xref: /openbmc/linux/drivers/md/dm-table.c (revision 1dd24dae)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	struct target_type *immutable_target_type;
58 	unsigned integrity_supported:1;
59 	unsigned singleton:1;
60 
61 	/*
62 	 * Indicates the rw permissions for the new logical
63 	 * device.  This should be a combination of FMODE_READ
64 	 * and FMODE_WRITE.
65 	 */
66 	fmode_t mode;
67 
68 	/* a list of devices used by this table */
69 	struct list_head devices;
70 
71 	/* events get handed up using this callback */
72 	void (*event_fn)(void *);
73 	void *event_context;
74 
75 	struct dm_md_mempools *mempools;
76 
77 	struct list_head target_callbacks;
78 };
79 
80 /*
81  * Similar to ceiling(log_size(n))
82  */
83 static unsigned int int_log(unsigned int n, unsigned int base)
84 {
85 	int result = 0;
86 
87 	while (n > 1) {
88 		n = dm_div_up(n, base);
89 		result++;
90 	}
91 
92 	return result;
93 }
94 
95 /*
96  * Calculate the index of the child node of the n'th node k'th key.
97  */
98 static inline unsigned int get_child(unsigned int n, unsigned int k)
99 {
100 	return (n * CHILDREN_PER_NODE) + k;
101 }
102 
103 /*
104  * Return the n'th node of level l from table t.
105  */
106 static inline sector_t *get_node(struct dm_table *t,
107 				 unsigned int l, unsigned int n)
108 {
109 	return t->index[l] + (n * KEYS_PER_NODE);
110 }
111 
112 /*
113  * Return the highest key that you could lookup from the n'th
114  * node on level l of the btree.
115  */
116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117 {
118 	for (; l < t->depth - 1; l++)
119 		n = get_child(n, CHILDREN_PER_NODE - 1);
120 
121 	if (n >= t->counts[l])
122 		return (sector_t) - 1;
123 
124 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
125 }
126 
127 /*
128  * Fills in a level of the btree based on the highs of the level
129  * below it.
130  */
131 static int setup_btree_index(unsigned int l, struct dm_table *t)
132 {
133 	unsigned int n, k;
134 	sector_t *node;
135 
136 	for (n = 0U; n < t->counts[l]; n++) {
137 		node = get_node(t, l, n);
138 
139 		for (k = 0U; k < KEYS_PER_NODE; k++)
140 			node[k] = high(t, l + 1, get_child(n, k));
141 	}
142 
143 	return 0;
144 }
145 
146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147 {
148 	unsigned long size;
149 	void *addr;
150 
151 	/*
152 	 * Check that we're not going to overflow.
153 	 */
154 	if (nmemb > (ULONG_MAX / elem_size))
155 		return NULL;
156 
157 	size = nmemb * elem_size;
158 	addr = vzalloc(size);
159 
160 	return addr;
161 }
162 EXPORT_SYMBOL(dm_vcalloc);
163 
164 /*
165  * highs, and targets are managed as dynamic arrays during a
166  * table load.
167  */
168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 	sector_t *n_highs;
171 	struct dm_target *n_targets;
172 	int n = t->num_targets;
173 
174 	/*
175 	 * Allocate both the target array and offset array at once.
176 	 * Append an empty entry to catch sectors beyond the end of
177 	 * the device.
178 	 */
179 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 					  sizeof(sector_t));
181 	if (!n_highs)
182 		return -ENOMEM;
183 
184 	n_targets = (struct dm_target *) (n_highs + num);
185 
186 	if (n) {
187 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 	}
190 
191 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 	vfree(t->highs);
193 
194 	t->num_allocated = num;
195 	t->highs = n_highs;
196 	t->targets = n_targets;
197 
198 	return 0;
199 }
200 
201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 		    unsigned num_targets, struct mapped_device *md)
203 {
204 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205 
206 	if (!t)
207 		return -ENOMEM;
208 
209 	INIT_LIST_HEAD(&t->devices);
210 	INIT_LIST_HEAD(&t->target_callbacks);
211 	atomic_set(&t->holders, 0);
212 
213 	if (!num_targets)
214 		num_targets = KEYS_PER_NODE;
215 
216 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217 
218 	if (alloc_targets(t, num_targets)) {
219 		kfree(t);
220 		return -ENOMEM;
221 	}
222 
223 	t->mode = mode;
224 	t->md = md;
225 	*result = t;
226 	return 0;
227 }
228 
229 static void free_devices(struct list_head *devices)
230 {
231 	struct list_head *tmp, *next;
232 
233 	list_for_each_safe(tmp, next, devices) {
234 		struct dm_dev_internal *dd =
235 		    list_entry(tmp, struct dm_dev_internal, list);
236 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
237 		       dd->dm_dev.name);
238 		kfree(dd);
239 	}
240 }
241 
242 void dm_table_destroy(struct dm_table *t)
243 {
244 	unsigned int i;
245 
246 	if (!t)
247 		return;
248 
249 	while (atomic_read(&t->holders))
250 		msleep(1);
251 	smp_mb();
252 
253 	/* free the indexes */
254 	if (t->depth >= 2)
255 		vfree(t->index[t->depth - 2]);
256 
257 	/* free the targets */
258 	for (i = 0; i < t->num_targets; i++) {
259 		struct dm_target *tgt = t->targets + i;
260 
261 		if (tgt->type->dtr)
262 			tgt->type->dtr(tgt);
263 
264 		dm_put_target_type(tgt->type);
265 	}
266 
267 	vfree(t->highs);
268 
269 	/* free the device list */
270 	free_devices(&t->devices);
271 
272 	dm_free_md_mempools(t->mempools);
273 
274 	kfree(t);
275 }
276 
277 void dm_table_get(struct dm_table *t)
278 {
279 	atomic_inc(&t->holders);
280 }
281 EXPORT_SYMBOL(dm_table_get);
282 
283 void dm_table_put(struct dm_table *t)
284 {
285 	if (!t)
286 		return;
287 
288 	smp_mb__before_atomic_dec();
289 	atomic_dec(&t->holders);
290 }
291 EXPORT_SYMBOL(dm_table_put);
292 
293 /*
294  * Checks to see if we need to extend highs or targets.
