xref: /openbmc/linux/drivers/md/dm-table.c (revision 0d3b051a)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 	unsigned long size;
100 	void *addr;
101 
102 	/*
103 	 * Check that we're not going to overflow.
104 	 */
105 	if (nmemb > (ULONG_MAX / elem_size))
106 		return NULL;
107 
108 	size = nmemb * elem_size;
109 	addr = vzalloc(size);
110 
111 	return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114 
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 	sector_t *n_highs;
122 	struct dm_target *n_targets;
123 
124 	/*
125 	 * Allocate both the target array and offset array at once.
126 	 */
127 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 					  sizeof(sector_t));
129 	if (!n_highs)
130 		return -ENOMEM;
131 
132 	n_targets = (struct dm_target *) (n_highs + num);
133 
134 	memset(n_highs, -1, sizeof(*n_highs) * num);
135 	vfree(t->highs);
136 
137 	t->num_allocated = num;
138 	t->highs = n_highs;
139 	t->targets = n_targets;
140 
141 	return 0;
142 }
143 
144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 		    unsigned num_targets, struct mapped_device *md)
146 {
147 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148 
149 	if (!t)
150 		return -ENOMEM;
151 
152 	INIT_LIST_HEAD(&t->devices);
153 
154 	if (!num_targets)
155 		num_targets = KEYS_PER_NODE;
156 
157 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158 
159 	if (!num_targets) {
160 		kfree(t);
161 		return -ENOMEM;
162 	}
163 
164 	if (alloc_targets(t, num_targets)) {
165 		kfree(t);
166 		return -ENOMEM;
167 	}
168 
169 	t->type = DM_TYPE_NONE;
170 	t->mode = mode;
171 	t->md = md;
172 	*result = t;
173 	return 0;
174 }
175 
176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178 	struct list_head *tmp, *next;
179 
180 	list_for_each_safe(tmp, next, devices) {
181 		struct dm_dev_internal *dd =
182 		    list_entry(tmp, struct dm_dev_internal, list);
183 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 		       dm_device_name(md), dd->dm_dev->name);
185 		dm_put_table_device(md, dd->dm_dev);
186 		kfree(dd);
187 	}
188 }
189 
190 void dm_table_destroy(struct dm_table *t)
191 {
192 	unsigned int i;
193 
194 	if (!t)
195 		return;
196 
197 	/* free the indexes */
198 	if (t->depth >= 2)
199 		vfree(t->index[t->depth - 2]);
200 
201 	/* free the targets */
202 	for (i = 0; i < t->num_targets; i++) {
203 		struct dm_target *tgt = t->targets + i;
204 
205 		if (tgt->type->dtr)
206 			tgt->type->dtr(tgt);
207 
208 		dm_put_target_type(tgt->type);
209 	}
210 
211 	vfree(t->highs);
212 
213 	/* free the device list */
214 	free_devices(&t->devices, t->md);
215 
216 	dm_free_md_mempools(t->mempools);
217 
218 	kfree(t);
219 }
220 
221 /*
222  * See if we've already got a device in the list.
223  */
224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
225 {
226 	struct dm_dev_internal *dd;
227 
228 	list_for_each_entry (dd, l, list)
229 		if (dd->dm_dev->bdev->bd_dev == dev)
230 			return dd;
231 
232 	return NULL;
233 }
234 
235 /*
236  * If possible, this checks an area of a destination device is invalid.
237  */
238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
239 				  sector_t start, sector_t len, void *data)
240 {
241 	struct queue_limits *limits = data;
242 	struct block_device *bdev = dev->bdev;
243 	sector_t dev_size =
244 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
245 	unsigned short logical_block_size_sectors =
246 		limits->logical_block_size >> SECTOR_SHIFT;
247 	char b[BDEVNAME_SIZE];
248 
249 	if (!dev_size)
250 		return 0;
251 
252 	if ((start >= dev_size) || (start + len > dev_size)) {
253 		DMWARN("%s: %s too small for target: "
254 		       "start=%llu, len=%llu, dev_size=%llu",
255 		       dm_device_name(ti->table->md), bdevname(bdev, b),
256 		       (unsigned long long)start,
257 		       (unsigned long long)len,
258 		       (unsigned long long)dev_size);
259 		return 1;
260 	}
261 
262 	/*
263 	 * If the target is mapped to zoned block device(s), check
264 	 * that the zones are not partially mapped.
265 	 */
266 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
267 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
268 
269 		if (start & (zone_sectors - 1)) {
270 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271 			       dm_device_name(ti->table->md),
272 			       (unsigned long long)start,
273 			       zone_sectors, bdevname(bdev, b));
274 			return 1;
275 		}
276 
277 		/*
278 		 * Note: The last zone of a zoned block device may be smaller
279 		 * than other zones. So for a target mapping the end of a
280 		 * zoned block device with such a zone, len would not be zone
281 		 * aligned. We do not allow such last smaller zone to be part
282 		 * of the mapping here to ensure that mappings with multiple
283 		 * devices do not end up with a smaller zone in the middle of
284 		 * the sector range.
285 		 */
286 		if (len & (zone_sectors - 1)) {
287 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288 			       dm_device_name(ti->table->md),
289 			       (unsigned long long)len,
290 			       zone_sectors, bdevname(bdev, b));
291 			return 1;
292 		}
293 	}
294 
295 	if (logical_block_size_sectors <= 1)
296 		return 0;
297 
298 	if (start & (logical_block_size_sectors - 1)) {
299 		DMWARN("%s: start=%llu not aligned to h/w "
300 		       "logical block size %u of %s",
301 		       dm_device_name(ti->table->md),
302 		       (unsigned long long)start,
303 		       limits->logical_block_size, bdevname(bdev, b));
304 		return 1;
305 	}
306 
307 	if (len & (logical_block_size_sectors - 1)) {
308 		DMWARN("%s: len=%llu not aligned to h/w "
309 		       "logical block size %u of %s",
310 		       dm_device_name(ti->table->md),
311 		       (unsigned long long)len,
312 		       limits->logical_block_size, bdevname(bdev, b));
313 		return 1;
314 	}
315 
316 	return 0;
317 }
318 
319 /*
320  * This upgrades the mode on an already open dm_dev, being
321  * careful to leave things as they were if we fail to reopen the
322  * device and not to touch the existing bdev field in case
323  * it is accessed concurrently.
324  */
325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
326 			struct mapped_device *md)
327 {
328 	int r;
329 	struct dm_dev *old_dev, *new_dev;
330 
331 	old_dev = dd->dm_dev;
332 
333 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
334 				dd->dm_dev->mode | new_mode, &new_dev);
335 	if (r)
336 		return r;
337 
338 	dd->dm_dev = new_dev;
339 	dm_put_table_device(md, old_dev);
340 
341 	return 0;
342 }
343 
344 /*
345  * Convert the path to a device
346  */
347 dev_t dm_get_dev_t(const char *path)
348 {
349 	dev_t dev;
350 
351 	if (lookup_bdev(path, &dev))
352 		dev = name_to_dev_t(path);
353 	return dev;
354 }
355 EXPORT_SYMBOL_GPL(dm_get_dev_t);
356 
357 /*
358  * Add a device to the list, or just increment the usage count if
359  * it's already present.
