xref: /openbmc/linux/drivers/md/dm-raid1.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-bio-record.h"
9 
10 #include <linux/init.h>
11 #include <linux/mempool.h>
12 #include <linux/module.h>
13 #include <linux/pagemap.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/device-mapper.h>
17 #include <linux/dm-io.h>
18 #include <linux/dm-dirty-log.h>
19 #include <linux/dm-kcopyd.h>
20 #include <linux/dm-region-hash.h>
21 
22 #define DM_MSG_PREFIX "raid1"
23 
24 #define MAX_RECOVERY 1	/* Maximum number of regions recovered in parallel. */
25 #define DM_IO_PAGES 64
26 #define DM_KCOPYD_PAGES 64
27 
28 #define DM_RAID1_HANDLE_ERRORS 0x01
29 #define errors_handled(p)	((p)->features & DM_RAID1_HANDLE_ERRORS)
30 
31 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
32 
33 /*-----------------------------------------------------------------
34  * Mirror set structures.
35  *---------------------------------------------------------------*/
36 enum dm_raid1_error {
37 	DM_RAID1_WRITE_ERROR,
38 	DM_RAID1_FLUSH_ERROR,
39 	DM_RAID1_SYNC_ERROR,
40 	DM_RAID1_READ_ERROR
41 };
42 
43 struct mirror {
44 	struct mirror_set *ms;
45 	atomic_t error_count;
46 	unsigned long error_type;
47 	struct dm_dev *dev;
48 	sector_t offset;
49 };
50 
51 struct mirror_set {
52 	struct dm_target *ti;
53 	struct list_head list;
54 
55 	uint64_t features;
56 
57 	spinlock_t lock;	/* protects the lists */
58 	struct bio_list reads;
59 	struct bio_list writes;
60 	struct bio_list failures;
61 	struct bio_list holds;	/* bios are waiting until suspend */
62 
63 	struct dm_region_hash *rh;
64 	struct dm_kcopyd_client *kcopyd_client;
65 	struct dm_io_client *io_client;
66 	mempool_t *read_record_pool;
67 
68 	/* recovery */
69 	region_t nr_regions;
70 	int in_sync;
71 	int log_failure;
72 	int leg_failure;
73 	atomic_t suspend;
74 
75 	atomic_t default_mirror;	/* Default mirror */
76 
77 	struct workqueue_struct *kmirrord_wq;
78 	struct work_struct kmirrord_work;
79 	struct timer_list timer;
80 	unsigned long timer_pending;
81 
82 	struct work_struct trigger_event;
83 
84 	unsigned nr_mirrors;
85 	struct mirror mirror[0];
86 };
87 
88 static void wakeup_mirrord(void *context)
89 {
90 	struct mirror_set *ms = context;
91 
92 	queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
93 }
94 
95 static void delayed_wake_fn(unsigned long data)
96 {
97 	struct mirror_set *ms = (struct mirror_set *) data;
98 
99 	clear_bit(0, &ms->timer_pending);
100 	wakeup_mirrord(ms);
101 }
102 
103 static void delayed_wake(struct mirror_set *ms)
104 {
105 	if (test_and_set_bit(0, &ms->timer_pending))
106 		return;
107 
108 	ms->timer.expires = jiffies + HZ / 5;
109 	ms->timer.data = (unsigned long) ms;
110 	ms->timer.function = delayed_wake_fn;
111 	add_timer(&ms->timer);
112 }
113 
114 static void wakeup_all_recovery_waiters(void *context)
115 {
116 	wake_up_all(&_kmirrord_recovery_stopped);
117 }
118 
119 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
120 {
121 	unsigned long flags;
122 	int should_wake = 0;
123 	struct bio_list *bl;
124 
125 	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
126 	spin_lock_irqsave(&ms->lock, flags);
127 	should_wake = !(bl->head);
128 	bio_list_add(bl, bio);
129 	spin_unlock_irqrestore(&ms->lock, flags);
130 
131 	if (should_wake)
132 		wakeup_mirrord(ms);
133 }
134 
135 static void dispatch_bios(void *context, struct bio_list *bio_list)
136 {
137 	struct mirror_set *ms = context;
138 	struct bio *bio;
139 
140 	while ((bio = bio_list_pop(bio_list)))
141 		queue_bio(ms, bio, WRITE);
142 }
143 
144 #define MIN_READ_RECORDS 20
145 struct dm_raid1_read_record {
146 	struct mirror *m;
147 	struct dm_bio_details details;
148 };
149 
150 static struct kmem_cache *_dm_raid1_read_record_cache;
151 
152 /*
153  * Every mirror should look like this one.
154  */
155 #define DEFAULT_MIRROR 0
156 
157 /*
158  * This is yucky.  We squirrel the mirror struct away inside
159  * bi_next for read/write buffers.  This is safe since the bh
160  * doesn't get submitted to the lower levels of block layer.
161  */
162 static struct mirror *bio_get_m(struct bio *bio)
163 {
164 	return (struct mirror *) bio->bi_next;
165 }
166 
167 static void bio_set_m(struct bio *bio, struct mirror *m)
168 {
169 	bio->bi_next = (struct bio *) m;
170 }
171 
172 static struct mirror *get_default_mirror(struct mirror_set *ms)
173 {
174 	return &ms->mirror[atomic_read(&ms->default_mirror)];
175 }
176 
177 static void set_default_mirror(struct mirror *m)
178 {
179 	struct mirror_set *ms = m->ms;
180 	struct mirror *m0 = &(ms->mirror[0]);
181 
182 	atomic_set(&ms->default_mirror, m - m0);
183 }
184 
185 static struct mirror *get_valid_mirror(struct mirror_set *ms)
186 {
187 	struct mirror *m;
188 
189 	for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++)
190 		if (!atomic_read(&m->error_count))
191 			return m;
192 
193 	return NULL;
194 }
195 
196 /* fail_mirror
197  * @m: mirror device to fail
198  * @error_type: one of the enum's, DM_RAID1_*_ERROR
199  *
200  * If errors are being handled, record the type of
201  * error encountered for this device.  If this type
202  * of error has already been recorded, we can return;
203  * otherwise, we must signal userspace by triggering
204  * an event.  Additionally, if the device is the
205  * primary device, we must choose a new primary, but
206  * only if the mirror is in-sync.
