1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 struct target_type *immutable_target_type; 58 unsigned integrity_supported:1; 59 unsigned singleton:1; 60 61 /* 62 * Indicates the rw permissions for the new logical 63 * device. This should be a combination of FMODE_READ 64 * and FMODE_WRITE. 65 */ 66 fmode_t mode; 67 68 /* a list of devices used by this table */ 69 struct list_head devices; 70 71 /* events get handed up using this callback */ 72 void (*event_fn)(void *); 73 void *event_context; 74 75 struct dm_md_mempools *mempools; 76 77 struct list_head target_callbacks; 78 }; 79 80 /* 81 * Similar to ceiling(log_size(n)) 82 */ 83 static unsigned int int_log(unsigned int n, unsigned int base) 84 { 85 int result = 0; 86 87 while (n > 1) { 88 n = dm_div_up(n, base); 89 result++; 90 } 91 92 return result; 93 } 94 95 /* 96 * Calculate the index of the child node of the n'th node k'th key. 97 */ 98 static inline unsigned int get_child(unsigned int n, unsigned int k) 99 { 100 return (n * CHILDREN_PER_NODE) + k; 101 } 102 103 /* 104 * Return the n'th node of level l from table t. 105 */ 106 static inline sector_t *get_node(struct dm_table *t, 107 unsigned int l, unsigned int n) 108 { 109 return t->index[l] + (n * KEYS_PER_NODE); 110 } 111 112 /* 113 * Return the highest key that you could lookup from the n'th 114 * node on level l of the btree. 115 */ 116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 117 { 118 for (; l < t->depth - 1; l++) 119 n = get_child(n, CHILDREN_PER_NODE - 1); 120 121 if (n >= t->counts[l]) 122 return (sector_t) - 1; 123 124 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 125 } 126 127 /* 128 * Fills in a level of the btree based on the highs of the level 129 * below it. 130 */ 131 static int setup_btree_index(unsigned int l, struct dm_table *t) 132 { 133 unsigned int n, k; 134 sector_t *node; 135 136 for (n = 0U; n < t->counts[l]; n++) { 137 node = get_node(t, l, n); 138 139 for (k = 0U; k < KEYS_PER_NODE; k++) 140 node[k] = high(t, l + 1, get_child(n, k)); 141 } 142 143 return 0; 144 } 145 146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 147 { 148 unsigned long size; 149 void *addr; 150 151 /* 152 * Check that we're not going to overflow. 153 */ 154 if (nmemb > (ULONG_MAX / elem_size)) 155 return NULL; 156 157 size = nmemb * elem_size; 158 addr = vzalloc(size); 159 160 return addr; 161 } 162 EXPORT_SYMBOL(dm_vcalloc); 163 164 /* 165 * highs, and targets are managed as dynamic arrays during a 166 * table load. 167 */ 168 static int alloc_targets(struct dm_table *t, unsigned int num) 169 { 170 sector_t *n_highs; 171 struct dm_target *n_targets; 172 int n = t->num_targets; 173 174 /* 175 * Allocate both the target array and offset array at once. 176 * Append an empty entry to catch sectors beyond the end of 177 * the device. 178 */ 179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 180 sizeof(sector_t)); 181 if (!n_highs) 182 return -ENOMEM; 183 184 n_targets = (struct dm_target *) (n_highs + num); 185 186 if (n) { 187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 189 } 190 191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 192 vfree(t->highs); 193 194 t->num_allocated = num; 195 t->highs = n_highs; 196 t->targets = n_targets; 197 198 return 0; 199 } 200 201 int dm_table_create(struct dm_table **result, fmode_t mode, 202 unsigned num_targets, struct mapped_device *md) 203 { 204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 205 206 if (!t) 207 return -ENOMEM; 208 209 INIT_LIST_HEAD(&t->devices); 210 INIT_LIST_HEAD(&t->target_callbacks); 211 atomic_set(&t->holders, 0); 212 213 if (!num_targets) 214 num_targets = KEYS_PER_NODE; 215 216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 217 218 if (alloc_targets(t, num_targets)) { 219 kfree(t); 220 return -ENOMEM; 221 } 222 223 t->mode = mode; 224 t->md = md; 225 *result = t; 226 return 0; 227 } 228 229 static void free_devices(struct list_head *devices) 230 { 231 struct list_head *tmp, *next; 232 233 list_for_each_safe(tmp, next, devices) { 234 struct dm_dev_internal *dd = 235 list_entry(tmp, struct dm_dev_internal, list); 236 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 237 dd->dm_dev.name); 238 kfree(dd); 239 } 240 } 241 242 void dm_table_destroy(struct dm_table *t) 243 { 244 unsigned int i; 245 246 if (!t) 247 return; 248 249 while (atomic_read(&t->holders)) 250 msleep(1); 251 smp_mb(); 252 253 /* free the indexes */ 254 if (t->depth >= 2) 255 vfree(t->index[t->depth - 2]); 256 257 /* free the targets */ 258 for (i = 0; i < t->num_targets; i++) { 259 struct dm_target *tgt = t->targets + i; 260 261 if (tgt->type->dtr) 262 tgt->type->dtr(tgt); 263 264 dm_put_target_type(tgt->type); 265 } 266 267 vfree(t->highs); 268 269 /* free the device list */ 270 free_devices(&t->devices); 271 272 dm_free_md_mempools(t->mempools); 273 274 kfree(t); 275 } 276 277 void dm_table_get(struct dm_table *t) 278 { 279 atomic_inc(&t->holders); 280 } 281 EXPORT_SYMBOL(dm_table_get); 282 283 void dm_table_put(struct dm_table *t) 284 { 285 if (!t) 286 return; 287 288 smp_mb__before_atomic_dec(); 289 atomic_dec(&t->holders); 290 } 291 EXPORT_SYMBOL(dm_table_put); 292 293 /* 294 * Checks to see if we need to extend highs or targets. 