360  */
361 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
362 		  struct dm_dev **result)
363 {
364 	int r;
365 	dev_t dev;
366 	struct dm_dev_internal *dd;
367 	struct dm_table *t = ti->table;
368 
369 	BUG_ON(!t);
370 
371 	dev = dm_get_dev_t(path);
372 	if (!dev)
373 		return -ENODEV;
374 
375 	dd = find_device(&t->devices, dev);
376 	if (!dd) {
377 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
378 		if (!dd)
379 			return -ENOMEM;
380 
381 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
382 			kfree(dd);
383 			return r;
384 		}
385 
386 		refcount_set(&dd->count, 1);
387 		list_add(&dd->list, &t->devices);
388 		goto out;
389 
390 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
391 		r = upgrade_mode(dd, mode, t->md);
392 		if (r)
393 			return r;
394 	}
395 	refcount_inc(&dd->count);
396 out:
397 	*result = dd->dm_dev;
398 	return 0;
399 }
400 EXPORT_SYMBOL(dm_get_device);
401 
402 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
403 				sector_t start, sector_t len, void *data)
404 {
405 	struct queue_limits *limits = data;
406 	struct block_device *bdev = dev->bdev;
407 	struct request_queue *q = bdev_get_queue(bdev);
408 	char b[BDEVNAME_SIZE];
409 
410 	if (unlikely(!q)) {
411 		DMWARN("%s: Cannot set limits for nonexistent device %s",
412 		       dm_device_name(ti->table->md), bdevname(bdev, b));
413 		return 0;
414 	}
415 
416 	if (blk_stack_limits(limits, &q->limits,
417 			get_start_sect(bdev) + start) < 0)
418 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
419 		       "physical_block_size=%u, logical_block_size=%u, "
420 		       "alignment_offset=%u, start=%llu",
421 		       dm_device_name(ti->table->md), bdevname(bdev, b),
422 		       q->limits.physical_block_size,
423 		       q->limits.logical_block_size,
424 		       q->limits.alignment_offset,
425 		       (unsigned long long) start << SECTOR_SHIFT);
426 	return 0;
427 }
428 
429 /*
430  * Decrement a device's use count and remove it if necessary.
431  */
432 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
433 {
434 	int found = 0;
435 	struct list_head *devices = &ti->table->devices;
436 	struct dm_dev_internal *dd;
437 
438 	list_for_each_entry(dd, devices, list) {
439 		if (dd->dm_dev == d) {
440 			found = 1;
441 			break;
442 		}
443 	}
444 	if (!found) {
445 		DMWARN("%s: device %s not in table devices list",
446 		       dm_device_name(ti->table->md), d->name);
447 		return;
448 	}
449 	if (refcount_dec_and_test(&dd->count)) {
450 		dm_put_table_device(ti->table->md, d);
451 		list_del(&dd->list);
452 		kfree(dd);
453 	}
454 }
455 EXPORT_SYMBOL(dm_put_device);
456 
457 /*
458  * Checks to see if the target joins onto the end of the table.
459  */
460 static int adjoin(struct dm_table *table, struct dm_target *ti)
461 {
462 	struct dm_target *prev;
463 
464 	if (!table->num_targets)
465 		return !ti->begin;
466 
467 	prev = &table->targets[table->num_targets - 1];
468 	return (ti->begin == (prev->begin + prev->len));
469 }
470 
471 /*
472  * Used to dynamically allocate the arg array.
473  *
474  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
475  * process messages even if some device is suspended. These messages have a
476  * small fixed number of arguments.
477  *
478  * On the other hand, dm-switch needs to process bulk data using messages and
479  * excessive use of GFP_NOIO could cause trouble.
480  */
481 static char **realloc_argv(unsigned *size, char **old_argv)
482 {
483 	char **argv;
484 	unsigned new_size;
485 	gfp_t gfp;
486 
487 	if (*size) {
488 		new_size = *size * 2;
489 		gfp = GFP_KERNEL;
490 	} else {
491 		new_size = 8;
492 		gfp = GFP_NOIO;
493 	}
494 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
495 	if (argv && old_argv) {
496 		memcpy(argv, old_argv, *size * sizeof(*argv));
497 		*size = new_size;
498 	}
499 
500 	kfree(old_argv);
501 	return argv;
502 }
503 
504 /*
505  * Destructively splits up the argument list to pass to ctr.
506  */
507 int dm_split_args(int *argc, char ***argvp, char *input)
508 {
509 	char *start, *end = input, *out, **argv = NULL;
510 	unsigned array_size = 0;
511 
512 	*argc = 0;
513 
514 	if (!input) {
515 		*argvp = NULL;
516 		return 0;
517 	}
518 
519 	argv = realloc_argv(&array_size, argv);
520 	if (!argv)
521 		return -ENOMEM;
522 
523 	while (1) {
524 		/* Skip whitespace */
525 		start = skip_spaces(end);
526 
527 		if (!*start)
528 			break;	/* success, we hit the end */
529 
530 		/* 'out' is used to remove any back-quotes */
531 		end = out = start;
532 		while (*end) {
533 			/* Everything apart from '\0' can be quoted */
534 			if (*end == '\\' && *(end + 1)) {
535 				*out++ = *(end + 1);
536 				end += 2;
537 				continue;
538 			}
539 
540 			if (isspace(*end))
541 				break;	/* end of token */
542 
543 			*out++ = *end++;
544 		}
545 
546 		/* have we already filled the array ? */
547 		if ((*argc + 1) > array_size) {
548 			argv = realloc_argv(&array_size, argv);
549 			if (!argv)
550 				return -ENOMEM;
551 		}
552 
553 		/* we know this is whitespace */
554 		if (*end)
555 			end++;
556 
557 		/* terminate the string and put it in the array */
558 		*out = '\0';
559 		argv[*argc] = start;
560 		(*argc)++;
561 	}
562 
563 	*argvp = argv;
564 	return 0;
565 }
566 
567 /*
568  * Impose necessary and sufficient conditions on a devices's table such
569  * that any incoming bio which respects its logical_block_size can be
570  * processed successfully.  If it falls across the boundary between
571  * two or more targets, the size of each piece it gets split into must
572  * be compatible with the logical_block_size of the target processing it.
573  */
574 static int validate_hardware_logical_block_alignment(struct dm_table *table,
575 						 struct queue_limits *limits)
576 {
577 	/*
578 	 * This function uses arithmetic modulo the logical_block_size
579 	 * (in units of 512-byte sectors).
580 	 */
581 	unsigned short device_logical_block_size_sects =
582 		limits->logical_block_size >> SECTOR_SHIFT;
583 
584 	/*
585 	 * Offset of the start of the next table entry, mod logical_block_size.
