1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 unsigned integrity_added:1; 51 52 /* 53 * Indicates the rw permissions for the new logical 54 * device. This should be a combination of FMODE_READ 55 * and FMODE_WRITE. 56 */ 57 fmode_t mode; 58 59 /* a list of devices used by this table */ 60 struct list_head devices; 61 62 /* events get handed up using this callback */ 63 void (*event_fn)(void *); 64 void *event_context; 65 66 struct dm_md_mempools *mempools; 67 68 struct list_head target_callbacks; 69 }; 70 71 /* 72 * Similar to ceiling(log_size(n)) 73 */ 74 static unsigned int int_log(unsigned int n, unsigned int base) 75 { 76 int result = 0; 77 78 while (n > 1) { 79 n = dm_div_up(n, base); 80 result++; 81 } 82 83 return result; 84 } 85 86 /* 87 * Calculate the index of the child node of the n'th node k'th key. 88 */ 89 static inline unsigned int get_child(unsigned int n, unsigned int k) 90 { 91 return (n * CHILDREN_PER_NODE) + k; 92 } 93 94 /* 95 * Return the n'th node of level l from table t. 96 */ 97 static inline sector_t *get_node(struct dm_table *t, 98 unsigned int l, unsigned int n) 99 { 100 return t->index[l] + (n * KEYS_PER_NODE); 101 } 102 103 /* 104 * Return the highest key that you could lookup from the n'th 105 * node on level l of the btree. 106 */ 107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 108 { 109 for (; l < t->depth - 1; l++) 110 n = get_child(n, CHILDREN_PER_NODE - 1); 111 112 if (n >= t->counts[l]) 113 return (sector_t) - 1; 114 115 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 116 } 117 118 /* 119 * Fills in a level of the btree based on the highs of the level 120 * below it. 121 */ 122 static int setup_btree_index(unsigned int l, struct dm_table *t) 123 { 124 unsigned int n, k; 125 sector_t *node; 126 127 for (n = 0U; n < t->counts[l]; n++) { 128 node = get_node(t, l, n); 129 130 for (k = 0U; k < KEYS_PER_NODE; k++) 131 node[k] = high(t, l + 1, get_child(n, k)); 132 } 133 134 return 0; 135 } 136 137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 138 { 139 unsigned long size; 140 void *addr; 141 142 /* 143 * Check that we're not going to overflow. 144 */ 145 if (nmemb > (ULONG_MAX / elem_size)) 146 return NULL; 147 148 size = nmemb * elem_size; 149 addr = vzalloc(size); 150 151 return addr; 152 } 153 EXPORT_SYMBOL(dm_vcalloc); 154 155 /* 156 * highs, and targets are managed as dynamic arrays during a 157 * table load. 158 */ 159 static int alloc_targets(struct dm_table *t, unsigned int num) 160 { 161 sector_t *n_highs; 162 struct dm_target *n_targets; 163 164 /* 165 * Allocate both the target array and offset array at once. 166 * Append an empty entry to catch sectors beyond the end of 167 * the device. 168 */ 169 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 170 sizeof(sector_t)); 171 if (!n_highs) 172 return -ENOMEM; 173 174 n_targets = (struct dm_target *) (n_highs + num); 175 176 memset(n_highs, -1, sizeof(*n_highs) * num); 177 vfree(t->highs); 178 179 t->num_allocated = num; 180 t->highs = n_highs; 181 t->targets = n_targets; 182 183 return 0; 184 } 185 186 int dm_table_create(struct dm_table **result, fmode_t mode, 187 unsigned num_targets, struct mapped_device *md) 188 { 189 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 190 191 if (!t) 192 return -ENOMEM; 193 194 INIT_LIST_HEAD(&t->devices); 195 INIT_LIST_HEAD(&t->target_callbacks); 196 197 if (!num_targets) 198 num_targets = KEYS_PER_NODE; 199 200 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 201 202 if (!num_targets) { 203 kfree(t); 204 return -ENOMEM; 205 } 206 207 if (alloc_targets(t, num_targets)) { 208 kfree(t); 209 return -ENOMEM; 210 } 211 212 t->type = DM_TYPE_NONE; 213 t->mode = mode; 214 t->md = md; 215 *result = t; 216 return 0; 217 } 218 219 static void free_devices(struct list_head *devices, struct mapped_device *md) 220 { 221 struct list_head *tmp, *next; 222 223 list_for_each_safe(tmp, next, devices) { 224 struct dm_dev_internal *dd = 225 list_entry(tmp, struct dm_dev_internal, list); 226 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 227 dm_device_name(md), dd->dm_dev->name); 228 dm_put_table_device(md, dd->dm_dev); 229 kfree(dd); 230 } 231 } 232 233 void dm_table_destroy(struct dm_table *t) 234 { 235 unsigned int i; 236 237 if (!t) 238 return; 239 240 /* free the indexes */ 241 if (t->depth >= 2) 242 vfree(t->index[t->depth - 2]); 243 244 /* free the targets */ 245 for (i = 0; i < t->num_targets; i++) { 246 struct dm_target *tgt = t->targets + i; 247 248 if (tgt->type->dtr) 249 tgt->type->dtr(tgt); 250 251 dm_put_target_type(tgt->type); 252 } 253 254 vfree(t->highs); 255 256 /* free the device list */ 257 free_devices(&t->devices, t->md); 258 259 dm_free_md_mempools(t->mempools); 260 261 kfree(t); 262 } 263 264 /* 265 * See if we've already got a device in the list. 266 */ 267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 268 { 269 struct dm_dev_internal *dd; 270 271 list_for_each_entry (dd, l, list) 272 if (dd->dm_dev->bdev->bd_dev == dev) 273 return dd; 274 275 return NULL; 276 } 277 278 /* 279 * If possible, this checks an area of a destination device is invalid. 280 */ 281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 282 sector_t start, sector_t len, void *data) 283 { 284 struct request_queue *q; 285 struct queue_limits *limits = data; 286 struct block_device *bdev = dev->bdev; 287 sector_t dev_size = 288 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 289 unsigned short logical_block_size_sectors = 290 limits->logical_block_size >> SECTOR_SHIFT; 291 char b[BDEVNAME_SIZE]; 292 293 /* 294 * Some devices exist without request functions, 295 * such as loop devices not yet bound to backing files. 296 * Forbid the use of such devices. 297 */ 298 q = bdev_get_queue(bdev); 299 if (!q || !q->make_request_fn) { 300 DMWARN("%s: %s is not yet initialised: " 301 "start=%llu, len=%llu, dev_size=%llu", 302 dm_device_name(ti->table->md), bdevname(bdev, b), 303 (unsigned long long)start, 304 (unsigned long long)len, 305 (unsigned long long)dev_size); 306 return 1; 307 } 308 309 if (!dev_size) 310 return 0; 311 312 if ((start >= dev_size) || (start + len > dev_size)) { 313 DMWARN("%s: %s too small for target: " 314 "start=%llu, len=%llu, dev_size=%llu", 315 dm_device_name(ti->table->md), bdevname(bdev, b), 316 (unsigned long long)start, 317 (unsigned long long)len, 318 (unsigned long long)dev_size); 319 return 1; 320 } 321 322 /* 323 * If the target is mapped to zoned block device(s), check 324 * that the zones are not partially mapped. 