xref: /openbmc/linux/drivers/md/dm-table.c (revision 0edbfea5)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 
24 #define DM_MSG_PREFIX "table"
25 
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 struct dm_table {
32 	struct mapped_device *md;
33 	unsigned type;
34 
35 	/* btree table */
36 	unsigned int depth;
37 	unsigned int counts[MAX_DEPTH];	/* in nodes */
38 	sector_t *index[MAX_DEPTH];
39 
40 	unsigned int num_targets;
41 	unsigned int num_allocated;
42 	sector_t *highs;
43 	struct dm_target *targets;
44 
45 	struct target_type *immutable_target_type;
46 	unsigned integrity_supported:1;
47 	unsigned singleton:1;
48 
49 	/*
50 	 * Indicates the rw permissions for the new logical
51 	 * device.  This should be a combination of FMODE_READ
52 	 * and FMODE_WRITE.
53 	 */
54 	fmode_t mode;
55 
56 	/* a list of devices used by this table */
57 	struct list_head devices;
58 
59 	/* events get handed up using this callback */
60 	void (*event_fn)(void *);
61 	void *event_context;
62 
63 	struct dm_md_mempools *mempools;
64 
65 	struct list_head target_callbacks;
66 };
67 
68 /*
69  * Similar to ceiling(log_size(n))
70  */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73 	int result = 0;
74 
75 	while (n > 1) {
76 		n = dm_div_up(n, base);
77 		result++;
78 	}
79 
80 	return result;
81 }
82 
83 /*
84  * Calculate the index of the child node of the n'th node k'th key.
85  */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88 	return (n * CHILDREN_PER_NODE) + k;
89 }
90 
91 /*
92  * Return the n'th node of level l from table t.
93  */
94 static inline sector_t *get_node(struct dm_table *t,
95 				 unsigned int l, unsigned int n)
96 {
97 	return t->index[l] + (n * KEYS_PER_NODE);
98 }
99 
100 /*
101  * Return the highest key that you could lookup from the n'th
102  * node on level l of the btree.
103  */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106 	for (; l < t->depth - 1; l++)
107 		n = get_child(n, CHILDREN_PER_NODE - 1);
108 
109 	if (n >= t->counts[l])
110 		return (sector_t) - 1;
111 
112 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114 
115 /*
116  * Fills in a level of the btree based on the highs of the level
117  * below it.
118  */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121 	unsigned int n, k;
122 	sector_t *node;
123 
124 	for (n = 0U; n < t->counts[l]; n++) {
125 		node = get_node(t, l, n);
126 
127 		for (k = 0U; k < KEYS_PER_NODE; k++)
128 			node[k] = high(t, l + 1, get_child(n, k));
129 	}
130 
131 	return 0;
132 }
133 
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136 	unsigned long size;
137 	void *addr;
138 
139 	/*
140 	 * Check that we're not going to overflow.
141 	 */
142 	if (nmemb > (ULONG_MAX / elem_size))
143 		return NULL;
144 
145 	size = nmemb * elem_size;
146 	addr = vzalloc(size);
147 
148 	return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151 
152 /*
153  * highs, and targets are managed as dynamic arrays during a
154  * table load.
155  */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158 	sector_t *n_highs;
159 	struct dm_target *n_targets;
160 
161 	/*
162 	 * Allocate both the target array and offset array at once.
163 	 * Append an empty entry to catch sectors beyond the end of
164 	 * the device.
165 	 */
166 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167 					  sizeof(sector_t));
168 	if (!n_highs)
169 		return -ENOMEM;
170 
171 	n_targets = (struct dm_target *) (n_highs + num);
172 
173 	memset(n_highs, -1, sizeof(*n_highs) * num);
174 	vfree(t->highs);
175 
176 	t->num_allocated = num;
177 	t->highs = n_highs;
178 	t->targets = n_targets;
179 
180 	return 0;
181 }
182 
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184 		    unsigned num_targets, struct mapped_device *md)
185 {
186 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187 
188 	if (!t)
189 		return -ENOMEM;
190 
191 	INIT_LIST_HEAD(&t->devices);
192 	INIT_LIST_HEAD(&t->target_callbacks);
193 
194 	if (!num_targets)
195 		num_targets = KEYS_PER_NODE;
196 
197 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198 
199 	if (!num_targets) {
200 		kfree(t);
201 		return -ENOMEM;
202 	}
203 
204 	if (alloc_targets(t, num_targets)) {
205 		kfree(t);
206 		return -ENOMEM;
207 	}
208 
209 	t->mode = mode;
210 	t->md = md;
211 	*result = t;
212 	return 0;
213 }
214 
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217 	struct list_head *tmp, *next;
218 
219 	list_for_each_safe(tmp, next, devices) {
220 		struct dm_dev_internal *dd =
221 		    list_entry(tmp, struct dm_dev_internal, list);
222 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 		       dm_device_name(md), dd->dm_dev->name);
224 		dm_put_table_device(md, dd->dm_dev);
225 		kfree(dd);
226 	}
227 }
228 
229 void dm_table_destroy(struct dm_table *t)
230 {
231 	unsigned int i;
232 
233 	if (!t)
234 		return;
235 
236 	/* free the indexes */
237 	if (t->depth >= 2)
238 		vfree(t->index[t->depth - 2]);
239 
240 	/* free the targets */
241 	for (i = 0; i < t->num_targets; i++) {
242 		struct dm_target *tgt = t->targets + i;
243 
244 		if (tgt->type->dtr)
245 			tgt->type->dtr(tgt);
246 
247 		dm_put_target_type(tgt->type);
248 	}
249 
250 	vfree(t->highs);
251 
252 	/* free the device list */
253 	free_devices(&t->devices, t->md);
254 
255 	dm_free_md_mempools(t->mempools);
256 
257 	kfree(t);
258 }
259 
260 /*
261  * See if we've already got a device in the list.
262  */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265 	struct dm_dev_internal *dd;
266 
267 	list_for_each_entry (dd, l, list)
268 		if (dd->dm_dev->bdev->bd_dev == dev)
269 			return dd;
270 
271 	return NULL;
272 }
273 
274 /*
275  * If possible, this checks an area of a destination device is invalid.