295 */ 296 static inline int check_space(struct dm_table *t) 297 { 298 if (t->num_targets >= t->num_allocated) 299 return alloc_targets(t, t->num_allocated * 2); 300 301 return 0; 302 } 303 304 /* 305 * See if we've already got a device in the list. 306 */ 307 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 308 { 309 struct dm_dev_internal *dd; 310 311 list_for_each_entry (dd, l, list) 312 if (dd->dm_dev.bdev->bd_dev == dev) 313 return dd; 314 315 return NULL; 316 } 317 318 /* 319 * Open a device so we can use it as a map destination. 320 */ 321 static int open_dev(struct dm_dev_internal *d, dev_t dev, 322 struct mapped_device *md) 323 { 324 static char *_claim_ptr = "I belong to device-mapper"; 325 struct block_device *bdev; 326 327 int r; 328 329 BUG_ON(d->dm_dev.bdev); 330 331 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 332 if (IS_ERR(bdev)) 333 return PTR_ERR(bdev); 334 335 r = bd_link_disk_holder(bdev, dm_disk(md)); 336 if (r) { 337 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 338 return r; 339 } 340 341 d->dm_dev.bdev = bdev; 342 return 0; 343 } 344 345 /* 346 * Close a device that we've been using. 347 */ 348 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 349 { 350 if (!d->dm_dev.bdev) 351 return; 352 353 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 354 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 355 d->dm_dev.bdev = NULL; 356 } 357 358 /* 359 * If possible, this checks an area of a destination device is invalid. 360 */ 361 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 362 sector_t start, sector_t len, void *data) 363 { 364 struct request_queue *q; 365 struct queue_limits *limits = data; 366 struct block_device *bdev = dev->bdev; 367 sector_t dev_size = 368 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 369 unsigned short logical_block_size_sectors = 370 limits->logical_block_size >> SECTOR_SHIFT; 371 char b[BDEVNAME_SIZE]; 372 373 /* 374 * Some devices exist without request functions, 375 * such as loop devices not yet bound to backing files. 376 * Forbid the use of such devices. 377 */ 378 q = bdev_get_queue(bdev); 379 if (!q || !q->make_request_fn) { 380 DMWARN("%s: %s is not yet initialised: " 381 "start=%llu, len=%llu, dev_size=%llu", 382 dm_device_name(ti->table->md), bdevname(bdev, b), 383 (unsigned long long)start, 384 (unsigned long long)len, 385 (unsigned long long)dev_size); 386 return 1; 387 } 388 389 if (!dev_size) 390 return 0; 391 392 if ((start >= dev_size) || (start + len > dev_size)) { 393 DMWARN("%s: %s too small for target: " 394 "start=%llu, len=%llu, dev_size=%llu", 395 dm_device_name(ti->table->md), bdevname(bdev, b), 396 (unsigned long long)start, 397 (unsigned long long)len, 398 (unsigned long long)dev_size); 399 return 1; 400 } 401 402 if (logical_block_size_sectors <= 1) 403 return 0; 404 405 if (start & (logical_block_size_sectors - 1)) { 406 DMWARN("%s: start=%llu not aligned to h/w " 407 "logical block size %u of %s", 408 dm_device_name(ti->table->md), 409 (unsigned long long)start, 410 limits->logical_block_size, bdevname(bdev, b)); 411 return 1; 412 } 413 414 if (len & (logical_block_size_sectors - 1)) { 415 DMWARN("%s: len=%llu not aligned to h/w " 416 "logical block size %u of %s", 417 dm_device_name(ti->table->md), 418 (unsigned long long)len, 419 limits->logical_block_size, bdevname(bdev, b)); 420 return 1; 421 } 422 423 return 0; 424 } 425 426 /* 427 * This upgrades the mode on an already open dm_dev, being 428 * careful to leave things as they were if we fail to reopen the 429 * device and not to touch the existing bdev field in case 430 * it is accessed concurrently inside dm_table_any_congested(). 431 */ 432 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 433 struct mapped_device *md) 434 { 435 int r; 436 struct dm_dev_internal dd_new, dd_old; 437 438 dd_new = dd_old = *dd; 439 440 dd_new.dm_dev.mode |= new_mode; 441 dd_new.dm_dev.bdev = NULL; 442 443 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 444 if (r) 445 return r; 446 447 dd->dm_dev.mode |= new_mode; 448 close_dev(&dd_old, md); 449 450 return 0; 451 } 452 453 /* 454 * Add a device to the list, or just increment the usage count if 455 * it's already present. 456 */ 457 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 458 struct dm_dev **result) 459 { 460 int r; 461 dev_t uninitialized_var(dev); 462 struct dm_dev_internal *dd; 463 unsigned int major, minor; 464 struct dm_table *t = ti->table; 465 char dummy; 466 467 BUG_ON(!t); 468 469 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 470 /* Extract the major/minor numbers */ 471 dev = MKDEV(major, minor); 472 if (MAJOR(dev) != major || MINOR(dev) != minor) 473 return -EOVERFLOW; 474 } else { 475 /* convert the path to a device */ 476 struct block_device *bdev = lookup_bdev(path); 477 478 if (IS_ERR(bdev)) 479 return PTR_ERR(bdev); 480 dev = bdev->bd_dev; 481 bdput(bdev); 482 } 483 484 dd = find_device(&t->devices, dev); 485 if (!dd) { 486 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 487 if (!dd) 488 return -ENOMEM; 489 490 dd->dm_dev.mode = mode; 491 dd->dm_dev.bdev = NULL; 492 493 if ((r = open_dev(dd, dev, t->md))) { 494 kfree(dd); 495 return r; 