks an area of a destination device is invalid. 361 */ 362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 363 sector_t start, sector_t len, void *data) 364 { 365 struct request_queue *q; 366 struct queue_limits *limits = data; 367 struct block_device *bdev = dev->bdev; 368 sector_t dev_size = 369 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 370 unsigned short logical_block_size_sectors = 371 limits->logical_block_size >> SECTOR_SHIFT; 372 char b[BDEVNAME_SIZE]; 373 374 /* 375 * Some devices exist without request functions, 376 * such as loop devices not yet bound to backing files. 377 * Forbid the use of such devices. 378 */ 379 q = bdev_get_queue(bdev); 380 if (!q || !q->make_request_fn) { 381 DMWARN("%s: %s is not yet initialised: " 382 "start=%llu, len=%llu, dev_size=%llu", 383 dm_device_name(ti->table->md), bdevname(bdev, b), 384 (unsigned long long)start, 385 (unsigned long long)len, 386 (unsigned long long)dev_size); 387 return 1; 388 } 389 390 if (!dev_size) 391 return 0; 392 393 if ((start >= dev_size) || (start + len > dev_size)) { 394 DMWARN("%s: %s too small for target: " 395 "start=%llu, len=%llu, dev_size=%llu", 396 dm_device_name(ti->table->md), bdevname(bdev, b), 397 (unsigned long long)start, 398 (unsigned long long)len, 399 (unsigned long long)dev_size); 400 return 1; 401 } 402 403 if (logical_block_size_sectors <= 1) 404 return 0; 405 406 if (start & (logical_block_size_sectors - 1)) { 407 DMWARN("%s: start=%llu not aligned to h/w " 408 "logical block size %u of %s", 409 dm_device_name(ti->table->md), 410 (unsigned long long)start, 411 limits->logical_block_size, bdevname(bdev, b)); 412 return 1; 413 } 414 415 if (len & (logical_block_size_sectors - 1)) { 416 DMWARN("%s: len=%llu not aligned to h/w " 417 "logical block size %u of %s", 418 dm_device_name(ti->table->md), 419 (unsigned long long)len, 420 limits->logical_block_size, bdevname(bdev, b)); 421 return 1; 422 } 423 424 return 0; 425 } 426 427 /* 428 * This upgrades the mode on an already open dm_dev, being 429 * careful to leave things as they were if we fail to reopen the 430 * device and not to touch the existing bdev field in case 431 * it is accessed concurrently inside dm_table_any_congested(). 432 */ 433 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 434 struct mapped_device *md) 435 { 436 int r; 437 struct dm_dev_internal dd_new, dd_old; 438 439 dd_new = dd_old = *dd; 440 441 dd_new.dm_dev.mode |= new_mode; 442 dd_new.dm_dev.bdev = NULL; 443 444 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 445 if (r) 446 return r; 447 448 dd->dm_dev.mode |= new_mode; 449 close_dev(&dd_old, md); 450 451 return 0; 452 } 453 454 /* 455 * Add a device to the list, or just increment the usage count if 456 * it's already present. 457 */ 458 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 459 const char *path, fmode_t mode, struct dm_dev **result) 460 { 461 int r; 462 dev_t uninitialized_var(dev); 463 struct dm_dev_internal *dd; 464 unsigned int major, minor; 465 466 BUG_ON(!t); 467 468 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 469 /* Extract the major/minor numbers */ 470 dev = MKDEV(major, minor); 471 if (MAJOR(dev) != major || MINOR(dev) != minor) 472 return -EOVERFLOW; 473 } else { 474 /* convert the path to a device */ 475 struct block_device *bdev = lookup_bdev(path); 476 477 if (IS_ERR(bdev)) 478 return PTR_ERR(bdev); 479 dev = bdev->bd_dev; 480 bdput(bdev); 481 } 482 483 dd = find_device(&t->devices, dev); 484 if (!dd) { 485 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 486 if (!dd) 487 return -ENOMEM; 488 489 dd->dm_dev.mode = mode; 490 dd->dm_dev.bdev = NULL; 491 492 if ((r = open_dev(dd, dev, t->md))) { 493 kfree(dd); 494 return r; 495 } 496 497 format_dev_t(dd->dm_dev.name, dev); 498 499 atomic_set(&dd->count, 0); 500 list_add(&dd->list, &t->devices); 501 502 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 503 r = upgrade_mode(dd, mode, t->md); 504 if (r) 505 return r; 506 } 507 atomic_inc(&dd->count); 508 509 *result = &dd->dm_dev; 510 return 0; 511 } 512 513 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 514 sector_t start, sector_t len, void *data) 515 { 516 struct queue_limits *limits = data; 517 struct block_device *bdev = dev->bdev; 518 struct request_queue *q = bdev_get_queue(bdev); 519 char b[BDEVNAME_SIZE]; 520 521 if (unlikely(!q)) { 522 DMWARN("%s: Cannot set limits for nonexistent device %s", 523 dm_device_name(ti->table->md), bdevname(bdev, b)); 524 return 0; 525 } 526 527 if (bdev_stack_limits(limits, bdev, start) < 0) 528 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 529 "physical_block_size=%u, logical_block_size=%u, " 530 "alignment_offset=%u, start=%llu", 531 dm_device_name(ti->table->md), bdevname(bdev, b), 532 q->limits.physical_block_size, 533 q->limits.logical_block_size, 534 q->limits.alignment_offset, 535 (unsigned long long) start << SECTOR_SHIFT); 536 537 /* 538 * Check if merge fn is supported. 539 * If not we'll force DM to use PAGE_SIZE or 540 * smaller I/O, just to be safe. 541 */ 542 543 if (q->merge_bvec_fn && !ti->type->merge) 544 blk_limits_max_hw_sectors(limits, 545 (unsigned int) (PAGE_SIZE >> 9)); 546 return 0; 547 } 548 EXPORT_SYMBOL_GPL(dm_set_device_limits); 549 550 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 551 struct dm_dev **result) 552 { 553 return __table_get_device(ti->table, ti, path, mode, result); 554 } 555 556 557 /* 558 * Decrement a devices use count and remove it if necessary. 559 */ 560 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 561 { 562 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 563 dm_dev); 564 565 if (atomic_dec_and_test(&dd->count)) { 566 close_dev(dd, ti->table->md); 567 list_del(&dd->list); 568 kfree(dd); 569 } 570 } 571 572 /* 573 * Checks to see if the target joins onto the end of the table. 574 */ 575 static int adjoin(struct dm_table *table, struct dm_target *ti) 576 { 577 struct dm_target *prev; 578 579 if (!table->num_targets) 580 return !ti->begin; 581 582 prev = &table->targets[table->num_targets - 1]; 583 return (ti->begin == (prev->begin + prev->len)); 584 } 585 586 /* 587 * Used to dynamically allocate the arg array. 588 */ 589 static char **realloc_argv(unsigned *array_size, char **old_argv) 590 { 591 char **argv; 592 unsigned new_size; 593 594 new_size = *array_size ? *array_size * 2 : 64; 595 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 596 if (argv) { 597 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 598 *array_size = new_size; 599 } 600 601 kfree(old_argv); 602 return argv; 603 } 604 605 /* 606 * Destructively splits up the argument list to pass to ctr. 607 */ 608 int dm_split_args(int *argc, char ***argvp, char *input) 609 { 610 char *start, *end = input, *out, **argv = NULL; 611 unsigned array_size = 0; 612 613 *argc = 0; 614 615 if (!input) { 616 *argvp = NULL; 617 return 0; 618 } 619 620 argv = realloc_argv(&array_size, argv); 621 if (!argv) 622 return -ENOMEM; 623 624 while (1) { 625 /* Skip whitespace */ 626 start = skip_spaces(end); 627 628 if (!*start) 629 break; /* success, we hit the end */ 630 631 /* 'out' is used to remove any back-quotes */ 632 end = out = start; 633 while (*end) { 634 /* Everything apart from '\0' can be quoted */ 635 if (*end == '\\' && *(end + 1)) { 636 *out++ = *(end + 1); 637 end += 2; 638 continue; 639 } 640 641 if (isspace(*end)) 642 break; /* end of token */ 643 644 *out++ = *end++; 645 } 646 647 /* have we already filled the array ? */ 648 if ((*argc + 1) > array_size) { 649 argv = realloc_argv(&array_size, argv); 650 if (!argv) 651 return -ENOMEM; 652 } 653 654 /* we know this is whitespace */ 655 if (*end) 656 end++; 657 658 /* terminate the string and put it in the array */ 659 *out = '\0'; 660 argv[*argc] = start; 661 (*argc)++; 662 } 663 664 *argvp = argv; 665 return 