1 /* 2 * dm-snapshot.c 3 * 4 * Copyright (C) 2001-2002 Sistina Software (UK) Limited. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/ctype.h> 11 #include <linux/device-mapper.h> 12 #include <linux/fs.h> 13 #include <linux/init.h> 14 #include <linux/kdev_t.h> 15 #include <linux/list.h> 16 #include <linux/mempool.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/log2.h> 21 22 #include "dm-snap.h" 23 #include "dm-bio-list.h" 24 #include "kcopyd.h" 25 26 #define DM_MSG_PREFIX "snapshots" 27 28 /* 29 * The percentage increment we will wake up users at 30 */ 31 #define WAKE_UP_PERCENT 5 32 33 /* 34 * kcopyd priority of snapshot operations 35 */ 36 #define SNAPSHOT_COPY_PRIORITY 2 37 38 /* 39 * Each snapshot reserves this many pages for io 40 */ 41 #define SNAPSHOT_PAGES 256 42 43 static struct workqueue_struct *ksnapd; 44 static void flush_queued_bios(struct work_struct *work); 45 46 struct dm_snap_pending_exception { 47 struct dm_snap_exception e; 48 49 /* 50 * Origin buffers waiting for this to complete are held 51 * in a bio list 52 */ 53 struct bio_list origin_bios; 54 struct bio_list snapshot_bios; 55 56 /* 57 * Short-term queue of pending exceptions prior to submission. 58 */ 59 struct list_head list; 60 61 /* 62 * The primary pending_exception is the one that holds 63 * the ref_count and the list of origin_bios for a 64 * group of pending_exceptions. It is always last to get freed. 65 * These fields get set up when writing to the origin. 66 */ 67 struct dm_snap_pending_exception *primary_pe; 68 69 /* 70 * Number of pending_exceptions processing this chunk. 71 * When this drops to zero we must complete the origin bios. 72 * If incrementing or decrementing this, hold pe->snap->lock for 73 * the sibling concerned and not pe->primary_pe->snap->lock unless 74 * they are the same. 75 */ 76 atomic_t ref_count; 77 78 /* Pointer back to snapshot context */ 79 struct dm_snapshot *snap; 80 81 /* 82 * 1 indicates the exception has already been sent to 83 * kcopyd. 84 */ 85 int started; 86 }; 87 88 /* 89 * Hash table mapping origin volumes to lists of snapshots and 90 * a lock to protect it 91 */ 92 static struct kmem_cache *exception_cache; 93 static struct kmem_cache *pending_cache; 94 static mempool_t *pending_pool; 95 96 /* 97 * One of these per registered origin, held in the snapshot_origins hash 98 */ 99 struct origin { 100 /* The origin device */ 101 struct block_device *bdev; 102 103 struct list_head hash_list; 104 105 /* List of snapshots for this origin */ 106 struct list_head snapshots; 107 }; 108 109 /* 110 * Size of the hash table for origin volumes. If we make this 111 * the size of the minors list then it should be nearly perfect 112 */ 113 #define ORIGIN_HASH_SIZE 256 114 #define ORIGIN_MASK 0xFF 115 static struct list_head *_origins; 116 static struct rw_semaphore _origins_lock; 117 118 static int init_origin_hash(void) 119 { 120 int i; 121 122 _origins = kmalloc(ORIGIN_HASH_SIZE * sizeof(struct list_head), 123 GFP_KERNEL); 124 if (!_origins) { 125 DMERR("unable to allocate memory"); 126 return -ENOMEM; 127 } 128 129 for (i = 0; i < ORIGIN_HASH_SIZE; i++) 130 INIT_LIST_HEAD(_origins + i); 131 init_rwsem(&_origins_lock); 132 133 return 0; 134 } 135 136 static void exit_origin_hash(void) 137 { 138 kfree(_origins); 139 } 140 141 static unsigned origin_hash(struct block_device *bdev) 142 { 143 return bdev->bd_dev & ORIGIN_MASK; 144 } 145 146 static struct origin *__lookup_origin(struct block_device *origin) 147 { 148 struct list_head *ol; 149 struct origin *o; 150 151 ol = &_origins[origin_hash(origin)]; 152 list_for_each_entry (o, ol, hash_list) 153 if (bdev_equal(o->bdev, origin)) 154 return o; 155 156 return NULL; 157 } 158 159 static void __insert_origin(struct origin *o) 160 { 161 struct list_head *sl = &_origins[origin_hash(o->bdev)]; 162 list_add_tail(&o->hash_list, sl); 163 } 164 165 /* 166 * Make a note of the snapshot and its origin so we can look it 167 * up when the origin has a write on it. 168 */ 169 static int register_snapshot(struct dm_snapshot *snap) 170 { 171 struct origin *o; 172 struct block_device *bdev = snap->origin->bdev; 173 174 down_write(&_origins_lock); 175 o = __lookup_origin(bdev); 176 177 if (!o) { 178 /* New origin */ 179 o = kmalloc(sizeof(*o), GFP_KERNEL); 180 if (!o) { 181 up_write(&_origins_lock); 182 return -ENOMEM; 183 } 184 185 /* Initialise the struct */ 186 INIT_LIST_HEAD(&o->snapshots); 187 o->bdev = bdev; 188 189 __insert_origin(o); 190 } 191 192 list_add_tail(&snap->list, &o->snapshots); 193 194 up_write(&_origins_lock); 195 return 0; 196 } 197 198 static void unregister_snapshot(struct dm_snapshot *s) 199 { 200 struct origin *o; 201 202 down_write(&_origins_lock); 203 o = __lookup_origin(s->origin->bdev); 204 205 list_del(&s->list); 206 if (list_empty(&o->snapshots)) { 207 list_del(&o->hash_list); 208 kfree(o); 209 } 210 211 up_write(&_origins_lock); 212 } 213 214 /* 215 * Implementation of the exception hash tables. 216 * The lowest hash_shift bits of the chunk number are ignored, allowing 217 * some consecutive chunks to be grouped together. 218 */ 219 static int init_exception_table(struct exception_table *et, uint32_t size, 220 unsigned hash_shift) 221 { 222 unsigned int i; 223 224 et->hash_shift = hash_shift; 225 et->hash_mask = size - 1; 226 et->table = dm_vcalloc(size, sizeof(struct list_head)); 227 if (!et->table) 228 return -ENOMEM; 229 230 for (i = 0; i < size; i++) 231 INIT_LIST_HEAD(et->table + i); 232 233 return 0; 234 } 235 236 static void exit_exception_table(struct exception_table *et, struct kmem_cache *mem) 237 { 238 struct list_head *slot; 239 struct dm_snap_exception *ex, *next; 240 int i, size; 241 242 size = et->hash_mask + 1; 243 for (i = 0; i < size; i++) { 244 slot = et->table + i; 245 246 list_for_each_entry_safe (ex, next, slot, hash_list) 247 kmem_cache_free(mem, ex); 248 } 249 250 vfree(et->table); 251 } 252 253 static uint32_t exception_hash(struct exception_table *et, chunk_t chunk) 254 { 255 return (chunk >> et->hash_shift) & et->hash_mask; 256 } 257 258 static void insert_exception(struct exception_table *eh, 259 struct dm_snap_exception *e) 260 { 261 struct list_head *l = &eh->table[exception_hash(eh, e->old_chunk)]; 262 list_add(&e->hash_list, l); 263 } 264 265 static void remove_exception(struct dm_snap_exception *e) 266 { 267 list_del(&e->hash_list); 268 } 269 270 /* 271 * Return the exception data for a sector, or NULL if not 272 * remapped. 273 */ 274 static struct dm_snap_exception *lookup_exception(struct exception_table *et, 275 chunk_t chunk) 276 { 277 struct list_head *slot; 278 struct dm_snap_exception *e; 279 280 slot = &et->table[exception_hash(et, chunk)]; 281 list_for_each_entry (e, slot, hash_list) 282 if (chunk >= e->old_chunk && 283 chunk <= e->old_chunk + dm_consecutive_chunk_count(e)) 284 return e; 285 286 return NULL; 287 } 288 289 static struct dm_snap_exception *alloc_exception(void) 290 { 291 struct dm_snap_exception *e; 292 293 e = kmem_cache_alloc(exception_cache, GFP_NOIO); 294 if (!e) 295 e = kmem_cache_alloc(exception_cache, GFP_ATOMIC); 296 297 return e; 298 } 299 300 static void free_exception(struct dm_snap_exception *e) 301 { 302 kmem_cache_free(exception_cache, e); 303 } 304 305 static struct dm_snap_pending_exception *alloc_pending_exception(void) 306 { 307 return mempool_alloc(pending_pool, GFP_NOIO); 308 } 309 310 static void free_pending_exception(struct dm_snap_pending_exception *pe) 311 { 312 mempool_free(pe, pending_pool); 313 } 314 315 static void insert_completed_exception(struct dm_snapshot *s, 316 struct dm_snap_exception *new_e) 317 { 318 struct exception_table *eh = &s->complete; 319 struct list_head *l; 320 struct dm_snap_exception *e = NULL; 321 322 l = &eh->table[exception_hash(eh, new_e->old_chunk)]; 323 324 /* Add immediately if this table doesn't support consecutive chunks */ 325 if (!eh->hash_shift) 326 goto out; 327 328 /* List is ordered by old_chunk */ 329 list_for_each_entry_reverse(e, l, hash_list) { 330 /* Insert after an existing chunk? */ 331 if (new_e->old_chunk == (e->old_chunk + 332 dm_consecutive_chunk_count(e) + 1) && 333 new_e->new_chunk == (dm_chunk_number(e->new_chunk) + 334 dm_consecutive_chunk_count(e) + 1)) { 335 dm_consecutive_chunk_count_inc(e); 336 free_exception(new_e); 337 return; 338 } 339 340 /* Insert before an existing chunk? */ 341 if (new_e->old_chunk == (e->old_chunk - 1) && 342 new_e->new_chunk == (dm_chunk_number(e->new_chunk) - 1)) { 343 dm_consecutive_chunk_count_inc(e); 344 e->old_chunk--; 345 e->new_chunk--; 346 free_exception(new_e); 347 return; 348 } 349 350 if (new_e->old_chunk > e->old_chunk) 351 break; 352 } 353 354 out: 355 list_add(&new_e->hash_list, e ? &e->hash_list : l); 356 } 357 358 int dm_add_exception(struct dm_snapshot *s, chunk_t old, chunk_t new) 359 { 360 struct dm_snap_exception *e; 361 362 e = alloc_exception(); 363 if (!e) 364 return -ENOMEM; 365 366 e->old_chunk = old; 367 368 /* Consecutive_count is implicitly initialised to zero */ 369 e->new_chunk = new; 370 371 insert_completed_exception(s, e); 372 373 return 0; 374 } 375 376 /* 377 * Hard coded magic. 378 */ 379 static int calc_max_buckets(void) 380 { 381 /* use a fixed size of 2MB */ 382 unsigned long mem = 2 * 1024 * 1024; 383 mem /= sizeof(struct list_head); 384 385 return mem; 386 } 387 388 /* 389 * Allocate room for a suitable hash table. 390 */ 391 static int init_hash_tables(struct dm_snapshot *s) 392 { 393 sector_t hash_size, cow_dev_size, origin_dev_size, max_buckets; 394 395 /* 396 * Calculate based on the size of the original volume or 397 * the COW volume... 398 */ 399 cow_dev_size = get_dev_size(s->cow->bdev); 400 origin_dev_size = get_dev_size(s->origin->bdev); 401 max_buckets = calc_max_buckets(); 402 403 hash_size = min(origin_dev_size, cow_dev_size) >> s->chunk_shift; 404 hash_size = min(hash_size, max_buckets); 405 406 hash_size = rounddown_pow_of_two(hash_size); 407 if (init_exception_table(&s->complete, hash_size, 408 DM_CHUNK_CONSECUTIVE_BITS)) 409 return -ENOMEM; 410 411 /* 412 * Allocate hash table for in-flight exceptions 413 * Make this smaller than the real hash table 414 */ 415 hash_size >>= 3; 416 if (hash_size < 64) 417 hash_size = 64; 418 419 if (init_exception_table(&s->pending, hash_size, 0)) { 420 exit_exception_table(&s->complete, exception_cache); 421 return -ENOMEM; 422 } 423 424 return 0; 425 } 426 427 /* 428 * Round a number up to the nearest 'size' boundary. size must 429 * be a power of 2. 430 */ 431 static ulong round_up(ulong n, ulong size) 432 { 433 size--; 434 return (n + size) & ~size; 435 } 436 437 static int set_chunk_size(struct dm_snapshot *s, const char *chunk_size_arg, 438 char **error) 439 { 440 unsigned long chunk_size; 441 char *value; 442 443 chunk_size = simple_strtoul(chunk_size_arg, &value, 10); 444 if (*chunk_size_arg == '\0' || *value != '\0') { 445 *error = "Invalid chunk size"; 446 return -EINVAL; 447 } 448 449 if (!chunk_size) { 450 s->chunk_size = s->chunk_mask = s->chunk_shift = 0; 451 return 0; 452 } 453 454 /* 455 * Chunk size must be multiple of page size. Silently 456 * round up if it's not. 457 */ 458 chunk_size = round_up(chunk_size, PAGE_SIZE >> 9); 459 460 /* Check chunk_size is a power of 2 */ 461 if (!is_power_of_2(chunk_size)) { 462 *error = "Chunk size is not a power of 2"; 463 return -EINVAL; 464 } 465 466 /* Validate the chunk size against the device block size */ 467 if (chunk_size % (bdev_hardsect_size(s->cow->bdev) >> 9)) { 468 *error = "Chunk size is not a multiple of device blocksize"; 469 return -EINVAL; 470 } 471 472 s->chunk_size = chunk_size; 473 s->chunk_mask = chunk_size - 1; 474 s->chunk_shift = ffs(chunk_size) - 1; 475 476 return 0; 477 } 478 479 /* 480 * Construct a snapshot mapping: <origin_dev> <COW-dev> <p/n> <chunk-size> 481 */ 482 static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv) 483 { 484 struct dm_snapshot *s; 485 int r = -EINVAL; 486 char persistent; 487 char *origin_path; 488 char *cow_path; 489 490 if (argc != 4) { 491 ti->error = "requires exactly 4 arguments"; 492 r = -EINVAL; 493 goto bad1; 494 } 495 496 origin_path = argv[0]; 497 cow_path = argv[1]; 498 persistent = toupper(*argv[2]); 499 500 if (persistent != 'P' && persistent != 'N') { 501 ti->error = "Persistent flag is not P or N"; 502 r = -EINVAL; 503 goto bad1; 504 } 505 506 s = kmalloc(sizeof(*s), GFP_KERNEL); 507 if (s == NULL) { 508 ti->error = "Cannot allocate snapshot context private " 509 "structure"; 510 r = -ENOMEM; 511 goto bad1; 512 } 513 514 r = dm_get_device(ti, origin_path, 0, ti->len, FMODE_READ, &s->origin); 515 if (r) { 516 ti->error = "Cannot get origin