295  */
296 static inline int check_space(struct dm_table *t)
297 {
298 	if (t->num_targets >= t->num_allocated)
299 		return alloc_targets(t, t->num_allocated * 2);
300 
301 	return 0;
302 }
303 
304 /*
305  * See if we've already got a device in the list.
306  */
307 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
308 {
309 	struct dm_dev_internal *dd;
310 
311 	list_for_each_entry (dd, l, list)
312 		if (dd->dm_dev.bdev->bd_dev == dev)
313 			return dd;
314 
315 	return NULL;
316 }
317 
318 /*
319  * Open a device so we can use it as a map destination.
320  */
321 static int open_dev(struct dm_dev_internal *d, dev_t dev,
322 		    struct mapped_device *md)
323 {
324 	static char *_claim_ptr = "I belong to device-mapper";
325 	struct block_device *bdev;
326 
327 	int r;
328 
329 	BUG_ON(d->dm_dev.bdev);
330 
331 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
332 	if (IS_ERR(bdev))
333 		return PTR_ERR(bdev);
334 
335 	r = bd_link_disk_holder(bdev, dm_disk(md));
336 	if (r) {
337 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
338 		return r;
339 	}
340 
341 	d->dm_dev.bdev = bdev;
342 	return 0;
343 }
344 
345 /*
346  * Close a device that we've been using.
347  */
348 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
349 {
350 	if (!d->dm_dev.bdev)
351 		return;
352 
353 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
354 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
355 	d->dm_dev.bdev = NULL;
356 }
357 
358 /*
359  * If possible, this checks an area of a destination device is invalid.
360  */
361 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
362 				  sector_t start, sector_t len, void *data)
363 {
364 	struct request_queue *q;
365 	struct queue_limits *limits = data;
366 	struct block_device *bdev = dev->bdev;
367 	sector_t dev_size =
368 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
369 	unsigned short logical_block_size_sectors =
370 		limits->logical_block_size >> SECTOR_SHIFT;
371 	char b[BDEVNAME_SIZE];
372 
373 	/*
374 	 * Some devices exist without request functions,
375 	 * such as loop devices not yet bound to backing files.
376 	 * Forbid the use of such devices.
377 	 */
378 	q = bdev_get_queue(bdev);
379 	if (!q || !q->make_request_fn) {
380 		DMWARN("%s: %s is not yet initialised: "
381 		       "start=%llu, len=%llu, dev_size=%llu",
382 		       dm_device_name(ti->table->md), bdevname(bdev, b),
383 		       (unsigned long long)start,
384 		       (unsigned long long)len,
385 		       (unsigned long long)dev_size);
386 		return 1;
387 	}
388 
389 	if (!dev_size)
390 		return 0;
391 
392 	if ((start >= dev_size) || (start + len > dev_size)) {
393 		DMWARN("%s: %s too small for target: "
394 		       "start=%llu, len=%llu, dev_size=%llu",
395 		       dm_device_name(ti->table->md), bdevname(bdev, b),
396 		       (unsigned long long)start,
397 		       (unsigned long long)len,
398 		       (unsigned long long)dev_size);
399 		return 1;
400 	}
401 
402 	if (logical_block_size_sectors <= 1)
403 		return 0;
404 
405 	if (start & (logical_block_size_sectors - 1)) {
406 		DMWARN("%s: start=%llu not aligned to h/w "
407 		       "logical block size %u of %s",
408 		       dm_device_name(ti->table->md),
409 		       (unsigned long long)start,
410 		       limits->logical_block_size, bdevname(bdev, b));
411 		return 1;
412 	}
413 
414 	if (len & (logical_block_size_sectors - 1)) {
415 		DMWARN("%s: len=%llu not aligned to h/w "
416 		       "logical block size %u of %s",
417 		       dm_device_name(ti->table->md),
418 		       (unsigned long long)len,
419 		       limits->logical_block_size, bdevname(bdev, b));
420 		return 1;
421 	}
422 
423 	return 0;
424 }
425 
426 /*
427  * This upgrades the mode on an already open dm_dev, being
428  * careful to leave things as they were if we fail to reopen the
429  * device and not to touch the existing bdev field in case
430  * it is accessed concurrently inside dm_table_any_congested().
431  */
432 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
433 			struct mapped_device *md)
434 {
435 	int r;
436 	struct dm_dev_internal dd_new, dd_old;
437 
438 	dd_new = dd_old = *dd;
439 
440 	dd_new.dm_dev.mode |= new_mode;
441 	dd_new.dm_dev.bdev = NULL;
442 
443 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
444 	if (r)
445 		return r;
446 
447 	dd->dm_dev.mode |= new_mode;
448 	close_dev(&dd_old, md);
449 
450 	return 0;
451 }
452 
453 /*
454  * Add a device to the list, or just increment the usage count if
455  * it's already present.