0; 666 } 667 668 /* 669 * Impose necessary and sufficient conditions on a devices's table such 670 * that any incoming bio which respects its logical_block_size can be 671 * processed successfully. If it falls across the boundary between 672 * two or more targets, the size of each piece it gets split into must 673 * be compatible with the logical_block_size of the target processing it. 674 */ 675 static int validate_hardware_logical_block_alignment(struct dm_table *table, 676 struct queue_limits *limits) 677 { 678 /* 679 * This function uses arithmetic modulo the logical_block_size 680 * (in units of 512-byte sectors). 681 */ 682 unsigned short device_logical_block_size_sects = 683 limits->logical_block_size >> SECTOR_SHIFT; 684 685 /* 686 * Offset of the start of the next table entry, mod logical_block_size. 687 */ 688 unsigned short next_target_start = 0; 689 690 /* 691 * Given an aligned bio that extends beyond the end of a 692 * target, how many sectors must the next target handle? 693 */ 694 unsigned short remaining = 0; 695 696 struct dm_target *uninitialized_var(ti); 697 struct queue_limits ti_limits; 698 unsigned i = 0; 699 700 /* 701 * Check each entry in the table in turn. 702 */ 703 while (i < dm_table_get_num_targets(table)) { 704 ti = dm_table_get_target(table, i++); 705 706 blk_set_default_limits(&ti_limits); 707 708 /* combine all target devices' limits */ 709 if (ti->type->iterate_devices) 710 ti->type->iterate_devices(ti, dm_set_device_limits, 711 &ti_limits); 712 713 /* 714 * If the remaining sectors fall entirely within this 715 * table entry are they compatible with its logical_block_size? 716 */ 717 if (remaining < ti->len && 718 remaining & ((ti_limits.logical_block_size >> 719 SECTOR_SHIFT) - 1)) 720 break; /* Error */ 721 722 next_target_start = 723 (unsigned short) ((next_target_start + ti->len) & 724 (device_logical_block_size_sects - 1)); 725 remaining = next_target_start ? 726 device_logical_block_size_sects - next_target_start : 0; 727 } 728 729 if (remaining) { 730 DMWARN("%s: table line %u (start sect %llu len %llu) " 731 "not aligned to h/w logical block size %u", 732 dm_device_name(table->md), i, 733 (unsigned long long) ti->begin, 734 (unsigned long long) ti->len, 735 limits->logical_block_size); 736 return -EINVAL; 737 } 738 739 return 0; 740 } 741 742 int dm_table_add_target(struct dm_table *t, const char *type, 743 sector_t start, sector_t len, char *params) 744 { 745 int r = -EINVAL, argc; 746 char **argv; 747 struct dm_target *tgt; 748 749 if ((r = check_space(t))) 750 return r; 751 752 tgt = t->targets + t->num_targets; 753 memset(tgt, 0, sizeof(*tgt)); 754 755 if (!len) { 756 DMERR("%s: zero-length target", dm_device_name(t->md)); 757 return -EINVAL; 758 } 759 760 tgt->type = dm_get_target_type(type); 761 if (!tgt->type) { 762 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 763 type); 764 return -EINVAL; 765 } 766 767 tgt->table = t; 768 tgt->begin = start; 769 tgt->len = len; 770 tgt->error = "Unknown error"; 771 772 /* 773 * Does this target adjoin the previous one ? 774 */ 775 if (!adjoin(t, tgt)) { 776 tgt->error = "Gap in table"; 777 r = -EINVAL; 778 goto bad; 779 } 780 781 r = dm_split_args(&argc, &argv, params); 782 if (r) { 783 tgt->error = "couldn't split parameters (insufficient memory)"; 784 goto bad; 785 } 786 787 r = tgt->type->ctr(tgt, argc, argv); 788 kfree(argv); 789 if (r) 790 goto bad; 791 792 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 793 794 if (!tgt->num_discard_requests) 795 t->discards_supported = 0; 796 797 return 0; 798 799 bad: 800 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 801 dm_put_target_type(tgt->type); 802 return r; 803 } 804 805 static int dm_table_set_type(struct dm_table *t) 806 { 807 unsigned i; 808 unsigned bio_based = 0, request_based = 0; 809 struct dm_target *tgt; 810 struct dm_dev_internal *dd; 811 struct list_head *devices; 812 813 