586 	 */
587 	unsigned short next_target_start = 0;
588 
589 	/*
590 	 * Given an aligned bio that extends beyond the end of a
591 	 * target, how many sectors must the next target handle?
592 	 */
593 	unsigned short remaining = 0;
594 
595 	struct dm_target *ti;
596 	struct queue_limits ti_limits;
597 	unsigned i;
598 
599 	/*
600 	 * Check each entry in the table in turn.
601 	 */
602 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
603 		ti = dm_table_get_target(table, i);
604 
605 		blk_set_stacking_limits(&ti_limits);
606 
607 		/* combine all target devices' limits */
608 		if (ti->type->iterate_devices)
609 			ti->type->iterate_devices(ti, dm_set_device_limits,
610 						  &ti_limits);
611 
612 		/*
613 		 * If the remaining sectors fall entirely within this
614 		 * table entry are they compatible with its logical_block_size?
615 		 */
616 		if (remaining < ti->len &&
617 		    remaining & ((ti_limits.logical_block_size >>
618 				  SECTOR_SHIFT) - 1))
619 			break;	/* Error */
620 
621 		next_target_start =
622 		    (unsigned short) ((next_target_start + ti->len) &
623 				      (device_logical_block_size_sects - 1));
624 		remaining = next_target_start ?
625 		    device_logical_block_size_sects - next_target_start : 0;
626 	}
627 
628 	if (remaining) {
629 		DMWARN("%s: table line %u (start sect %llu len %llu) "
630 		       "not aligned to h/w logical block size %u",
631 		       dm_device_name(table->md), i,
632 		       (unsigned long long) ti->begin,
633 		       (unsigned long long) ti->len,
634 		       limits->logical_block_size);
635 		return -EINVAL;
636 	}
637 
638 	return 0;
639 }
640 
641 int dm_table_add_target(struct dm_table *t, const char *type,
642 			sector_t start, sector_t len, char *params)
643 {
644 	int r = -EINVAL, argc;
645 	char **argv;
646 	struct dm_target *tgt;
647 
648 	if (t->singleton) {
649 		DMERR("%s: target type %s must appear alone in table",
650 		      dm_device_name(t->md), t->targets->type->name);
651 		return -EINVAL;
652 	}
653 
654 	BUG_ON(t->num_targets >= t->num_allocated);
655 
656 	tgt = t->targets + t->num_targets;
657 	memset(tgt, 0, sizeof(*tgt));
658 
659 	if (!len) {
660 		DMERR("%s: zero-length target", dm_device_name(t->md));
661 		return -EINVAL;
662 	}
663 
664 	tgt->type = dm_get_target_type(type);
665 	if (!tgt->type) {
666 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
667 		return -EINVAL;
668 	}
669 
670 	if (dm_target_needs_singleton(tgt->type)) {
671 		if (t->num_targets) {
672 			tgt->error = "singleton target type must appear alone in table";
673 			goto bad;
674 		}
675 		t->singleton = true;
676 	}
677 
678 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
679 		tgt->error = "target type may not be included in a read-only table";
680 		goto bad;
681 	}
682 
683 	if (t->immutable_target_type) {
684 		if (t->immutable_target_type != tgt->type) {
685 			tgt->error = "immutable target type cannot be mixed with other target types";
686 			goto bad;
687 		}
688 	} else if (dm_target_is_immutable(tgt->type)) {
689 		if (t->num_targets) {
690 			tgt->error = "immutable target type cannot be mixed with other target types";
691 			goto bad;
692 		}
693 		t->immutable_target_type = tgt->type;
694 	}
695 
696 	if (dm_target_has_integrity(tgt->type))
697 		t->integrity_added = 1;
698 
699 	tgt->table = t;
700 	tgt->begin = start;
701 	tgt->len = len;
702 	tgt->error = "Unknown error";
703 
704 	/*
705 	 * Does this target adjoin the previous one ?
706 	 */
707 	if (!adjoin(t, tgt)) {
708 		tgt->error = "Gap in table";
709 		goto bad;
710 	}
711 
712 	r = dm_split_args(&argc, &argv, params);
713 	if (r) {
714 		tgt->error = "couldn't split parameters (insufficient memory)";
715 		goto bad;
716 	}
717 
718 	r = tgt->type->ctr(tgt, argc, argv);
719 	kfree(argv);
720 	if (r)
721 		goto bad;
722 
723 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
724 
725 	if (!tgt->num_discard_bios && tgt->discards_supported)
726 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
727 		       dm_device_name(t->md), type);
728 
729 	return 0;
730 
731  bad:
732 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
733 	dm_put_target_type(tgt->type);
734 	return r;
735 }
736 
737 /*
738  * Target argument parsing helpers.
739  */
740 static int validate_next_arg(const struct dm_arg *arg,
741 			     struct dm_arg_set *arg_set,
742 			     unsigned *value, char **error, unsigned grouped)
743 {
744 	const char *arg_str = dm_shift_arg(arg_set);
745 	char dummy;
746 
747 	if (!arg_str ||
748 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
749 	    (*value < arg->min) ||
750 	    (*value > arg->max) ||
751 	    (grouped && arg_set->argc < *value)) {
752 		*error = arg->error;
753 		return -EINVAL;
754 	}
755 
756 	return 0;
757 }
758 
759 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
760 		unsigned *value, char **error)
761 {
762 	return validate_next_arg(arg, arg_set, value, error, 0);
763 }
764 EXPORT_SYMBOL(dm_read_arg);
765 
766 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
767 		      unsigned *value, char **error)
768 {
769 	return validate_next_arg(arg, arg_set, value, error, 1);
770 }
771 EXPORT_SYMBOL(dm_read_arg_group);
772 
773 const char *dm_shift_arg(struct dm_arg_set *as)
774 {
775 	char *r;
776 
777 	if (as->argc) {
778 		as->argc--;
779 		r = *as->argv;
780 		as->argv++;
781 		return r;
782 	}
783 
784 	return NULL;
785 }
786 EXPORT_SYMBOL(dm_shift_arg);
787 
788 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
789 {
790 	BUG_ON(as->argc < num_args);
791 	as->argc -= num_args;
792 	as->argv += num_args;
793 }
794 EXPORT_SYMBOL(dm_consume_args);
795 
796 static bool __table_type_bio_based(enum dm_queue_mode table_type)
797 {
798 	return (table_type == DM_TYPE_BIO_BASED ||
799 		table_type == DM_TYPE_DAX_BIO_BASED);
800 }
801 
802 static bool __table_type_request_based(enum dm_queue_mode table_type)
803 {
804 	return table_type == DM_TYPE_REQUEST_BASED;
805 }
806 
807 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
808 {
809 	t->type = type;
810 }
811 EXPORT_SYMBOL_GPL(dm_table_set_type);
812 
813 /* validate the dax capability of the target device span */
814 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
815 			sector_t start, sector_t len, void *data)
816 {
817 	int blocksize = *(int *) data, id;
818 	bool rc;
819 
820 	id = dax_read_lock();
821 	rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
822 	dax_read_unlock(id);
823 
824 	return rc;
825 }
826 
827 /* Check devices support synchronous DAX */
828 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
829 				  sector_t start, sector_t len, void *data)
830 {
831 	return dev->dax_dev && dax_synchronous(dev->dax_dev);
832 }
833 
834 bool dm_table_supports_dax(struct dm_table *t,
835 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