276  */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278 				  sector_t start, sector_t len, void *data)
279 {
280 	struct request_queue *q;
281 	struct queue_limits *limits = data;
282 	struct block_device *bdev = dev->bdev;
283 	sector_t dev_size =
284 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285 	unsigned short logical_block_size_sectors =
286 		limits->logical_block_size >> SECTOR_SHIFT;
287 	char b[BDEVNAME_SIZE];
288 
289 	/*
290 	 * Some devices exist without request functions,
291 	 * such as loop devices not yet bound to backing files.
292 	 * Forbid the use of such devices.
293 	 */
294 	q = bdev_get_queue(bdev);
295 	if (!q || !q->make_request_fn) {
296 		DMWARN("%s: %s is not yet initialised: "
297 		       "start=%llu, len=%llu, dev_size=%llu",
298 		       dm_device_name(ti->table->md), bdevname(bdev, b),
299 		       (unsigned long long)start,
300 		       (unsigned long long)len,
301 		       (unsigned long long)dev_size);
302 		return 1;
303 	}
304 
305 	if (!dev_size)
306 		return 0;
307 
308 	if ((start >= dev_size) || (start + len > dev_size)) {
309 		DMWARN("%s: %s too small for target: "
310 		       "start=%llu, len=%llu, dev_size=%llu",
311 		       dm_device_name(ti->table->md), bdevname(bdev, b),
312 		       (unsigned long long)start,
313 		       (unsigned long long)len,
314 		       (unsigned long long)dev_size);
315 		return 1;
316 	}
317 
318 	if (logical_block_size_sectors <= 1)
319 		return 0;
320 
321 	if (start & (logical_block_size_sectors - 1)) {
322 		DMWARN("%s: start=%llu not aligned to h/w "
323 		       "logical block size %u of %s",
324 		       dm_device_name(ti->table->md),
325 		       (unsigned long long)start,
326 		       limits->logical_block_size, bdevname(bdev, b));
327 		return 1;
328 	}
329 
330 	if (len & (logical_block_size_sectors - 1)) {
331 		DMWARN("%s: len=%llu not aligned to h/w "
332 		       "logical block size %u of %s",
333 		       dm_device_name(ti->table->md),
334 		       (unsigned long long)len,
335 		       limits->logical_block_size, bdevname(bdev, b));
336 		return 1;
337 	}
338 
339 	return 0;
340 }
341 
342 /*
343  * This upgrades the mode on an already open dm_dev, being
344  * careful to leave things as they were if we fail to reopen the
345  * device and not to touch the existing bdev field in case
346  * it is accessed concurrently inside dm_table_any_congested().
347  */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349 			struct mapped_device *md)
350 {
351 	int r;
352 	struct dm_dev *old_dev, *new_dev;
353 
354 	old_dev = dd->dm_dev;
355 
356 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357 				dd->dm_dev->mode | new_mode, &new_dev);
358 	if (r)
359 		return r;
360 
361 	dd->dm_dev = new_dev;
362 	dm_put_table_device(md, old_dev);
363 
364 	return 0;
365 }
366 
367 /*
368  * Convert the path to a device
369  */
370 dev_t dm_get_dev_t(const char *path)
371 {
372 	dev_t uninitialized_var(dev);
373 	struct block_device *bdev;
374 
375 	bdev = lookup_bdev(path);
376 	if (IS_ERR(bdev))
377 		dev = name_to_dev_t(path);
378 	else {
379 		dev = bdev->bd_dev;
380 		bdput(bdev);
381 	}
382 
383 	return dev;
384 }
385 EXPORT_SYMBOL_GPL(dm_get_dev_t);
386 
387 /*
388  * Add a device to the list, or just increment the usage count if
389  * it's already present.
390  */
391 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
392 		  struct dm_dev **result)
393 {
394 	int r;
395 	dev_t dev;
396 	struct dm_dev_internal *dd;
397 	struct dm_table *t = ti->table;
398 
399 	BUG_ON(!t);
400 
401 	dev = dm_get_dev_t(path);
402 	if (!dev)
403 		return -ENODEV;
404 
405 	dd = find_device(&t->devices, dev);
406 	if (!dd) {
407 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
408 		if (!dd)
409 			return -ENOMEM;
410 
411 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
412 			kfree(dd);
413 			return r;
414 		}
415 
416 		atomic_set(&dd->count, 0);
417 		list_add(&dd->list, &t->devices);
418 
419 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
420 		r = upgrade_mode(dd, mode, t->md);
421 		if (r)
422 			return r;
423 	}
424 	atomic_inc(&dd->count);
425 
426 	*result = dd->dm_dev;
427 	return 0;
428 }
429 EXPORT_SYMBOL(dm_get_device);
430 
431 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
432 				sector_t start, sector_t len, void *data)
433 {
434 	struct queue_limits *limits = data;
435 	struct block_device *bdev = dev->bdev;
436 	struct request_queue *q = bdev_get_queue(bdev);
437 	char b[BDEVNAME_SIZE];
438 
439 	if (unlikely(!q)) {
440 		DMWARN("%s: Cannot set limits for nonexistent device %s",
441 		       dm_device_name(ti->table->md), bdevname(bdev, b));
442 		return 0;
443 	}
444 
445 	if (bdev_stack_limits(limits, bdev, start) < 0)
446 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
447 		       "physical_block_size=%u, logical_block_size=%u, "
448 		       "alignment_offset=%u, start=%llu",
449 		       dm_device_name(ti->table->md), bdevname(bdev, b),
450 		       q->limits.physical_block_size,
451 		       q->limits.logical_block_size,
452 		       q->limits.alignment_offset,
453 		       (unsigned long long) start << SECTOR_SHIFT);
454 
455 	return 0;
456 }
457 
458 /*
459  * Decrement a device's use count and remove it if necessary.
460  */
461 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
462 {
463 	int found = 0;
464 	struct list_head *devices = &ti->table->devices;
465 	struct dm_dev_internal *dd;
466 
467 	list_for_each_entry(dd, devices, list) {
468 		if (dd->dm_dev == d) {
469 			found = 1;
470 			break;
471 		}
472 	}
473 	if (!found) {
474 		DMWARN("%s: device %s not in table devices list",
475 		       dm_device_name(ti->table->md), d->name);
476 		return;
477 	}
478 	if (atomic_dec_and_test(&dd->count)) {
479 		dm_put_table_device(ti->table->md, d);
480 		list_del(&dd->list);
481 		kfree(dd);
482 	}
483 }
484 EXPORT_SYMBOL(dm_put_device);
485 
486 /*
487  * Checks to see if the target joins onto the end of the table.