325 */ 326 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 327 unsigned int zone_sectors = bdev_zone_sectors(bdev); 328 329 if (start & (zone_sectors - 1)) { 330 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 331 dm_device_name(ti->table->md), 332 (unsigned long long)start, 333 zone_sectors, bdevname(bdev, b)); 334 return 1; 335 } 336 337 /* 338 * Note: The last zone of a zoned block device may be smaller 339 * than other zones. So for a target mapping the end of a 340 * zoned block device with such a zone, len would not be zone 341 * aligned. We do not allow such last smaller zone to be part 342 * of the mapping here to ensure that mappings with multiple 343 * devices do not end up with a smaller zone in the middle of 344 * the sector range. 345 */ 346 if (len & (zone_sectors - 1)) { 347 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 348 dm_device_name(ti->table->md), 349 (unsigned long long)len, 350 zone_sectors, bdevname(bdev, b)); 351 return 1; 352 } 353 } 354 355 if (logical_block_size_sectors <= 1) 356 return 0; 357 358 if (start & (logical_block_size_sectors - 1)) { 359 DMWARN("%s: start=%llu not aligned to h/w " 360 "logical block size %u of %s", 361 dm_device_name(ti->table->md), 362 (unsigned long long)start, 363 limits->logical_block_size, bdevname(bdev, b)); 364 return 1; 365 } 366 367 if (len & (logical_block_size_sectors - 1)) { 368 DMWARN("%s: len=%llu not aligned to h/w " 369 "logical block size %u of %s", 370 dm_device_name(ti->table->md), 371 (unsigned long long)len, 372 limits->logical_block_size, bdevname(bdev, b)); 373 return 1; 374 } 375 376 return 0; 377 } 378 379 /* 380 * This upgrades the mode on an already open dm_dev, being 381 * careful to leave things as they were if we fail to reopen the 382 * device and not to touch the existing bdev field in case 383 * it is accessed concurrently inside dm_table_any_congested(). 384 */ 385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 386 struct mapped_device *md) 387 { 388 int r; 389 struct dm_dev *old_dev, *new_dev; 390 391 old_dev = dd->dm_dev; 392 393 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 394 dd->dm_dev->mode | new_mode, &new_dev); 395 if (r) 396 return r; 397 398 dd->dm_dev = new_dev; 399 dm_put_table_device(md, old_dev); 400 401 return 0; 402 } 403 404 /* 405 * Convert the path to a device 406 */ 407 dev_t dm_get_dev_t(const char *path) 408 { 409 dev_t dev; 410 struct block_device *bdev; 411 412 bdev = lookup_bdev(path); 413 if (IS_ERR(bdev)) 414 dev = name_to_dev_t(path); 415 else { 416 dev = bdev->bd_dev; 417 bdput(bdev); 418 } 419 420 return dev; 421 } 422 EXPORT_SYMBOL_GPL(dm_get_dev_t); 423 424 /* 425 * Add a device to the list, or just increment the usage count if 426 * it's already present. 427 */ 428 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 429 struct dm_dev **result) 430 { 431 int r; 432 dev_t dev; 433 struct dm_dev_internal *dd; 434 struct dm_table *t = ti->table; 435 436 BUG_ON(!t); 437 438 dev = dm_get_dev_t(path); 439 if (!dev) 440 return -ENODEV; 441 442 dd = find_device(&t->devices, dev); 443 if (!dd) { 444 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 445 if (!dd) 446 return -ENOMEM; 447 448 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 449 kfree(dd); 450 return r; 451 } 452 453 refcount_set(&dd->count, 1); 454 list_add(&dd->list, &t->devices); 455 goto out; 456 457 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 458 r = upgrade_mode(dd, mode, t->md); 459 if (r) 460 return r; 461 } 462 refcount_inc(&dd->count); 463 out: 464 *result = dd->dm_dev; 465 return 0; 466 } 467 EXPORT_SYMBOL(dm_get_device); 468 469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 470 sector_t start, sector_t len, void *data) 471 { 472 struct queue_limits *limits = data; 473 struct block_device *bdev = dev->bdev; 474 struct request_queue *q = bdev_get_queue(bdev); 475 char b[BDEVNAME_SIZE]; 476 477 if (unlikely(!q)) { 478 DMWARN("%s: Cannot set limits for nonexistent device %s", 479 dm_device_name(ti->table->md), bdevname(bdev, b)); 480 return 0; 481 } 482 483 if (bdev_stack_limits(limits, bdev, start) < 0) 484 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 485 "physical_block_size=%u, logical_block_size=%u, " 486 "alignment_offset=%u, start=%llu", 487 dm_device_name(ti->table->md), bdevname(bdev, b), 488 q->limits.physical_block_size, 489 q->limits.logical_block_size, 490 q->limits.alignment_offset, 491 (unsigned long long) start << SECTOR_SHIFT); 492 493 limits->zoned = blk_queue_zoned_model(q); 494 495 return 0; 496 } 497 498 /* 499 * Decrement a device's use count and remove it if necessary. 500 */ 501 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 502 { 503 int found = 0; 504 struct list_head *devices = &ti->table->devices; 505 struct dm_dev_internal *dd; 506 507 list_for_each_entry(dd, devices, list) { 508 if (dd->dm_dev == d) { 509 found = 1; 510 break; 511 } 512 } 513 if (!found) { 514 DMWARN("%s: device %s not in table devices list", 515 dm_device_name(ti->table->md), d->name); 516 return; 517 } 518 if (refcount_dec_and_test(&dd->count)) { 519 dm_put_table_device(ti->table->md, d); 520 list_del(&dd->list); 521 kfree(dd); 522 } 523 } 524 EXPORT_SYMBOL(dm_put_device); 525 526 /* 527 * Checks to see if the target joins onto the end of the table. 528 */ 529 static int adjoin(struct dm_table *table, struct dm_target *ti) 530 { 531 struct dm_target *prev; 532 533 if (!table->num_targets) 534 return !ti->begin; 535 536 prev = &table->targets[table->num_targets - 1]; 537 return (ti->begin == (prev->begin + prev->len)); 538 } 539 540 /* 541 * Used to dynamically allocate the arg array. 542 * 543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 544 * process messages even if some device is suspended. These messages have a 545 * small fixed number of arguments. 546 * 547 * On the other hand, dm-switch needs to process bulk data using messages and 548 * excessive use of GFP_NOIO could cause trouble. 549 */ 550 static char **realloc_argv(unsigned *size, char **old_argv) 551 { 552 char **argv; 553 unsigned new_size; 554 gfp_t gfp; 555 556 if (*size) { 557 new_size = *size * 2; 558 gfp = GFP_KERNEL; 559 } else { 560 new_size = 8; 561 gfp = GFP_NOIO; 562 } 563 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 564 if (argv) { 565 memcpy(argv, old_argv, *size * sizeof(*argv)); 566 *size = new_size; 567 } 568 569 kfree(old_argv); 570 return argv; 571 } 572 573 /* 574 * Destructively splits up the argument list to pass to ctr. 575 */ 576 int dm_split_args(int *argc, char ***argvp, char *input) 577 { 578 char *start, *end = input, *out, **argv = NULL; 579 unsigned array_size = 0; 580 581 *argc = 0; 582 583 if (!input) { 584 *argvp = NULL; 585 return 0; 586 } 587 588 argv = realloc_argv(&array_size, argv); 589 if (!argv) 590 return -ENOMEM; 591 592 while (1) { 593 /* Skip whitespace */ 594 start = skip_spaces(end); 595 596 if (!