1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35 * Similar to ceiling(log_size(n))
36 */
int_log(unsigned int n,unsigned int base)37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47 }
48
49 /*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
get_child(unsigned int n,unsigned int k)52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58 * Return the n'th node of level l from table t.
59 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)60 static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62 {
63 return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
high(struct dm_table * t,unsigned int l,unsigned int n)70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
setup_btree_index(unsigned int l,struct dm_table * t)85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98 }
99
100 /*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
alloc_targets(struct dm_table * t,unsigned int num)104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127 }
128
dm_table_create(struct dm_table ** result,blk_mode_t mode,unsigned int num_targets,struct mapped_device * md)129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131 {
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 *result = t;
164 return 0;
165 }
166
free_devices(struct list_head * devices,struct mapped_device * md)167 static void free_devices(struct list_head *devices, struct mapped_device *md)
168 {
169 struct list_head *tmp, *next;
170
171 list_for_each_safe(tmp, next, devices) {
172 struct dm_dev_internal *dd =
173 list_entry(tmp, struct dm_dev_internal, list);
174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175 dm_device_name(md), dd->dm_dev->name);
176 dm_put_table_device(md, dd->dm_dev);
177 kfree(dd);
178 }
179 }
180
181 static void dm_table_destroy_crypto_profile(struct dm_table *t);
182
dm_table_destroy(struct dm_table * t)183 void dm_table_destroy(struct dm_table *t)
184 {
185 if (!t)
186 return;
187
188 /* free the indexes */
189 if (t->depth >= 2)
190 kvfree(t->index[t->depth - 2]);
191
192 /* free the targets */
193 for (unsigned int i = 0; i < t->num_targets; i++) {
194 struct dm_target *ti = dm_table_get_target(t, i);
195
196 if (ti->type->dtr)
197 ti->type->dtr(ti);
198
199 dm_put_target_type(ti->type);
200 }
201
202 kvfree(t->highs);
203
204 /* free the device list */
205 free_devices(&t->devices, t->md);
206
207 dm_free_md_mempools(t->mempools);
208
209 dm_table_destroy_crypto_profile(t);
210
211 kfree(t);
212 }
213
214 /*
215 * See if we've already got a device in the list.
216 */
find_device(struct list_head * l,dev_t dev)217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218 {
219 struct dm_dev_internal *dd;
220
221 list_for_each_entry(dd, l, list)
222 if (dd->dm_dev->bdev->bd_dev == dev)
223 return dd;
224
225 return NULL;
226 }
227
228 /*
229 * If possible, this checks an area of a destination device is invalid.
230 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232 sector_t start, sector_t len, void *data)
233 {
234 struct queue_limits *limits = data;
235 struct block_device *bdev = dev->bdev;
236 sector_t dev_size = bdev_nr_sectors(bdev);
237 unsigned short logical_block_size_sectors =
238 limits->logical_block_size >> SECTOR_SHIFT;
239
240 if (!dev_size)
241 return 0;
242
243 if ((start >= dev_size) || (start + len > dev_size)) {
244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245 dm_device_name(ti->table->md), bdev,
246 (unsigned long long)start,
247 (unsigned long long)len,
248 (unsigned long long)dev_size);
249 return 1;
250 }
251
252 /*
253 * If the target is mapped to zoned block device(s), check
254 * that the zones are not partially mapped.
255 */
256 if (bdev_is_zoned(bdev)) {
257 unsigned int zone_sectors = bdev_zone_sectors(bdev);
258
259 if (start & (zone_sectors - 1)) {
260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261 dm_device_name(ti->table->md),
262 (unsigned long long)start,
263 zone_sectors, bdev);
264 return 1;
265 }
266
267 /*
268 * Note: The last zone of a zoned block device may be smaller
269 * than other zones. So for a target mapping the end of a
270 * zoned block device with such a zone, len would not be zone
271 * aligned. We do not allow such last smaller zone to be part
272 * of the mapping here to ensure that mappings with multiple
273 * devices do not end up with a smaller zone in the middle of
274 * the sector range.
275 */
276 if (len & (zone_sectors - 1)) {
277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278 dm_device_name(ti->table->md),
279 (unsigned long long)len,
280 zone_sectors, bdev);
281 return 1;
282 }
283 }
284
285 if (logical_block_size_sectors <= 1)
286 return 0;
287
288 if (start & (logical_block_size_sectors - 1)) {
289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290 dm_device_name(ti->table->md),
291 (unsigned long long)start,
292 limits->logical_block_size, bdev);
293 return 1;
294 }
295
296 if (len & (logical_block_size_sectors - 1)) {
297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298 dm_device_name(ti->table->md),
299 (unsigned long long)len,
300 limits->logical_block_size, bdev);
301 return 1;
302 }
303
304 return 0;
305 }
306
307 /*
308 * This upgrades the mode on an already open dm_dev, being
309 * careful to leave things as they were if we fail to reopen the
310 * device and not to touch the existing bdev field in case
311 * it is accessed concurrently.
312 */
upgrade_mode(struct dm_dev_internal * dd,blk_mode_t new_mode,struct mapped_device * md)313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314 struct mapped_device *md)
315 {
316 int r;
317 struct dm_dev *old_dev, *new_dev;
318
319 old_dev = dd->dm_dev;
320
321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322 dd->dm_dev->mode | new_mode, &new_dev);
323 if (r)
324 return r;
325
326 dd->dm_dev = new_dev;
327 dm_put_table_device(md, old_dev);
328
329 return 0;
330 }
331
332 /*
333 * Add a device to the list, or just increment the usage count if
334 * it's already present.
335 *
336 * Note: the __ref annotation is because this function can call the __init
337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
338 */
dm_get_device(struct dm_target * ti,const char * path,blk_mode_t mode,struct dm_dev ** result)339 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340 struct dm_dev **result)
341 {
342 int r;
343 dev_t dev;
344 unsigned int major, minor;
345 char dummy;
346 struct dm_dev_internal *dd;
347 struct dm_table *t = ti->table;
348
349 BUG_ON(!t);
350
351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352 /* Extract the major/minor numbers */
353 dev = MKDEV(major, minor);
354 if (MAJOR(dev) != major || MINOR(dev) != minor)
355 return -EOVERFLOW;
356 } else {
357 r = lookup_bdev(path, &dev);
358 #ifndef MODULE
359 if (r && system_state < SYSTEM_RUNNING)
360 r = early_lookup_bdev(path, &dev);
361 #endif
362 if (r)
363 return r;
364 }
365 if (dev == disk_devt(t->md->disk))
366 return -EINVAL;
367
368 down_write(&t->devices_lock);
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd) {
374 r = -ENOMEM;
375 goto unlock_ret_r;
376 }
377
378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379 if (r) {
380 kfree(dd);
381 goto unlock_ret_r;
382 }
383
384 refcount_set(&dd->count, 1);
385 list_add(&dd->list, &t->devices);
386 goto out;
387
388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389 r = upgrade_mode(dd, mode, t->md);
390 if (r)
391 goto unlock_ret_r;
392 }
393 refcount_inc(&dd->count);
394 out:
395 up_write(&t->devices_lock);
396 *result = dd->dm_dev;
397 return 0;
398
399 unlock_ret_r:
400 up_write(&t->devices_lock);
401 return r;
402 }
403 EXPORT_SYMBOL(dm_get_device);
404
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)405 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406 sector_t start, sector_t len, void *data)
407 {
408 struct queue_limits *limits = data;
409 struct block_device *bdev = dev->bdev;
410 struct request_queue *q = bdev_get_queue(bdev);
411
412 if (unlikely(!q)) {
413 DMWARN("%s: Cannot set limits for nonexistent device %pg",
414 dm_device_name(ti->table->md), bdev);
415 return 0;
416 }
417
418 if (blk_stack_limits(limits, &q->limits,
419 get_start_sect(bdev) + start) < 0)
420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421 "physical_block_size=%u, logical_block_size=%u, "
422 "alignment_offset=%u, start=%llu",
423 dm_device_name(ti->table->md), bdev,
424 q->limits.physical_block_size,
425 q->limits.logical_block_size,
426 q->limits.alignment_offset,
427 (unsigned long long) start << SECTOR_SHIFT);
428 return 0;
429 }
430
431 /*
432 * Decrement a device's use count and remove it if necessary.