device"; 517 goto bad2; 518 } 519 520 r = dm_get_device(ti, cow_path, 0, 0, 521 FMODE_READ | FMODE_WRITE, &s->cow); 522 if (r) { 523 dm_put_device(ti, s->origin); 524 ti->error = "Cannot get COW device"; 525 goto bad2; 526 } 527 528 r = set_chunk_size(s, argv[3], &ti->error); 529 if (r) 530 goto bad3; 531 532 s->type = persistent; 533 534 s->valid = 1; 535 s->active = 0; 536 s->last_percent = 0; 537 init_rwsem(&s->lock); 538 spin_lock_init(&s->pe_lock); 539 s->table = ti->table; 540 541 /* Allocate hash table for COW data */ 542 if (init_hash_tables(s)) { 543 ti->error = "Unable to allocate hash table space"; 544 r = -ENOMEM; 545 goto bad3; 546 } 547 548 s->store.snap = s; 549 550 if (persistent == 'P') 551 r = dm_create_persistent(&s->store); 552 else 553 r = dm_create_transient(&s->store); 554 555 if (r) { 556 ti->error = "Couldn't create exception store"; 557 r = -EINVAL; 558 goto bad4; 559 } 560 561 r = kcopyd_client_create(SNAPSHOT_PAGES, &s->kcopyd_client); 562 if (r) { 563 ti->error = "Could not create kcopyd client"; 564 goto bad5; 565 } 566 567 /* Metadata must only be loaded into one table at once */ 568 r = s->store.read_metadata(&s->store); 569 if (r < 0) { 570 ti->error = "Failed to read snapshot metadata"; 571 goto bad6; 572 } else if (r > 0) { 573 s->valid = 0; 574 DMWARN("Snapshot is marked invalid."); 575 } 576 577 bio_list_init(&s->queued_bios); 578 INIT_WORK(&s->queued_bios_work, flush_queued_bios); 579 580 /* Add snapshot to the list of snapshots for this origin */ 581 /* Exceptions aren't triggered till snapshot_resume() is called */ 582 if (register_snapshot(s)) { 583 r = -EINVAL; 584 ti->error = "Cannot register snapshot origin"; 585 goto bad6; 586 } 587 588 ti->private = s; 589 ti->split_io = s->chunk_size; 590 591 return 0; 592 593 bad6: 594 kcopyd_client_destroy(s->kcopyd_client); 595 596 bad5: 597 s->store.destroy(&s->store); 598 599 bad4: 600 exit_exception_table(&s->pending, pending_cache); 601 exit_exception_table(&s->complete, exception_cache); 602 603 bad3: 604 dm_put_device(ti, s->cow); 605 dm_put_device(ti, s->origin); 606 607 bad2: 608 kfree(s); 609 610 bad1: 611 return r; 612 } 613 614 static void __free_exceptions(struct dm_snapshot *s) 615 { 616 kcopyd_client_destroy(s->kcopyd_client); 617 s->kcopyd_client = NULL; 618 619 exit_exception_table(&s->pending, pending_cache); 620 exit_exception_table(&s->complete, exception_cache); 621 622 s->store.destroy(&s->store); 623 } 624 625 static void snapshot_dtr(struct dm_target *ti) 626 { 627 struct dm_snapshot *s = ti->private; 628 629 flush_workqueue(ksnapd); 630 631 /* Prevent further origin writes from using this snapshot. */ 632 /* After this returns there can be no new kcopyd jobs. */ 633 unregister_snapshot(s); 634 635 __free_exceptions(s); 636 637 dm_put_device(ti, s->origin); 638 dm_put_device(ti, s->cow); 639 640 kfree(s); 641 } 642 643 /* 644 * Flush a list of buffers. 645 */ 646 static void flush_bios(struct bio *bio) 647 { 648 struct bio *n; 649 650 while (bio) { 651 n = bio->bi_next; 652 bio->bi_next = NULL; 653 generic_make_request(bio); 654 bio = n; 655 } 656 } 657 658 static void flush_queued_bios(struct work_struct *work) 659 { 660 struct dm_snapshot *s = 661 container_of(work, struct dm_snapshot, queued_bios_work); 662 struct bio *queued_bios; 663 unsigned long flags; 664 665 spin_lock_irqsave(&s->pe_lock, flags); 666 queued_bios = bio_list_get(&s->queued_bios); 667 spin_unlock_irqrestore(&s->pe_lock, flags); 668 669 flush_bios(queued_bios); 670 } 671 672 /* 673 * Error a list of buffers. 674 */ 675 static void error_bios(struct bio *bio) 676 { 677 struct bio *n; 678 679 while (bio) { 680 n = bio->bi_next; 681 bio->bi_next = NULL; 682 bio_io_error(bio); 683 bio = n; 684 } 685 } 686 687 static void __invalidate_snapshot(struct dm_snapshot *s, int err) 688 { 689 if (!s->valid) 690 return; 691 692 if (err == -EIO) 693 DMERR("Invalidating snapshot: Error reading/writing."); 694 else if (err == -ENOMEM) 695 DMERR("Invalidating snapshot: Unable to allocate exception."); 696 697 if (s->store.drop_snapshot) 698 s->store.drop_snapshot(&s->store); 699 700 s->valid = 0; 701 702 dm_table_event(s->table); 703 } 704 705 static void get_pending_exception(struct dm_snap_pending_exception *pe) 706 { 707 atomic_inc(&pe->ref_count); 708 } 709 710 static struct bio *put_pending_exception(struct dm_snap_pending_exception *pe) 711 { 712 struct dm_snap_pending_exception *primary_pe; 713 struct bio *origin_bios = NULL; 714 715 primary_pe = pe->primary_pe; 716 717 /* 718 * If this pe is involved in a write to the origin and 719 * it is the last sibling to complete then release 720 * the bios for the original write to the origin. 