*start) 597 break; /* success, we hit the end */ 598 599 /* 'out' is used to remove any back-quotes */ 600 end = out = start; 601 while (*end) { 602 /* Everything apart from '\0' can be quoted */ 603 if (*end == '\\' && *(end + 1)) { 604 *out++ = *(end + 1); 605 end += 2; 606 continue; 607 } 608 609 if (isspace(*end)) 610 break; /* end of token */ 611 612 *out++ = *end++; 613 } 614 615 /* have we already filled the array ? */ 616 if ((*argc + 1) > array_size) { 617 argv = realloc_argv(&array_size, argv); 618 if (!argv) 619 return -ENOMEM; 620 } 621 622 /* we know this is whitespace */ 623 if (*end) 624 end++; 625 626 /* terminate the string and put it in the array */ 627 *out = '\0'; 628 argv[*argc] = start; 629 (*argc)++; 630 } 631 632 *argvp = argv; 633 return 0; 634 } 635 636 /* 637 * Impose necessary and sufficient conditions on a devices's table such 638 * that any incoming bio which respects its logical_block_size can be 639 * processed successfully. If it falls across the boundary between 640 * two or more targets, the size of each piece it gets split into must 641 * be compatible with the logical_block_size of the target processing it. 642 */ 643 static int validate_hardware_logical_block_alignment(struct dm_table *table, 644 struct queue_limits *limits) 645 { 646 /* 647 * This function uses arithmetic modulo the logical_block_size 648 * (in units of 512-byte sectors). 649 */ 650 unsigned short device_logical_block_size_sects = 651 limits->logical_block_size >> SECTOR_SHIFT; 652 653 /* 654 * Offset of the start of the next table entry, mod logical_block_size. 655 */ 656 unsigned short next_target_start = 0; 657 658 /* 659 * Given an aligned bio that extends beyond the end of a 660 * target, how many sectors must the next target handle? 661 */ 662 unsigned short remaining = 0; 663 664 struct dm_target *uninitialized_var(ti); 665 struct queue_limits ti_limits; 666 unsigned i; 667 668 /* 669 * Check each entry in the table in turn. 670 */ 671 for (i = 0; i < dm_table_get_num_targets(table); i++) { 672 ti = dm_table_get_target(table, i); 673 674 blk_set_stacking_limits(&ti_limits); 675 676 /* combine all target devices' limits */ 677 if (ti->type->iterate_devices) 678 ti->type->iterate_devices(ti, dm_set_device_limits, 679 &ti_limits); 680 681 /* 682 * If the remaining sectors fall entirely within this 683 * table entry are they compatible with its logical_block_size? 684 */ 685 if (remaining < ti->len && 686 remaining & ((ti_limits.logical_block_size >> 687 SECTOR_SHIFT) - 1)) 688 break; /* Error */ 689 690 next_target_start = 691 (unsigned short) ((next_target_start + ti->len) & 692 (device_logical_block_size_sects - 1)); 693 remaining = next_target_start ? 694 device_logical_block_size_sects - next_target_start : 0; 695 } 696 697 if (remaining) { 698 DMWARN("%s: table line %u (start sect %llu len %llu) " 699 "not aligned to h/w logical block size %u", 700 dm_device_name(table->md), i, 701 (unsigned long long) ti->begin, 702 (unsigned long long) ti->len, 703 limits->logical_block_size); 704 return -EINVAL; 705 } 706 707 return 0; 708 } 709 710 int dm_table_add_target(struct dm_table *t, const char *type, 711 sector_t start, sector_t len, char *params) 712 { 713 int r = -EINVAL, argc; 714 char **argv; 715 struct dm_target *tgt; 716 717 if (t->singleton) { 718 DMERR("%s: target type %s must appear alone in table", 719 dm_device_name(t->md), t->targets->type->name); 720 return -EINVAL; 721 } 722 723 BUG_ON(t->num_targets >= t->num_allocated); 724 725 tgt = t->targets + t->num_targets; 726 memset(tgt, 0, sizeof(*tgt)); 727 728 if (!len) { 729 DMERR("%s: zero-length target", dm_device_name(t->md)); 730 return -EINVAL; 731 } 732 733 tgt->type = dm_get_target_type(type); 734 if (!tgt->type) { 735 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 736 return -EINVAL; 737 } 738 739 if (dm_target_needs_singleton(tgt->type)) { 740 if (t->num_targets) { 741 tgt->error = "singleton target type must appear alone in table"; 742 goto bad; 743 } 744 t->singleton = true; 745 } 746 747 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 748 tgt->error = "target type may not be included in a read-only table"; 749 goto bad; 750 } 751 752 if (t->immutable_target_type) { 753 if (t->immutable_target_type != tgt->type) { 754 tgt->error = "immutable target type cannot be mixed with other target types"; 755 goto bad; 756 } 757 } else if (dm_target_is_immutable(tgt->type)) { 758 if (t->num_targets) { 759 tgt->error = "immutable target type cannot be mixed with other target types"; 760 goto bad; 761 } 762 t->immutable_target_type = tgt->type; 763 } 764 765 if (dm_target_has_integrity(tgt->type)) 766 t->integrity_added = 1; 767 768 tgt->table = t; 769 tgt->begin = start; 770 tgt->len = len; 771 tgt->error = "Unknown error"; 772 773 /* 774 * Does this target adjoin the previous one ? 775 */ 776 if (!adjoin(t, tgt)) { 777 tgt->error = "Gap in table"; 778 goto bad; 779 } 780 781 r = dm_split_args(&argc, &argv, params); 782 if (r) { 783 tgt->error = "couldn't split parameters (insufficient memory)"; 784 goto bad; 785 } 786 787 r = tgt->type->ctr(tgt, argc, argv); 788 kfree(argv); 789 if (r) 790 goto bad; 791 792 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 793 794 if (!tgt->num_discard_bios && tgt->discards_supported) 795 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 796 dm_device_name(t->md), type); 797 798 return 0; 799 800 bad: 801 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 802 dm_put_target_type(tgt->type); 803 return r; 804 } 805 806 /* 807 * Target argument parsing helpers. 808 */ 809 static int validate_next_arg(const struct dm_arg *arg, 810 struct dm_arg_set *arg_set, 811 unsigned *value, char **error, unsigned grouped) 812 { 813 const char *arg_str = dm_shift_arg(arg_set); 814 char dummy; 815 816 if (!arg_str || 817 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 818 (*value < arg->min) || 819 (*value > arg->max) || 820 (grouped && arg_set->argc < *value)) { 821 *error = arg->error; 822 return -EINVAL; 823 } 824 825 return 0; 826 } 827 828 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 829 unsigned *value, char **error) 830 { 831 return validate_next_arg(arg, arg_set, value, error, 0); 832 } 833 EXPORT_SYMBOL(dm_read_arg); 834 835 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 836 unsigned *value, char **error) 837 { 838 return validate_next_arg(arg, arg_set, value, error, 1); 839 } 840 EXPORT_SYMBOL(dm_read_arg_group); 841 842 const char *dm_shift_arg(struct dm_arg_set *as) 843 { 844 char *r; 845 846 if (as->argc) { 847 as->argc--; 848 r = *as->argv; 849 as->argv++; 850 return r; 851 } 852 853 return NULL; 854 } 855 EXPORT_SYMBOL(dm_shift_arg); 856 857 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 858 { 859 BUG_ON(as->argc < num_args); 860 as->argc -= num_args; 