207  *
208  * This function must not block.
209  */
210 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
211 {
212 	struct mirror_set *ms = m->ms;
213 	struct mirror *new;
214 
215 	ms->leg_failure = 1;
216 
217 	/*
218 	 * error_count is used for nothing more than a
219 	 * simple way to tell if a device has encountered
220 	 * errors.
221 	 */
222 	atomic_inc(&m->error_count);
223 
224 	if (test_and_set_bit(error_type, &m->error_type))
225 		return;
226 
227 	if (!errors_handled(ms))
228 		return;
229 
230 	if (m != get_default_mirror(ms))
231 		goto out;
232 
233 	if (!ms->in_sync) {
234 		/*
235 		 * Better to issue requests to same failing device
236 		 * than to risk returning corrupt data.
237 		 */
238 		DMERR("Primary mirror (%s) failed while out-of-sync: "
239 		      "Reads may fail.", m->dev->name);
240 		goto out;
241 	}
242 
243 	new = get_valid_mirror(ms);
244 	if (new)
245 		set_default_mirror(new);
246 	else
247 		DMWARN("All sides of mirror have failed.");
248 
249 out:
250 	schedule_work(&ms->trigger_event);
251 }
252 
253 static int mirror_flush(struct dm_target *ti)
254 {
255 	struct mirror_set *ms = ti->private;
256 	unsigned long error_bits;
257 
258 	unsigned int i;
259 	struct dm_io_region io[ms->nr_mirrors];
260 	struct mirror *m;
261 	struct dm_io_request io_req = {
262 		.bi_rw = WRITE_FLUSH,
263 		.mem.type = DM_IO_KMEM,
264 		.mem.ptr.bvec = NULL,
265 		.client = ms->io_client,
266 	};
267 
268 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) {
269 		io[i].bdev = m->dev->bdev;
270 		io[i].sector = 0;
271 		io[i].count = 0;
272 	}
273 
274 	error_bits = -1;
275 	dm_io(&io_req, ms->nr_mirrors, io, &error_bits);
276 	if (unlikely(error_bits != 0)) {
277 		for (i = 0; i < ms->nr_mirrors; i++)
278 			if (test_bit(i, &error_bits))
279 				fail_mirror(ms->mirror + i,
280 					    DM_RAID1_FLUSH_ERROR);
281 		return -EIO;
282 	}
283 
284 	return 0;
285 }
286 
287 /*-----------------------------------------------------------------
288  * Recovery.
289  *
290  * When a mirror is first activated we may find that some regions
291  * are in the no-sync state.  We have to recover these by
292  * recopying from the default mirror to all the others.
293  *---------------------------------------------------------------*/
294 static void recovery_complete(int read_err, unsigned long write_err,
295 			      void *context)
296 {
297 	struct dm_region *reg = context;
298 	struct mirror_set *ms = dm_rh_region_context(reg);
299 	int m, bit = 0;
300 
301 	if (read_err) {
302 		/* Read error means the failure of default mirror. */
303 		DMERR_LIMIT("Unable to read primary mirror during recovery");
304 		fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
305 	}
306 
307 	if (write_err) {
308 		DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
309 			    write_err);
310 		/*
311 		 * Bits correspond to devices (excluding default mirror).
312 		 * The default mirror cannot change during recovery.
313 		 */
314 		for (m = 0; m < ms->nr_mirrors; m++) {
315 			if (&ms->mirror[m] == get_default_mirror(ms))
316 				continue;
317 			if (test_bit(bit, &write_err))
318 				fail_mirror(ms->mirror + m,
319 					    DM_RAID1_SYNC_ERROR);
320 			bit++;
321 		}
322 	}
323 
324 	dm_rh_recovery_end(reg, !(read_err || write_err));
325 }
326 
327 static int recover(struct mirror_set *ms, struct dm_region *reg)
328 {
329 	int r;
330 	unsigned i;
331 	struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
332 	struct mirror *m;
333 	unsigned long flags = 0;
334 	region_t key = dm_rh_get_region_key(reg);
335 	sector_t region_size = dm_rh_get_region_size(ms->rh);
336 
337 	/* fill in the source */
338 	m = get_default_mirror(ms);
339 	from.bdev = m->dev->bdev;
340 	from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
341 	if (key == (ms->nr_regions - 1)) {
342 		/*
343 		 * The final region may be smaller than
344 		 * region_size.
345 		 */
346 		from.count = ms->ti->len & (region_size - 1);
347 		if (!from.count)
348 			from.count = region_size;
349 	} else
350 		from.count = region_size;
351 
352 	/* fill in the destinations */
353 	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
354 		if (&ms->mirror[i] == get_default_mirror(ms))
355 			continue;
356 
357 		m = ms->mirror + i;
358 		dest->bdev = m->dev->bdev;
359 		dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
360 		dest->count = from.count;
361 		dest++;
362 	}
363 
364 	/* hand to kcopyd */
365 	if (!errors_handled(ms))
366 		set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
367 
368 	r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
369 			   flags, recovery_complete, reg);
370 
371 	return r;
372 }
373 
374 static void do_recovery(struct mirror_set *ms)
375 {
376 	struct dm_region *reg;
377 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
378 	int r;
379 
380 	/*
381 	 * Start quiescing some regions.
382 	 */
383 	dm_rh_recovery_prepare(ms->rh);
384 
385 	/*
386 	 * Copy any already quiesced regions.