for (i = 0; i < t->num_targets; i++) { 814 tgt = t->targets + i; 815 if (dm_target_request_based(tgt)) 816 request_based = 1; 817 else 818 bio_based = 1; 819 820 if (bio_based && request_based) { 821 DMWARN("Inconsistent table: different target types" 822 " can't be mixed up"); 823 return -EINVAL; 824 } 825 } 826 827 if (bio_based) { 828 /* We must use this table as bio-based */ 829 t->type = DM_TYPE_BIO_BASED; 830 return 0; 831 } 832 833 BUG_ON(!request_based); /* No targets in this table */ 834 835 /* Non-request-stackable devices can't be used for request-based dm */ 836 devices = dm_table_get_devices(t); 837 list_for_each_entry(dd, devices, list) { 838 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 839 DMWARN("table load rejected: including" 840 " non-request-stackable devices"); 841 return -EINVAL; 842 } 843 } 844 845 /* 846 * Request-based dm supports only tables that have a single target now. 847 * To support multiple targets, request splitting support is needed, 848 * and that needs lots of changes in the block-layer. 849 * (e.g. request completion process for partial completion.) 850 */ 851 if (t->num_targets > 1) { 852 DMWARN("Request-based dm doesn't support multiple targets yet"); 853 return -EINVAL; 854 } 855 856 t->type = DM_TYPE_REQUEST_BASED; 857 858 return 0; 859 } 860 861 unsigned dm_table_get_type(struct dm_table *t) 862 { 863 return t->type; 864 } 865 866 bool dm_table_request_based(struct dm_table *t) 867 { 868 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 869 } 870 871 int dm_table_alloc_md_mempools(struct dm_table *t) 872 { 873 unsigned type = dm_table_get_type(t); 874 875 if (unlikely(type == DM_TYPE_NONE)) { 876 DMWARN("no table type is set, can't allocate mempools"); 877 return -EINVAL; 878 } 879 880 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported); 881 if (!t->mempools) 882 return -ENOMEM; 883 884 return 0; 885 } 886 887 void dm_table_free_md_mempools(struct dm_table *t) 888 { 889 dm_free_md_mempools(t->mempools); 890 t->mempools = NULL; 891 } 892 893 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 894 { 895 return t->mempools; 896 } 897 898 static int setup_indexes(struct dm_table *t) 899 { 900 int i; 901 unsigned int total = 0; 902 sector_t *indexes; 903 904 /* allocate the space for *all* the indexes */ 905 for (i = t->depth - 2; i >= 0; i--) { 906 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 907 total += t->counts[i]; 908 } 909 910 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 911 if (!indexes) 912 return -ENOMEM; 913 914 /* set up internal nodes, bottom-up */ 915 for (i = t->depth - 2; i >= 0; i--) { 916 t->index[i] = indexes; 917 indexes += (KEYS_PER_NODE * t->counts[i]); 918 setup_btree_index(i, t); 919 } 920 921 return 0; 922 } 923 924 /* 925 * Builds the btree to index the map. 926 */ 927 static int dm_table_build_index(struct dm_table *t) 928 { 929 int r = 0; 930 unsigned int leaf_nodes; 931 932 /* how many indexes will the btree have ? */ 933 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 934 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 935 936 /* leaf layer has already been set up */ 937 t->counts[t->depth - 1] = leaf_nodes; 938 t->index[t->depth - 1] = t->highs; 939 940 if (t->depth >= 2) 941 r = setup_indexes(t); 942 943 return r; 944 } 945 946 /* 947 * Get a disk whose integrity profile reflects the table's profile. 948 * If %match_all is true, all devices' profiles must match. 949 * If %match_all is false, all devices must at least have an 950 * allocated integrity profile; but uninitialized is ok. 951 * Returns NULL if integrity support was inconsistent or unavailable. 