861 as->argv += num_args; 862 } 863 EXPORT_SYMBOL(dm_consume_args); 864 865 static bool __table_type_bio_based(enum dm_queue_mode table_type) 866 { 867 return (table_type == DM_TYPE_BIO_BASED || 868 table_type == DM_TYPE_DAX_BIO_BASED || 869 table_type == DM_TYPE_NVME_BIO_BASED); 870 } 871 872 static bool __table_type_request_based(enum dm_queue_mode table_type) 873 { 874 return table_type == DM_TYPE_REQUEST_BASED; 875 } 876 877 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 878 { 879 t->type = type; 880 } 881 EXPORT_SYMBOL_GPL(dm_table_set_type); 882 883 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 884 sector_t start, sector_t len, void *data) 885 { 886 return bdev_dax_supported(dev->bdev, PAGE_SIZE); 887 } 888 889 static bool dm_table_supports_dax(struct dm_table *t) 890 { 891 struct dm_target *ti; 892 unsigned i; 893 894 /* Ensure that all targets support DAX. */ 895 for (i = 0; i < dm_table_get_num_targets(t); i++) { 896 ti = dm_table_get_target(t, i); 897 898 if (!ti->type->direct_access) 899 return false; 900 901 if (!ti->type->iterate_devices || 902 !ti->type->iterate_devices(ti, device_supports_dax, NULL)) 903 return false; 904 } 905 906 return true; 907 } 908 909 static bool dm_table_does_not_support_partial_completion(struct dm_table *t); 910 911 struct verify_rq_based_data { 912 unsigned sq_count; 913 unsigned mq_count; 914 }; 915 916 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev, 917 sector_t start, sector_t len, void *data) 918 { 919 struct request_queue *q = bdev_get_queue(dev->bdev); 920 struct verify_rq_based_data *v = data; 921 922 if (q->mq_ops) 923 v->mq_count++; 924 else 925 v->sq_count++; 926 927 return queue_is_rq_based(q); 928 } 929 930 static int dm_table_determine_type(struct dm_table *t) 931 { 932 unsigned i; 933 unsigned bio_based = 0, request_based = 0, hybrid = 0; 934 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0}; 935 struct dm_target *tgt; 936 struct list_head *devices = dm_table_get_devices(t); 937 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 938 939 if (t->type != DM_TYPE_NONE) { 940 /* target already set the table's type */ 941 if (t->type == DM_TYPE_BIO_BASED) { 942 /* possibly upgrade to a variant of bio-based */ 943 goto verify_bio_based; 944 } 945 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 946 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED); 947 goto verify_rq_based; 948 } 949 950 for (i = 0; i < t->num_targets; i++) { 951 tgt = t->targets + i; 952 if (dm_target_hybrid(tgt)) 953 hybrid = 1; 954 else if (dm_target_request_based(tgt)) 955 request_based = 1; 956 else 957 bio_based = 1; 958 959 if (bio_based && request_based) { 960 DMERR("Inconsistent table: different target types" 961 " can't be mixed up"); 962 return -EINVAL; 963 } 964 } 965 966 if (hybrid && !bio_based && !request_based) { 967 /* 968 * The targets can work either way. 969 * Determine the type from the live device. 970 * Default to bio-based if device is new. 971 */ 972 if (__table_type_request_based(live_md_type)) 973 request_based = 1; 974 else 975 bio_based = 1; 976 } 977 978 if (bio_based) { 979 verify_bio_based: 980 /* We must use this table as bio-based */ 981 t->type = DM_TYPE_BIO_BASED; 982 if (dm_table_supports_dax(t) || 983 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 984 t->type = DM_TYPE_DAX_BIO_BASED; 985 } else { 986 /* Check if upgrading to NVMe bio-based is valid or required */ 987 tgt = dm_table_get_immutable_target(t); 988 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) { 989 t->type = DM_TYPE_NVME_BIO_BASED; 990 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */ 991 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) { 992 t->type = DM_TYPE_NVME_BIO_BASED; 993 } 994 } 995 return 0; 996 } 997 998 BUG_ON(!request_based); /* No targets in this table */ 999 1000 t->type = DM_TYPE_REQUEST_BASED; 1001 1002 verify_rq_based: 1003 /* 1004 * Request-based dm supports only tables that have a single target now. 1005 * To support multiple targets, request splitting support is needed, 1006 * and that needs lots of changes in the block-layer. 1007 * (e.g. request completion process for partial completion.) 1008 */ 1009 if (t->num_targets > 1) { 1010 DMERR("%s DM doesn't support multiple targets", 1011 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based"); 1012 return -EINVAL; 1013 } 1014 1015 if (list_empty(devices)) { 1016 int srcu_idx; 1017 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 1018 1019 /* inherit live table's type */ 1020 if (live_table) 1021 t->type = live_table->type; 1022 dm_put_live_table(t->md, srcu_idx); 1023 return 0; 1024 } 1025 1026 tgt = dm_table_get_immutable_target(t); 1027 if (!tgt) { 1028 DMERR("table load rejected: immutable target is required"); 1029 return -EINVAL; 1030 } else if (tgt->max_io_len) { 1031 DMERR("table load rejected: immutable target that splits IO is not supported"); 1032 return -EINVAL; 1033 } 1034 1035 /* Non-request-stackable devices can't be used for request-based dm */ 1036 if (!tgt->type->iterate_devices || 1037 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) { 1038 DMERR("table load rejected: including non-request-stackable devices"); 1039 return -EINVAL; 1040 } 1041 if (v.sq_count > 0) { 1042 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 1043 return -EINVAL; 1044 } 1045 1046 return 0; 1047 } 1048 1049 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1050 { 1051 return t->type; 1052 } 1053 1054 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1055 { 1056 return t->immutable_target_type; 1057 } 1058 1059 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1060 { 1061 /* Immutable target is implicitly a singleton */ 1062 if (t->num_targets > 1 || 1063 !dm_target_is_immutable(t->targets[0].type)) 1064 return NULL; 1065 1066 return t->targets; 1067 } 1068 1069 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1070 { 1071 struct dm_target *ti; 1072 unsigned i; 1073 1074 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1075 ti = dm_table_get_target(t, i); 1076 if (dm_target_is_wildcard(ti->type)) 1077 return ti; 1078 } 1079 1080 return NULL; 1081 } 1082 1083 bool dm_table_bio_based(struct dm_table *t) 1084 { 1085 return __table_type_bio_based(dm_table_get_type(t)); 1086 } 1087 1088 bool dm_table_request_based(struct dm_table *t) 1089 { 1090 return __table_type_request_based(dm_table_get_type(t)); 1091 } 1092 1093 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1094 { 1095 enum dm_queue_mode type = dm_table_get_type(t); 1096 unsigned per_io_data_size = 0; 1097 unsigned min_pool_size = 0; 1098 struct dm_target *ti; 1099 unsigned i; 1100 1101 if (unlikely(type == DM_TYPE_NONE)) { 1102 DMWARN("no table type is set, can't allocate mempools"); 1103 