456  */
457 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
458 		  struct dm_dev **result)
459 {
460 	int r;
461 	dev_t uninitialized_var(dev);
462 	struct dm_dev_internal *dd;
463 	unsigned int major, minor;
464 	struct dm_table *t = ti->table;
465 	char dummy;
466 
467 	BUG_ON(!t);
468 
469 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
470 		/* Extract the major/minor numbers */
471 		dev = MKDEV(major, minor);
472 		if (MAJOR(dev) != major || MINOR(dev) != minor)
473 			return -EOVERFLOW;
474 	} else {
475 		/* convert the path to a device */
476 		struct block_device *bdev = lookup_bdev(path);
477 
478 		if (IS_ERR(bdev))
479 			return PTR_ERR(bdev);
480 		dev = bdev->bd_dev;
481 		bdput(bdev);
482 	}
483 
484 	dd = find_device(&t->devices, dev);
485 	if (!dd) {
486 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
487 		if (!dd)
488 			return -ENOMEM;
489 
490 		dd->dm_dev.mode = mode;
491 		dd->dm_dev.bdev = NULL;
492 
493 		if ((r = open_dev(dd, dev, t->md))) {
494 			kfree(dd);
495 			return r;
496 		}
497 
498 		format_dev_t(dd->dm_dev.name, dev);
499 
500 		atomic_set(&dd->count, 0);
501 		list_add(&dd->list, &t->devices);
502 
503 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
504 		r = upgrade_mode(dd, mode, t->md);
505 		if (r)
506 			return r;
507 	}
508 	atomic_inc(&dd->count);
509 
510 	*result = &dd->dm_dev;
511 	return 0;
512 }
513 EXPORT_SYMBOL(dm_get_device);
514 
515 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
516 			 sector_t start, sector_t len, void *data)
517 {
518 	struct queue_limits *limits = data;
519 	struct block_device *bdev = dev->bdev;
520 	struct request_queue *q = bdev_get_queue(bdev);
521 	char b[BDEVNAME_SIZE];
522 
523 	if (unlikely(!q)) {
524 		DMWARN("%s: Cannot set limits for nonexistent device %s",
525 		       dm_device_name(ti->table->md), bdevname(bdev, b));
526 		return 0;
527 	}
528 
529 	if (bdev_stack_limits(limits, bdev, start) < 0)
530 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
531 		       "physical_block_size=%u, logical_block_size=%u, "
532 		       "alignment_offset=%u, start=%llu",
533 		       dm_device_name(ti->table->md), bdevname(bdev, b),
534 		       q->limits.physical_block_size,
535 		       q->limits.logical_block_size,
536 		       q->limits.alignment_offset,
537 		       (unsigned long long) start << SECTOR_SHIFT);
538 
539 	/*
540 	 * Check if merge fn is supported.
541 	 * If not we'll force DM to use PAGE_SIZE or
542 	 * smaller I/O, just to be safe.
543 	 */
544 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
545 		blk_limits_max_hw_sectors(limits,
546 					  (unsigned int) (PAGE_SIZE >> 9));
547 	return 0;
548 }
549 EXPORT_SYMBOL_GPL(dm_set_device_limits);
550 
551 /*
552  * Decrement a device's use count and remove it if necessary.
553  */
554 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
555 {
556 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
557 						  dm_dev);
558 
559 	if (atomic_dec_and_test(&dd->count)) {
560 		close_dev(dd, ti->table->md);
561 		list_del(&dd->list);
562 		kfree(dd);
563 	}
564 }
565 EXPORT_SYMBOL(dm_put_device);
566 
567 /*
568  * Checks to see if the target joins onto the end of the table.
569  */
570 static int adjoin(struct dm_table *table, struct dm_target *ti)
571 {
572 	struct dm_target *prev;
573 
574 	if (!table->num_targets)
575 		return !ti->begin;
576 
577 	prev = &table->targets[table->num_targets - 1];
578 	return (ti->begin == (prev->begin + prev->len));
579 }
580 
581 /*
582  * Used to dynamically allocate the arg array.
583  */
584 static char **realloc_argv(unsigned *array_size, char **old_argv)
585 {
586 	char **argv;
587 	unsigned new_size;
588 
589 	new_size = *array_size ? *array_size * 2 : 64;
590 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
591 	if (argv) {
592 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
593 		*array_size = new_size;
594 	}
595 
596 	kfree(old_argv);
597 	return argv;
598 }
599 
600 /*
601  * Destructively splits up the argument list to pass to ctr.
602  */
603 int dm_split_args(int *argc, char ***argvp, char *input)
604 {
605 	char *start, *end = input, *out, **argv = NULL;
606 	unsigned array_size = 0;
607 
608 	*argc = 0;
609 
610 	if (!input) {
611 		*argvp = NULL;
612 		return 0;
613 	}
614 
615 	argv = realloc_argv(&array_size, argv);
616 	if (!argv)
617 		return -ENOMEM;
618 
619 	while (1) {
620 		/* Skip whitespace */
621 		start = skip_spaces(end);
622 
623 		if (!*start)
624 			break;	/* success, we hit the end */
625 
626 		/* 'out' is used to remove any back-quotes */
627 		end = out = start;
628 		while (*end) {
629 			/* Everything apart from '\0' can be quoted */
630 			if (*end == '\\' && *(end + 1)) {
631 				*out++ = *(end + 1);
632 				end += 2;
633 				continue;
634 			}
635 
636 			if (isspace(*end))
637 				break;	/* end of token */
638 
639 			*out++ = *end++;
640 		}
641 
642 		/* have we already filled the array ? */
643 		if ((*argc + 1) > array_size) {
644 			argv = realloc_argv(&array_size, argv);
645 			if (!argv)
646 				return -ENOMEM;
647 		}
648 
649 		/* we know this is whitespace */
650 		if (*end)
651 			end++;
652 
653 		/* terminate the string and put it in the array */
654 		*out = '\0';
655 		argv[*argc] = start;
656 		(*argc)++;
657 	}
658 
659 	*argvp = argv;
660 	return 0;
661 }
662 
663 /*
664  * Impose necessary and sufficient conditions on a devices's table such
665  * that any incoming bio which respects its logical_block_size can be
666  * processed successfully.  If it falls across the boundary between
667  * two or more targets, the size of each piece it gets split into must
668  * be compatible with the logical_block_size of the target processing it.
669  */
670 static int validate_hardware_logical_block_alignment(struct dm_table *table,
671 						 struct queue_limits *limits)
672 {
673 	/*
674 	 * This function uses arithmetic modulo the logical_block_size
675 	 * (in units of 512-byte sectors).
676 	 */
677 	unsigned short device_logical_block_size_sects =
678 		limits->logical_block_size >> SECTOR_SHIFT;
679 
680 	/*
681 	 * Offset of the start of the next table entry, mod logical_block_size.