721 */ 722 if (primary_pe && 723 atomic_dec_and_test(&primary_pe->ref_count)) 724 origin_bios = bio_list_get(&primary_pe->origin_bios); 725 726 /* 727 * Free the pe if it's not linked to an origin write or if 728 * it's not itself a primary pe. 729 */ 730 if (!primary_pe || primary_pe != pe) 731 free_pending_exception(pe); 732 733 /* 734 * Free the primary pe if nothing references it. 735 */ 736 if (primary_pe && !atomic_read(&primary_pe->ref_count)) 737 free_pending_exception(primary_pe); 738 739 return origin_bios; 740 } 741 742 static void pending_complete(struct dm_snap_pending_exception *pe, int success) 743 { 744 struct dm_snap_exception *e; 745 struct dm_snapshot *s = pe->snap; 746 struct bio *origin_bios = NULL; 747 struct bio *snapshot_bios = NULL; 748 int error = 0; 749 750 if (!success) { 751 /* Read/write error - snapshot is unusable */ 752 down_write(&s->lock); 753 __invalidate_snapshot(s, -EIO); 754 error = 1; 755 goto out; 756 } 757 758 e = alloc_exception(); 759 if (!e) { 760 down_write(&s->lock); 761 __invalidate_snapshot(s, -ENOMEM); 762 error = 1; 763 goto out; 764 } 765 *e = pe->e; 766 767 down_write(&s->lock); 768 if (!s->valid) { 769 free_exception(e); 770 error = 1; 771 goto out; 772 } 773 774 /* 775 * Add a proper exception, and remove the 776 * in-flight exception from the list. 777 */ 778 insert_completed_exception(s, e); 779 780 out: 781 remove_exception(&pe->e); 782 snapshot_bios = bio_list_get(&pe->snapshot_bios); 783 origin_bios = put_pending_exception(pe); 784 785 up_write(&s->lock); 786 787 /* Submit any pending write bios */ 788 if (error) 789 error_bios(snapshot_bios); 790 else 791 flush_bios(snapshot_bios); 792 793 flush_bios(origin_bios); 794 } 795 796 static void commit_callback(void *context, int success) 797 { 798 struct dm_snap_pending_exception *pe = context; 799 800 pending_complete(pe, success); 801 } 802 803 /* 804 * Called when the copy I/O has finished. kcopyd actually runs 805 * this code so don't block. 806 */ 807 static void copy_callback(int read_err, unsigned long write_err, void *context) 808 { 809 struct dm_snap_pending_exception *pe = context; 810 struct dm_snapshot *s = pe->snap; 811 812 if (read_err || write_err) 813 pending_complete(pe, 0); 814 815 else 816 /* Update the metadata if we are persistent */ 817 s->store.commit_exception(&s->store, &pe->e, commit_callback, 818 pe); 819 } 820 821 /* 822 * Dispatches the copy operation to kcopyd. 823 */ 824 static void start_copy(struct dm_snap_pending_exception *pe) 825 { 826 struct dm_snapshot *s = pe->snap; 827 struct io_region src, dest; 828 struct block_device *bdev = s->origin->bdev; 829 sector_t dev_size; 830 831 dev_size = get_dev_size(bdev); 832 833 src.bdev = bdev; 834 src.sector = chunk_to_sector(s, pe->e.old_chunk); 835 src.count = min(s->chunk_size, dev_size - src.sector); 836 837 dest.bdev = s->cow->bdev; 838 dest.sector = chunk_to_sector(s, pe->e.new_chunk); 839 dest.count = src.count; 840 841 /* Hand over to kcopyd */ 842 kcopyd_copy(s->kcopyd_client, 843 &src, 1, &dest, 0, copy_callback, pe); 844 } 845 846 /* 847 * Looks to see if this snapshot already has a pending exception 848 * for this chunk, otherwise it allocates a new one and inserts 849 * it into the pending table. 850 * 851 * NOTE: a write lock must be held on snap->lock before calling 852 * this. 853 */ 854 static struct dm_snap_pending_exception * 855 __find_pending_exception(struct dm_snapshot *s, struct bio *bio) 856 { 857 struct dm_snap_exception *e; 858 struct dm_snap_pending_exception *pe; 859 chunk_t chunk = sector_to_chunk(s, bio->bi_sector); 860 861 /* 862 * Is there a pending exception for this already ? 