488  */
489 static int adjoin(struct dm_table *table, struct dm_target *ti)
490 {
491 	struct dm_target *prev;
492 
493 	if (!table->num_targets)
494 		return !ti->begin;
495 
496 	prev = &table->targets[table->num_targets - 1];
497 	return (ti->begin == (prev->begin + prev->len));
498 }
499 
500 /*
501  * Used to dynamically allocate the arg array.
502  *
503  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
504  * process messages even if some device is suspended. These messages have a
505  * small fixed number of arguments.
506  *
507  * On the other hand, dm-switch needs to process bulk data using messages and
508  * excessive use of GFP_NOIO could cause trouble.
509  */
510 static char **realloc_argv(unsigned *array_size, char **old_argv)
511 {
512 	char **argv;
513 	unsigned new_size;
514 	gfp_t gfp;
515 
516 	if (*array_size) {
517 		new_size = *array_size * 2;
518 		gfp = GFP_KERNEL;
519 	} else {
520 		new_size = 8;
521 		gfp = GFP_NOIO;
522 	}
523 	argv = kmalloc(new_size * sizeof(*argv), gfp);
524 	if (argv) {
525 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
526 		*array_size = new_size;
527 	}
528 
529 	kfree(old_argv);
530 	return argv;
531 }
532 
533 /*
534  * Destructively splits up the argument list to pass to ctr.
535  */
536 int dm_split_args(int *argc, char ***argvp, char *input)
537 {
538 	char *start, *end = input, *out, **argv = NULL;
539 	unsigned array_size = 0;
540 
541 	*argc = 0;
542 
543 	if (!input) {
544 		*argvp = NULL;
545 		return 0;
546 	}
547 
548 	argv = realloc_argv(&array_size, argv);
549 	if (!argv)
550 		return -ENOMEM;
551 
552 	while (1) {
553 		/* Skip whitespace */
554 		start = skip_spaces(end);
555 
556 		if (!*start)
557 			break;	/* success, we hit the end */
558 
559 		/* 'out' is used to remove any back-quotes */
560 		end = out = start;
561 		while (*end) {
562 			/* Everything apart from '\0' can be quoted */
563 			if (*end == '\\' && *(end + 1)) {
564 				*out++ = *(end + 1);
565 				end += 2;
566 				continue;
567 			}
568 
569 			if (isspace(*end))
570 				break;	/* end of token */
571 
572 			*out++ = *end++;
573 		}
574 
575 		/* have we already filled the array ? */
576 		if ((*argc + 1) > array_size) {
577 			argv = realloc_argv(&array_size, argv);
578 			if (!argv)
579 				return -ENOMEM;
580 		}
581 
582 		/* we know this is whitespace */
583 		if (*end)
584 			end++;
585 
586 		/* terminate the string and put it in the array */
587 		*out = '\0';
588 		argv[*argc] = start;
589 		(*argc)++;
590 	}
591 
592 	*argvp = argv;
593 	return 0;
594 }
595 
596 /*
597  * Impose necessary and sufficient conditions on a devices's table such
598  * that any incoming bio which respects its logical_block_size can be
599  * processed successfully.  If it falls across the boundary between
600  * two or more targets, the size of each piece it gets split into must
601  * be compatible with the logical_block_size of the target processing it.
602  */
603 static int validate_hardware_logical_block_alignment(struct dm_table *table,
604 						 struct queue_limits *limits)
605 {
606 	/*
607 	 * This function uses arithmetic modulo the logical_block_size
608 	 * (in units of 512-byte sectors).
609 	 */
610 	unsigned short device_logical_block_size_sects =
611 		limits->logical_block_size >> SECTOR_SHIFT;
612 
613 	/*
614 	 * Offset of the start of the next table entry, mod logical_block_size.
615 	 */
616 	unsigned short next_target_start = 0;
617 
618 	/*
619 	 * Given an aligned bio that extends beyond the end of a
620 	 * target, how many sectors must the next target handle?
621 	 */
622 	unsigned short remaining = 0;
623 
624 	struct dm_target *uninitialized_var(ti);
625 	struct queue_limits ti_limits;
626 	unsigned i = 0;
627 
628 	/*
629 	 * Check each entry in the table in turn.
630 	 */
631 	while (i < dm_table_get_num_targets(table)) {
632 		ti = dm_table_get_target(table, i++);
633 
634 		blk_set_stacking_limits(&ti_limits);
635 
636 		/* combine all target devices' limits */
637 		if (ti->type->iterate_devices)
638 			ti->type->iterate_devices(ti, dm_set_device_limits,
639 						  &ti_limits);
640 
641 		/*
642 		 * If the remaining sectors fall entirely within this
643 		 * table entry are they compatible with its logical_block_size?
644 		 */
645 		if (remaining < ti->len &&
646 		    remaining & ((ti_limits.logical_block_size >>
647 				  SECTOR_SHIFT) - 1))
648 			break;	/* Error */
649 
650 		next_target_start =
651 		    (unsigned short) ((next_target_start + ti->len) &
652 				      (device_logical_block_size_sects - 1));
653 		remaining = next_target_start ?