return -EINVAL; 1104 } 1105 1106 if (__table_type_bio_based(type)) 1107 for (i = 0; i < t->num_targets; i++) { 1108 ti = t->targets + i; 1109 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1110 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1111 } 1112 1113 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1114 per_io_data_size, min_pool_size); 1115 if (!t->mempools) 1116 return -ENOMEM; 1117 1118 return 0; 1119 } 1120 1121 void dm_table_free_md_mempools(struct dm_table *t) 1122 { 1123 dm_free_md_mempools(t->mempools); 1124 t->mempools = NULL; 1125 } 1126 1127 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1128 { 1129 return t->mempools; 1130 } 1131 1132 static int setup_indexes(struct dm_table *t) 1133 { 1134 int i; 1135 unsigned int total = 0; 1136 sector_t *indexes; 1137 1138 /* allocate the space for *all* the indexes */ 1139 for (i = t->depth - 2; i >= 0; i--) { 1140 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1141 total += t->counts[i]; 1142 } 1143 1144 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1145 if (!indexes) 1146 return -ENOMEM; 1147 1148 /* set up internal nodes, bottom-up */ 1149 for (i = t->depth - 2; i >= 0; i--) { 1150 t->index[i] = indexes; 1151 indexes += (KEYS_PER_NODE * t->counts[i]); 1152 setup_btree_index(i, t); 1153 } 1154 1155 return 0; 1156 } 1157 1158 /* 1159 * Builds the btree to index the map. 1160 */ 1161 static int dm_table_build_index(struct dm_table *t) 1162 { 1163 int r = 0; 1164 unsigned int leaf_nodes; 1165 1166 /* how many indexes will the btree have ? */ 1167 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1168 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1169 1170 /* leaf layer has already been set up */ 1171 t->counts[t->depth - 1] = leaf_nodes; 1172 t->index[t->depth - 1] = t->highs; 1173 1174 if (t->depth >= 2) 1175 r = setup_indexes(t); 1176 1177 return r; 1178 } 1179 1180 static bool integrity_profile_exists(struct gendisk *disk) 1181 { 1182 return !!blk_get_integrity(disk); 1183 } 1184 1185 /* 1186 * Get a disk whose integrity profile reflects the table's profile. 1187 * Returns NULL if integrity support was inconsistent or unavailable. 1188 */ 1189 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1190 { 1191 struct list_head *devices = dm_table_get_devices(t); 1192 struct dm_dev_internal *dd = NULL; 1193 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1194 unsigned i; 1195 1196 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1197 struct dm_target *ti = dm_table_get_target(t, i); 1198 if (!dm_target_passes_integrity(ti->type)) 1199 goto no_integrity; 1200 } 1201 1202 list_for_each_entry(dd, devices, list) { 1203 template_disk = dd->dm_dev->bdev->bd_disk; 1204 if (!integrity_profile_exists(template_disk)) 1205 goto no_integrity; 1206 else if (prev_disk && 1207 blk_integrity_compare(prev_disk, template_disk) < 0) 1208 goto no_integrity; 1209 prev_disk = template_disk; 1210 } 1211 1212 return template_disk; 1213 1214 no_integrity: 1215 if (prev_disk) 1216 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1217 dm_device_name(t->md), 1218 prev_disk->disk_name, 1219 template_disk->disk_name); 1220 return NULL; 1221 } 1222 1223 /* 1224 * Register the mapped device for blk_integrity support if the 1225 * underlying devices have an integrity profile. But all devices may 1226 * not have matching profiles (checking all devices isn't reliable 1227 * during table load because this table may use other DM device(s) which 1228 * must be resumed before they will have an initialized integity 1229 * profile). Consequently, stacked DM devices force a 2 stage integrity 1230 * profile validation: First pass during table load, final pass during 1231 * resume. 1232 */ 1233 static int dm_table_register_integrity(struct dm_table *t) 1234 { 1235 struct mapped_device *md = t->md; 1236 struct gendisk *template_disk = NULL; 1237 1238 /* If target handles integrity itself do not register it here. */ 1239 if (t->integrity_added) 1240 return 0; 1241 1242 template_disk = dm_table_get_integrity_disk(t); 1243 if (!template_disk) 1244 return 0; 1245 1246 if (!integrity_profile_exists(dm_disk(md))) { 1247 t->integrity_supported = true; 1248 /* 1249 * Register integrity profile during table load; we can do 1250 * this because the final profile must match during resume. 1251 */ 1252 blk_integrity_register(dm_disk(md), 1253 blk_get_integrity(template_disk)); 1254 return 0; 1255 } 1256 1257 /* 1258 * If DM device already has an initialized integrity 1259 * profile the new profile should not conflict. 1260 */ 1261 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1262 DMWARN("%s: conflict with existing integrity profile: " 1263 "%s profile mismatch", 1264 dm_device_name(t->md), 1265 template_disk->disk_name); 1266 return 1; 1267 } 1268 1269 /* Preserve existing integrity profile */ 1270 t->integrity_supported = true; 1271 return 0; 1272 } 1273 1274 /* 1275 * Prepares the table for use by building the indices, 1276 * setting the type, and allocating mempools. 1277 */ 1278 int dm_table_complete(struct dm_table *t) 1279 { 1280 int r; 1281 1282 r = dm_table_determine_type(t); 1283 if (r) { 1284 DMERR("unable to determine table type"); 1285 return r; 1286 } 1287 1288 r = dm_table_build_index(t); 1289 if (r) { 1290 DMERR("unable to build btrees"); 1291 return r; 1292 } 1293 1294 r = dm_table_register_integrity(t); 1295 if (r) { 1296 DMERR("could not register integrity profile."); 1297 return r; 1298 } 1299 1300 r = dm_table_alloc_md_mempools(t, t->md); 1301 if (r) 1302 DMERR("unable to allocate mempools"); 1303 1304 return r; 1305 } 1306 1307 static DEFINE_MUTEX(_event_lock); 1308 void dm_table_event_callback(struct dm_table *t, 1309 void (*fn)(void *), void *context) 1310 { 1311 mutex_lock(&_event_lock); 1312 t->event_fn = fn; 1313 t->event_context = context; 1314 mutex_unlock(&_event_lock); 1315 } 1316 1317 void dm_table_event(struct dm_table *t) 1318 { 1319 /* 1320 * You can no longer call dm_table_event() from interrupt 1321 * context, use a bottom half instead. 1322 */ 1323 BUG_ON(in_interrupt()); 1324 1325 mutex_lock(&_event_lock); 1326 if (t->event_fn) 1327 t->event_fn(t->event_context); 1328 mutex_unlock(&_event_lock); 1329 } 1330 EXPORT_SYMBOL(dm_table_event); 1331 1332 sector_t dm_table_get_size(struct dm_table *t) 1333 { 1334 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1335 } 1336 EXPORT_SYMBOL(dm_table_get_size); 1337 1338 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1339 { 1340 if (index >= t->num_targets) 1341 return NULL; 1342 1343 return t->targets + index; 1344 } 1345 1346 /* 1347 * Search the btree for the correct target. 1348 * 1349 * Caller should check returned pointer with dm_target_is_valid() 1350 * to trap I/O beyond end of device. 