952 */ 953 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 954 bool match_all) 955 { 956 struct list_head *devices = dm_table_get_devices(t); 957 struct dm_dev_internal *dd = NULL; 958 struct gendisk *prev_disk = NULL, *template_disk = NULL; 959 960 list_for_each_entry(dd, devices, list) { 961 template_disk = dd->dm_dev.bdev->bd_disk; 962 if (!blk_get_integrity(template_disk)) 963 goto no_integrity; 964 if (!match_all && !blk_integrity_is_initialized(template_disk)) 965 continue; /* skip uninitialized profiles */ 966 else if (prev_disk && 967 blk_integrity_compare(prev_disk, template_disk) < 0) 968 goto no_integrity; 969 prev_disk = template_disk; 970 } 971 972 return template_disk; 973 974 no_integrity: 975 if (prev_disk) 976 DMWARN("%s: integrity not set: %s and %s profile mismatch", 977 dm_device_name(t->md), 978 prev_disk->disk_name, 979 template_disk->disk_name); 980 return NULL; 981 } 982 983 /* 984 * Register the mapped device for blk_integrity support if 985 * the underlying devices have an integrity profile. But all devices 986 * may not have matching profiles (checking all devices isn't reliable 987 * during table load because this table may use other DM device(s) which 988 * must be resumed before they will have an initialized integity profile). 989 * Stacked DM devices force a 2 stage integrity profile validation: 990 * 1 - during load, validate all initialized integrity profiles match 991 * 2 - during resume, validate all integrity profiles match 992 */ 993 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 994 { 995 struct gendisk *template_disk = NULL; 996 997 template_disk = dm_table_get_integrity_disk(t, false); 998 if (!template_disk) 999 return 0; 1000 1001 if (!blk_integrity_is_initialized(dm_disk(md))) { 1002 t->integrity_supported = 1; 1003 return blk_integrity_register(dm_disk(md), NULL); 1004 } 1005 1006 /* 1007 * If DM device already has an initalized integrity 1008 * profile the new profile should not conflict. 1009 */ 1010 if (blk_integrity_is_initialized(template_disk) && 1011 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1012 DMWARN("%s: conflict with existing integrity profile: " 1013 "%s profile mismatch", 1014 dm_device_name(t->md), 1015 template_disk->disk_name); 1016 return 1; 1017 } 1018 1019 /* Preserve existing initialized integrity profile */ 1020 t->integrity_supported = 1; 1021 return 0; 1022 } 1023 1024 /* 1025 * Prepares the table for use by building the indices, 1026 * setting the type, and allocating mempools. 1027 */ 1028 int dm_table_complete(struct dm_table *t) 1029 { 1030 int r; 1031 1032 r = dm_table_set_type(t); 1033 if (r) { 1034 DMERR("unable to set table type"); 1035 return r; 1036 } 1037 1038 r = dm_table_build_index(t); 1039 if (r) { 1040 DMERR("unable to build btrees"); 1041 return r; 1042 } 1043 1044 r = dm_table_prealloc_integrity(t, t->md); 1045 if (r) { 1046 DMERR("could not register integrity profile."); 1047 return r; 1048 } 1049 1050 r = dm_table_alloc_md_mempools(t); 1051 if (r) 1052 DMERR("unable to allocate mempools"); 1053 1054 return r; 1055 } 1056 1057 static DEFINE_MUTEX(_event_lock); 1058 void dm_table_event_callback(struct dm_table *t, 1059 void (*fn)(void *), void *context) 1060 { 1061 mutex_lock(&_event_lock); 1062 t->event_fn = fn; 1063 t->event_context = context; 1064 mutex_unlock(&_event_lock); 1065 } 1066 1067 void dm_table_event(struct dm_table *t) 1068 { 1069 /* 1070 * You can no longer call dm_table_event() from interrupt 1071 * context, use a bottom half instead. 1072 */ 1073 BUG_ON(in_interrupt()); 1074 1075 mutex_lock(&_event_lock); 1076 if (t->event_fn) 1077 t->event_fn(t->event_context); 1078 mutex_unlock(&_event_lock); 1079 } 1080 1081 sector_t dm_table_get_size(struct dm_table *t) 1082 { 1083 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1084 } 1085 1086 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1087 { 1088 if (index >= t->num_targets) 1089 return NULL; 1090 1091 return t->targets + index; 1092 } 1093 1094 /* 1095 * Search the btree for the correct target. 1096 * 1097 * Caller should check returned pointer with dm_target_is_valid() 1098 * to trap I/O beyond end of device. 