1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-bio-record.h" 9 10 #include <linux/init.h> 11 #include <linux/mempool.h> 12 #include <linux/module.h> 13 #include <linux/pagemap.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/device-mapper.h> 17 #include <linux/dm-io.h> 18 #include <linux/dm-dirty-log.h> 19 #include <linux/dm-kcopyd.h> 20 #include <linux/dm-region-hash.h> 21 22 #define DM_MSG_PREFIX "raid1" 23 24 #define MAX_RECOVERY 1 /* Maximum number of regions recovered in parallel. */ 25 #define DM_IO_PAGES 64 26 #define DM_KCOPYD_PAGES 64 27 28 #define DM_RAID1_HANDLE_ERRORS 0x01 29 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS) 30 31 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped); 32 33 /*----------------------------------------------------------------- 34 * Mirror set structures. 35 *---------------------------------------------------------------*/ 36 enum dm_raid1_error { 37 DM_RAID1_WRITE_ERROR, 38 DM_RAID1_FLUSH_ERROR, 39 DM_RAID1_SYNC_ERROR, 40 DM_RAID1_READ_ERROR 41 }; 42 43 struct mirror { 44 struct mirror_set *ms; 45 atomic_t error_count; 46 unsigned long error_type; 47 struct dm_dev *dev; 48 sector_t offset; 49 }; 50 51 struct mirror_set { 52 struct dm_target *ti; 53 struct list_head list; 54 55 uint64_t features; 56 57 spinlock_t lock; /* protects the lists */ 58 struct bio_list reads; 59 struct bio_list writes; 60 struct bio_list failures; 61 struct bio_list holds; /* bios are waiting until suspend */ 62 63 struct dm_region_hash *rh; 64 struct dm_kcopyd_client *kcopyd_client; 65 struct dm_io_client *io_client; 66 mempool_t *read_record_pool; 67 68 /* recovery */ 69 region_t nr_regions; 70 int in_sync; 71 int log_failure; 72 int leg_failure; 73 atomic_t suspend; 74 75 atomic_t default_mirror; /* Default mirror */ 76 77 struct workqueue_struct *kmirrord_wq; 78 struct work_struct kmirrord_work; 79 struct timer_list timer; 80 unsigned long timer_pending; 81 82 struct work_struct trigger_event; 83 84 unsigned nr_mirrors; 85 struct mirror mirror[0]; 86 }; 87 88 static void wakeup_mirrord(void *context) 89 { 90 struct mirror_set *ms = context; 91 92 queue_work(ms->kmirrord_wq, &ms->kmirrord_work); 93 } 94 95 static void delayed_wake_fn(unsigned long data) 96 { 97 struct mirror_set *ms = (struct mirror_set *) data; 98 99 clear_bit(0, &ms->timer_pending); 100 wakeup_mirrord(ms); 101 } 102 103 static void delayed_wake(struct mirror_set *ms) 104 { 105 if (test_and_set_bit(0, &ms->timer_pending)) 106 return; 107 108 ms->timer.expires = jiffies + HZ / 5; 109 ms->timer.data = (unsigned long) ms; 110 ms->timer.function = delayed_wake_fn; 111 add_timer(&ms->timer); 112 } 113 114 static void wakeup_all_recovery_waiters(void *context) 115 { 116 wake_up_all(&_kmirrord_recovery_stopped); 117 } 118 119 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 120 { 121 unsigned long flags; 122 int should_wake = 0; 123 struct bio_list *bl; 124 125 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 126 spin_lock_irqsave(&ms->lock, flags); 127 should_wake = !