496 } 497 498 format_dev_t(dd->dm_dev.name, dev); 499 500 atomic_set(&dd->count, 0); 501 list_add(&dd->list, &t->devices); 502 503 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 504 r = upgrade_mode(dd, mode, t->md); 505 if (r) 506 return r; 507 } 508 atomic_inc(&dd->count); 509 510 *result = &dd->dm_dev; 511 return 0; 512 } 513 EXPORT_SYMBOL(dm_get_device); 514 515 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 516 sector_t start, sector_t len, void *data) 517 { 518 struct queue_limits *limits = data; 519 struct block_device *bdev = dev->bdev; 520 struct request_queue *q = bdev_get_queue(bdev); 521 char b[BDEVNAME_SIZE]; 522 523 if (unlikely(!q)) { 524 DMWARN("%s: Cannot set limits for nonexistent device %s", 525 dm_device_name(ti->table->md), bdevname(bdev, b)); 526 return 0; 527 } 528 529 if (bdev_stack_limits(limits, bdev, start) < 0) 530 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 531 "physical_block_size=%u, logical_block_size=%u, " 532 "alignment_offset=%u, start=%llu", 533 dm_device_name(ti->table->md), bdevname(bdev, b), 534 q->limits.physical_block_size, 535 q->limits.logical_block_size, 536 q->limits.alignment_offset, 537 (unsigned long long) start << SECTOR_SHIFT); 538 539 /* 540 * Check if merge fn is supported. 541 * If not we'll force DM to use PAGE_SIZE or 542 * smaller I/O, just to be safe. 543 */ 544 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge) 545 blk_limits_max_hw_sectors(limits, 546 (unsigned int) (PAGE_SIZE >> 9)); 547 return 0; 548 } 549 EXPORT_SYMBOL_GPL(dm_set_device_limits); 550 551 /* 552 * Decrement a device's use count and remove it if necessary. 553 */ 554 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 555 { 556 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 557 dm_dev); 558 559 if (atomic_dec_and_test(&dd->count)) { 560 close_dev(dd, ti->table->md); 561 list_del(&dd->list); 562 kfree(dd); 563 } 564 } 565 EXPORT_SYMBOL(dm_put_device); 566 567 /* 568 * Checks to see if the target joins onto the end of the table. 569 */ 570 static int adjoin(struct dm_table *table, struct dm_target *ti) 571 { 572 struct dm_target *prev; 573 574 if (!table->num_targets) 575 return !ti->begin; 576 577 prev = &table->targets[table->num_targets - 1]; 578 return (ti->begin == (prev->begin + prev->len)); 579 } 580 581 /* 582 * Used to dynamically allocate the arg array. 583 */ 584 static char **realloc_argv(unsigned *array_size, char **old_argv) 585 { 586 char **argv; 587 unsigned new_size; 588 589 new_size = *array_size ? *array_size * 2 : 64; 590 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 591 if (argv) { 592 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 593 *array_size = new_size; 594 } 595 596 kfree(old_argv); 597 return argv; 598 } 599 600 /* 601 * Destructively splits up the argument list to pass to ctr. 602 */ 603 int dm_split_args(int *argc, char ***argvp, char *input) 604 { 605 char *start, *end = input, *out, **argv = NULL; 606 unsigned array_size = 0; 607 608 *argc = 0; 609 610 if (!input) { 611 *argvp = NULL; 612 return 0; 613 } 614 615 argv = realloc_argv(&array_size, argv); 616 if (!argv) 617 return -ENOMEM; 618 619 while (1) { 620 /* Skip whitespace */ 621 start = skip_spaces(end); 622 623 if (!*start) 624 break; /* success, we hit the end */ 625 626 /* 'out' is used to remove any back-quotes */ 627 end = out = start; 628 while (*end) { 629 /* Everything apart from '\0' can be quoted */ 630 if (*end == '\\' && *(end + 1)) { 631 *out++ = *(end + 1); 632 end += 2; 633 continue; 634 } 635 636 if (isspace(*end)) 637 break; /* end of token */ 638 639 *out++ = *end++; 640 } 641 642 /* have we already filled the array ? */ 643 if ((*argc + 1) > array_size) { 644 argv = realloc_argv(&array_size, argv); 645 if (!argv) 646 return -ENOMEM; 647 } 648 649 /* we know this is whitespace */ 650 if (*end) 651 end++; 652 653 /* terminate the string and put it in the array */ 654 *out = '\0'; 655 argv[*argc] = start; 656 (*argc)++; 657 } 658 659 *argvp = argv; 660 return 0; 661 } 662 663 /* 664 * Impose necessary and sufficient conditions on a devices's table such 665 * that any incoming bio which respects its logical_block_size can be 666 * processed successfully. If it falls across the boundary between 667 * two or more targets, the size of each piece it gets split into must 668 * be compatible with the logical_block_size of the target processing it. 669 */ 670 static int validate_hardware_logical_block_alignment(struct dm_table *table, 671 struct queue_limits *limits) 672 { 673 /* 674 * This function uses arithmetic modulo the logical_block_size 675 * (in units of 512-byte sectors). 676 */ 677 unsigned short device_logical_block_size_sects = 678 limits->logical_block_size >> SECTOR_SHIFT; 679 680 /* 681 * Offset of the start of the next table entry, mod logical_block_size. 682 */ 683 unsigned short next_target_start = 0; 684 685 /* 686 * Given an aligned bio that extends beyond the end of a 687 * target, how many sectors must the next target handle? 