1099 */ 1100 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1101 { 1102 unsigned int l, n = 0, k = 0; 1103 sector_t *node; 1104 1105 for (l = 0; l < t->depth; l++) { 1106 n = get_child(n, k); 1107 node = get_node(t, l, n); 1108 1109 for (k = 0; k < KEYS_PER_NODE; k++) 1110 if (node[k] >= sector) 1111 break; 1112 } 1113 1114 return &t->targets[(KEYS_PER_NODE * n) + k]; 1115 } 1116 1117 /* 1118 * Establish the new table's queue_limits and validate them. 1119 */ 1120 int dm_calculate_queue_limits(struct dm_table *table, 1121 struct queue_limits *limits) 1122 { 1123 struct dm_target *uninitialized_var(ti); 1124 struct queue_limits ti_limits; 1125 unsigned i = 0; 1126 1127 blk_set_default_limits(limits); 1128 1129 while (i < dm_table_get_num_targets(table)) { 1130 blk_set_default_limits(&ti_limits); 1131 1132 ti = dm_table_get_target(table, i++); 1133 1134 if (!ti->type->iterate_devices) 1135 goto combine_limits; 1136 1137 /* 1138 * Combine queue limits of all the devices this target uses. 1139 */ 1140 ti->type->iterate_devices(ti, dm_set_device_limits, 1141 &ti_limits); 1142 1143 /* Set I/O hints portion of queue limits */ 1144 if (ti->type->io_hints) 1145 ti->type->io_hints(ti, &ti_limits); 1146 1147 /* 1148 * Check each device area is consistent with the target's 1149 * overall queue limits. 1150 */ 1151 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1152 &ti_limits)) 1153 return -EINVAL; 1154 1155 combine_limits: 1156 /* 1157 * Merge this target's queue limits into the overall limits 1158 * for the table. 1159 */ 1160 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1161 DMWARN("%s: adding target device " 1162 "(start sect %llu len %llu) " 1163 "caused an alignment inconsistency", 1164 dm_device_name(table->md), 1165 (unsigned long long) ti->begin, 1166 (unsigned long long) ti->len); 1167 } 1168 1169 return validate_hardware_logical_block_alignment(table, limits); 1170 } 1171 1172 /* 1173 * Set the integrity profile for this device if all devices used have 1174 * matching profiles. We're quite deep in the resume path but still 1175 * don't know if all devices (particularly DM devices this device 1176 * may be stacked on) have matching profiles. Even if the profiles 1177 * don't match we have no way to fail (to resume) at this point. 1178 */ 1179 static void dm_table_set_integrity(struct dm_table *t) 1180 { 1181 struct gendisk *template_disk = NULL; 1182 1183 if (!blk_get_integrity(dm_disk(t->md))) 1184 return; 1185 1186 template_disk = dm_table_get_integrity_disk(t, true); 1187 if (!template_disk && 1188 blk_integrity_is_initialized(dm_disk(t->md))) { 1189 DMWARN("%s: device no longer has a valid integrity profile", 1190 dm_device_name(t->md)); 1191 return; 1192 } 1193 blk_integrity_register(dm_disk(t->md), 1194 blk_get_integrity(template_disk)); 1195 } 1196 1197 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1198 struct queue_limits *limits) 1199 { 1200 /* 1201 * Copy table's limits to the DM device's request_queue 1202 */ 1203 q->limits = *limits; 1204 1205 if (!dm_table_supports_discards(t)) 1206 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1207 else 1208 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1209 1210 dm_table_set_integrity(t); 1211 1212 /* 1213 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1214 * visible to other CPUs because, once the flag is set, incoming bios 1215 * are processed by request-based dm, which refers to the queue 1216 * settings. 