682 	 */
683 	unsigned short next_target_start = 0;
684 
685 	/*
686 	 * Given an aligned bio that extends beyond the end of a
687 	 * target, how many sectors must the next target handle?
688 	 */
689 	unsigned short remaining = 0;
690 
691 	struct dm_target *uninitialized_var(ti);
692 	struct queue_limits ti_limits;
693 	unsigned i = 0;
694 
695 	/*
696 	 * Check each entry in the table in turn.
697 	 */
698 	while (i < dm_table_get_num_targets(table)) {
699 		ti = dm_table_get_target(table, i++);
700 
701 		blk_set_stacking_limits(&ti_limits);
702 
703 		/* combine all target devices' limits */
704 		if (ti->type->iterate_devices)
705 			ti->type->iterate_devices(ti, dm_set_device_limits,
706 						  &ti_limits);
707 
708 		/*
709 		 * If the remaining sectors fall entirely within this
710 		 * table entry are they compatible with its logical_block_size?
711 		 */
712 		if (remaining < ti->len &&
713 		    remaining & ((ti_limits.logical_block_size >>
714 				  SECTOR_SHIFT) - 1))
715 			break;	/* Error */
716 
717 		next_target_start =
718 		    (unsigned short) ((next_target_start + ti->len) &
719 				      (device_logical_block_size_sects - 1));
720 		remaining = next_target_start ?
721 		    device_logical_block_size_sects - next_target_start : 0;
722 	}
723 
724 	if (remaining) {
725 		DMWARN("%s: table line %u (start sect %llu len %llu) "
726 		       "not aligned to h/w logical block size %u",
727 		       dm_device_name(table->md), i,
728 		       (unsigned long long) ti->begin,
729 		       (unsigned long long) ti->len,
730 		       limits->logical_block_size);
731 		return -EINVAL;
732 	}
733 
734 	return 0;
735 }
736 
737 int dm_table_add_target(struct dm_table *t, const char *type,
738 			sector_t start, sector_t len, char *params)
739 {
740 	int r = -EINVAL, argc;
741 	char **argv;
742 	struct dm_target *tgt;
743 
744 	if (t->singleton) {
745 		DMERR("%s: target type %s must appear alone in table",
746 		      dm_device_name(t->md), t->targets->type->name);
747 		return -EINVAL;
748 	}
749 
750 	if ((r = check_space(t)))
751 		return r;
752 
753 	tgt = t->targets + t->num_targets;
754 	memset(tgt, 0, sizeof(*tgt));
755 
756 	if (!len) {
757 		DMERR("%s: zero-length target", dm_device_name(t->md));
758 		return -EINVAL;
759 	}
760 
761 	tgt->type = dm_get_target_type(type);
762 	if (!tgt->type) {
763 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
764 		      type);
765 		return -EINVAL;
766 	}
767 
768 	if (dm_target_needs_singleton(tgt->type)) {
769 		if (t->num_targets) {
770 			DMERR("%s: target type %s must appear alone in table",
771 			      dm_device_name(t->md), type);
772 			return -EINVAL;
773 		}
774 		t->singleton = 1;
775 	}
776 
777 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
778 		DMERR("%s: target type %s may not be included in read-only tables",
779 		      dm_device_name(t->md), type);
780 		return -EINVAL;
781 	}
782 
783 	if (t->immutable_target_type) {
784 		if (t->immutable_target_type != tgt->type) {
785 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
786 			      dm_device_name(t->md), t->immutable_target_type->name);
787 			return -EINVAL;
788 		}
789 	} else if (dm_target_is_immutable(tgt->type)) {
790 		if (t->num_targets) {
791 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
792 			      dm_device_name(t->md), tgt->type->name);
793 			return -EINVAL;
794 		}
795 		t->immutable_target_type = tgt->type;
796 	}
797 
798 	tgt->table = t;
799 	tgt->begin = start;
800 	tgt->len = len;
801 	tgt->error = "Unknown error";
802 
803 	/*
804 	 * Does this target adjoin the previous one ?
805 	 */
806 	if (!adjoin(t, tgt)) {
807 		tgt->error = "Gap in table";
808 		r = -EINVAL;
809 		goto bad;
810 	}
811 
812 	r = dm_split_args(&argc, &argv, params);
813 	if (r) {
814 		tgt->error = "couldn't split parameters (insufficient memory)";
815 		goto bad;
816 	}
817 
818 	r = tgt->type->ctr(tgt, argc, argv);
819 	kfree(argv);
820 	if (r)
821 		goto bad;
822 
823 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
824 
825 	if (!tgt->num_discard_bios && tgt->discards_supported)
826 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
827 		       dm_device_name(t->md), type);
828 
829 	return 0;
830 
831  bad:
832 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
833 	dm_put_target_type(tgt->type);
834 	return r;
835 }
836 
837 /*
838  * Target argument parsing helpers.