(bl->head); 128 bio_list_add(bl, bio); 129 spin_unlock_irqrestore(&ms->lock, flags); 130 131 if (should_wake) 132 wakeup_mirrord(ms); 133 } 134 135 static void dispatch_bios(void *context, struct bio_list *bio_list) 136 { 137 struct mirror_set *ms = context; 138 struct bio *bio; 139 140 while ((bio = bio_list_pop(bio_list))) 141 queue_bio(ms, bio, WRITE); 142 } 143 144 #define MIN_READ_RECORDS 20 145 struct dm_raid1_read_record { 146 struct mirror *m; 147 struct dm_bio_details details; 148 }; 149 150 static struct kmem_cache *_dm_raid1_read_record_cache; 151 152 /* 153 * Every mirror should look like this one. 154 */ 155 #define DEFAULT_MIRROR 0 156 157 /* 158 * This is yucky. We squirrel the mirror struct away inside 159 * bi_next for read/write buffers. This is safe since the bh 160 * doesn't get submitted to the lower levels of block layer. 161 */ 162 static struct mirror *bio_get_m(struct bio *bio) 163 { 164 return (struct mirror *) bio->bi_next; 165 } 166 167 static void bio_set_m(struct bio *bio, struct mirror *m) 168 { 169 bio->bi_next = (struct bio *) m; 170 } 171 172 static struct mirror *get_default_mirror(struct mirror_set *ms) 173 { 174 return &ms->mirror[atomic_read(&ms->default_mirror)]; 175 } 176 177 static void set_default_mirror(struct mirror *m) 178 { 179 struct mirror_set *ms = m->ms; 180 struct mirror *m0 = &(ms->mirror[0]); 181 182 atomic_set(&ms->default_mirror, m - m0); 183 } 184 185 static struct mirror *get_valid_mirror(struct mirror_set *ms) 186 { 187 struct mirror *m; 188 189 for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++) 190 if (!atomic_read(&m->error_count)) 191 return m; 192 193 return NULL; 194 } 195 196 /* fail_mirror 197 * @m: mirror device to fail 198 * @error_type: one of the enum's, DM_RAID1_*_ERROR 199 * 200 * If errors are being handled, record the type of 201 * error encountered for this device. If this type 202 * of error has already been recorded, we can return; 203 * otherwise, we must signal userspace by triggering 204 * an event. Additionally, if the device is the 205 * primary device, we must choose a new primary, but 206 * only if the mirror is in-sync. 207 * 208 * This function must not block. 209 */ 210 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type) 211 { 212 struct mirror_set *ms = m->ms; 213 struct mirror *new; 214 215 ms->leg_failure = 1; 216 217 /* 218 * error_count is used for nothing more than a 219 * simple way to tell if a device has encountered 220 * errors. 221 */ 222 atomic_inc(&m->error_count); 223 224 if (test_and_set_bit(error_type, &m->error_type)) 225 return; 226 227 if (!errors_handled(ms)) 228 return; 229 230 if (m != get_default_mirror(ms)) 231 goto out; 232 233 if (!ms->in_sync) { 234 /* 235 * Better to issue requests to same failing device 236 * than to risk returning corrupt data. 237 */ 238 DMERR("Primary mirror (%s) failed while out-of-sync: " 239 "Reads may fail.", m->dev->name); 240 goto out; 241 } 242 243 new = get_valid_mirror(ms); 244 if (new) 245 set_default_mirror(new); 246 else 247 DMWARN("All sides of mirror have failed."); 248 249 out: 250 schedule_work(&ms->trigger_event); 251 } 252 253 static int mirror_flush(struct dm_target *ti) 254 { 255 struct mirror_set *ms = ti->private; 256 unsigned long error_bits; 257 258 unsigned int i; 259 struct dm_io_region io[ms->nr_mirrors]; 260 struct mirror *m; 261 struct dm_io_request io_req = { 262 .bi_rw = WRITE_FLUSH, 263 .mem.type = DM_IO_KMEM, 264 .mem.ptr.bvec = NULL, 265 .client = ms->io_client, 266 }; 267 268 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) { 269 io[i].bdev = m->dev->bdev; 270 io[i].sector = 0; 271 io[i].count = 0; 272 } 273 274 error_bits = -1; 275 dm_io(&io_req, ms->nr_mirrors, io, &error_bits); 276 if (unlikely(error_bits != 0)) { 277 for (i = 0; i < ms->nr_mirrors; i++) 278 if (test_bit(i, &error_bits)) 279 fail_mirror(ms->mirror + i, 280 DM_RAID1_FLUSH_ERROR); 281 return -EIO; 282 } 283 284 return 0; 285 } 286 287 /*----------------------------------------------------------------- 288 * Recovery. 