1217 * Until the flag set, bios are passed to bio-based dm and queued to 1218 * md->deferred where queue settings are not needed yet. 1219 * Those bios are passed to request-based dm at the resume time. 1220 */ 1221 smp_mb(); 1222 if (dm_table_request_based(t)) 1223 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1224 } 1225 1226 unsigned int dm_table_get_num_targets(struct dm_table *t) 1227 { 1228 return t->num_targets; 1229 } 1230 1231 struct list_head *dm_table_get_devices(struct dm_table *t) 1232 { 1233 return &t->devices; 1234 } 1235 1236 fmode_t dm_table_get_mode(struct dm_table *t) 1237 { 1238 return t->mode; 1239 } 1240 1241 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1242 { 1243 int i = t->num_targets; 1244 struct dm_target *ti = t->targets; 1245 1246 while (i--) { 1247 if (postsuspend) { 1248 if (ti->type->postsuspend) 1249 ti->type->postsuspend(ti); 1250 } else if (ti->type->presuspend) 1251 ti->type->presuspend(ti); 1252 1253 ti++; 1254 } 1255 } 1256 1257 void dm_table_presuspend_targets(struct dm_table *t) 1258 { 1259 if (!t) 1260 return; 1261 1262 suspend_targets(t, 0); 1263 } 1264 1265 void dm_table_postsuspend_targets(struct dm_table *t) 1266 { 1267 if (!t) 1268 return; 1269 1270 suspend_targets(t, 1); 1271 } 1272 1273 int dm_table_resume_targets(struct dm_table *t) 1274 { 1275 int i, r = 0; 1276 1277 for (i = 0; i < t->num_targets; i++) { 1278 struct dm_target *ti = t->targets + i; 1279 1280 if (!ti->type->preresume) 1281 continue; 1282 1283 r = ti->type->preresume(ti); 1284 if (r) 1285 return r; 1286 } 1287 1288 for (i = 0; i < t->num_targets; i++) { 1289 struct dm_target *ti = t->targets + i; 1290 1291 if (ti->type->resume) 1292 ti->type->resume(ti); 1293 } 1294 1295 return 0; 1296 } 1297 1298 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1299 { 1300 list_add(&cb->list, &t->target_callbacks); 1301 } 1302 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1303 1304 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1305 { 1306 struct dm_dev_internal *dd; 1307 struct list_head *devices = dm_table_get_devices(t); 1308 struct dm_target_callbacks *cb; 1309 int r = 0; 1310 1311 list_for_each_entry(dd, devices, list) { 1312 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1313 char b[BDEVNAME_SIZE]; 1314 1315 if (likely(q)) 1316 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1317 else 1318 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1319 dm_device_name(t->md), 1320 bdevname(dd->dm_dev.bdev, b)); 1321 } 1322 1323 list_for_each_entry(cb, &t->target_callbacks, list) 1324 if (cb->congested_fn) 1325 r |= cb->congested_fn(cb, bdi_bits); 1326 1327 return r; 1328 } 1329 1330 int dm_table_any_busy_target(struct dm_table *t) 1331 { 1332 unsigned i; 1333 struct dm_target *ti; 1334 1335 for (i = 0; i < t->num_targets; i++) { 1336 ti = t->targets + i; 1337 if (ti->type->busy && ti->type->busy(ti)) 1338 return 1; 1339 } 1340 1341 return 0; 1342 } 1343 1344 struct mapped_device *dm_table_get_md(struct dm_table *t) 1345 { 1346 return t->md; 1347 } 1348 1349 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1350 sector_t start, sector_t len, void *data) 1351 { 1352 struct request_queue *q = bdev_get_queue(dev->bdev); 1353 1354 return q && blk_queue_discard(q); 1355 } 1356 1357 bool dm_table_supports_discards(struct dm_table *t) 1358 { 1359 struct dm_target *ti; 1360 unsigned i = 0; 1361 1362 if (!t->discards_supported) 1363 return 0; 1364 1365 /* 1366 * Unless any target used by the table set discards_supported, 1367 * require at least one underlying device to support discards. 1368 * t->devices includes internal dm devices such as mirror logs 1369 * so we need to use iterate_devices here, which targets 1370 * supporting discard must provide. 1371 */ 1372 while (i < dm_table_get_num_targets(t)) { 1373 ti = dm_table_get_target(t, i++); 1374 1375 if (ti->discards_supported) 1376 return 1; 1377 1378 if (ti->type->iterate_devices && 1379 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1380 return 1; 1381 } 1382 1383 return 0; 1384 } 1385 1386 EXPORT_SYMBOL(dm_vcalloc); 1387 EXPORT_SYMBOL(dm_get_device); 1388 EXPORT_SYMBOL(dm_put_device); 1389 EXPORT_SYMBOL(dm_table_event); 1390 EXPORT_SYMBOL(dm_table_get_size); 1391 EXPORT_SYMBOL(dm_table_get_mode); 1392 EXPORT_SYMBOL(dm_table_get_md); 1393 EXPORT_SYMBOL(dm_table_put); 1394 EXPORT_SYMBOL(dm_table_get); 1395