387 	 */
388 	while ((reg = dm_rh_recovery_start(ms->rh))) {
389 		r = recover(ms, reg);
390 		if (r)
391 			dm_rh_recovery_end(reg, 0);
392 	}
393 
394 	/*
395 	 * Update the in sync flag.
396 	 */
397 	if (!ms->in_sync &&
398 	    (log->type->get_sync_count(log) == ms->nr_regions)) {
399 		/* the sync is complete */
400 		dm_table_event(ms->ti->table);
401 		ms->in_sync = 1;
402 	}
403 }
404 
405 /*-----------------------------------------------------------------
406  * Reads
407  *---------------------------------------------------------------*/
408 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
409 {
410 	struct mirror *m = get_default_mirror(ms);
411 
412 	do {
413 		if (likely(!atomic_read(&m->error_count)))
414 			return m;
415 
416 		if (m-- == ms->mirror)
417 			m += ms->nr_mirrors;
418 	} while (m != get_default_mirror(ms));
419 
420 	return NULL;
421 }
422 
423 static int default_ok(struct mirror *m)
424 {
425 	struct mirror *default_mirror = get_default_mirror(m->ms);
426 
427 	return !atomic_read(&default_mirror->error_count);
428 }
429 
430 static int mirror_available(struct mirror_set *ms, struct bio *bio)
431 {
432 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
433 	region_t region = dm_rh_bio_to_region(ms->rh, bio);
434 
435 	if (log->type->in_sync(log, region, 0))
436 		return choose_mirror(ms,  bio->bi_sector) ? 1 : 0;
437 
438 	return 0;
439 }
440 
441 /*
442  * remap a buffer to a particular mirror.
443  */
444 static sector_t map_sector(struct mirror *m, struct bio *bio)
445 {
446 	if (unlikely(!bio->bi_size))
447 		return 0;
448 	return m->offset + dm_target_offset(m->ms->ti, bio->bi_sector);
449 }
450 
451 static void map_bio(struct mirror *m, struct bio *bio)
452 {
453 	bio->bi_bdev = m->dev->bdev;
454 	bio->bi_sector = map_sector(m, bio);
455 }
456 
457 static void map_region(struct dm_io_region *io, struct mirror *m,
458 		       struct bio *bio)
459 {
460 	io->bdev = m->dev->bdev;
461 	io->sector = map_sector(m, bio);
462 	io->count = bio->bi_size >> 9;
463 }
464 
465 static void hold_bio(struct mirror_set *ms, struct bio *bio)
466 {
467 	/*
468 	 * Lock is required to avoid race condition during suspend
469 	 * process.
470 	 */
471 	spin_lock_irq(&ms->lock);
472 
473 	if (atomic_read(&ms->suspend)) {
474 		spin_unlock_irq(&ms->lock);
475 
476 		/*
477 		 * If device is suspended, complete the bio.
478 		 */
479 		if (dm_noflush_suspending(ms->ti))
480 			bio_endio(bio, DM_ENDIO_REQUEUE);
481 		else
482 			bio_endio(bio, -EIO);
483 		return;
484 	}
485 
486 	/*
487 	 * Hold bio until the suspend is complete.
488 	 */
489 	bio_list_add(&ms->holds, bio);
490 	spin_unlock_irq(&ms->lock);
491 }
492 
493 /*-----------------------------------------------------------------
494  * Reads
495  *---------------------------------------------------------------*/
496 static void read_callback(unsigned long error, void *context)
497 {
498 	struct bio *bio = context;
499 	struct mirror *m;
500 
501 	m = bio_get_m(bio);
502 	bio_set_m(bio, NULL);
503 
504 	if (likely(!error)) {
505 		bio_endio(bio, 0);
506 		return;
507 	}
508 
509 	fail_mirror(m, DM_RAID1_READ_ERROR);
510 
511 	if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
512 		DMWARN_LIMIT("Read failure on mirror device %s.  "
513 			     "Trying alternative device.",
514 			     m->dev->name);
515 		queue_bio(m->ms, bio, bio_rw(bio));
516 		return;
517 	}
518 
519 	DMERR_LIMIT("Read failure on mirror device %s.  Failing I/O.",
520 		    m->dev->name);
521 	bio_endio(bio, -EIO);
522 }
523 
524 /* Asynchronous read. */
525 static void read_async_bio(struct mirror *m, struct bio *bio)
526 {
527 	struct dm_io_region io;
528 	struct dm_io_request io_req = {
529 		.bi_rw = READ,
530 		.mem.type = DM_IO_BVEC,
531 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
532 		.notify.fn = read_callback,
533 		.notify.context = bio,
534 		.client = m->ms->io_client,
535 	};
536 
537 	map_region(&io, m, bio);
538 	bio_set_m(bio, m);
539 	BUG_ON(dm_io(&io_req, 1, &io, NULL));
540 }
541 
542 static inline int region_in_sync(struct mirror_set *ms, region_t region,
543 				 int may_block)
544 {
545 	int state = dm_rh_get_state(ms->rh, region, may_block);
546 	return state == DM_RH_CLEAN || state == DM_RH_DIRTY;
547 }
548 
549 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
550 {
551 	region_t region;
552 	struct bio *bio;
553 	struct mirror *m;
554 
555 	while ((bio = bio_list_pop(reads))) {
556 		region = dm_rh_bio_to_region(ms->rh, bio);
557 		m = get_default_mirror(ms);
558 
559 		/*
560 		 * We can only read balance if the region is in sync.
561 		 */
562 		if (likely(region_in_sync(ms, region, 1)))
563 			m = choose_mirror(ms, bio->bi_sector);
564 		else if (m && atomic_read(&m->error_count))
565 			m = NULL;
566 
567 		if (likely(m))
568 			read_async_bio(m, bio);
569 		else
570 			bio_endio(bio, -EIO);
571 	}
572 }
573 
574 /*-----------------------------------------------------------------
575  * Writes.