433 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)434 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435 {
436 int found = 0;
437 struct dm_table *t = ti->table;
438 struct list_head *devices = &t->devices;
439 struct dm_dev_internal *dd;
440
441 down_write(&t->devices_lock);
442
443 list_for_each_entry(dd, devices, list) {
444 if (dd->dm_dev == d) {
445 found = 1;
446 break;
447 }
448 }
449 if (!found) {
450 DMERR("%s: device %s not in table devices list",
451 dm_device_name(t->md), d->name);
452 goto unlock_ret;
453 }
454 if (refcount_dec_and_test(&dd->count)) {
455 dm_put_table_device(t->md, d);
456 list_del(&dd->list);
457 kfree(dd);
458 }
459
460 unlock_ret:
461 up_write(&t->devices_lock);
462 }
463 EXPORT_SYMBOL(dm_put_device);
464
465 /*
466 * Checks to see if the target joins onto the end of the table.
467 */
adjoin(struct dm_table * t,struct dm_target * ti)468 static int adjoin(struct dm_table *t, struct dm_target *ti)
469 {
470 struct dm_target *prev;
471
472 if (!t->num_targets)
473 return !ti->begin;
474
475 prev = &t->targets[t->num_targets - 1];
476 return (ti->begin == (prev->begin + prev->len));
477 }
478
479 /*
480 * Used to dynamically allocate the arg array.
481 *
482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483 * process messages even if some device is suspended. These messages have a
484 * small fixed number of arguments.
485 *
486 * On the other hand, dm-switch needs to process bulk data using messages and
487 * excessive use of GFP_NOIO could cause trouble.
488 */
realloc_argv(unsigned int * size,char ** old_argv)489 static char **realloc_argv(unsigned int *size, char **old_argv)
490 {
491 char **argv;
492 unsigned int new_size;
493 gfp_t gfp;
494
495 if (*size) {
496 new_size = *size * 2;
497 gfp = GFP_KERNEL;
498 } else {
499 new_size = 8;
500 gfp = GFP_NOIO;
501 }
502 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503 if (argv && old_argv) {
504 memcpy(argv, old_argv, *size * sizeof(*argv));
505 *size = new_size;
506 }
507
508 kfree(old_argv);
509 return argv;
510 }
511
512 /*
513 * Destructively splits up the argument list to pass to ctr.
514 */
dm_split_args(int * argc,char *** argvp,char * input)515 int dm_split_args(int *argc, char ***argvp, char *input)
516 {
517 char *start, *end = input, *out, **argv = NULL;
518 unsigned int array_size = 0;
519
520 *argc = 0;
521
522 if (!input) {
523 *argvp = NULL;
524 return 0;
525 }
526
527 argv = realloc_argv(&array_size, argv);
528 if (!argv)
529 return -ENOMEM;
530
531 while (1) {
532 /* Skip whitespace */
533 start = skip_spaces(end);
534
535 if (!*start)
536 break; /* success, we hit the end */
537
538 /* 'out' is used to remove any back-quotes */
539 end = out = start;
540 while (*end) {
541 /* Everything apart from '\0' can be quoted */
542 if (*end == '\\' && *(end + 1)) {
543 *out++ = *(end + 1);
544 end += 2;
545 continue;
546 }
547
548 if (isspace(*end))
549 break; /* end of token */
550
551 *out++ = *end++;
552 }
553
554 /* have we already filled the array ? */
555 if ((*argc + 1) > array_size) {
556 argv = realloc_argv(&array_size, argv);
557 if (!argv)
558 return -ENOMEM;
559 }
560
561 /* we know this is whitespace */
562 if (*end)
563 end++;
564
565 /* terminate the string and put it in the array */
566 *out = '\0';
567 argv[*argc] = start;
568 (*argc)++;
569 }
570
571 *argvp = argv;
572 return 0;
573 }
574
575 /*
576 * Impose necessary and sufficient conditions on a devices's table such
577 * that any incoming bio which respects its logical_block_size can be
578 * processed successfully. If it falls across the boundary between
579 * two or more targets, the size of each piece it gets split into must
580 * be compatible with the logical_block_size of the target processing it.
581 */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)582 static int validate_hardware_logical_block_alignment(struct dm_table *t,
583 struct queue_limits *limits)
584 {
585 /*
586 * This function uses arithmetic modulo the logical_block_size
587 * (in units of 512-byte sectors).
588 */
589 unsigned short device_logical_block_size_sects =
590 limits->logical_block_size >> SECTOR_SHIFT;
591
592 /*
593 * Offset of the start of the next table entry, mod logical_block_size.
594 */
595 unsigned short next_target_start = 0;
596
597 /*
598 * Given an aligned bio that extends beyond the end of a
599 * target, how many sectors must the next target handle?
600 */
601 unsigned short remaining = 0;
602
603 struct dm_target *ti;
604 struct queue_limits ti_limits;
605 unsigned int i;
606
607 /*
608 * Check each entry in the table in turn.
609 */
610 for (i = 0; i < t->num_targets; i++) {
611 ti = dm_table_get_target(t, i);
612
613 blk_set_stacking_limits(&ti_limits);
614
615 /* combine all target devices' limits */
616 if (ti->type->iterate_devices)
617 ti->type->iterate_devices(ti, dm_set_device_limits,
618 &ti_limits);
619
620 /*
621 * If the remaining sectors fall entirely within this
622 * table entry are they compatible with its logical_block_size?
623 */
624 if (remaining < ti->len &&
625 remaining & ((ti_limits.logical_block_size >>
626 SECTOR_SHIFT) - 1))
627 break; /* Error */
628
629 next_target_start =
630 (unsigned short) ((next_target_start + ti->len) &
631 (device_logical_block_size_sects - 1));
632 remaining = next_target_start ?