688 */ 689 unsigned short remaining = 0; 690 691 struct dm_target *uninitialized_var(ti); 692 struct queue_limits ti_limits; 693 unsigned i = 0; 694 695 /* 696 * Check each entry in the table in turn. 697 */ 698 while (i < dm_table_get_num_targets(table)) { 699 ti = dm_table_get_target(table, i++); 700 701 blk_set_stacking_limits(&ti_limits); 702 703 /* combine all target devices' limits */ 704 if (ti->type->iterate_devices) 705 ti->type->iterate_devices(ti, dm_set_device_limits, 706 &ti_limits); 707 708 /* 709 * If the remaining sectors fall entirely within this 710 * table entry are they compatible with its logical_block_size? 711 */ 712 if (remaining < ti->len && 713 remaining & ((ti_limits.logical_block_size >> 714 SECTOR_SHIFT) - 1)) 715 break; /* Error */ 716 717 next_target_start = 718 (unsigned short) ((next_target_start + ti->len) & 719 (device_logical_block_size_sects - 1)); 720 remaining = next_target_start ? 721 device_logical_block_size_sects - next_target_start : 0; 722 } 723 724 if (remaining) { 725 DMWARN("%s: table line %u (start sect %llu len %llu) " 726 "not aligned to h/w logical block size %u", 727 dm_device_name(table->md), i, 728 (unsigned long long) ti->begin, 729 (unsigned long long) ti->len, 730 limits->logical_block_size); 731 return -EINVAL; 732 } 733 734 return 0; 735 } 736 737 int dm_table_add_target(struct dm_table *t, const char *type, 738 sector_t start, sector_t len, char *params) 739 { 740 int r = -EINVAL, argc; 741 char **argv; 742 struct dm_target *tgt; 743 744 if (t->singleton) { 745 DMERR("%s: target type %s must appear alone in table", 746 dm_device_name(t->md), t->targets->type->name); 747 return -EINVAL; 748 } 749 750 if ((r = check_space(t))) 751 return r; 752 753 tgt = t->targets + t->num_targets; 754 memset(tgt, 0, sizeof(*tgt)); 755 756 if (!len) { 757 DMERR("%s: zero-length target", dm_device_name(t->md)); 758 return -EINVAL; 759 } 760 761 tgt->type = dm_get_target_type(type); 762 if (!tgt->type) { 763 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 764 type); 765 return -EINVAL; 766 } 767 768 if (dm_target_needs_singleton(tgt->type)) { 769 if (t->num_targets) { 770 DMERR("%s: target type %s must appear alone in table", 771 dm_device_name(t->md), type); 772 return -EINVAL; 773 } 774 t->singleton = 1; 775 } 776 777 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 778 DMERR("%s: target type %s may not be included in read-only tables", 779 dm_device_name(t->md), type); 780 return -EINVAL; 781 } 782 783 if (t->immutable_target_type) { 784 if (t->immutable_target_type != tgt->type) { 785 DMERR("%s: immutable target type %s cannot be mixed with other target types", 786 dm_device_name(t->md), t->immutable_target_type->name); 787 return -EINVAL; 788 } 789 } else if (dm_target_is_immutable(tgt->type)) { 790 if (t->num_targets) { 791 DMERR("%s: immutable target type %s cannot be mixed with other target types", 792 dm_device_name(t->md), tgt->type->name); 793 return -EINVAL; 794 } 795 t->immutable_target_type = tgt->type; 796 } 797 798 tgt->table = t; 799 tgt->begin = start; 800 tgt->len = len; 801 tgt->error = "Unknown error"; 802 803 /* 804 * Does this target adjoin the previous one ? 805 */ 806 if (!adjoin(t, tgt)) { 807 tgt->error = "Gap in table"; 808 r = -EINVAL; 809 goto bad; 810 } 811 812 r = dm_split_args(&argc, &argv, params); 813 if (r) { 814 tgt->error = "couldn't split parameters (insufficient memory)"; 815 goto bad; 816 } 817 818 r = tgt->type->ctr(tgt, argc, argv); 819 kfree(argv); 820 if (r) 821 goto bad; 822 823 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 824 825 if (!tgt->num_discard_bios && tgt->discards_supported) 826 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 827 dm_device_name(t->md), type); 828 829 return 0; 830 831 bad: 832 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 833 dm_put_target_type(tgt->type); 834 return r; 835 } 836 837 /* 838 * Target argument parsing helpers. 839 */ 840 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 841 unsigned *value, char **error, unsigned grouped) 842 { 843 const char *arg_str = dm_shift_arg(arg_set); 844 char dummy; 845 846 if (!arg_str || 847 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 848 (*value < arg->min) || 849 (*value > arg->max) || 850 (grouped && arg_set->argc < *value)) { 851 *error = arg->error; 852 return -EINVAL; 853 } 854 855 return 0; 856 } 857 858 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 859 unsigned *value, char **error) 860 { 861 return validate_next_arg(arg, arg_set, value, error, 0); 862 } 863 EXPORT_SYMBOL(dm_read_arg); 864 865 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 866 unsigned *value, char **error) 867 { 868 return validate_next_arg(arg, arg_set, value, error, 1); 869 } 870 EXPORT_SYMBOL(dm_read_arg_group); 871 872 const char *dm_shift_arg(struct dm_arg_set *as) 873 { 874 char *r; 875 876 if (as->argc) { 877 as->argc--; 878 r = *as->argv; 879 as->argv++; 880 return r; 881 } 882 883 return NULL; 884 } 885 EXPORT_SYMBOL(dm_shift_arg); 886 887 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 888 { 889 BUG_ON(as->argc < num_args); 890 as->argc -= num_args; 891 as->argv += num_args; 892 } 893 EXPORT_SYMBOL(dm_consume_args); 894 895 static int dm_table_set_type(struct dm_table *t) 896 { 897 unsigned i; 898 unsigned bio_based = 0, request_based = 0; 899 struct dm_target *tgt; 900 struct dm_dev_internal *dd; 901 