576  *
577  * We do different things with the write io depending on the
578  * state of the region that it's in:
579  *
580  * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
581  * RECOVERING:	delay the io until recovery completes
582  * NOSYNC:	increment pending, just write to the default mirror
583  *---------------------------------------------------------------*/
584 
585 
586 static void write_callback(unsigned long error, void *context)
587 {
588 	unsigned i, ret = 0;
589 	struct bio *bio = (struct bio *) context;
590 	struct mirror_set *ms;
591 	int should_wake = 0;
592 	unsigned long flags;
593 
594 	ms = bio_get_m(bio)->ms;
595 	bio_set_m(bio, NULL);
596 
597 	/*
598 	 * NOTE: We don't decrement the pending count here,
599 	 * instead it is done by the targets endio function.
600 	 * This way we handle both writes to SYNC and NOSYNC
601 	 * regions with the same code.
602 	 */
603 	if (likely(!error)) {
604 		bio_endio(bio, ret);
605 		return;
606 	}
607 
608 	for (i = 0; i < ms->nr_mirrors; i++)
609 		if (test_bit(i, &error))
610 			fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
611 
612 	/*
613 	 * Need to raise event.  Since raising
614 	 * events can block, we need to do it in
615 	 * the main thread.
616 	 */
617 	spin_lock_irqsave(&ms->lock, flags);
618 	if (!ms->failures.head)
619 		should_wake = 1;
620 	bio_list_add(&ms->failures, bio);
621 	spin_unlock_irqrestore(&ms->lock, flags);
622 	if (should_wake)
623 		wakeup_mirrord(ms);
624 }
625 
626 static void do_write(struct mirror_set *ms, struct bio *bio)
627 {
628 	unsigned int i;
629 	struct dm_io_region io[ms->nr_mirrors], *dest = io;
630 	struct mirror *m;
631 	struct dm_io_request io_req = {
632 		.bi_rw = WRITE | (bio->bi_rw & WRITE_FLUSH_FUA),
633 		.mem.type = DM_IO_BVEC,
634 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
635 		.notify.fn = write_callback,
636 		.notify.context = bio,
637 		.client = ms->io_client,
638 	};
639 
640 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
641 		map_region(dest++, m, bio);
642 
643 	/*
644 	 * Use default mirror because we only need it to retrieve the reference
645 	 * to the mirror set in write_callback().
646 	 */
647 	bio_set_m(bio, get_default_mirror(ms));
648 
649 	BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL));
650 }
651 
652 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
653 {
654 	int state;
655 	struct bio *bio;
656 	struct bio_list sync, nosync, recover, *this_list = NULL;
657 	struct bio_list requeue;
658 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
659 	region_t region;
660 
661 	if (!writes->head)
662 		return;
663 
664 	/*
665 	 * Classify each write.
666 	 */
667 	bio_list_init(&sync);
668 	bio_list_init(&nosync);
669 	bio_list_init(&recover);
670 	bio_list_init(&requeue);
671 
672 	while ((bio = bio_list_pop(writes))) {
673 		if (bio->bi_rw & REQ_FLUSH) {
674 			bio_list_add(&sync, bio);
675 			continue;
676 		}
677 
678 		region = dm_rh_bio_to_region(ms->rh, bio);
679 
680 		if (log->type->is_remote_recovering &&
681 		    log->type->is_remote_recovering(log, region)) {
682 			bio_list_add(&requeue, bio);
683 			continue;
684 		}
685 
686 		state = dm_rh_get_state(ms->rh, region, 1);
687 		switch (state) {
688 		case DM_RH_CLEAN:
689 		case DM_RH_DIRTY:
690 			this_list = &sync;
691 			break;
692 
693 		case DM_RH_NOSYNC:
694 			this_list = &nosync;
695 			break;
696 
697 		case DM_RH_RECOVERING:
698 			this_list = &recover;
699 			break;
700 		}
701 
702 		bio_list_add(this_list, bio);
703 	}
704 
705 	/*
706 	 * Add bios that are delayed due to remote recovery
707 	 * back on to the write queue
708 	 */
709 	if (unlikely(requeue.head)) {
710 		spin_lock_irq(&ms->lock);
711 		bio_list_merge(&ms->writes, &requeue);
712 		spin_unlock_irq(&ms->lock);
713 		delayed_wake(ms);
714 	}
715 
716 	/*
717 	 * Increment the pending counts for any regions that will
718 	 * be written to (writes to recover regions are going to
719 	 * be delayed).
720 	 */
721 	dm_rh_inc_pending(ms->rh, &sync);
722 	dm_rh_inc_pending(ms->rh, &nosync);
723 
724 	/*
725 	 * If the flush fails on a previous call and succeeds here,
726 	 * we must not reset the log_failure variable.  We need
727 	 * userspace interaction to do that.
728 	 */
729 	ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure;
730 
731 	/*
732 	 * Dispatch io.
733 	 */
734 	if (unlikely(ms->log_failure) && errors_handled(ms)) {
735 		spin_lock_irq(&ms->lock);
736 		bio_list_merge(&ms->failures, &sync);
737 		spin_unlock_irq(&ms->lock);
738 		wakeup_mirrord(ms);
739 	} else
740 		while ((bio = bio_list_pop(&sync)))
741 			do_write(ms, bio);
742 
743 	while ((bio = bio_list_pop(&recover)))
744 		dm_rh_delay(ms->rh, bio);
745 
746 	while ((bio = bio_list_pop(&nosync))) {
747 		if (unlikely(ms->leg_failure) && errors_handled(ms)) {
748 			spin_lock_irq(&ms->lock);
749 			bio_list_add(&ms->failures, bio);
750 			spin_unlock_irq(&ms->lock);
751 			wakeup_mirrord(ms);
752 		} else {
753 			map_bio(get_default_mirror(ms), bio);
754 			generic_make_request(bio);
755 		}
756 	}
757 }
758 
759 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
760 {
761 	struct bio *bio;
762 
763 	if (likely(!failures->head))
764 		return;
765 
766 	/*
767 	 * If the log has failed, unattempted writes are being
768 	 * put on the holds list.  We can't issue those writes
769 	 * until a log has been marked, so we must store them.