836 {
837 	struct dm_target *ti;
838 	unsigned i;
839 
840 	/* Ensure that all targets support DAX. */
841 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
842 		ti = dm_table_get_target(t, i);
843 
844 		if (!ti->type->direct_access)
845 			return false;
846 
847 		if (!ti->type->iterate_devices ||
848 		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
849 			return false;
850 	}
851 
852 	return true;
853 }
854 
855 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
856 				  sector_t start, sector_t len, void *data)
857 {
858 	struct block_device *bdev = dev->bdev;
859 	struct request_queue *q = bdev_get_queue(bdev);
860 
861 	/* request-based cannot stack on partitions! */
862 	if (bdev_is_partition(bdev))
863 		return false;
864 
865 	return queue_is_mq(q);
866 }
867 
868 static int dm_table_determine_type(struct dm_table *t)
869 {
870 	unsigned i;
871 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
872 	struct dm_target *tgt;
873 	struct list_head *devices = dm_table_get_devices(t);
874 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
875 	int page_size = PAGE_SIZE;
876 
877 	if (t->type != DM_TYPE_NONE) {
878 		/* target already set the table's type */
879 		if (t->type == DM_TYPE_BIO_BASED) {
880 			/* possibly upgrade to a variant of bio-based */
881 			goto verify_bio_based;
882 		}
883 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
884 		goto verify_rq_based;
885 	}
886 
887 	for (i = 0; i < t->num_targets; i++) {
888 		tgt = t->targets + i;
889 		if (dm_target_hybrid(tgt))
890 			hybrid = 1;
891 		else if (dm_target_request_based(tgt))
892 			request_based = 1;
893 		else
894 			bio_based = 1;
895 
896 		if (bio_based && request_based) {
897 			DMERR("Inconsistent table: different target types"
898 			      " can't be mixed up");
899 			return -EINVAL;
900 		}
901 	}
902 
903 	if (hybrid && !bio_based && !request_based) {
904 		/*
905 		 * The targets can work either way.
906 		 * Determine the type from the live device.
907 		 * Default to bio-based if device is new.
908 		 */
909 		if (__table_type_request_based(live_md_type))
910 			request_based = 1;
911 		else
912 			bio_based = 1;
913 	}
914 
915 	if (bio_based) {
916 verify_bio_based:
917 		/* We must use this table as bio-based */
918 		t->type = DM_TYPE_BIO_BASED;
919 		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
920 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
921 			t->type = DM_TYPE_DAX_BIO_BASED;
922 		}
923 		return 0;
924 	}
925 
926 	BUG_ON(!request_based); /* No targets in this table */
927 
928 	t->type = DM_TYPE_REQUEST_BASED;
929 
930 verify_rq_based:
931 	/*
932 	 * Request-based dm supports only tables that have a single target now.
933 	 * To support multiple targets, request splitting support is needed,
934 	 * and that needs lots of changes in the block-layer.
935 	 * (e.g. request completion process for partial completion.)
936 	 */
937 	if (t->num_targets > 1) {
938 		DMERR("request-based DM doesn't support multiple targets");
939 		return -EINVAL;
940 	}
941 
942 	if (list_empty(devices)) {
943 		int srcu_idx;
944 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
945 
946 		/* inherit live table's type */
947 		if (live_table)
948 			t->type = live_table->type;
949 		dm_put_live_table(t->md, srcu_idx);
950 		return 0;
951 	}
952 
953 	tgt = dm_table_get_immutable_target(t);
954 	if (!tgt) {
955 		DMERR("table load rejected: immutable target is required");
956 		return -EINVAL;
957 	} else if (tgt->max_io_len) {
958 		DMERR("table load rejected: immutable target that splits IO is not supported");
959 		return -EINVAL;
960 	}
961 
962 	/* Non-request-stackable devices can't be used for request-based dm */
963 	if (!tgt->type->iterate_devices ||
964 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
965 		DMERR("table load rejected: including non-request-stackable devices");
966 		return -EINVAL;
967 	}
968 
969 	return 0;
970 }
971 
972 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
973 {
974 	return t->type;
975 }
976 
977 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
978 {
979 	return t->immutable_target_type;
980 }
981 
982 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
983 {
984 	/* Immutable target is implicitly a singleton */
985 	if (t->num_targets > 1 ||
986 	    !dm_target_is_immutable(t->targets[0].type))
987 		return NULL;
988 
989 	return t->targets;
990 }
991 
992 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
993 {
994 	struct dm_target *ti;
995 	unsigned i;
996 
997 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
998 		ti = dm_table_get_target(t, i);
999 		if (dm_target_is_wildcard(ti->type))
1000 			return ti;
1001 	}
1002 
1003 	return NULL;
1004 }
1005 
1006 bool dm_table_bio_based(struct dm_table *t)
1007 {
1008 	return __table_type_bio_based(dm_table_get_type(t));
1009 }
1010 
1011 bool dm_table_request_based(struct dm_table *t)
1012 {
1013 	return __table_type_request_based(dm_table_get_type(t));
1014 }
1015 
1016 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1017 {
1018 	enum dm_queue_mode type = dm_table_get_type(t);
1019 	unsigned per_io_data_size = 0;
1020 	unsigned min_pool_size = 0;
1021 	struct dm_target *ti;
1022 	unsigned i;
1023 
1024 	if (unlikely(type == DM_TYPE_NONE)) {
1025 		DMWARN("no table type is set, can't allocate mempools");
1026 		return -EINVAL;
1027 	}
1028 
1029 	if (__table_type_bio_based(type))
1030 		for (i = 0; i < t->num_targets; i++) {
1031 			ti = t->targets + i;
1032 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1033 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1034 		}
1035 
1036 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1037 					   per_io_data_size, min_pool_size);
1038 	if (!t->mempools)
1039 		return -ENOMEM;
1040 
1041 	return 0;
1042 }
1043 
1044 void dm_table_free_md_mempools(struct dm_table *t)
1045 {
1046 	dm_free_md_mempools(t->mempools);
1047 	t->mempools = NULL;
1048 }
1049 
1050 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1051 {
1052 	return t->mempools;
1053 }
1054 
1055 static int setup_indexes(struct dm_table *t)
1056 {
1057 	int i;
1058 	unsigned int total = 0;
1059 	sector_t *indexes;
1060 
1061 	/* allocate the space for *all* the indexes */
1062 	for (i = t->depth - 2; i >= 0; i--) {
1063 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1064 		total += t->counts[i];
1065 	}
1066 
1067 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1068 	if (!indexes)
1069 		return -ENOMEM;
1070 
1071 	/* set up internal nodes, bottom-up */
1072 	for (i = t->depth - 2; i >= 0; i--) {
1073 		t->index[i] = indexes;
1074 		indexes += (KEYS_PER_NODE * t->counts[i]);
1075 		setup_btree_index(i, t);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 /*
1082  * Builds the btree to index the map.