633 device_logical_block_size_sects - next_target_start : 0;
634 }
635
636 if (remaining) {
637 DMERR("%s: table line %u (start sect %llu len %llu) "
638 "not aligned to h/w logical block size %u",
639 dm_device_name(t->md), i,
640 (unsigned long long) ti->begin,
641 (unsigned long long) ti->len,
642 limits->logical_block_size);
643 return -EINVAL;
644 }
645
646 return 0;
647 }
648
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)649 int dm_table_add_target(struct dm_table *t, const char *type,
650 sector_t start, sector_t len, char *params)
651 {
652 int r = -EINVAL, argc;
653 char **argv;
654 struct dm_target *ti;
655
656 if (t->singleton) {
657 DMERR("%s: target type %s must appear alone in table",
658 dm_device_name(t->md), t->targets->type->name);
659 return -EINVAL;
660 }
661
662 BUG_ON(t->num_targets >= t->num_allocated);
663
664 ti = t->targets + t->num_targets;
665 memset(ti, 0, sizeof(*ti));
666
667 if (!len) {
668 DMERR("%s: zero-length target", dm_device_name(t->md));
669 return -EINVAL;
670 }
671
672 ti->type = dm_get_target_type(type);
673 if (!ti->type) {
674 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675 return -EINVAL;
676 }
677
678 if (dm_target_needs_singleton(ti->type)) {
679 if (t->num_targets) {
680 ti->error = "singleton target type must appear alone in table";
681 goto bad;
682 }
683 t->singleton = true;
684 }
685
686 if (dm_target_always_writeable(ti->type) &&
687 !(t->mode & BLK_OPEN_WRITE)) {
688 ti->error = "target type may not be included in a read-only table";
689 goto bad;
690 }
691
692 if (t->immutable_target_type) {
693 if (t->immutable_target_type != ti->type) {
694 ti->error = "immutable target type cannot be mixed with other target types";
695 goto bad;
696 }
697 } else if (dm_target_is_immutable(ti->type)) {
698 if (t->num_targets) {
699 ti->error = "immutable target type cannot be mixed with other target types";
700 goto bad;
701 }
702 t->immutable_target_type = ti->type;
703 }
704
705 if (dm_target_has_integrity(ti->type))
706 t->integrity_added = 1;
707
708 ti->table = t;
709 ti->begin = start;
710 ti->len = len;
711 ti->error = "Unknown error";
712
713 /*
714 * Does this target adjoin the previous one ?
715 */
716 if (!adjoin(t, ti)) {
717 ti->error = "Gap in table";
718 goto bad;
719 }
720
721 r = dm_split_args(&argc, &argv, params);
722 if (r) {
723 ti->error = "couldn't split parameters";
724 goto bad;
725 }
726
727 r = ti->type->ctr(ti, argc, argv);
728 kfree(argv);
729 if (r)
730 goto bad;
731
732 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733
734 if (!ti->num_discard_bios && ti->discards_supported)
735 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736 dm_device_name(t->md), type);
737
738 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739 static_branch_enable(&swap_bios_enabled);
740
741 return 0;
742
743 bad:
744 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745 dm_put_target_type(ti->type);
746 return r;
747 }
748
749 /*
750 * Target argument parsing helpers.
751 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)752 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753 unsigned int *value, char **error, unsigned int grouped)
754 {
755 const char *arg_str = dm_shift_arg(arg_set);
756 char dummy;
757
758 if (!arg_str ||
759 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760 (*value < arg->min) ||
761 (*value > arg->max) ||
762 (grouped && arg_set->argc < *value)) {
763 *error = arg->error;
764 return -EINVAL;
765 }
766
767 return 0;
768 }
769
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)770 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771 unsigned int *value, char **error)
772 {
773 return validate_next_arg(arg, arg_set, value, error, 0);
774 }
775 EXPORT_SYMBOL(dm_read_arg);
776
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)777 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778 unsigned int *value, char **error)
779 {
780 return validate_next_arg(arg, arg_set, value, error, 1);
781 }
782 EXPORT_SYMBOL(dm_read_arg_group);
783
dm_shift_arg(struct dm_arg_set * as)784 const char *dm_shift_arg(struct dm_arg_set *as)
785 {
786 char *r;
787
788 if (as->argc) {
789 as->argc--;
790 r = *as->argv;
791 as->argv++;
792 return r;
793 }
794
795 return NULL;
796 }
797 EXPORT_SYMBOL(dm_shift_arg);
798
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)799 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800 {
801 BUG_ON(as->argc < num_args);
802 as->argc -= num_args;
803 as->argv += num_args;
804 }
805 EXPORT_SYMBOL(dm_consume_args);
806
__table_type_bio_based(enum dm_queue_mode table_type)807 static bool __table_type_bio_based(enum dm_queue_mode table_type)
808 {
809 return (table_type == DM_TYPE_BIO_BASED ||
810 table_type == DM_TYPE_DAX_BIO_BASED);
811 }
812
__table_type_request_based(enum dm_queue_mode table_type)813 static bool __table_type_request_based(enum dm_queue_mode table_type)
814 {
815 return table_type == DM_TYPE_REQUEST_BASED;
816 }
817
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)818 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819 {
820 t->type = type;
821 }
822 EXPORT_SYMBOL_GPL(dm_table_set_type);
823
824 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)825 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826 sector_t start, sector_t len, void *data)
827 {
828 if (dev->dax_dev)
829 return false;
830
831 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832 return true;
833 }
834
835 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)836 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837 sector_t start, sector_t len, void *data)
838 {
839 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840 }
841
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)842 static bool dm_table_supports_dax(struct dm_table *t,
843 iterate_devices_callout_fn iterate_fn)
844 {
845 /* Ensure that all targets support DAX. */
846 for (unsigned int i = 0; i < t->num_targets; i++) {
847 struct dm_target *ti = dm_table_get_target(t, i);
848
849 if (!ti->type->direct_access)
850 return false;
851
852 if (!ti->type->iterate_devices ||
853 ti->type->iterate_devices(ti, iterate_fn, NULL))
854 return false;
855 }
856
857 return true;
858 }
859
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)860 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
861 sector_t start, sector_t len, void *data)
862 {
863 struct block_device *bdev = dev->bdev;
864 struct request_queue *q = bdev_get_queue(bdev);
865
866 /* request-based cannot stack on partitions! */
867 if (bdev_is_partition(bdev))
868 return false;
869
870 return queue_is_mq(q);
871 }
872
dm_table_determine_type(struct dm_table * t)873 static int dm_table_determine_type(struct dm_table *t)
874 {
875 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
876 struct dm_target *ti;
877 struct list_head *devices = dm_table_get_devices(t);
878 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
879
880 if (t->type != DM_TYPE_NONE) {
881 /* target already set the table's type */
882 if (t->type == DM_TYPE_BIO_BASED) {
883 /* possibly upgrade to a variant of bio-based */
884 goto verify_bio_based;
885 }
886 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
887 goto verify_rq_based;
888 }
889
890 for (unsigned int i = 0; i < t->num_targets; i++) {
891 ti = dm_table_get_target(t, i);
892 if (dm_target_hybrid(ti))
893 hybrid = 1;
894 else if (dm_target_request_based(ti))
895 request_based = 1;
896 else
897 bio_based = 1;
898
899 if (bio_based && request_based) {
900 DMERR("Inconsistent table: different target types can't be mixed up");
901 return -EINVAL;
902 }
903 }
904
905 if (hybrid && !bio_based && !request_based) {
906 /*
907 * The targets can work either way.
908 * Determine the type from the live device.
909 * Default to bio-based if device is new.
910 */
911 if (__table_type_request_based(live_md_type))
912 request_based = 1;
913 else
914 bio_based = 1;
915 }
916
917 if (bio_based) {
918 verify_bio_based:
919 /* We must use this table as bio-based */
920 t->type = DM_TYPE_BIO_BASED;
921 if (dm_table_supports_dax(t, device_not_dax_capable) ||
922 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
923 t->type = DM_TYPE_DAX_BIO_BASED;
924 }
925 return 0;
926 }
927
928 BUG_ON(!request_based); /* No targets in this table */
929
930 t->type = DM_TYPE_REQUEST_BASED;
931
932 verify_rq_based:
933 /*
934 * Request-based dm supports only tables that have a single target now.
935 * To support multiple targets, request splitting support is needed,
936 * and that needs lots of changes in the block-layer.
937 * (e.g. request completion process for partial completion.)