289 * 290 * When a mirror is first activated we may find that some regions 291 * are in the no-sync state. We have to recover these by 292 * recopying from the default mirror to all the others. 293 *---------------------------------------------------------------*/ 294 static void recovery_complete(int read_err, unsigned long write_err, 295 void *context) 296 { 297 struct dm_region *reg = context; 298 struct mirror_set *ms = dm_rh_region_context(reg); 299 int m, bit = 0; 300 301 if (read_err) { 302 /* Read error means the failure of default mirror. */ 303 DMERR_LIMIT("Unable to read primary mirror during recovery"); 304 fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR); 305 } 306 307 if (write_err) { 308 DMERR_LIMIT("Write error during recovery (error = 0x%lx)", 309 write_err); 310 /* 311 * Bits correspond to devices (excluding default mirror). 312 * The default mirror cannot change during recovery. 313 */ 314 for (m = 0; m < ms->nr_mirrors; m++) { 315 if (&ms->mirror[m] == get_default_mirror(ms)) 316 continue; 317 if (test_bit(bit, &write_err)) 318 fail_mirror(ms->mirror + m, 319 DM_RAID1_SYNC_ERROR); 320 bit++; 321 } 322 } 323 324 dm_rh_recovery_end(reg, !(read_err || write_err)); 325 } 326 327 static int recover(struct mirror_set *ms, struct dm_region *reg) 328 { 329 int r; 330 unsigned i; 331 struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest; 332 struct mirror *m; 333 unsigned long flags = 0; 334 region_t key = dm_rh_get_region_key(reg); 335 sector_t region_size = dm_rh_get_region_size(ms->rh); 336 337 /* fill in the source */ 338 m = get_default_mirror(ms); 339 from.bdev = m->dev->bdev; 340 from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key); 341 if (key == (ms->nr_regions - 1)) { 342 /* 343 * The final region may be smaller than 344 * region_size. 345 */ 346 from.count = ms->ti->len & (region_size - 1); 347 if (!from.count) 348 from.count = region_size; 349 } else 350 from.count = region_size; 351 352 /* fill in the destinations */ 353 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 354 if (&ms->mirror[i] == get_default_mirror(ms)) 355 continue; 356 357 m = ms->mirror + i; 358 dest->bdev = m->dev->bdev; 359 dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key); 360 dest->count = from.count; 361 dest++; 362 } 363 364 /* hand to kcopyd */ 365 if (!errors_handled(ms)) 366 set_bit(DM_KCOPYD_IGNORE_ERROR, &flags); 367 368 r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, 369 flags, recovery_complete, reg); 370 371 return r; 372 } 373 374 static void do_recovery(struct mirror_set *ms) 375 { 376 struct dm_region *reg; 377 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 378 int r; 379 380 /* 381 * Start quiescing some regions. 382 */ 383 dm_rh_recovery_prepare(ms->rh); 384 385 /* 386 * Copy any already quiesced regions. 