839  */
840 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
841 			     unsigned *value, char **error, unsigned grouped)
842 {
843 	const char *arg_str = dm_shift_arg(arg_set);
844 	char dummy;
845 
846 	if (!arg_str ||
847 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
848 	    (*value < arg->min) ||
849 	    (*value > arg->max) ||
850 	    (grouped && arg_set->argc < *value)) {
851 		*error = arg->error;
852 		return -EINVAL;
853 	}
854 
855 	return 0;
856 }
857 
858 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
859 		unsigned *value, char **error)
860 {
861 	return validate_next_arg(arg, arg_set, value, error, 0);
862 }
863 EXPORT_SYMBOL(dm_read_arg);
864 
865 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
866 		      unsigned *value, char **error)
867 {
868 	return validate_next_arg(arg, arg_set, value, error, 1);
869 }
870 EXPORT_SYMBOL(dm_read_arg_group);
871 
872 const char *dm_shift_arg(struct dm_arg_set *as)
873 {
874 	char *r;
875 
876 	if (as->argc) {
877 		as->argc--;
878 		r = *as->argv;
879 		as->argv++;
880 		return r;
881 	}
882 
883 	return NULL;
884 }
885 EXPORT_SYMBOL(dm_shift_arg);
886 
887 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
888 {
889 	BUG_ON(as->argc < num_args);
890 	as->argc -= num_args;
891 	as->argv += num_args;
892 }
893 EXPORT_SYMBOL(dm_consume_args);
894 
895 static int dm_table_set_type(struct dm_table *t)
896 {
897 	unsigned i;
898 	unsigned bio_based = 0, request_based = 0;
899 	struct dm_target *tgt;
900 	struct dm_dev_internal *dd;
901 	struct list_head *devices;
902 
903 	for (i = 0; i < t->num_targets; i++) {
904 		tgt = t->targets + i;
905 		if (dm_target_request_based(tgt))
906 			request_based = 1;
907 		else
908 			bio_based = 1;
909 
910 		if (bio_based && request_based) {
911 			DMWARN("Inconsistent table: different target types"
912 			       " can't be mixed up");
913 			return -EINVAL;
914 		}
915 	}
916 
917 	if (bio_based) {
918 		/* We must use this table as bio-based */
919 		t->type = DM_TYPE_BIO_BASED;
920 		return 0;
921 	}
922 
923 	BUG_ON(!request_based); /* No targets in this table */
924 
925 	/* Non-request-stackable devices can't be used for request-based dm */
926 	devices = dm_table_get_devices(t);
927 	list_for_each_entry(dd, devices, list) {
928 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
929 			DMWARN("table load rejected: including"
930 			       " non-request-stackable devices");
931 			return -EINVAL;
932 		}
933 	}
934 
935 	/*
936 	 * Request-based dm supports only tables that have a single target now.
937 	 * To support multiple targets, request splitting support is needed,
938 	 * and that needs lots of changes in the block-layer.
939 	 * (e.g. request completion process for partial completion.)
940 	 */
941 	if (t->num_targets > 1) {
942 		DMWARN("Request-based dm doesn't support multiple targets yet");
943 		return -EINVAL;
944 	}
945 
946 	t->type = DM_TYPE_REQUEST_BASED;
947 
948 	return 0;
949 }
950 
951 unsigned dm_table_get_type(struct dm_table *t)
952 {
953 	return t->type;
954 }
955 
956 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
957 {
958 	return t->immutable_target_type;
959 }
960 
961 bool dm_table_request_based(struct dm_table *t)
962 {
963 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
964 }
965 
966 int dm_table_alloc_md_mempools(struct dm_table *t)
967 {
968 	unsigned type = dm_table_get_type(t);
969 	unsigned per_bio_data_size = 0;
970 	struct dm_target *tgt;
971 	unsigned i;
972 
973 	if (unlikely(type == DM_TYPE_NONE)) {
974 		DMWARN("no table type is set, can't allocate mempools");
975 		return -EINVAL;
976 	}
977 
978 	if (type == DM_TYPE_BIO_BASED)
979 		for (i = 0; i < t->num_targets; i++) {
980 			tgt = t->targets + i;
981 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
982 		}
983 
984 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
985 	if (!t->mempools)
986 		return -ENOMEM;
987 
988 	return 0;
989 }
990 
991 void dm_table_free_md_mempools(struct dm_table *t)
992 {
993 	dm_free_md_mempools(t->mempools);
994 	t->mempools = NULL;
995 }
996 
997 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
998 {
999 	return t->mempools;
1000 }
1001 
1002 static int setup_indexes(struct dm_table *t)
1003 {
1004 	int i;
1005 	unsigned int total = 0;
1006 	sector_t *indexes;
1007 
1008 	/* allocate the space for *all* the indexes */
1009 	for (i = t->depth - 2; i >= 0; i--) {
1010 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1011 		total += t->counts[i];
1012 	}
1013 
1014 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1015 	if (!indexes)
1016 		return -ENOMEM;
1017 
1018 	/* set up internal nodes, bottom-up */
1019 	for (i = t->depth - 2; i >= 0; i--) {
1020 		t->index[i] = indexes;
1021 		indexes += (KEYS_PER_NODE * t->counts[i]);
1022 		setup_btree_index(i, t);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 /*
1029  * Builds the btree to index the map.
1030  */
1031 static int dm_table_build_index(struct dm_table *t)
1032 {
1033 	int r = 0;
1034 	unsigned int leaf_nodes;
1035 
1036 	/* how many indexes will the btree have ? */
1037 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1038 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1039 
1040 	/* leaf layer has already been set up */
1041 	t->counts[t->depth - 1] = leaf_nodes;
1042 	t->index[t->depth - 1] = t->highs;
1043 
1044 	if (t->depth >= 2)
1045 		r = setup_indexes(t);
1046 
1047 	return r;
1048 }
1049 
1050 /*
1051  * Get a disk whose integrity profile reflects the table's profile.
1052  * If %match_all is true, all devices' profiles must match.
1053  * If %match_all is false, all devices must at least have an
1054  * allocated integrity profile; but uninitialized is ok.
1055  * Returns NULL if integrity support was inconsistent or unavailable.
1056  */
1057 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1058 						    bool match_all)
1059 {
1060 	struct list_head *devices = dm_table_get_devices(t);
1061 	struct dm_dev_internal *dd = NULL;
1062 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1063 
1064 	list_for_each_entry(dd, devices, list) {
1065 		template_disk = dd->dm_dev.bdev->bd_disk;
1066 		if (!blk_get_integrity(template_disk))
1067 			goto no_integrity;
1068 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1069 			continue; /* skip uninitialized profiles */
1070 		else if (prev_disk &&
1071 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1072 			goto no_integrity;
1073 		prev_disk = template_disk;
1074 	}
1075 
1076 	return template_disk;
1077 
1078 no_integrity:
1079 	if (prev_disk)
1080 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1081 		       dm_device_name(t->md),
1082 		       prev_disk->disk_name,
1083 		       template_disk->disk_name);
1084 	return NULL;
1085 }
1086 
1087 /*
1088  * Register the mapped device for blk_integrity support if
1089  * the underlying devices have an integrity profile.  But all devices
1090  * may not have matching profiles (checking all devices isn't reliable
1091  * during table load because this table may use other DM device(s) which
1092  * must be resumed before they will have an initialized integity profile).