struct list_head *devices; 902 903 for (i = 0; i < t->num_targets; i++) { 904 tgt = t->targets + i; 905 if (dm_target_request_based(tgt)) 906 request_based = 1; 907 else 908 bio_based = 1; 909 910 if (bio_based && request_based) { 911 DMWARN("Inconsistent table: different target types" 912 " can't be mixed up"); 913 return -EINVAL; 914 } 915 } 916 917 if (bio_based) { 918 /* We must use this table as bio-based */ 919 t->type = DM_TYPE_BIO_BASED; 920 return 0; 921 } 922 923 BUG_ON(!request_based); /* No targets in this table */ 924 925 /* Non-request-stackable devices can't be used for request-based dm */ 926 devices = dm_table_get_devices(t); 927 list_for_each_entry(dd, devices, list) { 928 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 929 DMWARN("table load rejected: including" 930 " non-request-stackable devices"); 931 return -EINVAL; 932 } 933 } 934 935 /* 936 * Request-based dm supports only tables that have a single target now. 937 * To support multiple targets, request splitting support is needed, 938 * and that needs lots of changes in the block-layer. 939 * (e.g. request completion process for partial completion.) 940 */ 941 if (t->num_targets > 1) { 942 DMWARN("Request-based dm doesn't support multiple targets yet"); 943 return -EINVAL; 944 } 945 946 t->type = DM_TYPE_REQUEST_BASED; 947 948 return 0; 949 } 950 951 unsigned dm_table_get_type(struct dm_table *t) 952 { 953 return t->type; 954 } 955 956 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 957 { 958 return t->immutable_target_type; 959 } 960 961 bool dm_table_request_based(struct dm_table *t) 962 { 963 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 964 } 965 966 int dm_table_alloc_md_mempools(struct dm_table *t) 967 { 968 unsigned type = dm_table_get_type(t); 969 unsigned per_bio_data_size = 0; 970 struct dm_target *tgt; 971 unsigned i; 972 973 if (unlikely(type == DM_TYPE_NONE)) { 974 DMWARN("no table type is set, can't allocate mempools"); 975 return -EINVAL; 976 } 977 978 if (type == DM_TYPE_BIO_BASED) 979 for (i = 0; i < t->num_targets; i++) { 980 tgt = t->targets + i; 981 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size); 982 } 983 984 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size); 985 if (!t->mempools) 986 return -ENOMEM; 987 988 return 0; 989 } 990 991 void dm_table_free_md_mempools(struct dm_table *t) 992 { 993 dm_free_md_mempools(t->mempools); 994 t->mempools = NULL; 995 } 996 997 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 998 { 999 return t->mempools; 1000 } 1001 1002 static int setup_indexes(struct dm_table *t) 1003 { 1004 int i; 1005 unsigned int total = 0; 1006 sector_t *indexes; 1007 1008 /* allocate the space for *all* the indexes */ 1009 for (i = t->depth - 2; i >= 0; i--) { 1010 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1011 total += t->counts[i]; 1012 } 1013 1014 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1015 if (!indexes) 1016 return -ENOMEM; 1017 1018 /* set up internal nodes, bottom-up */ 1019 for (i = t->depth - 2; i >= 0; i--) { 1020 t->index[i] = indexes; 1021 indexes += (KEYS_PER_NODE * t->counts[i]); 1022 setup_btree_index(i, t); 1023 } 1024 1025 return 0; 1026 } 1027 1028 /* 1029 * Builds the btree to index the map. 1030 */ 1031 static int dm_table_build_index(struct dm_table *t) 1032 { 1033 int r = 0; 1034 unsigned int leaf_nodes; 1035 1036 /* how many indexes will the btree have ? */ 1037 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1038 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1039 1040 /* leaf layer has already been set up */ 1041 t->counts[t->depth - 1] = leaf_nodes; 1042 t->index[t->depth - 1] = t->highs; 1043 1044 if (t->depth >= 2) 1045 r = setup_indexes(t); 1046 1047 return r; 1048 } 1049 1050 /* 1051 * Get a disk whose integrity profile reflects the table's profile. 1052 * If %match_all is true, all devices' profiles must match. 1053 * If %match_all is false, all devices must at least have an 1054 * allocated integrity profile; but uninitialized is ok. 1055 * Returns NULL if integrity support was inconsistent or unavailable. 1056 */ 1057 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 1058 bool match_all) 1059 { 1060 struct list_head *devices = dm_table_get_devices(t); 1061 struct dm_dev_internal *dd = NULL; 1062 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1063 1064 list_for_each_entry(dd, devices, list) { 1065 template_disk = dd->dm_dev.bdev->bd_disk; 1066 if (!blk_get_integrity(template_disk)) 1067 goto no_integrity; 1068 if (!match_all && !blk_integrity_is_initialized(template_disk)) 1069 continue; /* skip uninitialized profiles */ 1070 else if (prev_disk && 1071 blk_integrity_compare(prev_disk, template_disk) < 0) 1072 goto no_integrity; 1073 prev_disk = template_disk; 1074 } 1075 1076 return template_disk; 1077 1078 no_integrity: 1079 if (prev_disk) 1080 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1081 dm_device_name(t->md), 1082 prev_disk->disk_name, 1083 template_disk->disk_name); 1084 return NULL; 1085 } 1086 1087 /* 1088 * Register the mapped device for blk_integrity support if 1089 * the underlying devices have an integrity profile. But all devices 1090 * may not have matching profiles (checking all devices isn't reliable 1091 * during table load because this table may use other DM device(s) which 1092 * must be resumed before they will have an initialized integity profile). 