863 */ 864 e = lookup_exception(&s->pending, chunk); 865 if (e) { 866 /* cast the exception to a pending exception */ 867 pe = container_of(e, struct dm_snap_pending_exception, e); 868 goto out; 869 } 870 871 /* 872 * Create a new pending exception, we don't want 873 * to hold the lock while we do this. 874 */ 875 up_write(&s->lock); 876 pe = alloc_pending_exception(); 877 down_write(&s->lock); 878 879 if (!s->valid) { 880 free_pending_exception(pe); 881 return NULL; 882 } 883 884 e = lookup_exception(&s->pending, chunk); 885 if (e) { 886 free_pending_exception(pe); 887 pe = container_of(e, struct dm_snap_pending_exception, e); 888 goto out; 889 } 890 891 pe->e.old_chunk = chunk; 892 bio_list_init(&pe->origin_bios); 893 bio_list_init(&pe->snapshot_bios); 894 pe->primary_pe = NULL; 895 atomic_set(&pe->ref_count, 0); 896 pe->snap = s; 897 pe->started = 0; 898 899 if (s->store.prepare_exception(&s->store, &pe->e)) { 900 free_pending_exception(pe); 901 return NULL; 902 } 903 904 get_pending_exception(pe); 905 insert_exception(&s->pending, &pe->e); 906 907 out: 908 return pe; 909 } 910 911 static void remap_exception(struct dm_snapshot *s, struct dm_snap_exception *e, 912 struct bio *bio, chunk_t chunk) 913 { 914 bio->bi_bdev = s->cow->bdev; 915 bio->bi_sector = chunk_to_sector(s, dm_chunk_number(e->new_chunk) + 916 (chunk - e->old_chunk)) + 917 (bio->bi_sector & s->chunk_mask); 918 } 919 920 static int snapshot_map(struct dm_target *ti, struct bio *bio, 921 union map_info *map_context) 922 { 923 struct dm_snap_exception *e; 924 struct dm_snapshot *s = ti->private; 925 int r = DM_MAPIO_REMAPPED; 926 chunk_t chunk; 927 struct dm_snap_pending_exception *pe = NULL; 928 929 chunk = sector_to_chunk(s, bio->bi_sector); 930 931 /* Full snapshots are not usable */ 932 /* To get here the table must be live so s->active is always set. */ 933 if (!s->valid) 934 return -EIO; 935 936 /* FIXME: should only take write lock if we need 937 * to copy an exception */ 938 down_write(&s->lock); 939 940 if (!s->valid) { 941 r = -EIO; 942 goto out_unlock; 943 } 944 945 /* If the block is already remapped - use that, else remap it */ 946 e = lookup_exception(&s->complete, chunk); 947 if (e) { 948 remap_exception(s, e, bio, chunk); 949 goto out_unlock; 950 } 951 952 /* 953 * Write to snapshot - higher level takes care of RW/RO 954 * flags so we should only get this if we are 955 * writeable. 956 */ 957 if (bio_rw(bio) == WRITE) { 958 pe = __find_pending_exception(s, bio); 959 if (!pe) { 960 __invalidate_snapshot(s, -ENOMEM); 961 r = -EIO; 962 goto out_unlock; 963 } 964 965 remap_exception(s, &pe->e, bio, chunk); 966 bio_list_add(&pe->snapshot_bios, bio); 967 968 r = DM_MAPIO_SUBMITTED; 969 970 if (!pe->started) { 971 /* this is protected by snap->lock */ 972 pe->started = 1; 973 up_write(&s->lock); 974 start_copy(pe); 975 goto out; 976 } 977 } else 978 /* 979 * FIXME: this read path scares me because we 980 * always use the origin when we have a pending 981 * exception. However I can't think of a 982 * situation where this is wrong - ejt. 983 */ 984 bio->bi_bdev = s->origin->bdev; 985 986 out_unlock: 987 up_write(&s->lock); 988 out: 989 return r; 990 } 991 992 static void snapshot_resume(struct dm_target *ti) 993 { 994 struct dm_snapshot *s = ti->private; 995 996 down_write(&s->lock); 997 s->active = 1; 998 up_write(&s->lock); 999 } 1000 1001 static int snapshot_status(struct dm_target *ti, status_type_t type, 1002 char *result, unsigned int maxlen) 1003 { 1004 struct dm_snapshot *snap = ti->private; 1005 1006 switch (type) { 1007 case STATUSTYPE_INFO: 1008 if (!snap->valid) 1009 snprintf(result, maxlen, "Invalid"); 1010 else { 1011 if (snap->store.fraction_full) { 1012 sector_t numerator, denominator; 1013 snap->store.fraction_full(&snap->store, 1014 &numerator, 1015 &denominator); 1016 snprintf(result, maxlen, "%llu/%llu", 1017 (unsigned long long)numerator, 1018 (unsigned long long)denominator); 1019 } 1020 else 1021 snprintf(result, maxlen, "Unknown"); 1022 } 1023 break; 1024 1025 case STATUSTYPE_TABLE: 1026 /* 1027 * kdevname returns a static pointer so we need 1028 * to make private copies if the output is to 1029 * make sense. 