770 	 *
771 	 * If a 'noflush' suspend is in progress, we can requeue
772 	 * the I/O's to the core.  This give userspace a chance
773 	 * to reconfigure the mirror, at which point the core
774 	 * will reissue the writes.  If the 'noflush' flag is
775 	 * not set, we have no choice but to return errors.
776 	 *
777 	 * Some writes on the failures list may have been
778 	 * submitted before the log failure and represent a
779 	 * failure to write to one of the devices.  It is ok
780 	 * for us to treat them the same and requeue them
781 	 * as well.
782 	 */
783 	while ((bio = bio_list_pop(failures))) {
784 		if (!ms->log_failure) {
785 			ms->in_sync = 0;
786 			dm_rh_mark_nosync(ms->rh, bio);
787 		}
788 
789 		/*
790 		 * If all the legs are dead, fail the I/O.
791 		 * If we have been told to handle errors, hold the bio
792 		 * and wait for userspace to deal with the problem.
793 		 * Otherwise pretend that the I/O succeeded. (This would
794 		 * be wrong if the failed leg returned after reboot and
795 		 * got replicated back to the good legs.)
796 		 */
797 		if (!get_valid_mirror(ms))
798 			bio_endio(bio, -EIO);
799 		else if (errors_handled(ms))
800 			hold_bio(ms, bio);
801 		else
802 			bio_endio(bio, 0);
803 	}
804 }
805 
806 static void trigger_event(struct work_struct *work)
807 {
808 	struct mirror_set *ms =
809 		container_of(work, struct mirror_set, trigger_event);
810 
811 	dm_table_event(ms->ti->table);
812 }
813 
814 /*-----------------------------------------------------------------
815  * kmirrord
816  *---------------------------------------------------------------*/
817 static void do_mirror(struct work_struct *work)
818 {
819 	struct mirror_set *ms = container_of(work, struct mirror_set,
820 					     kmirrord_work);
821 	struct bio_list reads, writes, failures;
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&ms->lock, flags);
825 	reads = ms->reads;
826 	writes = ms->writes;
827 	failures = ms->failures;
828 	bio_list_init(&ms->reads);
829 	bio_list_init(&ms->writes);
830 	bio_list_init(&ms->failures);
831 	spin_unlock_irqrestore(&ms->lock, flags);
832 
833 	dm_rh_update_states(ms->rh, errors_handled(ms));
834 	do_recovery(ms);
835 	do_reads(ms, &reads);
836 	do_writes(ms, &writes);
837 	do_failures(ms, &failures);
838 
839 	dm_table_unplug_all(ms->ti->table);
840 }
841 
842 /*-----------------------------------------------------------------
843  * Target functions
844  *---------------------------------------------------------------*/
845 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
846 					uint32_t region_size,
847 					struct dm_target *ti,
848 					struct dm_dirty_log *dl)
849 {
850 	size_t len;
851 	struct mirror_set *ms = NULL;
852 
853 	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
854 
855 	ms = kzalloc(len, GFP_KERNEL);
856 	if (!ms) {
857 		ti->error = "Cannot allocate mirror context";
858 		return NULL;
859 	}
860 
861 	spin_lock_init(&ms->lock);
862 	bio_list_init(&ms->reads);
863 	bio_list_init(&ms->writes);
864 	bio_list_init(&ms->failures);
865 	bio_list_init(&ms->holds);
866 
867 	ms->ti = ti;
868 	ms->nr_mirrors = nr_mirrors;
869 	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
870 	ms->in_sync = 0;
871 	ms->log_failure = 0;
872 	ms->leg_failure = 0;
873 	atomic_set(&ms->suspend, 0);
874 	atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
875 
876 	ms->read_record_pool = mempool_create_slab_pool(MIN_READ_RECORDS,
877 						_dm_raid1_read_record_cache);
878 
879 	if (!ms->read_record_pool) {
880 		ti->error = "Error creating mirror read_record_pool";
881 		kfree(ms);
882 		return NULL;
883 	}
884 
885 	ms->io_client = dm_io_client_create(DM_IO_PAGES);
886 	if (IS_ERR(ms->io_client)) {
887 		ti->error = "Error creating dm_io client";
888 		mempool_destroy(ms->read_record_pool);
889 		kfree(ms);
890  		return NULL;
891 	}
892 
893 	ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord,
894 				       wakeup_all_recovery_waiters,
895 				       ms->ti->begin, MAX_RECOVERY,
896 				       dl, region_size, ms->nr_regions);
897 	if (IS_ERR(ms->rh)) {
898 		ti->error = "Error creating dirty region hash";
899 		dm_io_client_destroy(ms->io_client);
900 		mempool_destroy(ms->read_record_pool);
901 		kfree(ms);
902 		return NULL;
903 	}
904 
905 	return ms;
906 }
907 
908 static void free_context(struct mirror_set *ms, struct dm_target *ti,
909 			 unsigned int m)
910 {
911 	while (m--)
912 		dm_put_device(ti, ms->mirror[m].dev);
913 
914 	dm_io_client_destroy(ms->io_client);
915 	dm_region_hash_destroy(ms->rh);
916 	mempool_destroy(ms->read_record_pool);
917 	kfree(ms);
918 }
919 
920 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