654 		    device_logical_block_size_sects - next_target_start : 0;
655 	}
656 
657 	if (remaining) {
658 		DMWARN("%s: table line %u (start sect %llu len %llu) "
659 		       "not aligned to h/w logical block size %u",
660 		       dm_device_name(table->md), i,
661 		       (unsigned long long) ti->begin,
662 		       (unsigned long long) ti->len,
663 		       limits->logical_block_size);
664 		return -EINVAL;
665 	}
666 
667 	return 0;
668 }
669 
670 int dm_table_add_target(struct dm_table *t, const char *type,
671 			sector_t start, sector_t len, char *params)
672 {
673 	int r = -EINVAL, argc;
674 	char **argv;
675 	struct dm_target *tgt;
676 
677 	if (t->singleton) {
678 		DMERR("%s: target type %s must appear alone in table",
679 		      dm_device_name(t->md), t->targets->type->name);
680 		return -EINVAL;
681 	}
682 
683 	BUG_ON(t->num_targets >= t->num_allocated);
684 
685 	tgt = t->targets + t->num_targets;
686 	memset(tgt, 0, sizeof(*tgt));
687 
688 	if (!len) {
689 		DMERR("%s: zero-length target", dm_device_name(t->md));
690 		return -EINVAL;
691 	}
692 
693 	tgt->type = dm_get_target_type(type);
694 	if (!tgt->type) {
695 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
696 		      type);
697 		return -EINVAL;
698 	}
699 
700 	if (dm_target_needs_singleton(tgt->type)) {
701 		if (t->num_targets) {
702 			DMERR("%s: target type %s must appear alone in table",
703 			      dm_device_name(t->md), type);
704 			return -EINVAL;
705 		}
706 		t->singleton = 1;
707 	}
708 
709 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
710 		DMERR("%s: target type %s may not be included in read-only tables",
711 		      dm_device_name(t->md), type);
712 		return -EINVAL;
713 	}
714 
715 	if (t->immutable_target_type) {
716 		if (t->immutable_target_type != tgt->type) {
717 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
718 			      dm_device_name(t->md), t->immutable_target_type->name);
719 			return -EINVAL;
720 		}
721 	} else if (dm_target_is_immutable(tgt->type)) {
722 		if (t->num_targets) {
723 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
724 			      dm_device_name(t->md), tgt->type->name);
725 			return -EINVAL;
726 		}
727 		t->immutable_target_type = tgt->type;
728 	}
729 
730 	tgt->table = t;
731 	tgt->begin = start;
732 	tgt->len = len;
733 	tgt->error = "Unknown error";
734 
735 	/*
736 	 * Does this target adjoin the previous one ?
737 	 */
738 	if (!adjoin(t, tgt)) {
739 		tgt->error = "Gap in table";
740 		r = -EINVAL;
741 		goto bad;
742 	}
743 
744 	r = dm_split_args(&argc, &argv, params);
745 	if (r) {
746 		tgt->error = "couldn't split parameters (insufficient memory)";
747 		goto bad;
748 	}
749 
750 	r = tgt->type->ctr(tgt, argc, argv);
751 	kfree(argv);
752 	if (r)
753 		goto bad;
754 
755 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
756 
757 	if (!tgt->num_discard_bios && tgt->discards_supported)
758 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
759 		       dm_device_name(t->md), type);
760 
761 	return 0;
762 
763  bad:
764 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
765 	dm_put_target_type(tgt->type);
766 	return r;
767 }
768 
769 /*
770  * Target argument parsing helpers.
771  */
772 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
773 			     unsigned *value, char **error, unsigned grouped)
774 {
775 	const char *arg_str = dm_shift_arg(arg_set);
776 	char dummy;
777 
778 	if (!arg_str ||
779 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
780 	    (*value < arg->min) ||
781 	    (*value > arg->max) ||
782 	    (grouped && arg_set->argc < *value)) {
783 		*error = arg->error;
784 		return -EINVAL;
785 	}
786 
787 	return 0;
788 }
789 
790 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
791 		unsigned *value, char **error)
792 {
793 	return validate_next_arg(arg, arg_set, value, error, 0);
794 }
795 EXPORT_SYMBOL(dm_read_arg);
796 
797 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
798 		      unsigned *value, char **error)
799 {
800 	return validate_next_arg(arg, arg_set, value, error, 1);
801 }
802 EXPORT_SYMBOL(dm_read_arg_group);
803 
804 const char *dm_shift_arg(struct dm_arg_set *as)
805 {
806 	char *r;
807 
808 	if (as->argc) {
809 		as->argc--;
810 		r = *as->argv;
811 		as->argv++;
812 		return r;
813 	}
814 
815 	return NULL;
816 }
817 EXPORT_SYMBOL(dm_shift_arg);
818 
819 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
820 {
821 	BUG_ON(as->argc < num_args);
822 	as->argc -= num_args;
823 	as->argv += num_args;
824 }
825 EXPORT_SYMBOL(dm_consume_args);
826 
827 static bool __table_type_request_based(unsigned table_type)
828 {
829 	return (table_type == DM_TYPE_REQUEST_BASED ||
830 		table_type == DM_TYPE_MQ_REQUEST_BASED);
831 }
832 
833 static int dm_table_set_type(struct dm_table *t)
834 {
835 	unsigned i;
836 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
837 	bool use_blk_mq = false;
838 	struct dm_target *tgt;
839 	struct dm_dev_internal *dd;
840 	struct list_head *devices;
841 	unsigned live_md_type = dm_get_md_type(t->md);
842 
843 	for (i = 0; i < t->num_targets; i++) {
844 		tgt = t->targets + i;
845 		if (dm_target_hybrid(tgt))
846 			hybrid = 1;
847 		else if (dm_target_request_based(tgt))
848 			request_based = 1;
849 		else
850 			bio_based = 1;
851 
852 		if (bio_based && request_based) {
853 			DMWARN("Inconsistent table: different target types"
854 			       " can't be mixed up");
855 			return -EINVAL;
856 		}
857 	}
858 
859 	if (hybrid && !bio_based && !request_based) {
860 		/*
861 		 * The targets can work either way.
862 		 * Determine the type from the live device.
863 		 * Default to bio-based if device is new.
864 		 */
865 		if (__table_type_request_based(live_md_type))
866 			request_based = 1;
867 		else
868 			bio_based = 1;
869 	}
870 
871 	if (bio_based) {
872 		/* We must use this table as bio-based */
873 		t->type = DM_TYPE_BIO_BASED;
874 		return 0;
875 	}
876 
877 	BUG_ON(!request_based); /* No targets in this table */
878 
879 	/*
880 	 * Request-based dm supports only tables that have a single target now.
881 	 * To support multiple targets, request splitting support is needed,
882 	 * and that needs lots of changes in the block-layer.
883 	 * (e.g. request completion process for partial completion.)