387 */ 388 while ((reg = dm_rh_recovery_start(ms->rh))) { 389 r = recover(ms, reg); 390 if (r) 391 dm_rh_recovery_end(reg, 0); 392 } 393 394 /* 395 * Update the in sync flag. 396 */ 397 if (!ms->in_sync && 398 (log->type->get_sync_count(log) == ms->nr_regions)) { 399 /* the sync is complete */ 400 dm_table_event(ms->ti->table); 401 ms->in_sync = 1; 402 } 403 } 404 405 /*----------------------------------------------------------------- 406 * Reads 407 *---------------------------------------------------------------*/ 408 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 409 { 410 struct mirror *m = get_default_mirror(ms); 411 412 do { 413 if (likely(!atomic_read(&m->error_count))) 414 return m; 415 416 if (m-- == ms->mirror) 417 m += ms->nr_mirrors; 418 } while (m != get_default_mirror(ms)); 419 420 return NULL; 421 } 422 423 static int default_ok(struct mirror *m) 424 { 425 struct mirror *default_mirror = get_default_mirror(m->ms); 426 427 return !atomic_read(&default_mirror->error_count); 428 } 429 430 static int mirror_available(struct mirror_set *ms, struct bio *bio) 431 { 432 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 433 region_t region = dm_rh_bio_to_region(ms->rh, bio); 434 435 if (log->type->in_sync(log, region, 0)) 436 return choose_mirror(ms, bio->bi_sector) ? 1 : 0; 437 438 return 0; 439 } 440 441 /* 442 * remap a buffer to a particular mirror. 443 */ 444 static sector_t map_sector(struct mirror *m, struct bio *bio) 445 { 446 if (unlikely(!bio->bi_size)) 447 return 0; 448 return m->offset + dm_target_offset(m->ms->ti, bio->bi_sector); 449 } 450 451 static void map_bio(struct mirror *m, struct bio *bio) 452 { 453 bio->bi_bdev = m->dev->bdev; 454 bio->bi_sector = map_sector(m, bio); 455 } 456 457 static void map_region(struct dm_io_region *io, struct mirror *m, 458 struct bio *bio) 459 { 460 io->bdev = m->dev->bdev; 461 io->sector = map_sector(m, bio); 462 io->count = bio->bi_size >> 9; 463 } 464 465 static void hold_bio(struct mirror_set *ms, struct bio *bio) 466 { 467 /* 468 * Lock is required to avoid race condition during suspend 469 * process. 470 */ 471 spin_lock_irq(&ms->lock); 472 473 if (atomic_read(&ms->suspend)) { 474 spin_unlock_irq(&ms->lock); 475 476 /* 477 * If device is suspended, complete the bio. 478 */ 479 if (dm_noflush_suspending(ms->ti)) 480 bio_endio(bio, DM_ENDIO_REQUEUE); 481 else 482 bio_endio(bio, -EIO); 483 return; 484 } 485 486 /* 487 * Hold bio until the suspend is complete. 488 */ 489 bio_list_add(&ms->holds, bio); 490 spin_unlock_irq(&ms->lock); 491 } 492 493 /*----------------------------------------------------------------- 494 * Reads 495 *---------------------------------------------------------------*/ 496 static void read_callback(unsigned long error, void *context) 497 { 498 struct bio *bio = context; 499 struct mirror *m; 500 501 m = bio_get_m(bio); 502 bio_set_m(bio, NULL); 503 504 if (likely(!error)) { 505 bio_endio(bio, 0); 506 return; 507 } 508 509 fail_mirror(m, DM_RAID1_READ_ERROR); 510 511 if (likely(default_ok(m)) || mirror_available(m->ms, bio)) { 512 DMWARN_LIMIT("Read failure on mirror device %s. " 513 "Trying alternative device.", 514 m->dev->name); 515 queue_bio(m->ms, bio, bio_rw(bio)); 516 return; 517 } 518 519 DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.", 520 m->dev->name); 521 bio_endio(bio, -EIO); 522 } 523 524 /* Asynchronous read. */ 525 static void read_async_bio(struct mirror *m, struct bio *bio) 526 { 527 struct dm_io_region io; 528 struct dm_io_request io_req = { 529 .bi_rw = READ, 530 .mem.type = DM_IO_BVEC, 531 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 532 .notify.fn = read_callback, 