1351 */ 1352 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1353 { 1354 unsigned int l, n = 0, k = 0; 1355 sector_t *node; 1356 1357 for (l = 0; l < t->depth; l++) { 1358 n = get_child(n, k); 1359 node = get_node(t, l, n); 1360 1361 for (k = 0; k < KEYS_PER_NODE; k++) 1362 if (node[k] >= sector) 1363 break; 1364 } 1365 1366 return &t->targets[(KEYS_PER_NODE * n) + k]; 1367 } 1368 1369 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1370 sector_t start, sector_t len, void *data) 1371 { 1372 unsigned *num_devices = data; 1373 1374 (*num_devices)++; 1375 1376 return 0; 1377 } 1378 1379 /* 1380 * Check whether a table has no data devices attached using each 1381 * target's iterate_devices method. 1382 * Returns false if the result is unknown because a target doesn't 1383 * support iterate_devices. 1384 */ 1385 bool dm_table_has_no_data_devices(struct dm_table *table) 1386 { 1387 struct dm_target *ti; 1388 unsigned i, num_devices; 1389 1390 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1391 ti = dm_table_get_target(table, i); 1392 1393 if (!ti->type->iterate_devices) 1394 return false; 1395 1396 num_devices = 0; 1397 ti->type->iterate_devices(ti, count_device, &num_devices); 1398 if (num_devices) 1399 return false; 1400 } 1401 1402 return true; 1403 } 1404 1405 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1406 sector_t start, sector_t len, void *data) 1407 { 1408 struct request_queue *q = bdev_get_queue(dev->bdev); 1409 enum blk_zoned_model *zoned_model = data; 1410 1411 return q && blk_queue_zoned_model(q) == *zoned_model; 1412 } 1413 1414 static bool dm_table_supports_zoned_model(struct dm_table *t, 1415 enum blk_zoned_model zoned_model) 1416 { 1417 struct dm_target *ti; 1418 unsigned i; 1419 1420 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1421 ti = dm_table_get_target(t, i); 1422 1423 if (zoned_model == BLK_ZONED_HM && 1424 !dm_target_supports_zoned_hm(ti->type)) 1425 return false; 1426 1427 if (!ti->type->iterate_devices || 1428 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1429 return false; 1430 } 1431 1432 return true; 1433 } 1434 1435 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1436 sector_t start, sector_t len, void *data) 1437 { 1438 struct request_queue *q = bdev_get_queue(dev->bdev); 1439 unsigned int *zone_sectors = data; 1440 1441 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1442 } 1443 1444 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1445 unsigned int zone_sectors) 1446 { 1447 struct dm_target *ti; 1448 unsigned i; 1449 1450 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1451 ti = dm_table_get_target(t, i); 1452 1453 if (!ti->type->iterate_devices || 1454 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1455 return false; 1456 } 1457 1458 return true; 1459 } 1460 1461 static int validate_hardware_zoned_model(struct dm_table *table, 1462 enum blk_zoned_model zoned_model, 1463 unsigned int zone_sectors) 1464 { 1465 if (zoned_model == BLK_ZONED_NONE) 1466 return 0; 1467 1468 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1469 DMERR("%s: zoned model is not consistent across all devices", 1470 dm_device_name(table->md)); 1471 return -EINVAL; 1472 } 1473 1474 /* Check zone size validity and compatibility */ 1475 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1476 return -EINVAL; 1477 1478 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1479 DMERR("%s: zone sectors is not consistent across all devices", 1480 dm_device_name(table->md)); 1481 return -EINVAL; 1482 } 1483 1484 return 0; 1485 } 1486 1487 /* 1488 * Establish the new table's queue_limits and validate them. 1489 */ 1490 int dm_calculate_queue_limits(struct dm_table *table, 1491 struct queue_limits *limits) 1492 { 1493 struct dm_target *ti; 1494 struct queue_limits ti_limits; 1495 unsigned i; 1496 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1497 unsigned int zone_sectors = 0; 1498 1499 blk_set_stacking_limits(limits); 1500 1501 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1502 blk_set_stacking_limits(&ti_limits); 1503 1504 ti = dm_table_get_target(table, i); 1505 1506 if (!ti->type->iterate_devices) 1507 goto combine_limits; 1508 1509 /* 1510 * Combine queue limits of all the devices this target uses. 1511 */ 1512 ti->type->iterate_devices(ti, dm_set_device_limits, 1513 &ti_limits); 1514 1515 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1516 /* 1517 * After stacking all limits, validate all devices 1518 * in table support this zoned model and zone sectors. 1519 */ 1520 zoned_model = ti_limits.zoned; 1521 zone_sectors = ti_limits.chunk_sectors; 1522 } 1523 1524 /* Set I/O hints portion of queue limits */ 1525 if (ti->type->io_hints) 1526 ti->type->io_hints(ti, &ti_limits); 1527 1528 /* 1529 * Check each device area is consistent with the target's 1530 * overall queue limits. 1531 */ 1532 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1533 &ti_limits)) 1534 return -EINVAL; 1535 1536 combine_limits: 1537 /* 1538 * Merge this target's queue limits into the overall limits 1539 * for the table. 1540 */ 1541 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1542 DMWARN("%s: adding target device " 1543 "(start sect %llu len %llu) " 1544 "caused an alignment inconsistency", 1545 dm_device_name(table->md), 1546 (unsigned long long) ti->begin, 1547 (unsigned long long) ti->len); 1548 1549 /* 1550 * FIXME: this should likely be moved to blk_stack_limits(), would 1551 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1552 */ 1553 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1554 /* 1555 * By default, the stacked limits zoned model is set to 1556 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1557 * this model using the first target model reported 1558 * that is not BLK_ZONED_NONE. This will be either the 1559 * first target device zoned model or the model reported 1560 * by the target .io_hints. 1561 */ 1562 limits->zoned = ti_limits.zoned; 1563 } 1564 } 1565 1566 /* 1567 * Verify that the zoned model and zone sectors, as determined before 1568 * any .io_hints override, are the same across all devices in the table. 1569 * - this is especially relevant if .io_hints is emulating a disk-managed 1570 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1571 * BUT... 1572 */ 1573 if (limits->zoned != BLK_ZONED_NONE) { 1574 /* 1575 * ...IF the above limits stacking determined a zoned model 1576 * validate that all of the table's devices conform to it. 1577 */ 1578 zoned_model = limits->zoned; 1579 zone_sectors = limits->chunk_sectors; 1580 } 1581 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1582 return -EINVAL; 1583 1584 return validate_hardware_logical_block_alignment(table, limits); 1585 } 1586 1587 /* 1588 * Verify that all devices have an integrity profile that matches the 1589 * DM device's registered integrity profile. If the profiles don't 1590 * match then unregister the DM device's integrity profile. 