884 	 */
885 	if (t->num_targets > 1) {
886 		DMWARN("Request-based dm doesn't support multiple targets yet");
887 		return -EINVAL;
888 	}
889 
890 	/* Non-request-stackable devices can't be used for request-based dm */
891 	devices = dm_table_get_devices(t);
892 	list_for_each_entry(dd, devices, list) {
893 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
894 
895 		if (!blk_queue_stackable(q)) {
896 			DMERR("table load rejected: including"
897 			      " non-request-stackable devices");
898 			return -EINVAL;
899 		}
900 
901 		if (q->mq_ops)
902 			use_blk_mq = true;
903 	}
904 
905 	if (use_blk_mq) {
906 		/* verify _all_ devices in the table are blk-mq devices */
907 		list_for_each_entry(dd, devices, list)
908 			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
909 				DMERR("table load rejected: not all devices"
910 				      " are blk-mq request-stackable");
911 				return -EINVAL;
912 			}
913 		t->type = DM_TYPE_MQ_REQUEST_BASED;
914 
915 	} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
916 		/* inherit live MD type */
917 		t->type = live_md_type;
918 
919 	} else
920 		t->type = DM_TYPE_REQUEST_BASED;
921 
922 	return 0;
923 }
924 
925 unsigned dm_table_get_type(struct dm_table *t)
926 {
927 	return t->type;
928 }
929 
930 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
931 {
932 	return t->immutable_target_type;
933 }
934 
935 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
936 {
937 	/* Immutable target is implicitly a singleton */
938 	if (t->num_targets > 1 ||
939 	    !dm_target_is_immutable(t->targets[0].type))
940 		return NULL;
941 
942 	return t->targets;
943 }
944 
945 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
946 {
947 	struct dm_target *uninitialized_var(ti);
948 	unsigned i = 0;
949 
950 	while (i < dm_table_get_num_targets(t)) {
951 		ti = dm_table_get_target(t, i++);
952 		if (dm_target_is_wildcard(ti->type))
953 			return ti;
954 	}
955 
956 	return NULL;
957 }
958 
959 bool dm_table_request_based(struct dm_table *t)
960 {
961 	return __table_type_request_based(dm_table_get_type(t));
962 }
963 
964 bool dm_table_mq_request_based(struct dm_table *t)
965 {
966 	return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
967 }
968 
969 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
970 {
971 	unsigned type = dm_table_get_type(t);
972 	unsigned per_io_data_size = 0;
973 	struct dm_target *tgt;
974 	unsigned i;
975 
976 	if (unlikely(type == DM_TYPE_NONE)) {
977 		DMWARN("no table type is set, can't allocate mempools");
978 		return -EINVAL;
979 	}
980 
981 	if (type == DM_TYPE_BIO_BASED)
982 		for (i = 0; i < t->num_targets; i++) {
983 			tgt = t->targets + i;
984 			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
985 		}
986 
987 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
988 	if (!t->mempools)
989 		return -ENOMEM;
990 
991 	return 0;
992 }
993 
994 void dm_table_free_md_mempools(struct dm_table *t)
995 {
996 	dm_free_md_mempools(t->mempools);
997 	t->mempools = NULL;
998 }
999 
1000 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1001 {
1002 	return t->mempools;
1003 }
1004 
1005 static int setup_indexes(struct dm_table *t)
1006 {
1007 	int i;
1008 	unsigned int total = 0;
1009 	sector_t *indexes;
1010 
1011 	/* allocate the space for *all* the indexes */
1012 	for (i = t->depth - 2; i >= 0; i--) {
1013 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1014 		total += t->counts[i];
1015 	}
1016 
1017 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1018 	if (!indexes)
1019 		return -ENOMEM;
1020 
1021 	/* set up internal nodes, bottom-up */
1022 	for (i = t->depth - 2; i >= 0; i--) {
1023 		t->index[i] = indexes;
1024 		indexes += (KEYS_PER_NODE * t->counts[i]);
1025 		setup_btree_index(i, t);
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 /*
1032  * Builds the btree to index the map.
1033  */
1034 static int dm_table_build_index(struct dm_table *t)
1035 {
1036 	int r = 0;
1037 	unsigned int leaf_nodes;
1038 
1039 	/* how many indexes will the btree have ? */
1040 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1041 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1042 
1043 	/* leaf layer has already been set up */
1044 	t->counts[t->depth - 1] = leaf_nodes;
1045 	t->index[t->depth - 1] = t->highs;
1046 
1047 	if (t->depth >= 2)
1048 		r = setup_indexes(t);
1049 
1050 	return r;
1051 }
1052 
1053 static bool integrity_profile_exists(struct gendisk *disk)
1054 {
1055 	return !!blk_get_integrity(disk);
1056 }
1057 
1058 /*
1059  * Get a disk whose integrity profile reflects the table's profile.
1060  * Returns NULL if integrity support was inconsistent or unavailable.
1061  */
1062 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1063 {
1064 	struct list_head *devices = dm_table_get_devices(t);
1065 	struct dm_dev_internal *dd = NULL;
1066 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1067 
1068 	list_for_each_entry(dd, devices, list) {
1069 		template_disk = dd->dm_dev->bdev->bd_disk;
1070 		if (!integrity_profile_exists(template_disk))
1071 			goto no_integrity;
1072 		else if (prev_disk &&
1073 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1074 			goto no_integrity;
1075 		prev_disk = template_disk;
1076 	}
1077 
1078 	return template_disk;
1079 
1080 no_integrity:
1081 	if (prev_disk)
1082 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1083 		       dm_device_name(t->md),
1084 		       prev_disk->disk_name,
1085 		       template_disk->disk_name);
1086 	return NULL;
1087 }
1088 
1089 /*
1090  * Register the mapped device for blk_integrity support if the
1091  * underlying devices have an integrity profile.  But all devices may
1092  * not have matching profiles (checking all devices isn't reliable
1093  * during table load because this table may use other DM device(s) which
1094  * must be resumed before they will have an initialized integity
1095  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1096  * profile validation: First pass during table load, final pass during
1097  * resume.
1098  */
1099 static int dm_table_register_integrity(struct dm_table *t)
1100 {
1101 	struct mapped_device *md = t->md;
1102 	struct gendisk *template_disk = NULL;
1103 
1104 	template_disk = dm_table_get_integrity_disk(t);
1105 	if (!template_disk)
1106 		return 0;
1107 
1108 	if (!integrity_profile_exists(dm_disk(md))) {
1109 		t->integrity_supported = 1;
1110 		/*
1111 		 * Register integrity profile during table load; we can do
1112 		 * this because the final profile must match during resume.