533 .notify.context = bio, 534 .client = m->ms->io_client, 535 }; 536 537 map_region(&io, m, bio); 538 bio_set_m(bio, m); 539 BUG_ON(dm_io(&io_req, 1, &io, NULL)); 540 } 541 542 static inline int region_in_sync(struct mirror_set *ms, region_t region, 543 int may_block) 544 { 545 int state = dm_rh_get_state(ms->rh, region, may_block); 546 return state == DM_RH_CLEAN || state == DM_RH_DIRTY; 547 } 548 549 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 550 { 551 region_t region; 552 struct bio *bio; 553 struct mirror *m; 554 555 while ((bio = bio_list_pop(reads))) { 556 region = dm_rh_bio_to_region(ms->rh, bio); 557 m = get_default_mirror(ms); 558 559 /* 560 * We can only read balance if the region is in sync. 561 */ 562 if (likely(region_in_sync(ms, region, 1))) 563 m = choose_mirror(ms, bio->bi_sector); 564 else if (m && atomic_read(&m->error_count)) 565 m = NULL; 566 567 if (likely(m)) 568 read_async_bio(m, bio); 569 else 570 bio_endio(bio, -EIO); 571 } 572 } 573 574 /*----------------------------------------------------------------- 575 * Writes. 576 * 577 * We do different things with the write io depending on the 578 * state of the region that it's in: 579 * 580 * SYNC: increment pending, use kcopyd to write to *all* mirrors 581 * RECOVERING: delay the io until recovery completes 582 * NOSYNC: increment pending, just write to the default mirror 583 *---------------------------------------------------------------*/ 584 585 586 static void write_callback(unsigned long error, void *context) 587 { 588 unsigned i, ret = 0; 589 struct bio *bio = (struct bio *) context; 590 struct mirror_set *ms; 591 int should_wake = 0; 592 unsigned long flags; 593 594 ms = bio_get_m(bio)->ms; 595 bio_set_m(bio, NULL); 596 597 /* 598 * NOTE: We don't decrement the pending count here, 599 * instead it is done by the targets endio function. 600 * This way we handle both writes to SYNC and NOSYNC 601 * regions with the same code. 602 */ 603 if (likely(!error)) { 604 bio_endio(bio, ret); 605 return; 606 } 607 608 for (i = 0; i < ms->nr_mirrors; i++) 609 if (test_bit(i, &error)) 610 fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR); 611 612 /* 613 * Need to raise event. Since raising 614 * events can block, we need to do it in 615 * the main thread. 616 */ 617 spin_lock_irqsave(&ms->lock, flags); 618 if (!ms->failures.head) 619 should_wake = 1; 620 bio_list_add(&ms->failures, bio); 621 spin_unlock_irqrestore(&ms->lock, flags); 622 if (should_wake) 623 wakeup_mirrord(ms); 624 } 625 626 static void do_write(struct mirror_set *ms, struct bio *bio) 627 { 628 unsigned int i; 629 struct dm_io_region io[ms->nr_mirrors], *dest = io; 630 struct mirror *m; 631 struct dm_io_request io_req = { 632 .bi_rw = WRITE | (bio->bi_rw & WRITE_FLUSH_FUA), 633 .mem.type = DM_IO_BVEC, 634 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 635 .notify.fn = write_callback, 636 .notify.context = bio, 637 .client = ms->io_client, 638 }; 639 640 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) 641 map_region(dest++, m, bio); 642 643 /* 644 * Use default mirror because we only need it to retrieve the reference 645 * to the mirror set in write_callback(). 