938 */
939 if (t->num_targets > 1) {
940 DMERR("request-based DM doesn't support multiple targets");
941 return -EINVAL;
942 }
943
944 if (list_empty(devices)) {
945 int srcu_idx;
946 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
947
948 /* inherit live table's type */
949 if (live_table)
950 t->type = live_table->type;
951 dm_put_live_table(t->md, srcu_idx);
952 return 0;
953 }
954
955 ti = dm_table_get_immutable_target(t);
956 if (!ti) {
957 DMERR("table load rejected: immutable target is required");
958 return -EINVAL;
959 } else if (ti->max_io_len) {
960 DMERR("table load rejected: immutable target that splits IO is not supported");
961 return -EINVAL;
962 }
963
964 /* Non-request-stackable devices can't be used for request-based dm */
965 if (!ti->type->iterate_devices ||
966 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
967 DMERR("table load rejected: including non-request-stackable devices");
968 return -EINVAL;
969 }
970
971 return 0;
972 }
973
dm_table_get_type(struct dm_table * t)974 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
975 {
976 return t->type;
977 }
978
dm_table_get_immutable_target_type(struct dm_table * t)979 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
980 {
981 return t->immutable_target_type;
982 }
983
dm_table_get_immutable_target(struct dm_table * t)984 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
985 {
986 /* Immutable target is implicitly a singleton */
987 if (t->num_targets > 1 ||
988 !dm_target_is_immutable(t->targets[0].type))
989 return NULL;
990
991 return t->targets;
992 }
993
dm_table_get_wildcard_target(struct dm_table * t)994 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
995 {
996 for (unsigned int i = 0; i < t->num_targets; i++) {
997 struct dm_target *ti = dm_table_get_target(t, i);
998
999 if (dm_target_is_wildcard(ti->type))
1000 return ti;
1001 }
1002
1003 return NULL;
1004 }
1005
dm_table_bio_based(struct dm_table * t)1006 bool dm_table_bio_based(struct dm_table *t)
1007 {
1008 return __table_type_bio_based(dm_table_get_type(t));
1009 }
1010
dm_table_request_based(struct dm_table * t)1011 bool dm_table_request_based(struct dm_table *t)
1012 {
1013 return __table_type_request_based(dm_table_get_type(t));
1014 }
1015
1016 static bool dm_table_supports_poll(struct dm_table *t);
1017
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1018 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1019 {
1020 enum dm_queue_mode type = dm_table_get_type(t);
1021 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1022 unsigned int min_pool_size = 0, pool_size;
1023 struct dm_md_mempools *pools;
1024
1025 if (unlikely(type == DM_TYPE_NONE)) {
1026 DMERR("no table type is set, can't allocate mempools");
1027 return -EINVAL;
1028 }
1029
1030 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1031 if (!pools)
1032 return -ENOMEM;
1033
1034 if (type == DM_TYPE_REQUEST_BASED) {
1035 pool_size = dm_get_reserved_rq_based_ios();
1036 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1037 goto init_bs;
1038 }
1039
1040 for (unsigned int i = 0; i < t->num_targets; i++) {
1041 struct dm_target *ti = dm_table_get_target(t, i);
1042
1043 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1044 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1045 }
1046 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1047 front_pad = roundup(per_io_data_size,
1048 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1049
1050 io_front_pad = roundup(per_io_data_size,
1051 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1052 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1053 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1054 goto out_free_pools;
1055 if (t->integrity_supported &&
1056 bioset_integrity_create(&pools->io_bs, pool_size))
1057 goto out_free_pools;
1058 init_bs:
1059 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1060 goto out_free_pools;
1061 if (t->integrity_supported &&
1062 bioset_integrity_create(&pools->bs, pool_size))
1063 goto out_free_pools;
1064
1065 t->mempools = pools;
1066 return 0;
1067
1068 out_free_pools:
1069 dm_free_md_mempools(pools);
1070 return -ENOMEM;
1071 }
1072
setup_indexes(struct dm_table * t)1073 static int setup_indexes(struct dm_table *t)
1074 {
1075 int i;
1076 unsigned int total = 0;
1077 sector_t *indexes;
1078
1079 /* allocate the space for *all* the indexes */
1080 for (i = t->depth - 2; i >= 0; i--) {
1081 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1082 total += t->counts[i];
1083 }
1084
1085 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1086 if (!indexes)
1087 return -ENOMEM;
1088
1089 /* set up internal nodes, bottom-up */
1090 for (i = t->depth - 2; i >= 0; i--) {
1091 t->index[i] = indexes;
1092 indexes += (KEYS_PER_NODE * t->counts[i]);
1093 setup_btree_index(i, t);
1094 }
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Builds the btree to index the map.
1101 */
dm_table_build_index(struct dm_table * t)1102 static int dm_table_build_index(struct dm_table *t)
1103 {
1104 int r = 0;
1105 unsigned int leaf_nodes;
1106
1107 /* how many indexes will the btree have ? */
1108 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1109 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1110
1111 /* leaf layer has already been set up */
1112 t->counts[t->depth - 1] = leaf_nodes;
1113 t->index[t->depth - 1] = t->highs;
1114
1115 if (t->depth >= 2)
1116 r = setup_indexes(t);
1117
1118 return r;
1119 }
1120
integrity_profile_exists(struct gendisk * disk)1121 static bool integrity_profile_exists(struct gendisk *disk)
1122 {
1123 return !!blk_get_integrity(disk);
1124 }
1125
1126 /*
1127 * Get a disk whose integrity profile reflects the table's profile.
1128 * Returns NULL if integrity support was inconsistent or unavailable.
1129 */
dm_table_get_integrity_disk(struct dm_table * t)1130 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1131 {
1132 struct list_head *devices = dm_table_get_devices(t);
1133 struct dm_dev_internal *dd = NULL;
1134 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1135
1136 for (unsigned int i = 0; i < t->num_targets; i++) {
1137 struct dm_target *ti = dm_table_get_target(t, i);
1138
1139 if (!dm_target_passes_integrity(ti->type))
1140 goto no_integrity;
1141 }
1142
1143 list_for_each_entry(dd, devices, list) {
1144 template_disk = dd->dm_dev->bdev->bd_disk;
1145 if (!integrity_profile_exists(template_disk))
1146 goto no_integrity;
1147 else if (prev_disk &&
1148 blk_integrity_compare(prev_disk, template_disk) < 0)
1149 goto no_integrity;
1150 prev_disk = template_disk;
1151 }
1152
1153 return template_disk;
1154
1155 no_integrity:
1156 if (prev_disk)
1157 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1158 dm_device_name(t->md),
1159 prev_disk->disk_name,
1160 template_disk->disk_name);
1161 return NULL;
1162 }
1163
1164 /*
1165 * Register the mapped device for blk_integrity support if the
1166 * underlying devices have an integrity profile. But all devices may
1167 * not have matching profiles (checking all devices isn't reliable
1168 * during table load because this table may use other DM device(s) which
1169 * must be resumed before they will have an initialized integity
1170 * profile). Consequently, stacked DM devices force a 2 stage integrity
1171 * profile validation: First pass during table load, final pass during
1172 * resume.
1173 */
dm_table_register_integrity(struct dm_table * t)1174 static int dm_table_register_integrity(struct dm_table *t)
1175 {
1176 struct mapped_device *md = t->md;
1177 struct gendisk *template_disk = NULL;
1178
1179 /* If target handles integrity itself do not register it here. */
1180 if (t->integrity_added)
1181 return 0;
1182
1183 template_disk = dm_table_get_integrity_disk(t);
1184 if (!template_disk)
1185 return 0;
1186
1187 if (!integrity_profile_exists(dm_disk(md))) {
1188 t->integrity_supported = true;
1189 /*
1190 * Register integrity profile during table load; we can do
1191 * this because the final profile must match during resume.