1113 		 */
1114 		blk_integrity_register(dm_disk(md),
1115 				       blk_get_integrity(template_disk));
1116 		return 0;
1117 	}
1118 
1119 	/*
1120 	 * If DM device already has an initialized integrity
1121 	 * profile the new profile should not conflict.
1122 	 */
1123 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1124 		DMWARN("%s: conflict with existing integrity profile: "
1125 		       "%s profile mismatch",
1126 		       dm_device_name(t->md),
1127 		       template_disk->disk_name);
1128 		return 1;
1129 	}
1130 
1131 	/* Preserve existing integrity profile */
1132 	t->integrity_supported = 1;
1133 	return 0;
1134 }
1135 
1136 /*
1137  * Prepares the table for use by building the indices,
1138  * setting the type, and allocating mempools.
1139  */
1140 int dm_table_complete(struct dm_table *t)
1141 {
1142 	int r;
1143 
1144 	r = dm_table_set_type(t);
1145 	if (r) {
1146 		DMERR("unable to set table type");
1147 		return r;
1148 	}
1149 
1150 	r = dm_table_build_index(t);
1151 	if (r) {
1152 		DMERR("unable to build btrees");
1153 		return r;
1154 	}
1155 
1156 	r = dm_table_register_integrity(t);
1157 	if (r) {
1158 		DMERR("could not register integrity profile.");
1159 		return r;
1160 	}
1161 
1162 	r = dm_table_alloc_md_mempools(t, t->md);
1163 	if (r)
1164 		DMERR("unable to allocate mempools");
1165 
1166 	return r;
1167 }
1168 
1169 static DEFINE_MUTEX(_event_lock);
1170 void dm_table_event_callback(struct dm_table *t,
1171 			     void (*fn)(void *), void *context)
1172 {
1173 	mutex_lock(&_event_lock);
1174 	t->event_fn = fn;
1175 	t->event_context = context;
1176 	mutex_unlock(&_event_lock);
1177 }
1178 
1179 void dm_table_event(struct dm_table *t)
1180 {
1181 	/*
1182 	 * You can no longer call dm_table_event() from interrupt
1183 	 * context, use a bottom half instead.
1184 	 */
1185 	BUG_ON(in_interrupt());
1186 
1187 	mutex_lock(&_event_lock);
1188 	if (t->event_fn)
1189 		t->event_fn(t->event_context);
1190 	mutex_unlock(&_event_lock);
1191 }
1192 EXPORT_SYMBOL(dm_table_event);
1193 
1194 sector_t dm_table_get_size(struct dm_table *t)
1195 {
1196 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1197 }
1198 EXPORT_SYMBOL(dm_table_get_size);
1199 
1200 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1201 {
1202 	if (index >= t->num_targets)
1203 		return NULL;
1204 
1205 	return t->targets + index;
1206 }
1207 
1208 /*
1209  * Search the btree for the correct target.
1210  *
1211  * Caller should check returned pointer with dm_target_is_valid()
1212  * to trap I/O beyond end of device.
1213  */
1214 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1215 {
1216 	unsigned int l, n = 0, k = 0;
1217 	sector_t *node;
1218 
1219 	for (l = 0; l < t->depth; l++) {
1220 		n = get_child(n, k);
1221 		node = get_node(t, l, n);
1222 
1223 		for (k = 0; k < KEYS_PER_NODE; k++)
1224 			if (node[k] >= sector)
1225 				break;
1226 	}
1227 
1228 	return &t->targets[(KEYS_PER_NODE * n) + k];
1229 }
1230 
1231 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1232 			sector_t start, sector_t len, void *data)
1233 {
1234 	unsigned *num_devices = data;
1235 
1236 	(*num_devices)++;
1237 
1238 	return 0;
1239 }
1240 
1241 /*
1242  * Check whether a table has no data devices attached using each
1243  * target's iterate_devices method.
1244  * Returns false if the result is unknown because a target doesn't
1245  * support iterate_devices.
1246  */
1247 bool dm_table_has_no_data_devices(struct dm_table *table)
1248 {
1249 	struct dm_target *uninitialized_var(ti);
1250 	unsigned i = 0, num_devices = 0;
1251 
1252 	while (i < dm_table_get_num_targets(table)) {
1253 		ti = dm_table_get_target(table, i++);
1254 
1255 		if (!ti->type->iterate_devices)
1256 			return false;
1257 
1258 		ti->type->iterate_devices(ti, count_device, &num_devices);
1259 		if (num_devices)
1260 			return false;
1261 	}
1262 
1263 	return true;
1264 }
1265 
1266 /*
1267  * Establish the new table's queue_limits and validate them.
1268  */
1269 int dm_calculate_queue_limits(struct dm_table *table,
1270 			      struct queue_limits *limits)
1271 {
1272 	struct dm_target *uninitialized_var(ti);
1273 	struct queue_limits ti_limits;
1274 	unsigned i = 0;
1275 
1276 	blk_set_stacking_limits(limits);
1277 
1278 	while (i < dm_table_get_num_targets(table)) {
1279 		blk_set_stacking_limits(&ti_limits);
1280 
1281 		ti = dm_table_get_target(table, i++);
1282 
1283 		if (!ti->type->iterate_devices)
1284 			goto combine_limits;
1285 
1286 		/*
1287 		 * Combine queue limits of all the devices this target uses.
1288 		 */
1289 		ti->type->iterate_devices(ti, dm_set_device_limits,
1290 					  &ti_limits);
1291 
1292 		/* Set I/O hints portion of queue limits */
1293 		if (ti->type->io_hints)
1294 			ti->type->io_hints(ti, &ti_limits);
1295 
1296 		/*
1297 		 * Check each device area is consistent with the target's
1298 		 * overall queue limits.
1299 		 */
1300 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1301 					      &ti_limits))
1302 			return -EINVAL;
1303 
1304 combine_limits:
1305 		/*
1306 		 * Merge this target's queue limits into the overall limits
1307 		 * for the table.