646 */ 647 bio_set_m(bio, get_default_mirror(ms)); 648 649 BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL)); 650 } 651 652 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 653 { 654 int state; 655 struct bio *bio; 656 struct bio_list sync, nosync, recover, *this_list = NULL; 657 struct bio_list requeue; 658 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 659 region_t region; 660 661 if (!writes->head) 662 return; 663 664 /* 665 * Classify each write. 666 */ 667 bio_list_init(&sync); 668 bio_list_init(&nosync); 669 bio_list_init(&recover); 670 bio_list_init(&requeue); 671 672 while ((bio = bio_list_pop(writes))) { 673 if (bio->bi_rw & REQ_FLUSH) { 674 bio_list_add(&sync, bio); 675 continue; 676 } 677 678 region = dm_rh_bio_to_region(ms->rh, bio); 679 680 if (log->type->is_remote_recovering && 681 log->type->is_remote_recovering(log, region)) { 682 bio_list_add(&requeue, bio); 683 continue; 684 } 685 686 state = dm_rh_get_state(ms->rh, region, 1); 687 switch (state) { 688 case DM_RH_CLEAN: 689 case DM_RH_DIRTY: 690 this_list = &sync; 691 break; 692 693 case DM_RH_NOSYNC: 694 this_list = &nosync; 695 break; 696 697 case DM_RH_RECOVERING: 698 this_list = &recover; 699 break; 700 } 701 702 bio_list_add(this_list, bio); 703 } 704 705 /* 706 * Add bios that are delayed due to remote recovery 707 * back on to the write queue 708 */ 709 if (unlikely(requeue.head)) { 710 spin_lock_irq(&ms->lock); 711 bio_list_merge(&ms->writes, &requeue); 712 spin_unlock_irq(&ms->lock); 713 delayed_wake(ms); 714 } 715 716 /* 717 * Increment the pending counts for any regions that will 718 * be written to (writes to recover regions are going to 719 * be delayed). 720 */ 721 dm_rh_inc_pending(ms->rh, &sync); 722 dm_rh_inc_pending(ms->rh, &nosync); 723 724 /* 725 * If the flush fails on a previous call and succeeds here, 726 * we must not reset the log_failure variable. We need 727 * userspace interaction to do that. 728 */ 729 ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure; 730 731 /* 732 * Dispatch io. 733 */ 734 if (unlikely(ms->log_failure) && errors_handled(ms)) { 735 spin_lock_irq(&ms->lock); 736 bio_list_merge(&ms->failures, &sync); 737 spin_unlock_irq(&ms->lock); 738 wakeup_mirrord(ms); 739 } else 740 while ((bio = bio_list_pop(&sync))) 741 do_write(ms, bio); 742 743 while ((bio = bio_list_pop(&recover))) 744 dm_rh_delay(ms->rh, bio); 745 746 while ((bio = bio_list_pop(&nosync))) { 747 if (unlikely(ms->leg_failure) && errors_handled(ms)) { 748 spin_lock_irq(&ms->lock); 749 bio_list_add(&ms->failures, bio); 750 spin_unlock_irq(&ms->lock); 751 wakeup_mirrord(ms); 752 } else { 753 map_bio(get_default_mirror(ms), bio); 754 generic_make_request(bio); 755 } 756 } 757 } 758 759 static void do_failures(struct mirror_set *ms, struct bio_list *failures) 760 { 761 struct bio *bio; 762 763 if (likely(!failures->head)) 764 return; 765 766 /* 767 * If the log has failed, unattempted writes are being 768 * put on the holds list. We can't issue those writes 769 * until a log has been marked, so we must store them. 770 * 771 * If a 'noflush' suspend is in progress, we can requeue 772 * the I/O's to the core. This give userspace a chance 773 * to reconfigure the mirror, at which point the core 774 * will reissue the writes. If the 'noflush' flag is 775 * not set, we have no choice but to return errors. 