1192 */
1193 blk_integrity_register(dm_disk(md),
1194 blk_get_integrity(template_disk));
1195 return 0;
1196 }
1197
1198 /*
1199 * If DM device already has an initialized integrity
1200 * profile the new profile should not conflict.
1201 */
1202 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1203 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1204 dm_device_name(t->md),
1205 template_disk->disk_name);
1206 return 1;
1207 }
1208
1209 /* Preserve existing integrity profile */
1210 t->integrity_supported = true;
1211 return 0;
1212 }
1213
1214 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1215
1216 struct dm_crypto_profile {
1217 struct blk_crypto_profile profile;
1218 struct mapped_device *md;
1219 };
1220
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1221 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1222 sector_t start, sector_t len, void *data)
1223 {
1224 const struct blk_crypto_key *key = data;
1225
1226 blk_crypto_evict_key(dev->bdev, key);
1227 return 0;
1228 }
1229
1230 /*
1231 * When an inline encryption key is evicted from a device-mapper device, evict
1232 * it from all the underlying devices.
1233 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1234 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1235 const struct blk_crypto_key *key, unsigned int slot)
1236 {
1237 struct mapped_device *md =
1238 container_of(profile, struct dm_crypto_profile, profile)->md;
1239 struct dm_table *t;
1240 int srcu_idx;
1241
1242 t = dm_get_live_table(md, &srcu_idx);
1243 if (!t)
1244 return 0;
1245
1246 for (unsigned int i = 0; i < t->num_targets; i++) {
1247 struct dm_target *ti = dm_table_get_target(t, i);
1248
1249 if (!ti->type->iterate_devices)
1250 continue;
1251 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1252 (void *)key);
1253 }
1254
1255 dm_put_live_table(md, srcu_idx);
1256 return 0;
1257 }
1258
1259 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1260 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1261 sector_t start, sector_t len, void *data)
1262 {
1263 struct blk_crypto_profile *parent = data;
1264 struct blk_crypto_profile *child =
1265 bdev_get_queue(dev->bdev)->crypto_profile;
1266
1267 blk_crypto_intersect_capabilities(parent, child);
1268 return 0;
1269 }
1270
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1271 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1272 {
1273 struct dm_crypto_profile *dmcp = container_of(profile,
1274 struct dm_crypto_profile,
1275 profile);
1276
1277 if (!profile)
1278 return;
1279
1280 blk_crypto_profile_destroy(profile);
1281 kfree(dmcp);
1282 }
1283
dm_table_destroy_crypto_profile(struct dm_table * t)1284 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1285 {
1286 dm_destroy_crypto_profile(t->crypto_profile);
1287 t->crypto_profile = NULL;
1288 }
1289
1290 /*
1291 * Constructs and initializes t->crypto_profile with a crypto profile that
1292 * represents the common set of crypto capabilities of the devices described by
1293 * the dm_table. However, if the constructed crypto profile doesn't support all
1294 * crypto capabilities that are supported by the current mapped_device, it
1295 * returns an error instead, since we don't support removing crypto capabilities
1296 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1297 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1298 */
dm_table_construct_crypto_profile(struct dm_table * t)1299 static int dm_table_construct_crypto_profile(struct dm_table *t)
1300 {
1301 struct dm_crypto_profile *dmcp;
1302 struct blk_crypto_profile *profile;
1303 unsigned int i;
1304 bool empty_profile = true;
1305
1306 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1307 if (!dmcp)
1308 return -ENOMEM;
1309 dmcp->md = t->md;
1310
1311 profile = &dmcp->profile;
1312 blk_crypto_profile_init(profile, 0);
1313 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1314 profile->max_dun_bytes_supported = UINT_MAX;
1315 memset(profile->modes_supported, 0xFF,
1316 sizeof(profile->modes_supported));
1317
1318 for (i = 0; i < t->num_targets; i++) {
1319 struct dm_target *ti = dm_table_get_target(t, i);
1320
1321 if (!dm_target_passes_crypto(ti->type)) {
1322 blk_crypto_intersect_capabilities(profile, NULL);
1323 break;
1324 }
1325 if (!ti->type->iterate_devices)
1326 continue;
1327 ti->type->iterate_devices(ti,
1328 device_intersect_crypto_capabilities,
1329 profile);
1330 }
1331
1332 if (t->md->queue &&
1333 !blk_crypto_has_capabilities(profile,
1334 t->md->queue->crypto_profile)) {
1335 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1336 dm_destroy_crypto_profile(profile);
1337 return -EINVAL;
1338 }
1339
1340 /*
1341 * If the new profile doesn't actually support any crypto capabilities,
1342 * we may as well represent it with a NULL profile.
1343 */
1344 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1345 if (profile->modes_supported[i]) {
1346 empty_profile = false;
1347 break;
1348 }
1349 }
1350
1351 if (empty_profile) {
1352 dm_destroy_crypto_profile(profile);
1353 profile = NULL;
1354 }
1355
1356 /*
1357 * t->crypto_profile is only set temporarily while the table is being
1358 * set up, and it gets set to NULL after the profile has been
1359 * transferred to the request_queue.
1360 */
1361 t->crypto_profile = profile;
1362
1363 return 0;
1364 }
1365
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1366 static void dm_update_crypto_profile(struct request_queue *q,
1367 struct dm_table *t)
1368 {
1369 if (!t->crypto_profile)
1370 return;
1371
1372 /* Make the crypto profile less restrictive. */
1373 if (!q->crypto_profile) {
1374 blk_crypto_register(t->crypto_profile, q);
1375 } else {
1376 blk_crypto_update_capabilities(q->crypto_profile,
1377 t->crypto_profile);
1378 dm_destroy_crypto_profile(t->crypto_profile);
1379 }
1380 t->crypto_profile = NULL;
1381 }
1382
1383 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1384
dm_table_construct_crypto_profile(struct dm_table * t)1385 static int dm_table_construct_crypto_profile(struct dm_table *t)
1386 {
1387 return 0;
1388 }
1389
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1390 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1391 {
1392 }
1393
dm_table_destroy_crypto_profile(struct dm_table * t)1394 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1395 {
1396 }
1397
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1398 static void dm_update_crypto_profile(struct request_queue *q,
1399 struct dm_table *t)
1400 {
1401 }
1402
1403 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1404
1405 /*
1406 * Prepares the table for use by building the indices,
1407 * setting the type, and allocating mempools.
1408 */
dm_table_complete(struct dm_table * t)1409 int dm_table_complete(struct dm_table *t)
1410 {
1411 int r;
1412
1413 r = dm_table_determine_type(t);
1414 if (r) {
1415 DMERR("unable to determine table type");
1416 return r;
1417 }
1418
1419 r = dm_table_build_index(t);
1420 if (r) {
1421 DMERR("unable to build btrees");
1422 return r;
1423 }
1424
1425 r = dm_table_register_integrity(t);
1426 if (r) {
1427 DMERR("could not register integrity profile.");
1428 return r;
1429 }
1430
1431 r = dm_table_construct_crypto_profile(t);
1432 if (r) {
1433 DMERR("could not construct crypto profile.");
1434 return r;
1435 }
1436
1437 r = dm_table_alloc_md_mempools(t, t->md);
1438 if (r)
1439 DMERR("unable to allocate mempools");
1440
1441 return r;
1442 }
1443
1444 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1445 void dm_table_event_callback(struct dm_table *t,
1446 void (*fn)(void *), void *context)
1447 {
1448 mutex_lock(&_event_lock);
1449 t->event_fn = fn;
1450 t->event_context = context;
1451 mutex_unlock(&_event_lock);
1452 }
1453
dm_table_event(struct dm_table * t)1454 void dm_table_event(struct dm_table *t)
1455 {
1456 mutex_lock(&_event_lock);
1457 if (t->event_fn)
1458 t->event_fn(t->event_context);
1459 mutex_unlock(&_event_lock);
1460 }
1461 EXPORT_SYMBOL(dm_table_event);
1462
dm_table_get_size(struct dm_table * t)1463 inline sector_t dm_table_get_size(struct dm_table *t)
1464 {
1465 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1466 }
1467 EXPORT_SYMBOL(dm_table_get_size);
1468
1469 /*
1470 * Search the btree for the correct target.