921 		      unsigned int mirror, char **argv)
922 {
923 	unsigned long long offset;
924 
925 	if (sscanf(argv[1], "%llu", &offset) != 1) {
926 		ti->error = "Invalid offset";
927 		return -EINVAL;
928 	}
929 
930 	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
931 			  &ms->mirror[mirror].dev)) {
932 		ti->error = "Device lookup failure";
933 		return -ENXIO;
934 	}
935 
936 	ms->mirror[mirror].ms = ms;
937 	atomic_set(&(ms->mirror[mirror].error_count), 0);
938 	ms->mirror[mirror].error_type = 0;
939 	ms->mirror[mirror].offset = offset;
940 
941 	return 0;
942 }
943 
944 /*
945  * Create dirty log: log_type #log_params <log_params>
946  */
947 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
948 					     unsigned argc, char **argv,
949 					     unsigned *args_used)
950 {
951 	unsigned param_count;
952 	struct dm_dirty_log *dl;
953 
954 	if (argc < 2) {
955 		ti->error = "Insufficient mirror log arguments";
956 		return NULL;
957 	}
958 
959 	if (sscanf(argv[1], "%u", &param_count) != 1) {
960 		ti->error = "Invalid mirror log argument count";
961 		return NULL;
962 	}
963 
964 	*args_used = 2 + param_count;
965 
966 	if (argc < *args_used) {
967 		ti->error = "Insufficient mirror log arguments";
968 		return NULL;
969 	}
970 
971 	dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count,
972 				 argv + 2);
973 	if (!dl) {
974 		ti->error = "Error creating mirror dirty log";
975 		return NULL;
976 	}
977 
978 	return dl;
979 }
980 
981 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
982 			  unsigned *args_used)
983 {
984 	unsigned num_features;
985 	struct dm_target *ti = ms->ti;
986 
987 	*args_used = 0;
988 
989 	if (!argc)
990 		return 0;
991 
992 	if (sscanf(argv[0], "%u", &num_features) != 1) {
993 		ti->error = "Invalid number of features";
994 		return -EINVAL;
995 	}
996 
997 	argc--;
998 	argv++;
999 	(*args_used)++;
1000 
1001 	if (num_features > argc) {
1002 		ti->error = "Not enough arguments to support feature count";
1003 		return -EINVAL;
1004 	}
1005 
1006 	if (!strcmp("handle_errors", argv[0]))
1007 		ms->features |= DM_RAID1_HANDLE_ERRORS;
1008 	else {
1009 		ti->error = "Unrecognised feature requested";
1010 		return -EINVAL;
1011 	}
1012 
1013 	(*args_used)++;
1014 
1015 	return 0;
1016 }
1017 
1018 /*
1019  * Construct a mirror mapping:
1020  *
1021  * log_type #log_params <log_params>
1022  * #mirrors [mirror_path offset]{2,}
1023  * [#features <features>]
1024  *
1025  * log_type is "core" or "disk"
1026  * #log_params is between 1 and 3
1027  *
1028  * If present, features must be "handle_errors".
1029  */
1030 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1031 {
1032 	int r;
1033 	unsigned int nr_mirrors, m, args_used;
1034 	struct mirror_set *ms;
1035 	struct dm_dirty_log *dl;
1036 
1037 	dl = create_dirty_log(ti, argc, argv, &args_used);
1038 	if (!dl)
1039 		return -EINVAL;
1040 
1041 	argv += args_used;
1042 	argc -= args_used;
1043 
1044 	if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1045 	    nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
1046 		ti->error = "Invalid number of mirrors";
1047 		dm_dirty_log_destroy(dl);
1048 		return -EINVAL;
1049 	}
1050 
1051 	argv++, argc--;
1052 
1053 	if (argc < nr_mirrors * 2) {
1054 		ti->error = "Too few mirror arguments";
1055 		dm_dirty_log_destroy(dl);
1056 		return -EINVAL;
1057 	}
1058 
1059 	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1060 	if (!ms) {
1061 		dm_dirty_log_destroy(dl);
1062 		return -ENOMEM;
1063 	}
1064 
1065 	/* Get the mirror parameter sets */
1066 	for (m = 0; m < nr_mirrors; m++) {
1067 		r = get_mirror(ms, ti, m, argv);
1068 		if (r) {
1069 			free_context(ms, ti, m);
1070 			return r;
1071 		}
1072 		argv += 2;
1073 		argc -= 2;
1074 	}
1075 
1076 	ti->private = ms;
1077 	ti->split_io = dm_rh_get_region_size(ms->rh);
1078 	ti->num_flush_requests = 1;
1079 
1080 	ms->kmirrord_wq = create_singlethread_workqueue("kmirrord");
1081 	if (!ms->kmirrord_wq) {
1082 		DMERR("couldn't start kmirrord");
1083 		r = -ENOMEM;
1084 		goto err_free_context;
1085 	}
1086 	INIT_WORK(&ms->kmirrord_work, do_mirror);
1087 	init_timer(&ms->timer);
1088 	ms->timer_pending = 0;
1089 	INIT_WORK(&ms->trigger_event, trigger_event);
1090 
1091 	r = parse_features(ms, argc, argv, &args_used);
1092 	if (r)
1093 		goto err_destroy_wq;
1094 
1095 	argv += args_used;
1096 	argc -= args_used;
1097 
1098 	/*
1099 	 * Any read-balancing addition depends on the
1100 	 * DM_RAID1_HANDLE_ERRORS flag being present.
1101 	 * This is because the decision to balance depends
1102 	 * on the sync state of a region.  If the above
1103 	 * flag is not present, we ignore errors; and
1104 	 * the sync state may be inaccurate.