1093 * Stacked DM devices force a 2 stage integrity profile validation: 1094 * 1 - during load, validate all initialized integrity profiles match 1095 * 2 - during resume, validate all integrity profiles match 1096 */ 1097 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 1098 { 1099 struct gendisk *template_disk = NULL; 1100 1101 template_disk = dm_table_get_integrity_disk(t, false); 1102 if (!template_disk) 1103 return 0; 1104 1105 if (!blk_integrity_is_initialized(dm_disk(md))) { 1106 t->integrity_supported = 1; 1107 return blk_integrity_register(dm_disk(md), NULL); 1108 } 1109 1110 /* 1111 * If DM device already has an initalized integrity 1112 * profile the new profile should not conflict. 1113 */ 1114 if (blk_integrity_is_initialized(template_disk) && 1115 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1116 DMWARN("%s: conflict with existing integrity profile: " 1117 "%s profile mismatch", 1118 dm_device_name(t->md), 1119 template_disk->disk_name); 1120 return 1; 1121 } 1122 1123 /* Preserve existing initialized integrity profile */ 1124 t->integrity_supported = 1; 1125 return 0; 1126 } 1127 1128 /* 1129 * Prepares the table for use by building the indices, 1130 * setting the type, and allocating mempools. 1131 */ 1132 int dm_table_complete(struct dm_table *t) 1133 { 1134 int r; 1135 1136 r = dm_table_set_type(t); 1137 if (r) { 1138 DMERR("unable to set table type"); 1139 return r; 1140 } 1141 1142 r = dm_table_build_index(t); 1143 if (r) { 1144 DMERR("unable to build btrees"); 1145 return r; 1146 } 1147 1148 r = dm_table_prealloc_integrity(t, t->md); 1149 if (r) { 1150 DMERR("could not register integrity profile."); 1151 return r; 1152 } 1153 1154 r = dm_table_alloc_md_mempools(t); 1155 if (r) 1156 DMERR("unable to allocate mempools"); 1157 1158 return r; 1159 } 1160 1161 static DEFINE_MUTEX(_event_lock); 1162 void dm_table_event_callback(struct dm_table *t, 1163 void (*fn)(void *), void *context) 1164 { 1165 mutex_lock(&_event_lock); 1166 t->event_fn = fn; 1167 t->event_context = context; 1168 mutex_unlock(&_event_lock); 1169 } 1170 1171 void dm_table_event(struct dm_table *t) 1172 { 1173 /* 1174 * You can no longer call dm_table_event() from interrupt 1175 * context, use a bottom half instead. 1176 */ 1177 BUG_ON(in_interrupt()); 1178 1179 mutex_lock(&_event_lock); 1180 if (t->event_fn) 1181 t->event_fn(t->event_context); 1182 mutex_unlock(&_event_lock); 1183 } 1184 EXPORT_SYMBOL(dm_table_event); 1185 1186 sector_t dm_table_get_size(struct dm_table *t) 1187 { 1188 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1189 } 1190 EXPORT_SYMBOL(dm_table_get_size); 1191 1192 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1193 { 1194 if (index >= t->num_targets) 1195 return NULL; 1196 1197 return t->targets + index; 1198 } 1199 1200 /* 1201 * Search the btree for the correct target. 1202 * 1203 * Caller should check returned pointer with dm_target_is_valid() 1204 * to trap I/O beyond end of device. 1205 */ 1206 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1207 { 1208 unsigned int l, n = 0, k = 0; 1209 sector_t *node; 1210 1211 for (l = 0; l < t->depth; l++) { 1212 n = get_child(n, k); 1213 node = get_node(t, l, n); 1214 1215 for (k = 0; k < KEYS_PER_NODE; k++) 1216 if (node[k] >= sector) 1217 break; 1218 } 1219 1220 return &t->targets[(KEYS_PER_NODE * n) + k]; 1221 } 1222 1223 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1224 sector_t start, sector_t len, void *data) 1225 { 1226 unsigned *num_devices = data; 1227 1228 (*num_devices)++; 1229 1230 return 0; 1231 } 1232 1233 /* 1234 * Check whether a table has no data devices attached using each 1235 * target's iterate_devices method. 1236 * Returns false if the result is unknown because a target doesn't 1237 * support iterate_devices. 1238 */ 1239 bool dm_table_has_no_data_devices(struct dm_table *table) 1240 { 1241 struct dm_target *uninitialized_var(ti); 1242 unsigned i = 0, num_devices = 0; 1243 1244 while (i < dm_table_get_num_targets(table)) { 1245 ti = dm_table_get_target(table, i++); 1246 1247 if (!ti->type->iterate_devices) 1248 return false; 1249 1250 ti->type->iterate_devices(ti, count_device, &num_devices); 1251 if (num_devices) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 /* 1259 * Establish the new table's queue_limits and validate them. 1260 */ 1261 int dm_calculate_queue_limits(struct dm_table *table, 1262 struct queue_limits *limits) 1263 { 1264 struct dm_target *uninitialized_var(ti); 1265 struct queue_limits ti_limits; 1266 unsigned i = 0; 1267 1268 blk_set_stacking_limits(limits); 1269 1270 while (i < dm_table_get_num_targets(table)) { 1271 blk_set_stacking_limits(&ti_limits); 1272 1273 ti = dm_table_get_target(table, i++); 1274 1275 if (!ti->type->iterate_devices) 1276 goto combine_limits; 1277 1278 /* 1279 * Combine queue limits of all the devices this target uses. 1280 */ 1281 ti->type->iterate_devices(ti, dm_set_device_limits, 1282 &ti_limits); 1283 1284 /* Set I/O hints portion of queue limits */ 1285 if (ti->type->io_hints) 1286 ti->type->io_hints(ti, &ti_limits); 1287 1288 /* 1289 * Check each device area is consistent with the target's 1290 * overall queue limits. 