1083  */
1084 static int dm_table_build_index(struct dm_table *t)
1085 {
1086 	int r = 0;
1087 	unsigned int leaf_nodes;
1088 
1089 	/* how many indexes will the btree have ? */
1090 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1091 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1092 
1093 	/* leaf layer has already been set up */
1094 	t->counts[t->depth - 1] = leaf_nodes;
1095 	t->index[t->depth - 1] = t->highs;
1096 
1097 	if (t->depth >= 2)
1098 		r = setup_indexes(t);
1099 
1100 	return r;
1101 }
1102 
1103 static bool integrity_profile_exists(struct gendisk *disk)
1104 {
1105 	return !!blk_get_integrity(disk);
1106 }
1107 
1108 /*
1109  * Get a disk whose integrity profile reflects the table's profile.
1110  * Returns NULL if integrity support was inconsistent or unavailable.
1111  */
1112 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1113 {
1114 	struct list_head *devices = dm_table_get_devices(t);
1115 	struct dm_dev_internal *dd = NULL;
1116 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1117 	unsigned i;
1118 
1119 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1120 		struct dm_target *ti = dm_table_get_target(t, i);
1121 		if (!dm_target_passes_integrity(ti->type))
1122 			goto no_integrity;
1123 	}
1124 
1125 	list_for_each_entry(dd, devices, list) {
1126 		template_disk = dd->dm_dev->bdev->bd_disk;
1127 		if (!integrity_profile_exists(template_disk))
1128 			goto no_integrity;
1129 		else if (prev_disk &&
1130 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1131 			goto no_integrity;
1132 		prev_disk = template_disk;
1133 	}
1134 
1135 	return template_disk;
1136 
1137 no_integrity:
1138 	if (prev_disk)
1139 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1140 		       dm_device_name(t->md),
1141 		       prev_disk->disk_name,
1142 		       template_disk->disk_name);
1143 	return NULL;
1144 }
1145 
1146 /*
1147  * Register the mapped device for blk_integrity support if the
1148  * underlying devices have an integrity profile.  But all devices may
1149  * not have matching profiles (checking all devices isn't reliable
1150  * during table load because this table may use other DM device(s) which
1151  * must be resumed before they will have an initialized integity
1152  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1153  * profile validation: First pass during table load, final pass during
1154  * resume.
1155  */
1156 static int dm_table_register_integrity(struct dm_table *t)
1157 {
1158 	struct mapped_device *md = t->md;
1159 	struct gendisk *template_disk = NULL;
1160 
1161 	/* If target handles integrity itself do not register it here. */
1162 	if (t->integrity_added)
1163 		return 0;
1164 
1165 	template_disk = dm_table_get_integrity_disk(t);
1166 	if (!template_disk)
1167 		return 0;
1168 
1169 	if (!integrity_profile_exists(dm_disk(md))) {
1170 		t->integrity_supported = true;
1171 		/*
1172 		 * Register integrity profile during table load; we can do
1173 		 * this because the final profile must match during resume.
1174 		 */
1175 		blk_integrity_register(dm_disk(md),
1176 				       blk_get_integrity(template_disk));
1177 		return 0;
1178 	}
1179 
1180 	/*
1181 	 * If DM device already has an initialized integrity
1182 	 * profile the new profile should not conflict.
1183 	 */
1184 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1185 		DMWARN("%s: conflict with existing integrity profile: "
1186 		       "%s profile mismatch",
1187 		       dm_device_name(t->md),
1188 		       template_disk->disk_name);
1189 		return 1;
1190 	}
1191 
1192 	/* Preserve existing integrity profile */
1193 	t->integrity_supported = true;
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Prepares the table for use by building the indices,
1199  * setting the type, and allocating mempools.
1200  */
1201 int dm_table_complete(struct dm_table *t)
1202 {
1203 	int r;
1204 
1205 	r = dm_table_determine_type(t);
1206 	if (r) {
1207 		DMERR("unable to determine table type");
1208 		return r;
1209 	}
1210 
1211 	r = dm_table_build_index(t);
1212 	if (r) {
1213 		DMERR("unable to build btrees");
1214 		return r;
1215 	}
1216 
1217 	r = dm_table_register_integrity(t);
1218 	if (r) {
1219 		DMERR("could not register integrity profile.");
1220 		return r;
1221 	}
1222 
1223 	r = dm_table_alloc_md_mempools(t, t->md);
1224 	if (r)
1225 		DMERR("unable to allocate mempools");
1226 
1227 	return r;
1228 }
1229 
1230 static DEFINE_MUTEX(_event_lock);
1231 void dm_table_event_callback(struct dm_table *t,
1232 			     void (*fn)(void *), void *context)
1233 {
1234 	mutex_lock(&_event_lock);
1235 	t->event_fn = fn;
1236 	t->event_context = context;
1237 	mutex_unlock(&_event_lock);
1238 }
1239 
1240 void dm_table_event(struct dm_table *t)
1241 {
1242 	mutex_lock(&_event_lock);
1243 	if (t->event_fn)
1244 		t->event_fn(t->event_context);
1245 	mutex_unlock(&_event_lock);
1246 }
1247 EXPORT_SYMBOL(dm_table_event);
1248 
1249 inline sector_t dm_table_get_size(struct dm_table *t)
1250 {
1251 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1252 }
1253 EXPORT_SYMBOL(dm_table_get_size);
1254 
1255 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1256 {
1257 	if (index >= t->num_targets)
1258 		return NULL;
1259 
1260 	return t->targets + index;
1261 }
1262 
1263 /*
1264  * Search the btree for the correct target.
1265  *
1266  * Caller should check returned pointer for NULL
1267  * to trap I/O beyond end of device.
1268  */
1269 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1270 {
1271 	unsigned int l, n = 0, k = 0;
1272 	sector_t *node;
1273 
1274 	if (unlikely(sector >= dm_table_get_size(t)))
1275 		return NULL;
1276 
1277 	for (l = 0; l < t->depth; l++) {
1278 		n = get_child(n, k);
1279 		node = get_node(t, l, n);
1280 
1281 		for (k = 0; k < KEYS_PER_NODE; k++)
1282 			if (node[k] >= sector)
1283 				break;
1284 	}
1285 
1286 	return &t->targets[(KEYS_PER_NODE * n) + k];
1287 }
1288 
1289 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1290 			sector_t start, sector_t len, void *data)
1291 {
1292 	unsigned *num_devices = data;
1293 
1294 	(*num_devices)++;
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * Check whether a table has no data devices attached using each
1301  * target's iterate_devices method.