1093  * Stacked DM devices force a 2 stage integrity profile validation:
1094  * 1 - during load, validate all initialized integrity profiles match
1095  * 2 - during resume, validate all integrity profiles match
1096  */
1097 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1098 {
1099 	struct gendisk *template_disk = NULL;
1100 
1101 	template_disk = dm_table_get_integrity_disk(t, false);
1102 	if (!template_disk)
1103 		return 0;
1104 
1105 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1106 		t->integrity_supported = 1;
1107 		return blk_integrity_register(dm_disk(md), NULL);
1108 	}
1109 
1110 	/*
1111 	 * If DM device already has an initalized integrity
1112 	 * profile the new profile should not conflict.
1113 	 */
1114 	if (blk_integrity_is_initialized(template_disk) &&
1115 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1116 		DMWARN("%s: conflict with existing integrity profile: "
1117 		       "%s profile mismatch",
1118 		       dm_device_name(t->md),
1119 		       template_disk->disk_name);
1120 		return 1;
1121 	}
1122 
1123 	/* Preserve existing initialized integrity profile */
1124 	t->integrity_supported = 1;
1125 	return 0;
1126 }
1127 
1128 /*
1129  * Prepares the table for use by building the indices,
1130  * setting the type, and allocating mempools.
1131  */
1132 int dm_table_complete(struct dm_table *t)
1133 {
1134 	int r;
1135 
1136 	r = dm_table_set_type(t);
1137 	if (r) {
1138 		DMERR("unable to set table type");
1139 		return r;
1140 	}
1141 
1142 	r = dm_table_build_index(t);
1143 	if (r) {
1144 		DMERR("unable to build btrees");
1145 		return r;
1146 	}
1147 
1148 	r = dm_table_prealloc_integrity(t, t->md);
1149 	if (r) {
1150 		DMERR("could not register integrity profile.");
1151 		return r;
1152 	}
1153 
1154 	r = dm_table_alloc_md_mempools(t);
1155 	if (r)
1156 		DMERR("unable to allocate mempools");
1157 
1158 	return r;
1159 }
1160 
1161 static DEFINE_MUTEX(_event_lock);
1162 void dm_table_event_callback(struct dm_table *t,
1163 			     void (*fn)(void *), void *context)
1164 {
1165 	mutex_lock(&_event_lock);
1166 	t->event_fn = fn;
1167 	t->event_context = context;
1168 	mutex_unlock(&_event_lock);
1169 }
1170 
1171 void dm_table_event(struct dm_table *t)
1172 {
1173 	/*
1174 	 * You can no longer call dm_table_event() from interrupt
1175 	 * context, use a bottom half instead.
1176 	 */
1177 	BUG_ON(in_interrupt());
1178 
1179 	mutex_lock(&_event_lock);
1180 	if (t->event_fn)
1181 		t->event_fn(t->event_context);
1182 	mutex_unlock(&_event_lock);
1183 }
1184 EXPORT_SYMBOL(dm_table_event);
1185 
1186 sector_t dm_table_get_size(struct dm_table *t)
1187 {
1188 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1189 }
1190 EXPORT_SYMBOL(dm_table_get_size);
1191 
1192 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1193 {
1194 	if (index >= t->num_targets)
1195 		return NULL;
1196 
1197 	return t->targets + index;
1198 }
1199 
1200 /*
1201  * Search the btree for the correct target.
1202  *
1203  * Caller should check returned pointer with dm_target_is_valid()
1204  * to trap I/O beyond end of device.
1205  */
1206 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1207 {
1208 	unsigned int l, n = 0, k = 0;
1209 	sector_t *node;
1210 
1211 	for (l = 0; l < t->depth; l++) {
1212 		n = get_child(n, k);
1213 		node = get_node(t, l, n);
1214 
1215 		for (k = 0; k < KEYS_PER_NODE; k++)
1216 			if (node[k] >= sector)
1217 				break;
1218 	}
1219 
1220 	return &t->targets[(KEYS_PER_NODE * n) + k];
1221 }
1222 
1223 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1224 			sector_t start, sector_t len, void *data)
1225 {
1226 	unsigned *num_devices = data;
1227 
1228 	(*num_devices)++;
1229 
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Check whether a table has no data devices attached using each
1235  * target's iterate_devices method.
1236  * Returns false if the result is unknown because a target doesn't
1237  * support iterate_devices.
1238  */
1239 bool dm_table_has_no_data_devices(struct dm_table *table)
1240 {
1241 	struct dm_target *uninitialized_var(ti);
1242 	unsigned i = 0, num_devices = 0;
1243 
1244 	while (i < dm_table_get_num_targets(table)) {
1245 		ti = dm_table_get_target(table, i++);
1246 
1247 		if (!ti->type->iterate_devices)
1248 			return false;
1249 
1250 		ti->type->iterate_devices(ti, count_device, &num_devices);
1251 		if (num_devices)
1252 			return false;
1253 	}
1254 
1255 	return true;
1256 }
1257 
1258 /*
1259  * Establish the new table's queue_limits and validate them.
1260  */
1261 int dm_calculate_queue_limits(struct dm_table *table,
1262 			      struct queue_limits *limits)
1263 {
1264 	struct dm_target *uninitialized_var(ti);
1265 	struct queue_limits ti_limits;
1266 	unsigned i = 0;
1267 
1268 	blk_set_stacking_limits(limits);
1269 
1270 	while (i < dm_table_get_num_targets(table)) {
1271 		blk_set_stacking_limits(&ti_limits);
1272 
1273 		ti = dm_table_get_target(table, i++);
1274 
1275 		if (!ti->type->iterate_devices)
1276 			goto combine_limits;
1277 
1278 		/*
1279 		 * Combine queue limits of all the devices this target uses.