1471 *
1472 * Caller should check returned pointer for NULL
1473 * to trap I/O beyond end of device.
1474 */
dm_table_find_target(struct dm_table * t,sector_t sector)1475 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1476 {
1477 unsigned int l, n = 0, k = 0;
1478 sector_t *node;
1479
1480 if (unlikely(sector >= dm_table_get_size(t)))
1481 return NULL;
1482
1483 for (l = 0; l < t->depth; l++) {
1484 n = get_child(n, k);
1485 node = get_node(t, l, n);
1486
1487 for (k = 0; k < KEYS_PER_NODE; k++)
1488 if (node[k] >= sector)
1489 break;
1490 }
1491
1492 return &t->targets[(KEYS_PER_NODE * n) + k];
1493 }
1494
device_not_poll_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1495 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1496 sector_t start, sector_t len, void *data)
1497 {
1498 struct request_queue *q = bdev_get_queue(dev->bdev);
1499
1500 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1501 }
1502
1503 /*
1504 * type->iterate_devices() should be called when the sanity check needs to
1505 * iterate and check all underlying data devices. iterate_devices() will
1506 * iterate all underlying data devices until it encounters a non-zero return
1507 * code, returned by whether the input iterate_devices_callout_fn, or
1508 * iterate_devices() itself internally.
1509 *
1510 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1511 * iterate multiple underlying devices internally, in which case a non-zero
1512 * return code returned by iterate_devices_callout_fn will stop the iteration
1513 * in advance.
1514 *
1515 * Cases requiring _any_ underlying device supporting some kind of attribute,
1516 * should use the iteration structure like dm_table_any_dev_attr(), or call
1517 * it directly. @func should handle semantics of positive examples, e.g.
1518 * capable of something.
1519 *
1520 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1521 * should use the iteration structure like dm_table_supports_nowait() or
1522 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1523 * uses an @anti_func that handle semantics of counter examples, e.g. not
1524 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1525 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1526 static bool dm_table_any_dev_attr(struct dm_table *t,
1527 iterate_devices_callout_fn func, void *data)
1528 {
1529 for (unsigned int i = 0; i < t->num_targets; i++) {
1530 struct dm_target *ti = dm_table_get_target(t, i);
1531
1532 if (ti->type->iterate_devices &&
1533 ti->type->iterate_devices(ti, func, data))
1534 return true;
1535 }
1536
1537 return false;
1538 }
1539
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1540 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1541 sector_t start, sector_t len, void *data)
1542 {
1543 unsigned int *num_devices = data;
1544
1545 (*num_devices)++;
1546
1547 return 0;
1548 }
1549
dm_table_supports_poll(struct dm_table * t)1550 static bool dm_table_supports_poll(struct dm_table *t)
1551 {
1552 for (unsigned int i = 0; i < t->num_targets; i++) {
1553 struct dm_target *ti = dm_table_get_target(t, i);
1554
1555 if (!ti->type->iterate_devices ||
1556 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1557 return false;
1558 }
1559
1560 return true;
1561 }
1562
1563 /*
1564 * Check whether a table has no data devices attached using each
1565 * target's iterate_devices method.
1566 * Returns false if the result is unknown because a target doesn't
1567 * support iterate_devices.
1568 */
dm_table_has_no_data_devices(struct dm_table * t)1569 bool dm_table_has_no_data_devices(struct dm_table *t)
1570 {
1571 for (unsigned int i = 0; i < t->num_targets; i++) {
1572 struct dm_target *ti = dm_table_get_target(t, i);
1573 unsigned int num_devices = 0;
1574
1575 if (!ti->type->iterate_devices)
1576 return false;
1577
1578 ti->type->iterate_devices(ti, count_device, &num_devices);
1579 if (num_devices)
1580 return false;
1581 }
1582
1583 return true;
1584 }
1585
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1586 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1587 sector_t start, sector_t len, void *data)
1588 {
1589 struct request_queue *q = bdev_get_queue(dev->bdev);
1590 enum blk_zoned_model *zoned_model = data;
1591
1592 return blk_queue_zoned_model(q) != *zoned_model;
1593 }
1594
1595 /*
1596 * Check the device zoned model based on the target feature flag. If the target
1597 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1598 * also accepted but all devices must have the same zoned model. If the target
1599 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1600 * zoned model with all zoned devices having the same zone size.
1601 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1602 static bool dm_table_supports_zoned_model(struct dm_table *t,
1603 enum blk_zoned_model zoned_model)
1604 {
1605 for (unsigned int i = 0; i < t->num_targets; i++) {
1606 struct dm_target *ti = dm_table_get_target(t, i);
1607
1608 if (dm_target_supports_zoned_hm(ti->type)) {
1609 if (!ti->type->iterate_devices ||
1610 ti->type->iterate_devices(ti, device_not_zoned_model,
1611 &zoned_model))
1612 return false;
1613 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1614 if (zoned_model == BLK_ZONED_HM)
1615 return false;
1616 }
1617 }
1618
1619 return true;
1620 }
1621
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1622 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1623 sector_t start, sector_t len, void *data)
1624 {
1625 unsigned int *zone_sectors = data;
1626
1627 if (!bdev_is_zoned(dev->bdev))
1628 return 0;
1629 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1630 }
1631
1632 /*
1633 * Check consistency of zoned model and zone sectors across all targets. For
1634 * zone sectors, if the destination device is a zoned block device, it shall
1635 * have the specified zone_sectors.
1636 */
validate_hardware_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1637 static int validate_hardware_zoned_model(struct dm_table *t,
1638 enum blk_zoned_model zoned_model,
1639 unsigned int zone_sectors)
1640 {
1641 if (zoned_model == BLK_ZONED_NONE)
1642 return 0;
1643
1644 if (!dm_table_supports_zoned_model(t, zoned_model)) {
1645 DMERR("%s: zoned model is not consistent across all devices",
1646 dm_device_name(t->md));
1647 return -EINVAL;
1648 }
1649
1650 /* Check zone size validity and compatibility */
1651 if (!zone_sectors || !is_power_of_2(zone_sectors))
1652 return -EINVAL;
1653
1654 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1655 DMERR("%s: zone sectors is not consistent across all zoned devices",
1656 dm_device_name(t->md));
1657 return -EINVAL;
1658 }
1659
1660 return 0;
1661 }
1662
1663 /*
1664 * Establish the new table's queue_limits and validate them.