1302  * Returns false if the result is unknown because a target doesn't
1303  * support iterate_devices.
1304  */
1305 bool dm_table_has_no_data_devices(struct dm_table *table)
1306 {
1307 	struct dm_target *ti;
1308 	unsigned i, num_devices;
1309 
1310 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1311 		ti = dm_table_get_target(table, i);
1312 
1313 		if (!ti->type->iterate_devices)
1314 			return false;
1315 
1316 		num_devices = 0;
1317 		ti->type->iterate_devices(ti, count_device, &num_devices);
1318 		if (num_devices)
1319 			return false;
1320 	}
1321 
1322 	return true;
1323 }
1324 
1325 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1326 				 sector_t start, sector_t len, void *data)
1327 {
1328 	struct request_queue *q = bdev_get_queue(dev->bdev);
1329 	enum blk_zoned_model *zoned_model = data;
1330 
1331 	return q && blk_queue_zoned_model(q) == *zoned_model;
1332 }
1333 
1334 static bool dm_table_supports_zoned_model(struct dm_table *t,
1335 					  enum blk_zoned_model zoned_model)
1336 {
1337 	struct dm_target *ti;
1338 	unsigned i;
1339 
1340 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1341 		ti = dm_table_get_target(t, i);
1342 
1343 		if (zoned_model == BLK_ZONED_HM &&
1344 		    !dm_target_supports_zoned_hm(ti->type))
1345 			return false;
1346 
1347 		if (!ti->type->iterate_devices ||
1348 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1349 			return false;
1350 	}
1351 
1352 	return true;
1353 }
1354 
1355 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1356 				       sector_t start, sector_t len, void *data)
1357 {
1358 	struct request_queue *q = bdev_get_queue(dev->bdev);
1359 	unsigned int *zone_sectors = data;
1360 
1361 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1362 }
1363 
1364 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1365 					  unsigned int zone_sectors)
1366 {
1367 	struct dm_target *ti;
1368 	unsigned i;
1369 
1370 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1371 		ti = dm_table_get_target(t, i);
1372 
1373 		if (!ti->type->iterate_devices ||
1374 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1375 			return false;
1376 	}
1377 
1378 	return true;
1379 }
1380 
1381 static int validate_hardware_zoned_model(struct dm_table *table,
1382 					 enum blk_zoned_model zoned_model,
1383 					 unsigned int zone_sectors)
1384 {
1385 	if (zoned_model == BLK_ZONED_NONE)
1386 		return 0;
1387 
1388 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1389 		DMERR("%s: zoned model is not consistent across all devices",
1390 		      dm_device_name(table->md));
1391 		return -EINVAL;
1392 	}
1393 
1394 	/* Check zone size validity and compatibility */
1395 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1396 		return -EINVAL;
1397 
1398 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1399 		DMERR("%s: zone sectors is not consistent across all devices",
1400 		      dm_device_name(table->md));
1401 		return -EINVAL;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 /*
1408  * Establish the new table's queue_limits and validate them.
1409  */
1410 int dm_calculate_queue_limits(struct dm_table *table,
1411 			      struct queue_limits *limits)
1412 {
1413 	struct dm_target *ti;
1414 	struct queue_limits ti_limits;
1415 	unsigned i;
1416 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1417 	unsigned int zone_sectors = 0;
1418 
1419 	blk_set_stacking_limits(limits);
1420 
1421 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1422 		blk_set_stacking_limits(&ti_limits);
1423 
1424 		ti = dm_table_get_target(table, i);
1425 
1426 		if (!ti->type->iterate_devices)
1427 			goto combine_limits;
1428 
1429 		/*
1430 		 * Combine queue limits of all the devices this target uses.
1431 		 */
1432 		ti->type->iterate_devices(ti, dm_set_device_limits,
1433 					  &ti_limits);
1434 
1435 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1436 			/*
1437 			 * After stacking all limits, validate all devices
1438 			 * in table support this zoned model and zone sectors.
1439 			 */
1440 			zoned_model = ti_limits.zoned;
1441 			zone_sectors = ti_limits.chunk_sectors;
1442 		}
1443 
1444 		/* Set I/O hints portion of queue limits */
1445 		if (ti->type->io_hints)
1446 			ti->type->io_hints(ti, &ti_limits);
1447 
1448 		/*
1449 		 * Check each device area is consistent with the target's
1450 		 * overall queue limits.
1451 		 */
1452 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1453 					      &ti_limits))
1454 			return -EINVAL;
1455 
1456 combine_limits:
1457 		/*
1458 		 * Merge this target's queue limits into the overall limits
1459 		 * for the table.
1460 		 */
1461 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1462 			DMWARN("%s: adding target device "
1463 			       "(start sect %llu len %llu) "
1464 			       "caused an alignment inconsistency",
1465 			       dm_device_name(table->md),
1466 			       (unsigned long long) ti->begin,
1467 			       (unsigned long long) ti->len);
1468 	}
1469 
1470 	/*
1471 	 * Verify that the zoned model and zone sectors, as determined before
1472 	 * any .io_hints override, are the same across all devices in the table.
1473 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1474 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1475 	 * BUT...
1476 	 */
1477 	if (limits->zoned != BLK_ZONED_NONE) {
1478 		/*
1479 		 * ...IF the above limits stacking determined a zoned model
1480 		 * validate that all of the table's devices conform to it.
1481 		 */
1482 		zoned_model = limits->zoned;
1483 		zone_sectors = limits->chunk_sectors;
1484 	}
1485 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1486 		return -EINVAL;
1487 
1488 	return validate_hardware_logical_block_alignment(table, limits);
1489 }
1490 
1491 /*
1492  * Verify that all devices have an integrity profile that matches the
1493  * DM device's registered integrity profile.  If the profiles don't
1494  * match then unregister the DM device's integrity profile.
1495  */
1496 static void dm_table_verify_integrity(struct dm_table *t)
1497 {
1498 	struct gendisk *template_disk = NULL;
1499 
1500 	if (t->integrity_added)
1501 		return;
1502 
1503 	if (t->integrity_supported) {
1504 		/*
1505 		 * Verify that the original integrity profile
1506 		 * matches all the devices in this table.
1507 		 */
1508 		template_disk = dm_table_get_integrity_disk(t);
1509 		if (template_disk &&
1510 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1511 			return;
1512 	}
1513 
1514 	if (integrity_profile_exists(dm_disk(t->md))) {
1515 		DMWARN("%s: unable to establish an integrity profile",
1516 		       dm_device_name(t->md));
1517 		blk_integrity_unregister(dm_disk(t->md));
1518 	}
1519 }
1520 
1521 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1522 				sector_t start, sector_t len, void *data)
1523 {
1524 	unsigned long flush = (unsigned long) data;
1525 	struct request_queue *q = bdev_get_queue(dev->bdev);
1526 
1527 	return q && (q->queue_flags & flush);
1528 }
1529 
1530 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1531 {
1532 	struct dm_target *ti;
1533 	unsigned i;
1534 
1535 	/*
1536 	 * Require at least one underlying device to support flushes.