1280 		 */
1281 		ti->type->iterate_devices(ti, dm_set_device_limits,
1282 					  &ti_limits);
1283 
1284 		/* Set I/O hints portion of queue limits */
1285 		if (ti->type->io_hints)
1286 			ti->type->io_hints(ti, &ti_limits);
1287 
1288 		/*
1289 		 * Check each device area is consistent with the target's
1290 		 * overall queue limits.
1291 		 */
1292 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1293 					      &ti_limits))
1294 			return -EINVAL;
1295 
1296 combine_limits:
1297 		/*
1298 		 * Merge this target's queue limits into the overall limits
1299 		 * for the table.
1300 		 */
1301 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1302 			DMWARN("%s: adding target device "
1303 			       "(start sect %llu len %llu) "
1304 			       "caused an alignment inconsistency",
1305 			       dm_device_name(table->md),
1306 			       (unsigned long long) ti->begin,
1307 			       (unsigned long long) ti->len);
1308 	}
1309 
1310 	return validate_hardware_logical_block_alignment(table, limits);
1311 }
1312 
1313 /*
1314  * Set the integrity profile for this device if all devices used have
1315  * matching profiles.  We're quite deep in the resume path but still
1316  * don't know if all devices (particularly DM devices this device
1317  * may be stacked on) have matching profiles.  Even if the profiles
1318  * don't match we have no way to fail (to resume) at this point.
1319  */
1320 static void dm_table_set_integrity(struct dm_table *t)
1321 {
1322 	struct gendisk *template_disk = NULL;
1323 
1324 	if (!blk_get_integrity(dm_disk(t->md)))
1325 		return;
1326 
1327 	template_disk = dm_table_get_integrity_disk(t, true);
1328 	if (template_disk)
1329 		blk_integrity_register(dm_disk(t->md),
1330 				       blk_get_integrity(template_disk));
1331 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1332 		DMWARN("%s: device no longer has a valid integrity profile",
1333 		       dm_device_name(t->md));
1334 	else
1335 		DMWARN("%s: unable to establish an integrity profile",
1336 		       dm_device_name(t->md));
1337 }
1338 
1339 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1340 				sector_t start, sector_t len, void *data)
1341 {
1342 	unsigned flush = (*(unsigned *)data);
1343 	struct request_queue *q = bdev_get_queue(dev->bdev);
1344 
1345 	return q && (q->flush_flags & flush);
1346 }
1347 
1348 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1349 {
1350 	struct dm_target *ti;
1351 	unsigned i = 0;
1352 
1353 	/*
1354 	 * Require at least one underlying device to support flushes.
1355 	 * t->devices includes internal dm devices such as mirror logs
1356 	 * so we need to use iterate_devices here, which targets
1357 	 * supporting flushes must provide.
1358 	 */
1359 	while (i < dm_table_get_num_targets(t)) {
1360 		ti = dm_table_get_target(t, i++);
1361 
1362 		if (!ti->num_flush_bios)
1363 			continue;
1364 
1365 		if (ti->flush_supported)
1366 			return 1;
1367 
1368 		if (ti->type->iterate_devices &&
1369 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1370 			return 1;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1377 {
1378 	struct dm_target *ti;
1379 	unsigned i = 0;
1380 
1381 	/* Ensure that all targets supports discard_zeroes_data. */
1382 	while (i < dm_table_get_num_targets(t)) {
1383 		ti = dm_table_get_target(t, i++);
1384 
1385 		if (ti->discard_zeroes_data_unsupported)
1386 			return 0;
1387 	}
1388 
1389 	return 1;
1390 }
1391 
1392 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1393 			    sector_t start, sector_t len, void *data)
1394 {
1395 	struct request_queue *q = bdev_get_queue(dev->bdev);
1396 
1397 	return q && blk_queue_nonrot(q);
1398 }
1399 
1400 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1401 			     sector_t start, sector_t len, void *data)
1402 {
1403 	struct request_queue *q = bdev_get_queue(dev->bdev);
1404 
1405 	return q && !blk_queue_add_random(q);
1406 }
1407 
1408 static bool dm_table_all_devices_attribute(struct dm_table *t,
1409 					   iterate_devices_callout_fn func)
1410 {
1411 	struct dm_target *ti;
1412 	unsigned i = 0;
1413 
1414 	while (i < dm_table_get_num_targets(t)) {
1415 		ti = dm_table_get_target(t, i++);
1416 
1417 		if (!ti->type->iterate_devices ||
1418 		    !ti->type->iterate_devices(ti, func, NULL))
1419 			return 0;
1420 	}
1421 
1422 	return 1;
1423 }
1424 
1425 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1426 					 sector_t start, sector_t len, void *data)
1427 {
1428 	struct request_queue *q = bdev_get_queue(dev->bdev);
1429 
1430 	return q && !q->limits.max_write_same_sectors;
1431 }
1432 
1433 static bool dm_table_supports_write_same(struct dm_table *t)
1434 {
1435 	struct dm_target *ti;
1436 	unsigned i = 0;
1437 
1438 	while (i < dm_table_get_num_targets(t)) {
1439 		ti = dm_table_get_target(t, i++);
1440 
1441 		if (!ti->num_write_same_bios)
1442 			return false;
1443 
1444 		if (!ti->type->iterate_devices ||
1445 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1446 			return false;
1447 	}
1448 
1449 	return true;
1450 }
1451 
1452 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1453 			       struct queue_limits *limits)
1454 {
1455 	unsigned flush = 0;
1456 
1457 	/*
1458 	 * Copy table's limits to the DM device's request_queue
1459 	 */
1460 	q->limits = *limits;
1461 
1462 	if (!dm_table_supports_discards(t))
1463 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1464 	else
1465 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1466 
1467 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1468 		flush |= REQ_FLUSH;
1469 		if (dm_table_supports_flush(t, REQ_FUA))
1470 			flush |= REQ_FUA;
1471 	}
1472 	blk_queue_flush(q, flush);
1473 
1474 	if (!dm_table_discard_zeroes_data(t))
1475 		q->limits.discard_zeroes_data = 0;
1476 
1477 	/* Ensure that all underlying devices are non-rotational. */
1478 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1479 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1480 	else
1481 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1482 
1483 	if (!dm_table_supports_write_same(t))
1484 		q->limits.max_write_same_sectors = 0;
1485 
1486 	dm_table_set_integrity(t);
1487 
1488 	/*
1489 	 * Determine whether or not this queue's I/O timings contribute
1490 	 * to the entropy pool, Only request-based targets use this.