1665 */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1666 int dm_calculate_queue_limits(struct dm_table *t,
1667 struct queue_limits *limits)
1668 {
1669 struct queue_limits ti_limits;
1670 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1671 unsigned int zone_sectors = 0;
1672
1673 blk_set_stacking_limits(limits);
1674
1675 for (unsigned int i = 0; i < t->num_targets; i++) {
1676 struct dm_target *ti = dm_table_get_target(t, i);
1677
1678 blk_set_stacking_limits(&ti_limits);
1679
1680 if (!ti->type->iterate_devices) {
1681 /* Set I/O hints portion of queue limits */
1682 if (ti->type->io_hints)
1683 ti->type->io_hints(ti, &ti_limits);
1684 goto combine_limits;
1685 }
1686
1687 /*
1688 * Combine queue limits of all the devices this target uses.
1689 */
1690 ti->type->iterate_devices(ti, dm_set_device_limits,
1691 &ti_limits);
1692
1693 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1694 /*
1695 * After stacking all limits, validate all devices
1696 * in table support this zoned model and zone sectors.
1697 */
1698 zoned_model = ti_limits.zoned;
1699 zone_sectors = ti_limits.chunk_sectors;
1700 }
1701
1702 /* Set I/O hints portion of queue limits */
1703 if (ti->type->io_hints)
1704 ti->type->io_hints(ti, &ti_limits);
1705
1706 /*
1707 * Check each device area is consistent with the target's
1708 * overall queue limits.
1709 */
1710 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1711 &ti_limits))
1712 return -EINVAL;
1713
1714 combine_limits:
1715 /*
1716 * Merge this target's queue limits into the overall limits
1717 * for the table.
1718 */
1719 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1720 DMWARN("%s: adding target device (start sect %llu len %llu) "
1721 "caused an alignment inconsistency",
1722 dm_device_name(t->md),
1723 (unsigned long long) ti->begin,
1724 (unsigned long long) ti->len);
1725 }
1726
1727 /*
1728 * Verify that the zoned model and zone sectors, as determined before
1729 * any .io_hints override, are the same across all devices in the table.
1730 * - this is especially relevant if .io_hints is emulating a disk-managed
1731 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1732 * BUT...
1733 */
1734 if (limits->zoned != BLK_ZONED_NONE) {
1735 /*
1736 * ...IF the above limits stacking determined a zoned model
1737 * validate that all of the table's devices conform to it.
1738 */
1739 zoned_model = limits->zoned;
1740 zone_sectors = limits->chunk_sectors;
1741 }
1742 if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1743 return -EINVAL;
1744
1745 return validate_hardware_logical_block_alignment(t, limits);
1746 }
1747
1748 /*
1749 * Verify that all devices have an integrity profile that matches the
1750 * DM device's registered integrity profile. If the profiles don't
1751 * match then unregister the DM device's integrity profile.
1752 */
dm_table_verify_integrity(struct dm_table * t)1753 static void dm_table_verify_integrity(struct dm_table *t)
1754 {
1755 struct gendisk *template_disk = NULL;
1756
1757 if (t->integrity_added)
1758 return;
1759
1760 if (t->integrity_supported) {
1761 /*
1762 * Verify that the original integrity profile
1763 * matches all the devices in this table.
1764 */
1765 template_disk = dm_table_get_integrity_disk(t);
1766 if (template_disk &&
1767 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1768 return;
1769 }
1770
1771 if (integrity_profile_exists(dm_disk(t->md))) {
1772 DMWARN("%s: unable to establish an integrity profile",
1773 dm_device_name(t->md));
1774 blk_integrity_unregister(dm_disk(t->md));
1775 }
1776 }
1777
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1778 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1779 sector_t start, sector_t len, void *data)
1780 {
1781 unsigned long flush = (unsigned long) data;
1782 struct request_queue *q = bdev_get_queue(dev->bdev);
1783
1784 return (q->queue_flags & flush);
1785 }
1786
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1787 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1788 {
1789 /*
1790 * Require at least one underlying device to support flushes.
1791 * t->devices includes internal dm devices such as mirror logs
1792 * so we need to use iterate_devices here, which targets
1793 * supporting flushes must provide.
1794 */
1795 for (unsigned int i = 0; i < t->num_targets; i++) {
1796 struct dm_target *ti = dm_table_get_target(t, i);
1797
1798 if (!ti->num_flush_bios)
1799 continue;
1800
1801 if (ti->flush_supported)
1802 return true;
1803
1804 if (ti->type->iterate_devices &&
1805 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1806 return true;
1807 }
1808
1809 return false;
1810 }
1811
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1812 static int device_dax_write_cache_enabled(struct dm_target *ti,
1813 struct dm_dev *dev, sector_t start,
1814 sector_t len, void *data)
1815 {
1816 struct dax_device *dax_dev = dev->dax_dev;
1817
1818 if (!dax_dev)
1819 return false;
1820
1821 if (dax_write_cache_enabled(dax_dev))
1822 return true;
1823 return false;
1824 }
1825
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1826 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1827 sector_t start, sector_t len, void *data)
1828 {
1829 return !bdev_nonrot(dev->bdev);
1830 }
1831
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1832 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1833 sector_t start, sector_t len, void *data)
1834 {
1835 struct request_queue *q = bdev_get_queue(dev->bdev);
1836
1837 return !blk_queue_add_random(q);
1838 }
1839
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1840 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1841 sector_t start, sector_t len, void *data)
1842 {
1843 struct request_queue *q = bdev_get_queue(dev->bdev);
1844
1845 return !q->limits.max_write_zeroes_sectors;
1846 }
1847
dm_table_supports_write_zeroes(struct dm_table * t)1848 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1849 {
1850 for (unsigned int i = 0; i < t->num_targets; i++) {
1851 struct dm_target *ti = dm_table_get_target(t, i);
1852
1853 if (!ti->num_write_zeroes_bios)
1854 return false;
1855
1856 if (!ti->type->iterate_devices ||
1857 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1858 return false;
1859 }
1860
1861 return true;
1862 }
1863
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1864 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1865 sector_t start, sector_t len, void *data)
1866 {
1867 return !bdev_nowait(dev->bdev);
1868 }
1869
dm_table_supports_nowait(struct dm_table * t)1870 static bool dm_table_supports_nowait(struct dm_table *t)
1871 {
1872 for (unsigned int i = 0; i < t->num_targets; i++) {
1873 struct dm_target *ti = dm_table_get_target(t, i);
1874
1875 if (!dm_target_supports_nowait(ti->type))
1876 return false;
1877
1878 if (!ti->type->iterate_devices ||
1879 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1880 return false;
1881 }
1882
1883 return true;
1884 }
1885
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1886 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1887 sector_t start, sector_t len, void *data)
1888 {
1889 return !bdev_max_discard_sectors(dev->bdev);
1890 }
1891
dm_table_supports_discards(struct dm_table * t)1892 static bool dm_table_supports_discards(struct dm_table *t)
1893 {
1894 for (unsigned int i = 0; i < t->num_targets; i++) {
1895 struct dm_target *ti = dm_table_get_target(t, i);
1896
1897 if (!ti->num_discard_bios)
1898 return false;
1899
1900 /*
1901 * Either the target provides discard support (as implied by setting
1902 * 'discards_supported') or it relies on _all_ data devices having
1903 * discard support.