1591 */ 1592 static void dm_table_verify_integrity(struct dm_table *t) 1593 { 1594 struct gendisk *template_disk = NULL; 1595 1596 if (t->integrity_added) 1597 return; 1598 1599 if (t->integrity_supported) { 1600 /* 1601 * Verify that the original integrity profile 1602 * matches all the devices in this table. 1603 */ 1604 template_disk = dm_table_get_integrity_disk(t); 1605 if (template_disk && 1606 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1607 return; 1608 } 1609 1610 if (integrity_profile_exists(dm_disk(t->md))) { 1611 DMWARN("%s: unable to establish an integrity profile", 1612 dm_device_name(t->md)); 1613 blk_integrity_unregister(dm_disk(t->md)); 1614 } 1615 } 1616 1617 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1618 sector_t start, sector_t len, void *data) 1619 { 1620 unsigned long flush = (unsigned long) data; 1621 struct request_queue *q = bdev_get_queue(dev->bdev); 1622 1623 return q && (q->queue_flags & flush); 1624 } 1625 1626 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1627 { 1628 struct dm_target *ti; 1629 unsigned i; 1630 1631 /* 1632 * Require at least one underlying device to support flushes. 1633 * t->devices includes internal dm devices such as mirror logs 1634 * so we need to use iterate_devices here, which targets 1635 * supporting flushes must provide. 1636 */ 1637 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1638 ti = dm_table_get_target(t, i); 1639 1640 if (!ti->num_flush_bios) 1641 continue; 1642 1643 if (ti->flush_supported) 1644 return true; 1645 1646 if (ti->type->iterate_devices && 1647 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1648 return true; 1649 } 1650 1651 return false; 1652 } 1653 1654 static int device_dax_write_cache_enabled(struct dm_target *ti, 1655 struct dm_dev *dev, sector_t start, 1656 sector_t len, void *data) 1657 { 1658 struct dax_device *dax_dev = dev->dax_dev; 1659 1660 if (!dax_dev) 1661 return false; 1662 1663 if (dax_write_cache_enabled(dax_dev)) 1664 return true; 1665 return false; 1666 } 1667 1668 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1669 { 1670 struct dm_target *ti; 1671 unsigned i; 1672 1673 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1674 ti = dm_table_get_target(t, i); 1675 1676 if (ti->type->iterate_devices && 1677 ti->type->iterate_devices(ti, 1678 device_dax_write_cache_enabled, NULL)) 1679 return true; 1680 } 1681 1682 return false; 1683 } 1684 1685 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1686 sector_t start, sector_t len, void *data) 1687 { 1688 struct request_queue *q = bdev_get_queue(dev->bdev); 1689 1690 return q && blk_queue_nonrot(q); 1691 } 1692 1693 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1694 sector_t start, sector_t len, void *data) 1695 { 1696 struct request_queue *q = bdev_get_queue(dev->bdev); 1697 1698 return q && !blk_queue_add_random(q); 1699 } 1700 1701 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1702 sector_t start, sector_t len, void *data) 1703 { 1704 struct request_queue *q = bdev_get_queue(dev->bdev); 1705 1706 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1707 } 1708 1709 static bool dm_table_all_devices_attribute(struct dm_table *t, 1710 iterate_devices_callout_fn func) 1711 { 1712 struct dm_target *ti; 1713 unsigned i; 1714 1715 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1716 ti = dm_table_get_target(t, i); 1717 1718 if (!ti->type->iterate_devices || 1719 !ti->type->iterate_devices(ti, func, NULL)) 1720 return false; 1721 } 1722 1723 return true; 1724 } 1725 1726 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev, 1727 sector_t start, sector_t len, void *data) 1728 { 1729 char b[BDEVNAME_SIZE]; 1730 1731 /* For now, NVMe devices are the only devices of this class */ 1732 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0); 1733 } 1734 1735 static bool dm_table_does_not_support_partial_completion(struct dm_table *t) 1736 { 1737 return dm_table_all_devices_attribute(t, device_no_partial_completion); 1738 } 1739 1740 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1741 sector_t start, sector_t len, void *data) 1742 { 1743 struct request_queue *q = bdev_get_queue(dev->bdev); 1744 1745 return q && !q->limits.max_write_same_sectors; 1746 } 1747 1748 static bool dm_table_supports_write_same(struct dm_table *t) 1749 { 1750 struct dm_target *ti; 1751 unsigned i; 1752 1753 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1754 ti = dm_table_get_target(t, i); 1755 1756 if (!ti->num_write_same_bios) 1757 return false; 1758 1759 if (!ti->type->iterate_devices || 1760 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1761 return false; 1762 } 1763 1764 return true; 1765 } 1766 1767 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1768 sector_t start, sector_t len, void *data) 1769 { 1770 struct request_queue *q = bdev_get_queue(dev->bdev); 1771 1772 return q && !q->limits.max_write_zeroes_sectors; 1773 } 1774 1775 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1776 { 1777 struct dm_target *ti; 1778 unsigned i = 0; 1779 1780 while (i < dm_table_get_num_targets(t)) { 1781 ti = dm_table_get_target(t, i++); 1782 1783 if (!ti->num_write_zeroes_bios) 1784 return false; 1785 1786 if (!ti->type->iterate_devices || 1787 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1788 return false; 1789 } 1790 1791 return true; 1792 } 1793 1794 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1795 sector_t start, sector_t len, void *data) 1796 { 1797 struct request_queue *q = bdev_get_queue(dev->bdev); 1798 1799 return q && !blk_queue_discard(q); 1800 } 1801 1802 static bool dm_table_supports_discards(struct dm_table *t) 1803 { 1804 struct dm_target *ti; 1805 unsigned i; 1806 1807 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1808 ti = dm_table_get_target(t, i); 1809 1810 if (!ti->num_discard_bios) 1811 return false; 1812 1813 /* 1814 * Either the target provides discard support (as implied by setting 1815 * 'discards_supported') or it relies on _all_ data devices having 1816 * discard support. 