1491 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1492 	 * have it set.
1493 	 */
1494 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1495 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1496 
1497 	/*
1498 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1499 	 * visible to other CPUs because, once the flag is set, incoming bios
1500 	 * are processed by request-based dm, which refers to the queue
1501 	 * settings.
1502 	 * Until the flag set, bios are passed to bio-based dm and queued to
1503 	 * md->deferred where queue settings are not needed yet.
1504 	 * Those bios are passed to request-based dm at the resume time.
1505 	 */
1506 	smp_mb();
1507 	if (dm_table_request_based(t))
1508 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1509 }
1510 
1511 unsigned int dm_table_get_num_targets(struct dm_table *t)
1512 {
1513 	return t->num_targets;
1514 }
1515 
1516 struct list_head *dm_table_get_devices(struct dm_table *t)
1517 {
1518 	return &t->devices;
1519 }
1520 
1521 fmode_t dm_table_get_mode(struct dm_table *t)
1522 {
1523 	return t->mode;
1524 }
1525 EXPORT_SYMBOL(dm_table_get_mode);
1526 
1527 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1528 {
1529 	int i = t->num_targets;
1530 	struct dm_target *ti = t->targets;
1531 
1532 	while (i--) {
1533 		if (postsuspend) {
1534 			if (ti->type->postsuspend)
1535 				ti->type->postsuspend(ti);
1536 		} else if (ti->type->presuspend)
1537 			ti->type->presuspend(ti);
1538 
1539 		ti++;
1540 	}
1541 }
1542 
1543 void dm_table_presuspend_targets(struct dm_table *t)
1544 {
1545 	if (!t)
1546 		return;
1547 
1548 	suspend_targets(t, 0);
1549 }
1550 
1551 void dm_table_postsuspend_targets(struct dm_table *t)
1552 {
1553 	if (!t)
1554 		return;
1555 
1556 	suspend_targets(t, 1);
1557 }
1558 
1559 int dm_table_resume_targets(struct dm_table *t)
1560 {
1561 	int i, r = 0;
1562 
1563 	for (i = 0; i < t->num_targets; i++) {
1564 		struct dm_target *ti = t->targets + i;
1565 
1566 		if (!ti->type->preresume)
1567 			continue;
1568 
1569 		r = ti->type->preresume(ti);
1570 		if (r)
1571 			return r;
1572 	}
1573 
1574 	for (i = 0; i < t->num_targets; i++) {
1575 		struct dm_target *ti = t->targets + i;
1576 
1577 		if (ti->type->resume)
1578 			ti->type->resume(ti);
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1585 {
1586 	list_add(&cb->list, &t->target_callbacks);
1587 }
1588 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1589 
1590 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1591 {
1592 	struct dm_dev_internal *dd;
1593 	struct list_head *devices = dm_table_get_devices(t);
1594 	struct dm_target_callbacks *cb;
1595 	int r = 0;
1596 
1597 	list_for_each_entry(dd, devices, list) {
1598 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1599 		char b[BDEVNAME_SIZE];
1600 
1601 		if (likely(q))
1602 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1603 		else
1604 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1605 				     dm_device_name(t->md),
1606 				     bdevname(dd->dm_dev.bdev, b));
1607 	}
1608 
1609 	list_for_each_entry(cb, &t->target_callbacks, list)
1610 		if (cb->congested_fn)
1611 			r |= cb->congested_fn(cb, bdi_bits);
1612 
1613 	return r;
1614 }
1615 
1616 int dm_table_any_busy_target(struct dm_table *t)
1617 {
1618 	unsigned i;
1619 	struct dm_target *ti;
1620 
1621 	for (i = 0; i < t->num_targets; i++) {
1622 		ti = t->targets + i;
1623 		if (ti->type->busy && ti->type->busy(ti))
1624 			return 1;
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 struct mapped_device *dm_table_get_md(struct dm_table *t)
1631 {
1632 	return t->md;
1633 }
1634 EXPORT_SYMBOL(dm_table_get_md);
1635 
1636 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1637 				  sector_t start, sector_t len, void *data)
1638 {
1639 	struct request_queue *q = bdev_get_queue(dev->bdev);
1640 
1641 	return q && blk_queue_discard(q);
1642 }
1643 
1644 bool dm_table_supports_discards(struct dm_table *t)
1645 {
1646 	struct dm_target *ti;
1647 	unsigned i = 0;
1648 
1649 	/*
1650 	 * Unless any target used by the table set discards_supported,
1651 	 * require at least one underlying device to support discards.
1652 	 * t->devices includes internal dm devices such as mirror logs
1653 	 * so we need to use iterate_devices here, which targets
1654 	 * supporting discard selectively must provide.
1655 	 */
1656 	while (i < dm_table_get_num_targets(t)) {
1657 		ti = dm_table_get_target(t, i++);
1658 
1659 		if (!ti->num_discard_bios)
1660 			continue;
1661 
1662 		if (ti->discards_supported)
1663 			return 1;
1664 
1665 		if (ti->type->iterate_devices &&
1666 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1667 			return 1;
1668 	}
1669 
1670 	return 0;
1671 }
1672