1537 	 * t->devices includes internal dm devices such as mirror logs
1538 	 * so we need to use iterate_devices here, which targets
1539 	 * supporting flushes must provide.
1540 	 */
1541 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1542 		ti = dm_table_get_target(t, i);
1543 
1544 		if (!ti->num_flush_bios)
1545 			continue;
1546 
1547 		if (ti->flush_supported)
1548 			return true;
1549 
1550 		if (ti->type->iterate_devices &&
1551 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1552 			return true;
1553 	}
1554 
1555 	return false;
1556 }
1557 
1558 static int device_dax_write_cache_enabled(struct dm_target *ti,
1559 					  struct dm_dev *dev, sector_t start,
1560 					  sector_t len, void *data)
1561 {
1562 	struct dax_device *dax_dev = dev->dax_dev;
1563 
1564 	if (!dax_dev)
1565 		return false;
1566 
1567 	if (dax_write_cache_enabled(dax_dev))
1568 		return true;
1569 	return false;
1570 }
1571 
1572 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1573 {
1574 	struct dm_target *ti;
1575 	unsigned i;
1576 
1577 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1578 		ti = dm_table_get_target(t, i);
1579 
1580 		if (ti->type->iterate_devices &&
1581 		    ti->type->iterate_devices(ti,
1582 				device_dax_write_cache_enabled, NULL))
1583 			return true;
1584 	}
1585 
1586 	return false;
1587 }
1588 
1589 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1590 			    sector_t start, sector_t len, void *data)
1591 {
1592 	struct request_queue *q = bdev_get_queue(dev->bdev);
1593 
1594 	return q && blk_queue_nonrot(q);
1595 }
1596 
1597 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1598 			     sector_t start, sector_t len, void *data)
1599 {
1600 	struct request_queue *q = bdev_get_queue(dev->bdev);
1601 
1602 	return q && !blk_queue_add_random(q);
1603 }
1604 
1605 static bool dm_table_all_devices_attribute(struct dm_table *t,
1606 					   iterate_devices_callout_fn func)
1607 {
1608 	struct dm_target *ti;
1609 	unsigned i;
1610 
1611 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1612 		ti = dm_table_get_target(t, i);
1613 
1614 		if (!ti->type->iterate_devices ||
1615 		    !ti->type->iterate_devices(ti, func, NULL))
1616 			return false;
1617 	}
1618 
1619 	return true;
1620 }
1621 
1622 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1623 					 sector_t start, sector_t len, void *data)
1624 {
1625 	struct request_queue *q = bdev_get_queue(dev->bdev);
1626 
1627 	return q && !q->limits.max_write_same_sectors;
1628 }
1629 
1630 static bool dm_table_supports_write_same(struct dm_table *t)
1631 {
1632 	struct dm_target *ti;
1633 	unsigned i;
1634 
1635 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1636 		ti = dm_table_get_target(t, i);
1637 
1638 		if (!ti->num_write_same_bios)
1639 			return false;
1640 
1641 		if (!ti->type->iterate_devices ||
1642 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1643 			return false;
1644 	}
1645 
1646 	return true;
1647 }
1648 
1649 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1650 					   sector_t start, sector_t len, void *data)
1651 {
1652 	struct request_queue *q = bdev_get_queue(dev->bdev);
1653 
1654 	return q && !q->limits.max_write_zeroes_sectors;
1655 }
1656 
1657 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1658 {
1659 	struct dm_target *ti;
1660 	unsigned i = 0;
1661 
1662 	while (i < dm_table_get_num_targets(t)) {
1663 		ti = dm_table_get_target(t, i++);
1664 
1665 		if (!ti->num_write_zeroes_bios)
1666 			return false;
1667 
1668 		if (!ti->type->iterate_devices ||
1669 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1670 			return false;
1671 	}
1672 
1673 	return true;
1674 }
1675 
1676 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1677 				     sector_t start, sector_t len, void *data)
1678 {
1679 	struct request_queue *q = bdev_get_queue(dev->bdev);
1680 
1681 	return q && !blk_queue_nowait(q);
1682 }
1683 
1684 static bool dm_table_supports_nowait(struct dm_table *t)
1685 {
1686 	struct dm_target *ti;
1687 	unsigned i = 0;
1688 
1689 	while (i < dm_table_get_num_targets(t)) {
1690 		ti = dm_table_get_target(t, i++);
1691 
1692 		if (!dm_target_supports_nowait(ti->type))
1693 			return false;
1694 
1695 		if (!ti->type->iterate_devices ||
1696 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1697 			return false;
1698 	}
1699 
1700 	return true;
1701 }
1702 
1703 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1704 				      sector_t start, sector_t len, void *data)
1705 {
1706 	struct request_queue *q = bdev_get_queue(dev->bdev);
1707 
1708 	return q && !blk_queue_discard(q);
1709 }
1710 
1711 static bool dm_table_supports_discards(struct dm_table *t)
1712 {
1713 	struct dm_target *ti;
1714 	unsigned i;
1715 
1716 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1717 		ti = dm_table_get_target(t, i);
1718 
1719 		if (!ti->num_discard_bios)
1720 			return false;
1721 
1722 		/*
1723 		 * Either the target provides discard support (as implied by setting
1724 		 * 'discards_supported') or it relies on _all_ data devices having
1725 		 * discard support.
1726 		 */
1727 		if (!ti->discards_supported &&
1728 		    (!ti->type->iterate_devices ||
1729 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1730 			return false;
1731 	}
1732 
1733 	return true;
1734 }
1735 
1736 static int device_not_secure_erase_capable(struct dm_target *ti,
1737 					   struct dm_dev *dev, sector_t start,
1738 					   sector_t len, void *data)
1739 {
1740 	struct request_queue *q = bdev_get_queue(dev->bdev);
1741 
1742 	return q && !blk_queue_secure_erase(q);
1743 }
1744 
1745 static bool dm_table_supports_secure_erase(struct dm_table *t)
1746 {
1747 	struct dm_target *ti;
1748 	unsigned int i;
1749 
1750 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1751 		ti = dm_table_get_target(t, i);
1752 
1753 		if (!ti->num_secure_erase_bios)
1754 			return false;
1755 
1756 		if (!ti->type->iterate_devices ||
1757 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1758 			return false;
1759 	}
1760 
1761 	return true;
1762 }
1763 
1764 static int device_requires_stable_pages(struct dm_target *ti,
1765 					struct dm_dev *dev, sector_t start,
1766 					sector_t len, void *data)
1767 {
1768 	struct request_queue *q = bdev_get_queue(dev->bdev);
1769 
1770 	return q && blk_queue_stable_writes(q);
1771 }
1772 
1773 /*
1774  * If any underlying device requires stable pages, a table must require
1775  * them as well.  Only targets that support iterate_devices are considered:
1776  * don't want error, zero, etc to require stable pages.