1308 		 */
1309 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1310 			DMWARN("%s: adding target device "
1311 			       "(start sect %llu len %llu) "
1312 			       "caused an alignment inconsistency",
1313 			       dm_device_name(table->md),
1314 			       (unsigned long long) ti->begin,
1315 			       (unsigned long long) ti->len);
1316 	}
1317 
1318 	return validate_hardware_logical_block_alignment(table, limits);
1319 }
1320 
1321 /*
1322  * Verify that all devices have an integrity profile that matches the
1323  * DM device's registered integrity profile.  If the profiles don't
1324  * match then unregister the DM device's integrity profile.
1325  */
1326 static void dm_table_verify_integrity(struct dm_table *t)
1327 {
1328 	struct gendisk *template_disk = NULL;
1329 
1330 	if (t->integrity_supported) {
1331 		/*
1332 		 * Verify that the original integrity profile
1333 		 * matches all the devices in this table.
1334 		 */
1335 		template_disk = dm_table_get_integrity_disk(t);
1336 		if (template_disk &&
1337 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1338 			return;
1339 	}
1340 
1341 	if (integrity_profile_exists(dm_disk(t->md))) {
1342 		DMWARN("%s: unable to establish an integrity profile",
1343 		       dm_device_name(t->md));
1344 		blk_integrity_unregister(dm_disk(t->md));
1345 	}
1346 }
1347 
1348 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1349 				sector_t start, sector_t len, void *data)
1350 {
1351 	unsigned long flush = (unsigned long) data;
1352 	struct request_queue *q = bdev_get_queue(dev->bdev);
1353 
1354 	return q && (q->queue_flags & flush);
1355 }
1356 
1357 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1358 {
1359 	struct dm_target *ti;
1360 	unsigned i = 0;
1361 
1362 	/*
1363 	 * Require at least one underlying device to support flushes.
1364 	 * t->devices includes internal dm devices such as mirror logs
1365 	 * so we need to use iterate_devices here, which targets
1366 	 * supporting flushes must provide.
1367 	 */
1368 	while (i < dm_table_get_num_targets(t)) {
1369 		ti = dm_table_get_target(t, i++);
1370 
1371 		if (!ti->num_flush_bios)
1372 			continue;
1373 
1374 		if (ti->flush_supported)
1375 			return true;
1376 
1377 		if (ti->type->iterate_devices &&
1378 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1379 			return true;
1380 	}
1381 
1382 	return false;
1383 }
1384 
1385 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1386 {
1387 	struct dm_target *ti;
1388 	unsigned i = 0;
1389 
1390 	/* Ensure that all targets supports discard_zeroes_data. */
1391 	while (i < dm_table_get_num_targets(t)) {
1392 		ti = dm_table_get_target(t, i++);
1393 
1394 		if (ti->discard_zeroes_data_unsupported)
1395 			return false;
1396 	}
1397 
1398 	return true;
1399 }
1400 
1401 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1402 			    sector_t start, sector_t len, void *data)
1403 {
1404 	struct request_queue *q = bdev_get_queue(dev->bdev);
1405 
1406 	return q && blk_queue_nonrot(q);
1407 }
1408 
1409 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1410 			     sector_t start, sector_t len, void *data)
1411 {
1412 	struct request_queue *q = bdev_get_queue(dev->bdev);
1413 
1414 	return q && !blk_queue_add_random(q);
1415 }
1416 
1417 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1418 				   sector_t start, sector_t len, void *data)
1419 {
1420 	struct request_queue *q = bdev_get_queue(dev->bdev);
1421 
1422 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1423 }
1424 
1425 static bool dm_table_all_devices_attribute(struct dm_table *t,
1426 					   iterate_devices_callout_fn func)
1427 {
1428 	struct dm_target *ti;
1429 	unsigned i = 0;
1430 
1431 	while (i < dm_table_get_num_targets(t)) {
1432 		ti = dm_table_get_target(t, i++);
1433 
1434 		if (!ti->type->iterate_devices ||
1435 		    !ti->type->iterate_devices(ti, func, NULL))
1436 			return false;
1437 	}
1438 
1439 	return true;
1440 }
1441 
1442 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1443 					 sector_t start, sector_t len, void *data)
1444 {
1445 	struct request_queue *q = bdev_get_queue(dev->bdev);
1446 
1447 	return q && !q->limits.max_write_same_sectors;
1448 }
1449 
1450 static bool dm_table_supports_write_same(struct dm_table *t)
1451 {
1452 	struct dm_target *ti;
1453 	unsigned i = 0;
1454 
1455 	while (i < dm_table_get_num_targets(t)) {
1456 		ti = dm_table_get_target(t, i++);
1457 
1458 		if (!ti->num_write_same_bios)
1459 			return false;
1460 
1461 		if (!ti->type->iterate_devices ||
1462 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1463 			return false;
1464 	}
1465 
1466 	return true;
1467 }
1468 
1469 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1470 				  sector_t start, sector_t len, void *data)
1471 {
1472 	struct request_queue *q = bdev_get_queue(dev->bdev);
1473 
1474 	return q && blk_queue_discard(q);
1475 }
1476 
1477 static bool dm_table_supports_discards(struct dm_table *t)
1478 {
1479 	struct dm_target *ti;
1480 	unsigned i = 0;
1481 
1482 	/*
1483 	 * Unless any target used by the table set discards_supported,
1484 	 * require at least one underlying device to support discards.
1485 	 * t->devices includes internal dm devices such as mirror logs
1486 	 * so we need to use iterate_devices here, which targets
1487 	 * supporting discard selectively must provide.