1105 	 */
1106 
1107 	if (argc) {
1108 		ti->error = "Too many mirror arguments";
1109 		r = -EINVAL;
1110 		goto err_destroy_wq;
1111 	}
1112 
1113 	r = dm_kcopyd_client_create(DM_KCOPYD_PAGES, &ms->kcopyd_client);
1114 	if (r)
1115 		goto err_destroy_wq;
1116 
1117 	wakeup_mirrord(ms);
1118 	return 0;
1119 
1120 err_destroy_wq:
1121 	destroy_workqueue(ms->kmirrord_wq);
1122 err_free_context:
1123 	free_context(ms, ti, ms->nr_mirrors);
1124 	return r;
1125 }
1126 
1127 static void mirror_dtr(struct dm_target *ti)
1128 {
1129 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1130 
1131 	del_timer_sync(&ms->timer);
1132 	flush_workqueue(ms->kmirrord_wq);
1133 	flush_scheduled_work();
1134 	dm_kcopyd_client_destroy(ms->kcopyd_client);
1135 	destroy_workqueue(ms->kmirrord_wq);
1136 	free_context(ms, ti, ms->nr_mirrors);
1137 }
1138 
1139 /*
1140  * Mirror mapping function
1141  */
1142 static int mirror_map(struct dm_target *ti, struct bio *bio,
1143 		      union map_info *map_context)
1144 {
1145 	int r, rw = bio_rw(bio);
1146 	struct mirror *m;
1147 	struct mirror_set *ms = ti->private;
1148 	struct dm_raid1_read_record *read_record = NULL;
1149 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1150 
1151 	if (rw == WRITE) {
1152 		/* Save region for mirror_end_io() handler */
1153 		map_context->ll = dm_rh_bio_to_region(ms->rh, bio);
1154 		queue_bio(ms, bio, rw);
1155 		return DM_MAPIO_SUBMITTED;
1156 	}
1157 
1158 	r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0);
1159 	if (r < 0 && r != -EWOULDBLOCK)
1160 		return r;
1161 
1162 	/*
1163 	 * If region is not in-sync queue the bio.
1164 	 */
1165 	if (!r || (r == -EWOULDBLOCK)) {
1166 		if (rw == READA)
1167 			return -EWOULDBLOCK;
1168 
1169 		queue_bio(ms, bio, rw);
1170 		return DM_MAPIO_SUBMITTED;
1171 	}
1172 
1173 	/*
1174 	 * The region is in-sync and we can perform reads directly.
1175 	 * Store enough information so we can retry if it fails.
1176 	 */
1177 	m = choose_mirror(ms, bio->bi_sector);
1178 	if (unlikely(!m))
1179 		return -EIO;
1180 
1181 	read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1182 	if (likely(read_record)) {
1183 		dm_bio_record(&read_record->details, bio);
1184 		map_context->ptr = read_record;
1185 		read_record->m = m;
1186 	}
1187 
1188 	map_bio(m, bio);
1189 
1190 	return DM_MAPIO_REMAPPED;
1191 }
1192 
1193 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1194 			 int error, union map_info *map_context)
1195 {
1196 	int rw = bio_rw(bio);
1197 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1198 	struct mirror *m = NULL;
1199 	struct dm_bio_details *bd = NULL;
1200 	struct dm_raid1_read_record *read_record = map_context->ptr;
1201 
1202 	/*
1203 	 * We need to dec pending if this was a write.
1204 	 */
1205 	if (rw == WRITE) {
1206 		if (!(bio->bi_rw & REQ_FLUSH))
1207 			dm_rh_dec(ms->rh, map_context->ll);
1208 		return error;
1209 	}
1210 
1211 	if (error == -EOPNOTSUPP)
1212 		goto out;
1213 
1214 	if ((error == -EWOULDBLOCK) && (bio->bi_rw & REQ_RAHEAD))
1215 		goto out;
1216 
1217 	if (unlikely(error)) {
1218 		if (!read_record) {
1219 			/*
1220 			 * There wasn't enough memory to record necessary
1221 			 * information for a retry or there was no other
1222 			 * mirror in-sync.
1223 			 */
1224 			DMERR_LIMIT("Mirror read failed.");
1225 			return -EIO;
1226 		}
1227 
1228 		m = read_record->m;
1229 
1230 		DMERR("Mirror read failed from %s. Trying alternative device.",
1231 		      m->dev->name);
1232 
1233 		fail_mirror(m, DM_RAID1_READ_ERROR);
1234 
1235 		/*
1236 		 * A failed read is requeued for another attempt using an intact
1237 		 * mirror.
1238 		 */
1239 		if (default_ok(m) || mirror_available(ms, bio)) {
1240 			bd = &read_record->details;
1241 
1242 			dm_bio_restore(bd, bio);
1243 			mempool_free(read_record, ms->read_record_pool);
1244 			map_context->ptr = NULL;
1245 			queue_bio(ms, bio, rw);
1246 			return 1;
1247 		}
1248 		DMERR("All replicated volumes dead, failing I/O");
1249 	}
1250 
1251 out:
1252 	if (read_record) {
1253 		mempool_free(read_record, ms->read_record_pool);
1254 		map_context->ptr = NULL;
1255 	}
1256 
1257 	return error;
1258 }
1259 
1260 static void mirror_presuspend(struct dm_target *ti)
1261 {
1262 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1263 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1264 
1265 	struct bio_list holds;
1266 	struct bio *bio;
1267 
1268 	atomic_set(&ms->suspend, 1);
1269 
1270 	/*
1271 	 * Process bios in the hold list to start recovery waiting
1272 	 * for bios in the hold list. After the process, no bio has
1273 	 * a chance to be added in the hold list because ms->suspend
1274 	 * is set.
1275 	 */
1276 	spin_lock_irq(&ms->lock);
1277 	holds = ms->holds;
1278 	bio_list_init(&ms->holds);
1279 	spin_unlock_irq(&ms->lock);
1280 
1281 	while ((bio = bio_list_pop(&holds)))
1282 		hold_bio(ms, bio);
1283 
1284 	/*
1285 	 * We must finish up all the work that we've
1286 	 * generated (i.e. recovery work).
1287 	 */
1288 	dm_rh_stop_recovery(ms->rh);
1289 
1290 	wait_event(_kmirrord_recovery_stopped,
1291 		   !dm_rh_recovery_in_flight(ms->rh));
1292 
1293 	if (log->type->presuspend && log->type->presuspend(log))
1294 		/* FIXME: need better error handling */
1295 		DMWARN("log presuspend failed");
1296 
1297 	/*
1298 	 * Now that recovery is complete/stopped and the
1299 	 * delayed bios are queued, we need to wait for
1300 	 * the worker thread to complete.  This way,
1301 	 * we know that all of our I/O has been pushed.