1030 */ 1031 snprintf(result, maxlen, "%s %s %c %llu", 1032 snap->origin->name, snap->cow->name, 1033 snap->type, 1034 (unsigned long long)snap->chunk_size); 1035 break; 1036 } 1037 1038 return 0; 1039 } 1040 1041 /*----------------------------------------------------------------- 1042 * Origin methods 1043 *---------------------------------------------------------------*/ 1044 static int __origin_write(struct list_head *snapshots, struct bio *bio) 1045 { 1046 int r = DM_MAPIO_REMAPPED, first = 0; 1047 struct dm_snapshot *snap; 1048 struct dm_snap_exception *e; 1049 struct dm_snap_pending_exception *pe, *next_pe, *primary_pe = NULL; 1050 chunk_t chunk; 1051 LIST_HEAD(pe_queue); 1052 1053 /* Do all the snapshots on this origin */ 1054 list_for_each_entry (snap, snapshots, list) { 1055 1056 down_write(&snap->lock); 1057 1058 /* Only deal with valid and active snapshots */ 1059 if (!snap->valid || !snap->active) 1060 goto next_snapshot; 1061 1062 /* Nothing to do if writing beyond end of snapshot */ 1063 if (bio->bi_sector >= dm_table_get_size(snap->table)) 1064 goto next_snapshot; 1065 1066 /* 1067 * Remember, different snapshots can have 1068 * different chunk sizes. 1069 */ 1070 chunk = sector_to_chunk(snap, bio->bi_sector); 1071 1072 /* 1073 * Check exception table to see if block 1074 * is already remapped in this snapshot 1075 * and trigger an exception if not. 1076 * 1077 * ref_count is initialised to 1 so pending_complete() 1078 * won't destroy the primary_pe while we're inside this loop. 1079 */ 1080 e = lookup_exception(&snap->complete, chunk); 1081 if (e) 1082 goto next_snapshot; 1083 1084 pe = __find_pending_exception(snap, bio); 1085 if (!pe) { 1086 __invalidate_snapshot(snap, -ENOMEM); 1087 goto next_snapshot; 1088 } 1089 1090 if (!primary_pe) { 1091 /* 1092 * Either every pe here has same 1093 * primary_pe or none has one yet. 1094 */ 1095 if (pe->primary_pe) 1096 primary_pe = pe->primary_pe; 1097 else { 1098 primary_pe = pe; 1099 first = 1; 1100 } 1101 1102 bio_list_add(&primary_pe->origin_bios, bio); 1103 1104 r = DM_MAPIO_SUBMITTED; 1105 } 1106 1107 if (!pe->primary_pe) { 1108 pe->primary_pe = primary_pe; 1109 get_pending_exception(primary_pe); 1110 } 1111 1112 if (!pe->started) { 1113 pe->started = 1; 1114 list_add_tail(&pe->list, &pe_queue); 1115 } 1116 1117 next_snapshot: 1118 up_write(&snap->lock); 1119 } 1120 1121 if (!primary_pe) 1122 return r; 1123 1124 /* 1125 * If this is the first time we're processing this chunk and 1126 * ref_count is now 1 it means all the pending exceptions 1127 * got completed while we were in the loop above, so it falls to 1128 * us here to remove the primary_pe and submit any origin_bios. 1129 */ 1130 1131 if (first && atomic_dec_and_test(&primary_pe->ref_count)) { 1132 flush_bios(bio_list_get(&primary_pe->origin_bios)); 1133 free_pending_exception(primary_pe); 1134 /* If we got here, pe_queue is necessarily empty. */ 1135 return r; 1136 } 1137 1138 /* 1139 * Now that we have a complete pe list we can start the copying. 1140 */ 1141 list_for_each_entry_safe(pe, next_pe, &pe_queue, list) 1142 start_copy(pe); 1143 1144 return r; 1145 } 1146 1147 /* 1148 * Called on a write from the origin driver. 1149 */ 1150 static int do_origin(struct dm_dev *origin, struct bio *bio) 1151 { 1152 struct origin *o; 1153 int r = DM_MAPIO_REMAPPED; 1154 1155 down_read(&_origins_lock); 1156 o = __lookup_origin(origin->bdev); 1157 if (o) 1158 r = __origin_write(&o->snapshots, bio); 1159 up_read(&_origins_lock); 1160 1161 return r; 1162 } 1163 1164 /* 1165 * Origin: maps a linear range of a device, with hooks for snapshotting. 1166 */ 1167 1168 /* 1169 * Construct an origin mapping: <dev_path> 1170 * The context for an origin is merely a 'struct dm_dev *' 1171 * pointing to the real device. 