1904 */
1905 if (!ti->discards_supported &&
1906 (!ti->type->iterate_devices ||
1907 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1908 return false;
1909 }
1910
1911 return true;
1912 }
1913
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1914 static int device_not_secure_erase_capable(struct dm_target *ti,
1915 struct dm_dev *dev, sector_t start,
1916 sector_t len, void *data)
1917 {
1918 return !bdev_max_secure_erase_sectors(dev->bdev);
1919 }
1920
dm_table_supports_secure_erase(struct dm_table * t)1921 static bool dm_table_supports_secure_erase(struct dm_table *t)
1922 {
1923 for (unsigned int i = 0; i < t->num_targets; i++) {
1924 struct dm_target *ti = dm_table_get_target(t, i);
1925
1926 if (!ti->num_secure_erase_bios)
1927 return false;
1928
1929 if (!ti->type->iterate_devices ||
1930 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1931 return false;
1932 }
1933
1934 return true;
1935 }
1936
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1937 static int device_requires_stable_pages(struct dm_target *ti,
1938 struct dm_dev *dev, sector_t start,
1939 sector_t len, void *data)
1940 {
1941 return bdev_stable_writes(dev->bdev);
1942 }
1943
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1944 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1945 struct queue_limits *limits)
1946 {
1947 bool wc = false, fua = false;
1948 int r;
1949
1950 /*
1951 * Copy table's limits to the DM device's request_queue
1952 */
1953 q->limits = *limits;
1954
1955 if (dm_table_supports_nowait(t))
1956 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1957 else
1958 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1959
1960 if (!dm_table_supports_discards(t)) {
1961 q->limits.max_discard_sectors = 0;
1962 q->limits.max_hw_discard_sectors = 0;
1963 q->limits.discard_granularity = 0;
1964 q->limits.discard_alignment = 0;
1965 q->limits.discard_misaligned = 0;
1966 }
1967
1968 if (!dm_table_supports_secure_erase(t))
1969 q->limits.max_secure_erase_sectors = 0;
1970
1971 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1972 wc = true;
1973 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1974 fua = true;
1975 }
1976 blk_queue_write_cache(q, wc, fua);
1977
1978 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1979 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1980 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1981 set_dax_synchronous(t->md->dax_dev);
1982 } else
1983 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1984
1985 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1986 dax_write_cache(t->md->dax_dev, true);
1987
1988 /* Ensure that all underlying devices are non-rotational. */
1989 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1990 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1991 else
1992 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1993
1994 if (!dm_table_supports_write_zeroes(t))
1995 q->limits.max_write_zeroes_sectors = 0;
1996
1997 dm_table_verify_integrity(t);
1998
1999 /*
2000 * Some devices don't use blk_integrity but still want stable pages
2001 * because they do their own checksumming.
2002 * If any underlying device requires stable pages, a table must require
2003 * them as well. Only targets that support iterate_devices are considered:
2004 * don't want error, zero, etc to require stable pages.
2005 */
2006 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2007 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2008 else
2009 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2010
2011 /*
2012 * Determine whether or not this queue's I/O timings contribute
2013 * to the entropy pool, Only request-based targets use this.
2014 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2015 * have it set.
2016 */
2017 if (blk_queue_add_random(q) &&
2018 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2019 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2020
2021 /*
2022 * For a zoned target, setup the zones related queue attributes
2023 * and resources necessary for zone append emulation if necessary.
2024 */
2025 if (blk_queue_is_zoned(q)) {
2026 r = dm_set_zones_restrictions(t, q);
2027 if (r)
2028 return r;
2029 if (!static_key_enabled(&zoned_enabled.key))
2030 static_branch_enable(&zoned_enabled);
2031 }
2032
2033 dm_update_crypto_profile(q, t);
2034 disk_update_readahead(t->md->disk);
2035
2036 /*
2037 * Check for request-based device is left to
2038 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2039 *
2040 * For bio-based device, only set QUEUE_FLAG_POLL when all
2041 * underlying devices supporting polling.
2042 */
2043 if (__table_type_bio_based(t->type)) {
2044 if (dm_table_supports_poll(t))
2045 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2046 else
2047 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2048 }
2049
2050 return 0;
2051 }
2052
dm_table_get_devices(struct dm_table * t)2053 struct list_head *dm_table_get_devices(struct dm_table *t)
2054 {
2055 return &t->devices;
2056 }
2057
dm_table_get_mode(struct dm_table * t)2058 blk_mode_t dm_table_get_mode(struct dm_table *t)
2059 {
2060 return t->mode;
2061 }
2062 EXPORT_SYMBOL(dm_table_get_mode);
2063
2064 enum suspend_mode {
2065 PRESUSPEND,
2066 PRESUSPEND_UNDO,
2067 POSTSUSPEND,
2068 };
2069
suspend_targets(struct dm_table * t,enum suspend_mode mode)2070 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2071 {
2072 lockdep_assert_held(&t->md->suspend_lock);
2073
2074 for (unsigned int i = 0; i < t->num_targets; i++) {
2075 struct dm_target *ti = dm_table_get_target(t, i);
2076
2077 switch (mode) {
2078 case PRESUSPEND:
2079 if (ti->type->presuspend)
2080 ti->type->presuspend(ti);
2081 break;
2082 case PRESUSPEND_UNDO:
2083 if (ti->type->presuspend_undo)
2084 ti->type->presuspend_undo(ti);
2085 break;
2086 case POSTSUSPEND:
2087 if (ti->type->postsuspend)
2088 ti->type->postsuspend(ti);
2089 break;
2090 }
2091 }
2092 }
2093
dm_table_presuspend_targets(struct dm_table * t)2094 void dm_table_presuspend_targets(struct dm_table *t)
2095 {
2096 if (!t)
2097 return;
2098
2099 suspend_targets(t, PRESUSPEND);
2100 }
2101
dm_table_presuspend_undo_targets(struct dm_table * t)2102 void dm_table_presuspend_undo_targets(struct dm_table *t)
2103 {
2104 if (!t)
2105 return;
2106
2107 suspend_targets(t, PRESUSPEND_UNDO);
2108 }
2109
dm_table_postsuspend_targets(struct dm_table * t)2110 void dm_table_postsuspend_targets(struct dm_table *t)
2111 {
2112 if (!t)
2113 return;
2114
2115 suspend_targets(t, POSTSUSPEND);
2116 }
2117
dm_table_resume_targets(struct dm_table * t)2118 int dm_table_resume_targets(struct dm_table *t)
2119 {
2120 unsigned int i;
2121 int r = 0;
2122
2123 lockdep_assert_held(&t->md->suspend_lock);
2124
2125 for (i = 0; i < t->num_targets; i++) {
2126 struct dm_target *ti = dm_table_get_target(t, i);
2127
2128 if (!ti->type->preresume)
2129 continue;
2130
2131 r = ti->type->preresume(ti);
2132 if (r) {
2133 DMERR("%s: %s: preresume failed, error = %d",
2134 dm_device_name(t->md), ti->type->name, r);
2135 return r;
2136 }
2137 }
2138
2139 for (i = 0; i < t->num_targets; i++) {
2140 struct dm_target *ti = dm_table_get_target(t, i);
2141
2142 if (ti->type->resume)
2143 ti->type->resume(ti);
2144 }
2145
2146 return 0;
2147 }
2148
dm_table_get_md(struct dm_table * t)2149 struct mapped_device *dm_table_get_md(struct dm_table *t)
2150 {
2151 return t->md;
2152 }
2153 EXPORT_SYMBOL(dm_table_get_md);
2154
dm_table_device_name(struct dm_table * t)2155 const char *dm_table_device_name(struct dm_table *t)
2156 {
2157 return dm_device_name(t->md);
2158 }
2159 EXPORT_SYMBOL_GPL(dm_table_device_name);
2160
dm_table_run_md_queue_async(struct dm_table * t)2161 void dm_table_run_md_queue_async(struct dm_table *t)
2162 {
2163 if (!dm_table_request_based(t))
2164 return;
2165
2166 if (t->md->queue)
2167 blk_mq_run_hw_queues(t->md->queue, true);
2168 }
2169 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2170
2171