1302 	 */
1303 	flush_workqueue(ms->kmirrord_wq);
1304 }
1305 
1306 static void mirror_postsuspend(struct dm_target *ti)
1307 {
1308 	struct mirror_set *ms = ti->private;
1309 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1310 
1311 	if (log->type->postsuspend && log->type->postsuspend(log))
1312 		/* FIXME: need better error handling */
1313 		DMWARN("log postsuspend failed");
1314 }
1315 
1316 static void mirror_resume(struct dm_target *ti)
1317 {
1318 	struct mirror_set *ms = ti->private;
1319 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1320 
1321 	atomic_set(&ms->suspend, 0);
1322 	if (log->type->resume && log->type->resume(log))
1323 		/* FIXME: need better error handling */
1324 		DMWARN("log resume failed");
1325 	dm_rh_start_recovery(ms->rh);
1326 }
1327 
1328 /*
1329  * device_status_char
1330  * @m: mirror device/leg we want the status of
1331  *
1332  * We return one character representing the most severe error
1333  * we have encountered.
1334  *    A => Alive - No failures
1335  *    D => Dead - A write failure occurred leaving mirror out-of-sync
1336  *    S => Sync - A sychronization failure occurred, mirror out-of-sync
1337  *    R => Read - A read failure occurred, mirror data unaffected
1338  *
1339  * Returns: <char>
1340  */
1341 static char device_status_char(struct mirror *m)
1342 {
1343 	if (!atomic_read(&(m->error_count)))
1344 		return 'A';
1345 
1346 	return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' :
1347 		(test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1348 		(test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1349 		(test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1350 }
1351 
1352 
1353 static int mirror_status(struct dm_target *ti, status_type_t type,
1354 			 char *result, unsigned int maxlen)
1355 {
1356 	unsigned int m, sz = 0;
1357 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1358 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1359 	char buffer[ms->nr_mirrors + 1];
1360 
1361 	switch (type) {
1362 	case STATUSTYPE_INFO:
1363 		DMEMIT("%d ", ms->nr_mirrors);
1364 		for (m = 0; m < ms->nr_mirrors; m++) {
1365 			DMEMIT("%s ", ms->mirror[m].dev->name);
1366 			buffer[m] = device_status_char(&(ms->mirror[m]));
1367 		}
1368 		buffer[m] = '\0';
1369 
1370 		DMEMIT("%llu/%llu 1 %s ",
1371 		      (unsigned long long)log->type->get_sync_count(log),
1372 		      (unsigned long long)ms->nr_regions, buffer);
1373 
1374 		sz += log->type->status(log, type, result+sz, maxlen-sz);
1375 
1376 		break;
1377 
1378 	case STATUSTYPE_TABLE:
1379 		sz = log->type->status(log, type, result, maxlen);
1380 
1381 		DMEMIT("%d", ms->nr_mirrors);
1382 		for (m = 0; m < ms->nr_mirrors; m++)
1383 			DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1384 			       (unsigned long long)ms->mirror[m].offset);
1385 
1386 		if (ms->features & DM_RAID1_HANDLE_ERRORS)
1387 			DMEMIT(" 1 handle_errors");
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static int mirror_iterate_devices(struct dm_target *ti,
1394 				  iterate_devices_callout_fn fn, void *data)
1395 {
1396 	struct mirror_set *ms = ti->private;
1397 	int ret = 0;
1398 	unsigned i;
1399 
1400 	for (i = 0; !ret && i < ms->nr_mirrors; i++)
1401 		ret = fn(ti, ms->mirror[i].dev,
1402 			 ms->mirror[i].offset, ti->len, data);
1403 
1404 	return ret;
1405 }
1406 
1407 static struct target_type mirror_target = {
1408 	.name	 = "mirror",
1409 	.version = {1, 12, 0},
1410 	.module	 = THIS_MODULE,
1411 	.ctr	 = mirror_ctr,
1412 	.dtr	 = mirror_dtr,
1413 	.map	 = mirror_map,
1414 	.end_io	 = mirror_end_io,
1415 	.presuspend = mirror_presuspend,
1416 	.postsuspend = mirror_postsuspend,
1417 	.resume	 = mirror_resume,
1418 	.status	 = mirror_status,
1419 	.iterate_devices = mirror_iterate_devices,
1420 };
1421 
1422 static int __init dm_mirror_init(void)
1423 {
1424 	int r;
1425 
1426 	_dm_raid1_read_record_cache = KMEM_CACHE(dm_raid1_read_record, 0);
1427 	if (!_dm_raid1_read_record_cache) {
1428 		DMERR("Can't allocate dm_raid1_read_record cache");
1429 		r = -ENOMEM;
1430 		goto bad_cache;
1431 	}
1432 
1433 	r = dm_register_target(&mirror_target);
1434 	if (r < 0) {
1435 		DMERR("Failed to register mirror target");
1436 		goto bad_target;
1437 	}
1438 
1439 	return 0;
1440 
1441 bad_target:
1442 	kmem_cache_destroy(_dm_raid1_read_record_cache);
1443 bad_cache:
1444 	return r;
1445 }
1446 
1447 static void __exit dm_mirror_exit(void)
1448 {
1449 	dm_unregister_target(&mirror_target);
1450 	kmem_cache_destroy(_dm_raid1_read_record_cache);
1451 }
1452 
1453 /* Module hooks */
1454 module_init(dm_mirror_init);
1455 module_exit(dm_mirror_exit);
1456 
1457 MODULE_DESCRIPTION(DM_NAME " mirror target");
1458 MODULE_AUTHOR("Joe Thornber");
1459 MODULE_LICENSE("GPL");
1460