1172 */ 1173 static int origin_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1174 { 1175 int r; 1176 struct dm_dev *dev; 1177 1178 if (argc != 1) { 1179 ti->error = "origin: incorrect number of arguments"; 1180 return -EINVAL; 1181 } 1182 1183 r = dm_get_device(ti, argv[0], 0, ti->len, 1184 dm_table_get_mode(ti->table), &dev); 1185 if (r) { 1186 ti->error = "Cannot get target device"; 1187 return r; 1188 } 1189 1190 ti->private = dev; 1191 return 0; 1192 } 1193 1194 static void origin_dtr(struct dm_target *ti) 1195 { 1196 struct dm_dev *dev = ti->private; 1197 dm_put_device(ti, dev); 1198 } 1199 1200 static int origin_map(struct dm_target *ti, struct bio *bio, 1201 union map_info *map_context) 1202 { 1203 struct dm_dev *dev = ti->private; 1204 bio->bi_bdev = dev->bdev; 1205 1206 /* Only tell snapshots if this is a write */ 1207 return (bio_rw(bio) == WRITE) ? do_origin(dev, bio) : DM_MAPIO_REMAPPED; 1208 } 1209 1210 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 1211 1212 /* 1213 * Set the target "split_io" field to the minimum of all the snapshots' 1214 * chunk sizes. 1215 */ 1216 static void origin_resume(struct dm_target *ti) 1217 { 1218 struct dm_dev *dev = ti->private; 1219 struct dm_snapshot *snap; 1220 struct origin *o; 1221 chunk_t chunk_size = 0; 1222 1223 down_read(&_origins_lock); 1224 o = __lookup_origin(dev->bdev); 1225 if (o) 1226 list_for_each_entry (snap, &o->snapshots, list) 1227 chunk_size = min_not_zero(chunk_size, snap->chunk_size); 1228 up_read(&_origins_lock); 1229 1230 ti->split_io = chunk_size; 1231 } 1232 1233 static int origin_status(struct dm_target *ti, status_type_t type, char *result, 1234 unsigned int maxlen) 1235 { 1236 struct dm_dev *dev = ti->private; 1237 1238 switch (type) { 1239 case STATUSTYPE_INFO: 1240 result[0] = '\0'; 1241 break; 1242 1243 case STATUSTYPE_TABLE: 1244 snprintf(result, maxlen, "%s", dev->name); 1245 break; 1246 } 1247 1248 return 0; 1249 } 1250 1251 static struct target_type origin_target = { 1252 .name = "snapshot-origin", 1253 .version = {1, 6, 0}, 1254 .module = THIS_MODULE, 1255 .ctr = origin_ctr, 1256 .dtr = origin_dtr, 1257 .map = origin_map, 1258 .resume = origin_resume, 1259 .status = origin_status, 1260 }; 1261 1262 static struct target_type snapshot_target = { 1263 .name = "snapshot", 1264 .version = {1, 6, 0}, 1265 .module = THIS_MODULE, 1266 .ctr = snapshot_ctr, 1267 .dtr = snapshot_dtr, 1268 .map = snapshot_map, 1269 .resume = snapshot_resume, 1270 .status = snapshot_status, 1271 }; 1272 1273 static int __init dm_snapshot_init(void) 1274 { 1275 int r; 1276 1277 r = dm_register_target(&snapshot_target); 1278 if (r) { 1279 DMERR("snapshot target register failed %d", r); 1280 return r; 1281 } 1282 1283 r = dm_register_target(&origin_target); 1284 if (r < 0) { 1285 DMERR("Origin target register failed %d", r); 1286 goto bad1; 1287 } 1288 1289 r = init_origin_hash(); 1290 if (r) { 1291 DMERR("init_origin_hash failed."); 1292 goto bad2; 1293 } 1294 1295 exception_cache = KMEM_CACHE(dm_snap_exception, 0); 1296 if (!exception_cache) { 1297 DMERR("Couldn't create exception cache."); 1298 r = -ENOMEM; 1299 goto bad3; 1300 } 1301 1302 pending_cache = KMEM_CACHE(dm_snap_pending_exception, 0); 1303 if (!pending_cache) { 1304 DMERR("Couldn't create pending cache."); 1305 r = -ENOMEM; 1306 goto bad4; 1307 } 1308 1309 pending_pool = mempool_create_slab_pool(128, pending_cache); 1310 if (!pending_pool) { 1311 DMERR("Couldn't create pending pool."); 1312 r = -ENOMEM; 1313 goto bad5; 1314 } 1315 1316 ksnapd = create_singlethread_workqueue("ksnapd"); 1317 if (!ksnapd) { 1318 DMERR("Failed to create ksnapd workqueue."); 1319 r = -ENOMEM; 1320 goto bad6; 1321 } 1322 1323 return 0; 1324 1325 bad6: 1326 mempool_destroy(pending_pool); 1327 bad5: 1328 kmem_cache_destroy(pending_cache); 1329 bad4: 1330 kmem_cache_destroy(exception_cache); 1331 bad3: 1332 exit_origin_hash(); 1333 bad2: 1334 dm_unregister_target(&origin_target); 1335 bad1: 1336 dm_unregister_target(&snapshot_target); 1337 return r; 1338 } 1339 1340 static void __exit dm_snapshot_exit(void) 1341 { 1342 int r; 1343 1344 destroy_workqueue(ksnapd); 1345 1346 r = dm_unregister_target(&snapshot_target); 1347 if (r) 1348 DMERR("snapshot unregister failed %d", r); 1349 1350 r = dm_unregister_target(&origin_target); 1351 if (r) 1352 DMERR("origin unregister failed %d", r); 1353 1354 exit_origin_hash(); 1355 mempool_destroy(pending_pool); 1356 kmem_cache_destroy(pending_cache); 1357 kmem_cache_destroy(exception_cache); 1358 } 1359 1360 /* Module hooks */ 1361 module_init(dm_snapshot_init); 1362 module_exit(dm_snapshot_exit); 1363 1364 MODULE_DESCRIPTION(DM_NAME " snapshot target"); 1365 MODULE_AUTHOR("Joe Thornber"); 1366 MODULE_LICENSE("GPL"); 1367