1291 */ 1292 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1293 &ti_limits)) 1294 return -EINVAL; 1295 1296 combine_limits: 1297 /* 1298 * Merge this target's queue limits into the overall limits 1299 * for the table. 1300 */ 1301 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1302 DMWARN("%s: adding target device " 1303 "(start sect %llu len %llu) " 1304 "caused an alignment inconsistency", 1305 dm_device_name(table->md), 1306 (unsigned long long) ti->begin, 1307 (unsigned long long) ti->len); 1308 } 1309 1310 return validate_hardware_logical_block_alignment(table, limits); 1311 } 1312 1313 /* 1314 * Set the integrity profile for this device if all devices used have 1315 * matching profiles. We're quite deep in the resume path but still 1316 * don't know if all devices (particularly DM devices this device 1317 * may be stacked on) have matching profiles. Even if the profiles 1318 * don't match we have no way to fail (to resume) at this point. 1319 */ 1320 static void dm_table_set_integrity(struct dm_table *t) 1321 { 1322 struct gendisk *template_disk = NULL; 1323 1324 if (!blk_get_integrity(dm_disk(t->md))) 1325 return; 1326 1327 template_disk = dm_table_get_integrity_disk(t, true); 1328 if (template_disk) 1329 blk_integrity_register(dm_disk(t->md), 1330 blk_get_integrity(template_disk)); 1331 else if (blk_integrity_is_initialized(dm_disk(t->md))) 1332 DMWARN("%s: device no longer has a valid integrity profile", 1333 dm_device_name(t->md)); 1334 else 1335 DMWARN("%s: unable to establish an integrity profile", 1336 dm_device_name(t->md)); 1337 } 1338 1339 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1340 sector_t start, sector_t len, void *data) 1341 { 1342 unsigned flush = (*(unsigned *)data); 1343 struct request_queue *q = bdev_get_queue(dev->bdev); 1344 1345 return q && (q->flush_flags & flush); 1346 } 1347 1348 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1349 { 1350 struct dm_target *ti; 1351 unsigned i = 0; 1352 1353 /* 1354 * Require at least one underlying device to support flushes. 1355 * t->devices includes internal dm devices such as mirror logs 1356 * so we need to use iterate_devices here, which targets 1357 * supporting flushes must provide. 1358 */ 1359 while (i < dm_table_get_num_targets(t)) { 1360 ti = dm_table_get_target(t, i++); 1361 1362 if (!ti->num_flush_bios) 1363 continue; 1364 1365 if (ti->flush_supported) 1366 return 1; 1367 1368 if (ti->type->iterate_devices && 1369 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1370 return 1; 1371 } 1372 1373 return 0; 1374 } 1375 1376 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1377 { 1378 struct dm_target *ti; 1379 unsigned i = 0; 1380 1381 /* Ensure that all targets supports discard_zeroes_data. */ 1382 while (i < dm_table_get_num_targets(t)) { 1383 ti = dm_table_get_target(t, i++); 1384 1385 if (ti->discard_zeroes_data_unsupported) 1386 return 0; 1387 } 1388 1389 return 1; 1390 } 1391 1392 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1393 sector_t start, sector_t len, void *data) 1394 { 1395 struct request_queue *q = bdev_get_queue(dev->bdev); 1396 1397 return q && blk_queue_nonrot(q); 1398 } 1399 1400 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1401 sector_t start, sector_t len, void *data) 1402 { 1403 struct request_queue *q = bdev_get_queue(dev->bdev); 1404 1405 return q && !blk_queue_add_random(q); 1406 } 1407 1408 static bool dm_table_all_devices_attribute(struct dm_table *t, 1409 iterate_devices_callout_fn func) 1410 { 1411 struct dm_target *ti; 1412 unsigned i = 0; 1413 1414 while (i < dm_table_get_num_targets(t)) { 1415 ti = dm_table_get_target(t, i++); 1416 1417 if (!ti->type->iterate_devices || 1418 !ti->type->iterate_devices(ti, func, NULL)) 1419 return 0; 1420 } 1421 1422 return 1; 1423 } 1424 1425 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1426 sector_t start, sector_t len, void *data) 1427 { 1428 struct request_queue *q = bdev_get_queue(dev->bdev); 1429 1430 return q && !q->limits.max_write_same_sectors; 1431 } 1432 1433 static bool dm_table_supports_write_same(struct dm_table *t) 1434 { 1435 struct dm_target *ti; 1436 unsigned i = 0; 1437 1438 while (i < dm_table_get_num_targets(t)) { 1439 ti = dm_table_get_target(t, i++); 1440 1441 if (!ti->num_write_same_bios) 1442 return false; 1443 1444 if (!ti->type->iterate_devices || 1445 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1446 return false; 1447 } 1448 1449 return true; 1450 } 1451 1452 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1453 struct queue_limits *limits) 1454 { 1455 unsigned flush = 0; 1456 1457 /* 1458 * Copy table's limits to the DM device's request_queue 1459 */ 1460 q->limits = *limits; 1461 1462 if (!dm_table_supports_discards(t)) 1463 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1464 else 1465 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1466 1467 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1468 flush |= REQ_FLUSH; 1469 if (dm_table_supports_flush(t, REQ_FUA)) 1470 flush |= REQ_FUA; 1471 } 1472 