1777  */
1778 static bool dm_table_requires_stable_pages(struct dm_table *t)
1779 {
1780 	struct dm_target *ti;
1781 	unsigned i;
1782 
1783 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1784 		ti = dm_table_get_target(t, i);
1785 
1786 		if (ti->type->iterate_devices &&
1787 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1788 			return true;
1789 	}
1790 
1791 	return false;
1792 }
1793 
1794 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1795 			       struct queue_limits *limits)
1796 {
1797 	bool wc = false, fua = false;
1798 	int page_size = PAGE_SIZE;
1799 
1800 	/*
1801 	 * Copy table's limits to the DM device's request_queue
1802 	 */
1803 	q->limits = *limits;
1804 
1805 	if (dm_table_supports_nowait(t))
1806 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1807 	else
1808 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1809 
1810 	if (!dm_table_supports_discards(t)) {
1811 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1812 		/* Must also clear discard limits... */
1813 		q->limits.max_discard_sectors = 0;
1814 		q->limits.max_hw_discard_sectors = 0;
1815 		q->limits.discard_granularity = 0;
1816 		q->limits.discard_alignment = 0;
1817 		q->limits.discard_misaligned = 0;
1818 	} else
1819 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1820 
1821 	if (dm_table_supports_secure_erase(t))
1822 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1823 
1824 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1825 		wc = true;
1826 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1827 			fua = true;
1828 	}
1829 	blk_queue_write_cache(q, wc, fua);
1830 
1831 	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1832 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1833 		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1834 			set_dax_synchronous(t->md->dax_dev);
1835 	}
1836 	else
1837 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1838 
1839 	if (dm_table_supports_dax_write_cache(t))
1840 		dax_write_cache(t->md->dax_dev, true);
1841 
1842 	/* Ensure that all underlying devices are non-rotational. */
1843 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1844 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1845 	else
1846 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1847 
1848 	if (!dm_table_supports_write_same(t))
1849 		q->limits.max_write_same_sectors = 0;
1850 	if (!dm_table_supports_write_zeroes(t))
1851 		q->limits.max_write_zeroes_sectors = 0;
1852 
1853 	dm_table_verify_integrity(t);
1854 
1855 	/*
1856 	 * Some devices don't use blk_integrity but still want stable pages
1857 	 * because they do their own checksumming.
1858 	 */
1859 	if (dm_table_requires_stable_pages(t))
1860 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1861 	else
1862 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1863 
1864 	/*
1865 	 * Determine whether or not this queue's I/O timings contribute
1866 	 * to the entropy pool, Only request-based targets use this.
1867 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1868 	 * have it set.
1869 	 */
1870 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1871 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1872 
1873 	/*
1874 	 * For a zoned target, the number of zones should be updated for the
1875 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1876 	 * target, this is all that is needed.
1877 	 */
1878 #ifdef CONFIG_BLK_DEV_ZONED
1879 	if (blk_queue_is_zoned(q)) {
1880 		WARN_ON_ONCE(queue_is_mq(q));
1881 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1882 	}
1883 #endif
1884 
1885 	blk_queue_update_readahead(q);
1886 }
1887 
1888 unsigned int dm_table_get_num_targets(struct dm_table *t)
1889 {
1890 	return t->num_targets;
1891 }
1892 
1893 struct list_head *dm_table_get_devices(struct dm_table *t)
1894 {
1895 	return &t->devices;
1896 }
1897 
1898 fmode_t dm_table_get_mode(struct dm_table *t)
1899 {
1900 	return t->mode;
1901 }
1902 EXPORT_SYMBOL(dm_table_get_mode);
1903 
1904 enum suspend_mode {
1905 	PRESUSPEND,
1906 	PRESUSPEND_UNDO,
1907 	POSTSUSPEND,
1908 };
1909 
1910 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1911 {
1912 	int i = t->num_targets;
1913 	struct dm_target *ti = t->targets;
1914 
1915 	lockdep_assert_held(&t->md->suspend_lock);
1916 
1917 	while (i--) {
1918 		switch (mode) {
1919 		case PRESUSPEND:
1920 			if (ti->type->presuspend)
1921 				ti->type->presuspend(ti);
1922 			break;
1923 		case PRESUSPEND_UNDO:
1924 			if (ti->type->presuspend_undo)
1925 				ti->type->presuspend_undo(ti);
1926 			break;
1927 		case POSTSUSPEND:
1928 			if (ti->type->postsuspend)
1929 				ti->type->postsuspend(ti);
1930 			break;
1931 		}
1932 		ti++;
1933 	}
1934 }
1935 
1936 void dm_table_presuspend_targets(struct dm_table *t)
1937 {
1938 	if (!t)
1939 		return;
1940 
1941 	suspend_targets(t, PRESUSPEND);
1942 }
1943 
1944 void dm_table_presuspend_undo_targets(struct dm_table *t)
1945 {
1946 	if (!t)
1947 		return;
1948 
1949 	suspend_targets(t, PRESUSPEND_UNDO);
1950 }
1951 
1952 void dm_table_postsuspend_targets(struct dm_table *t)
1953 {
1954 	if (!t)
1955 		return;
1956 
1957 	suspend_targets(t, POSTSUSPEND);
1958 }
1959 
1960 int dm_table_resume_targets(struct dm_table *t)
1961 {
1962 	int i, r = 0;
1963 
1964 	lockdep_assert_held(&t->md->suspend_lock);
1965 
1966 	for (i = 0; i < t->num_targets; i++) {
1967 		struct dm_target *ti = t->targets + i;
1968 
1969 		if (!ti->type->preresume)
1970 			continue;
1971 
1972 		r = ti->type->preresume(ti);
1973 		if (r) {
1974 			DMERR("%s: %s: preresume failed, error = %d",
1975 			      dm_device_name(t->md), ti->type->name, r);
1976 			return r;
1977 		}
1978 	}
1979 
1980 	for (i = 0; i < t->num_targets; i++) {
1981 		struct dm_target *ti = t->targets + i;
1982 
1983 		if (ti->type->resume)
1984 			ti->type->resume(ti);
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 struct mapped_device *dm_table_get_md(struct dm_table *t)
1991 {
1992 	return t->md;
1993 }
1994 EXPORT_SYMBOL(dm_table_get_md);
1995 
1996 const char *dm_table_device_name(struct dm_table *t)
1997 {
1998 	return dm_device_name(t->md);
1999 }
2000 EXPORT_SYMBOL_GPL(dm_table_device_name);
2001 
2002 void dm_table_run_md_queue_async(struct dm_table *t)
2003 {
2004 	if (!dm_table_request_based(t))
2005 		return;
2006 
2007 	if (t->md->queue)
2008 		blk_mq_run_hw_queues(t->md->queue, true);
2009 }
2010 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2011 
2012