1488 	 */
1489 	while (i < dm_table_get_num_targets(t)) {
1490 		ti = dm_table_get_target(t, i++);
1491 
1492 		if (!ti->num_discard_bios)
1493 			continue;
1494 
1495 		if (ti->discards_supported)
1496 			return true;
1497 
1498 		if (ti->type->iterate_devices &&
1499 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1500 			return true;
1501 	}
1502 
1503 	return false;
1504 }
1505 
1506 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1507 			       struct queue_limits *limits)
1508 {
1509 	bool wc = false, fua = false;
1510 
1511 	/*
1512 	 * Copy table's limits to the DM device's request_queue
1513 	 */
1514 	q->limits = *limits;
1515 
1516 	if (!dm_table_supports_discards(t))
1517 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1518 	else
1519 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1520 
1521 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1522 		wc = true;
1523 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1524 			fua = true;
1525 	}
1526 	blk_queue_write_cache(q, wc, fua);
1527 
1528 	if (!dm_table_discard_zeroes_data(t))
1529 		q->limits.discard_zeroes_data = 0;
1530 
1531 	/* Ensure that all underlying devices are non-rotational. */
1532 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1533 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1534 	else
1535 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1536 
1537 	if (!dm_table_supports_write_same(t))
1538 		q->limits.max_write_same_sectors = 0;
1539 
1540 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1541 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1542 	else
1543 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1544 
1545 	dm_table_verify_integrity(t);
1546 
1547 	/*
1548 	 * Determine whether or not this queue's I/O timings contribute
1549 	 * to the entropy pool, Only request-based targets use this.
1550 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1551 	 * have it set.
1552 	 */
1553 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1554 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1555 
1556 	/*
1557 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1558 	 * visible to other CPUs because, once the flag is set, incoming bios
1559 	 * are processed by request-based dm, which refers to the queue
1560 	 * settings.
1561 	 * Until the flag set, bios are passed to bio-based dm and queued to
1562 	 * md->deferred where queue settings are not needed yet.
1563 	 * Those bios are passed to request-based dm at the resume time.
1564 	 */
1565 	smp_mb();
1566 	if (dm_table_request_based(t))
1567 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1568 }
1569 
1570 unsigned int dm_table_get_num_targets(struct dm_table *t)
1571 {
1572 	return t->num_targets;
1573 }
1574 
1575 struct list_head *dm_table_get_devices(struct dm_table *t)
1576 {
1577 	return &t->devices;
1578 }
1579 
1580 fmode_t dm_table_get_mode(struct dm_table *t)
1581 {
1582 	return t->mode;
1583 }
1584 EXPORT_SYMBOL(dm_table_get_mode);
1585 
1586 enum suspend_mode {
1587 	PRESUSPEND,
1588 	PRESUSPEND_UNDO,
1589 	POSTSUSPEND,
1590 };
1591 
1592 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1593 {
1594 	int i = t->num_targets;
1595 	struct dm_target *ti = t->targets;
1596 
1597 	while (i--) {
1598 		switch (mode) {
1599 		case PRESUSPEND:
1600 			if (ti->type->presuspend)
1601 				ti->type->presuspend(ti);
1602 			break;
1603 		case PRESUSPEND_UNDO:
1604 			if (ti->type->presuspend_undo)
1605 				ti->type->presuspend_undo(ti);
1606 			break;
1607 		case POSTSUSPEND:
1608 			if (ti->type->postsuspend)
1609 				ti->type->postsuspend(ti);
1610 			break;
1611 		}
1612 		ti++;
1613 	}
1614 }
1615 
1616 void dm_table_presuspend_targets(struct dm_table *t)
1617 {
1618 	if (!t)
1619 		return;
1620 
1621 	suspend_targets(t, PRESUSPEND);
1622 }
1623 
1624 void dm_table_presuspend_undo_targets(struct dm_table *t)
1625 {
1626 	if (!t)
1627 		return;
1628 
1629 	suspend_targets(t, PRESUSPEND_UNDO);
1630 }
1631 
1632 void dm_table_postsuspend_targets(struct dm_table *t)
1633 {
1634 	if (!t)
1635 		return;
1636 
1637 	suspend_targets(t, POSTSUSPEND);
1638 }
1639 
1640 int dm_table_resume_targets(struct dm_table *t)
1641 {
1642 	int i, r = 0;
1643 
1644 	for (i = 0; i < t->num_targets; i++) {
1645 		struct dm_target *ti = t->targets + i;
1646 
1647 		if (!ti->type->preresume)
1648 			continue;
1649 
1650 		r = ti->type->preresume(ti);
1651 		if (r) {
1652 			DMERR("%s: %s: preresume failed, error = %d",
1653 			      dm_device_name(t->md), ti->type->name, r);
1654 			return r;
1655 		}
1656 	}
1657 
1658 	for (i = 0; i < t->num_targets; i++) {
1659 		struct dm_target *ti = t->targets + i;
1660 
1661 		if (ti->type->resume)
1662 			ti->type->resume(ti);
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1669 {
1670 	list_add(&cb->list, &t->target_callbacks);
1671 }
1672 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1673 
1674 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1675 {
1676 	struct dm_dev_internal *dd;
1677 	struct list_head *devices = dm_table_get_devices(t);
1678 	struct dm_target_callbacks *cb;
1679 	int r = 0;
1680 
1681 	list_for_each_entry(dd, devices, list) {
1682 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1683 		char b[BDEVNAME_SIZE];
1684 
1685 		if (likely(q))
1686 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1687 		else
1688 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1689 				     dm_device_name(t->md),
1690 				     bdevname(dd->dm_dev->bdev, b));
1691 	}
1692 
1693 	list_for_each_entry(cb, &t->target_callbacks, list)
1694 		if (cb->congested_fn)
1695 			r |= cb->congested_fn(cb, bdi_bits);
1696 
1697 	return r;
1698 }
1699 
1700 struct mapped_device *dm_table_get_md(struct dm_table *t)
1701 {
1702 	return t->md;
1703 }
1704 EXPORT_SYMBOL(dm_table_get_md);
1705 
1706 void dm_table_run_md_queue_async(struct dm_table *t)
1707 {
1708 	struct mapped_device *md;
1709 	struct request_queue *queue;
1710 	unsigned long flags;
1711 
1712 	if (!dm_table_request_based(t))
1713 		return;
1714 
1715 	md = dm_table_get_md(t);
1716 	queue = dm_get_md_queue(md);
1717 	if (queue) {
1718 		if (queue->mq_ops)
1719 			blk_mq_run_hw_queues(queue, true);
1720 		else {
1721 			spin_lock_irqsave(queue->queue_lock, flags);
1722 			blk_run_queue_async(queue);
1723 			spin_unlock_irqrestore(queue->queue_lock, flags);
1724 		}
1725 	}
1726 }
1727 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1728 
1729