1817 */ 1818 if (!ti->discards_supported && 1819 (!ti->type->iterate_devices || 1820 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1821 return false; 1822 } 1823 1824 return true; 1825 } 1826 1827 static int device_not_secure_erase_capable(struct dm_target *ti, 1828 struct dm_dev *dev, sector_t start, 1829 sector_t len, void *data) 1830 { 1831 struct request_queue *q = bdev_get_queue(dev->bdev); 1832 1833 return q && !blk_queue_secure_erase(q); 1834 } 1835 1836 static bool dm_table_supports_secure_erase(struct dm_table *t) 1837 { 1838 struct dm_target *ti; 1839 unsigned int i; 1840 1841 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1842 ti = dm_table_get_target(t, i); 1843 1844 if (!ti->num_secure_erase_bios) 1845 return false; 1846 1847 if (!ti->type->iterate_devices || 1848 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1849 return false; 1850 } 1851 1852 return true; 1853 } 1854 1855 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1856 struct queue_limits *limits) 1857 { 1858 bool wc = false, fua = false; 1859 1860 /* 1861 * Copy table's limits to the DM device's request_queue 1862 */ 1863 q->limits = *limits; 1864 1865 if (!dm_table_supports_discards(t)) { 1866 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1867 /* Must also clear discard limits... */ 1868 q->limits.max_discard_sectors = 0; 1869 q->limits.max_hw_discard_sectors = 0; 1870 q->limits.discard_granularity = 0; 1871 q->limits.discard_alignment = 0; 1872 q->limits.discard_misaligned = 0; 1873 } else 1874 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1875 1876 if (dm_table_supports_secure_erase(t)) 1877 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1878 1879 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1880 wc = true; 1881 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1882 fua = true; 1883 } 1884 blk_queue_write_cache(q, wc, fua); 1885 1886 if (dm_table_supports_dax(t)) 1887 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1888 else 1889 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1890 1891 if (dm_table_supports_dax_write_cache(t)) 1892 dax_write_cache(t->md->dax_dev, true); 1893 1894 /* Ensure that all underlying devices are non-rotational. */ 1895 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1896 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1897 else 1898 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1899 1900 if (!dm_table_supports_write_same(t)) 1901 q->limits.max_write_same_sectors = 0; 1902 if (!dm_table_supports_write_zeroes(t)) 1903 q->limits.max_write_zeroes_sectors = 0; 1904 1905 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1906 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q); 1907 else 1908 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q); 1909 1910 dm_table_verify_integrity(t); 1911 1912 /* 1913 * Determine whether or not this queue's I/O timings contribute 1914 * to the entropy pool, Only request-based targets use this. 1915 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1916 * have it set. 1917 */ 1918 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1919 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1920 1921 /* 1922 * For a zoned target, the number of zones should be updated for the 1923 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 1924 * target, this is all that is needed. For a request based target, the 1925 * queue zone bitmaps must also be updated. 1926 * Use blk_revalidate_disk_zones() to handle this. 1927 */ 1928 if (blk_queue_is_zoned(q)) 1929 blk_revalidate_disk_zones(t->md->disk); 1930 } 1931 1932 unsigned int dm_table_get_num_targets(struct dm_table *t) 1933 { 1934 return t->num_targets; 1935 } 1936 1937 struct list_head *dm_table_get_devices(struct dm_table *t) 1938 { 1939 return &t->devices; 1940 } 1941 1942 fmode_t dm_table_get_mode(struct dm_table *t) 1943 { 1944 return t->mode; 1945 } 1946 EXPORT_SYMBOL(dm_table_get_mode); 1947 1948 enum suspend_mode { 1949 PRESUSPEND, 1950 PRESUSPEND_UNDO, 1951 POSTSUSPEND, 1952 }; 1953 1954 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1955 { 1956 int i = t->num_targets; 1957 struct dm_target *ti = t->targets; 1958 1959 lockdep_assert_held(&t->md->suspend_lock); 1960 1961 while (i--) { 1962 switch (mode) { 1963 case PRESUSPEND: 1964 if (ti->type->presuspend) 1965 ti->type->presuspend(ti); 1966 break; 1967 case PRESUSPEND_UNDO: 1968 if (ti->type->presuspend_undo) 1969 ti->type->presuspend_undo(ti); 1970 break; 1971 case POSTSUSPEND: 1972 if (ti->type->postsuspend) 1973 ti->type->postsuspend(ti); 1974 break; 1975 } 1976 ti++; 1977 } 1978 } 1979 1980 void dm_table_presuspend_targets(struct dm_table *t) 1981 { 1982 if (!t) 1983 return; 1984 1985 suspend_targets(t, PRESUSPEND); 1986 } 1987 1988 void dm_table_presuspend_undo_targets(struct dm_table *t) 1989 { 1990 if (!t) 1991 return; 1992 1993 suspend_targets(t, PRESUSPEND_UNDO); 1994 } 1995 1996 void dm_table_postsuspend_targets(struct dm_table *t) 1997 { 1998 if (!t) 1999 return; 2000 2001 suspend_targets(t, POSTSUSPEND); 2002 } 2003 2004 int dm_table_resume_targets(struct dm_table *t) 2005 { 2006 int i, r = 0; 2007 2008 lockdep_assert_held(&t->md->suspend_lock); 2009 2010 for (i = 0; i < t->num_targets; i++) { 2011 struct dm_target *ti = t->targets + i; 2012 2013 if (!ti->type->preresume) 2014 continue; 2015 2016 r = ti->type->preresume(ti); 2017 if (r) { 2018 DMERR("%s: %s: preresume failed, error = %d", 2019 dm_device_name(t->md), ti->type->name, r); 2020 return r; 2021 } 2022 } 2023 2024 for (i = 0; i < t->num_targets; i++) { 2025 struct dm_target *ti = t->targets + i; 2026 2027 if (ti->type->resume) 2028 ti->type->resume(ti); 2029 } 2030 2031 return 0; 2032 } 2033 2034 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 2035 { 2036 list_add(&cb->list, &t->target_callbacks); 2037 } 2038 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 2039 2040 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 2041 { 2042 struct dm_dev_internal *dd; 2043 struct list_head *devices = dm_table_get_devices(t); 2044 struct dm_target_callbacks *cb; 2045 int r = 0; 2046 2047 list_for_each_entry(dd, devices, list) { 2048 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 2049 char b[BDEVNAME_SIZE]; 2050 2051 if (likely(q)) 2052 r |= bdi_congested(q->backing_dev_info, bdi_bits); 2053 else 2054 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 2055 dm_device_name(t->md), 2056 bdevname(dd->dm_dev->bdev, b)); 2057 } 2058 2059 list_for_each_entry(cb, &t->target_callbacks, list) 2060 if (cb->congested_fn) 2061 r |= cb->congested_fn(cb, bdi_bits); 2062 2063 return r; 2064 } 2065 2066 struct mapped_device *dm_table_get_md(struct dm_table *t) 2067 { 2068 return t->md; 2069 } 2070 EXPORT_SYMBOL(dm_table_get_md); 2071 2072 const char *dm_table_device_name(struct dm_table *t) 2073 { 2074 return dm_device_name(t->md); 2075 } 2076 EXPORT_SYMBOL_GPL(dm_table_device_name); 2077 2078 void dm_table_run_md_queue_async(struct dm_table *t) 2079 { 2080 struct mapped_device *md; 2081 struct request_queue *queue; 2082 2083 if (!dm_table_request_based(t)) 2084 return; 2085 2086 md = dm_table_get_md(t); 2087 queue = dm_get_md_queue(md); 2088 if (queue) 2089 blk_mq_run_hw_queues(queue, true); 2090 } 2091 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2092 2093