blk_queue_flush(q, flush); 1473 1474 if (!dm_table_discard_zeroes_data(t)) 1475 q->limits.discard_zeroes_data = 0; 1476 1477 /* Ensure that all underlying devices are non-rotational. */ 1478 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1479 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1480 else 1481 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1482 1483 if (!dm_table_supports_write_same(t)) 1484 q->limits.max_write_same_sectors = 0; 1485 1486 dm_table_set_integrity(t); 1487 1488 /* 1489 * Determine whether or not this queue's I/O timings contribute 1490 * to the entropy pool, Only request-based targets use this. 1491 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1492 * have it set. 1493 */ 1494 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1495 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1496 1497 /* 1498 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1499 * visible to other CPUs because, once the flag is set, incoming bios 1500 * are processed by request-based dm, which refers to the queue 1501 * settings. 1502 * Until the flag set, bios are passed to bio-based dm and queued to 1503 * md->deferred where queue settings are not needed yet. 1504 * Those bios are passed to request-based dm at the resume time. 1505 */ 1506 smp_mb(); 1507 if (dm_table_request_based(t)) 1508 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1509 } 1510 1511 unsigned int dm_table_get_num_targets(struct dm_table *t) 1512 { 1513 return t->num_targets; 1514 } 1515 1516 struct list_head *dm_table_get_devices(struct dm_table *t) 1517 { 1518 return &t->devices; 1519 } 1520 1521 fmode_t dm_table_get_mode(struct dm_table *t) 1522 { 1523 return t->mode; 1524 } 1525 EXPORT_SYMBOL(dm_table_get_mode); 1526 1527 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1528 { 1529 int i = t->num_targets; 1530 struct dm_target *ti = t->targets; 1531 1532 while (i--) { 1533 if (postsuspend) { 1534 if (ti->type->postsuspend) 1535 ti->type->postsuspend(ti); 1536 } else if (ti->type->presuspend) 1537 ti->type->presuspend(ti); 1538 1539 ti++; 1540 } 1541 } 1542 1543 void dm_table_presuspend_targets(struct dm_table *t) 1544 { 1545 if (!t) 1546 return; 1547 1548 suspend_targets(t, 0); 1549 } 1550 1551 void dm_table_postsuspend_targets(struct dm_table *t) 1552 { 1553 if (!t) 1554 return; 1555 1556 suspend_targets(t, 1); 1557 } 1558 1559 int dm_table_resume_targets(struct dm_table *t) 1560 { 1561 int i, r = 0; 1562 1563 for (i = 0; i < t->num_targets; i++) { 1564 struct dm_target *ti = t->targets + i; 1565 1566 if (!ti->type->preresume) 1567 continue; 1568 1569 r = ti->type->preresume(ti); 1570 if (r) 1571 return r; 1572 } 1573 1574 for (i = 0; i < t->num_targets; i++) { 1575 struct dm_target *ti = t->targets + i; 1576 1577 if (ti->type->resume) 1578 ti->type->resume(ti); 1579 } 1580 1581 return 0; 1582 } 1583 1584 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1585 { 1586 list_add(&cb->list, &t->target_callbacks); 1587 } 1588 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1589 1590 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1591 { 1592 struct dm_dev_internal *dd; 1593 struct list_head *devices = dm_table_get_devices(t); 1594 struct dm_target_callbacks *cb; 1595 int r = 0; 1596 1597 list_for_each_entry(dd, devices, list) { 1598 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1599 char b[BDEVNAME_SIZE]; 1600 1601 if (likely(q)) 1602 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1603 else 1604 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1605 dm_device_name(t->md), 1606 bdevname(dd->dm_dev.bdev, b)); 1607 } 1608 1609 list_for_each_entry(cb, &t->target_callbacks, list) 1610 if (cb->congested_fn) 1611 r |= cb->congested_fn(cb, bdi_bits); 1612 1613 return r; 1614 } 1615 1616 int dm_table_any_busy_target(struct dm_table *t) 1617 { 1618 unsigned i; 1619 struct dm_target *ti; 1620 1621 for (i = 0; i < t->num_targets; i++) { 1622 ti = t->targets + i; 1623 if (ti->type->busy && ti->type->busy(ti)) 1624 return 1; 1625 } 1626 1627 return 0; 1628 } 1629 1630 struct mapped_device *dm_table_get_md(struct dm_table *t) 1631 { 1632 return t->md; 1633 } 1634 EXPORT_SYMBOL(dm_table_get_md); 1635 1636 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1637 sector_t start, sector_t len, void *data) 1638 { 1639 struct request_queue *q = bdev_get_queue(dev->bdev); 1640 1641 return q && blk_queue_discard(q); 1642 } 1643 1644 bool dm_table_supports_discards(struct dm_table *t) 1645 { 1646 struct dm_target *ti; 1647 unsigned i = 0; 1648 1649 /* 1650 * Unless any target used by the table set discards_supported, 1651 * require at least one underlying device to support discards. 1652 * t->devices includes internal dm devices such as mirror logs 1653 * so we need to use iterate_devices here, which targets 1654 * supporting discard selectively must provide. 1655 */ 1656 while (i < dm_table_get_num_targets(t)) { 1657 ti = dm_table_get_target(t, i++); 1658 1659 if (!ti->num_discard_bios) 1660 continue; 1661 1662 if (ti->discards_supported) 1663 return 1; 1664 1665 if (ti->type->iterate_devices && 1666 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1667 return 1; 1668 } 1669 1670 return 0; 1671 } 1672