776 * 777 * Some writes on the failures list may have been 778 * submitted before the log failure and represent a 779 * failure to write to one of the devices. It is ok 780 * for us to treat them the same and requeue them 781 * as well. 782 */ 783 while ((bio = bio_list_pop(failures))) { 784 if (!ms->log_failure) { 785 ms->in_sync = 0; 786 dm_rh_mark_nosync(ms->rh, bio); 787 } 788 789 /* 790 * If all the legs are dead, fail the I/O. 791 * If we have been told to handle errors, hold the bio 792 * and wait for userspace to deal with the problem. 793 * Otherwise pretend that the I/O succeeded. (This would 794 * be wrong if the failed leg returned after reboot and 795 * got replicated back to the good legs.) 796 */ 797 if (!get_valid_mirror(ms)) 798 bio_endio(bio, -EIO); 799 else if (errors_handled(ms)) 800 hold_bio(ms, bio); 801 else 802 bio_endio(bio, 0); 803 } 804 } 805 806 static void trigger_event(struct work_struct *work) 807 { 808 struct mirror_set *ms = 809 container_of(work, struct mirror_set, trigger_event); 810 811 dm_table_event(ms->ti->table); 812 } 813 814 /*----------------------------------------------------------------- 815 * kmirrord 816 *---------------------------------------------------------------*/ 817 static void do_mirror(struct work_struct *work) 818 { 819 struct mirror_set *ms = container_of(work, struct mirror_set, 820 kmirrord_work); 821 struct bio_list reads, writes, failures; 822 unsigned long flags; 823 824 spin_lock_irqsave(&ms->lock, flags); 825 reads = ms->reads; 826 writes = ms->writes; 827 failures = ms->failures; 828 bio_list_init(&ms->reads); 829 bio_list_init(&ms->writes); 830 bio_list_init(&ms->failures); 831 spin_unlock_irqrestore(&ms->lock, flags); 832 833 dm_rh_update_states(ms->rh, errors_handled(ms)); 834 do_recovery(ms); 835 do_reads(ms, &reads); 836 do_writes(ms, &writes); 837 do_failures(ms, &failures); 838 839 dm_table_unplug_all(ms->ti->table); 840 } 841 842 /*----------------------------------------------------------------- 843 * Target functions 844 *---------------------------------------------------------------*/ 845 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 846 uint32_t region_size, 847 struct dm_target *ti, 848 struct dm_dirty_log *dl) 849 { 850 size_t len; 851 struct mirror_set *ms = NULL; 852 853 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors); 854 855 ms = kzalloc(len, GFP_KERNEL); 856 if (!ms) { 857 ti->error = "Cannot allocate mirror context"; 858 return NULL; 859 } 860 861 spin_lock_init(&ms->lock); 862 bio_list_init(&ms->reads); 863 bio_list_init(&ms->writes); 864 bio_list_init(&ms->failures); 865 bio_list_init(&ms->holds); 866 867 ms->ti = ti; 868 ms->nr_mirrors = nr_mirrors; 869 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 870 ms->in_sync = 0; 871 ms->log_failure = 0; 872 ms->leg_failure = 0; 873 atomic_set(&ms->suspend, 0); 874 atomic_set(&ms->default_mirror, DEFAULT_MIRROR); 875 876 ms->read_record_pool = mempool_create_slab_pool(MIN_READ_RECORDS, 877 _dm_raid1_read_record_cache); 878 879 if (!ms->read_record_pool) { 880 ti->error = "Error creating mirror read_record_pool"; 881 kfree(ms); 882 return NULL; 883 } 884 885 ms->io_client = dm_io_client_create(DM_IO_PAGES); 886 if (IS_ERR(ms->io_client)) { 887 ti->error = "Error creating dm_io client"; 888 mempool_destroy(ms->read_record_pool); 889 kfree(ms); 890 return NULL; 891 } 892 893 ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord, 894 wakeup_all_recovery_waiters, 895 ms->ti->begin, MAX_RECOVERY, 896 dl, region_size, ms->nr_regions); 897 if (IS_ERR(ms->rh)) { 898 ti->error = "Error creating dirty region hash"; 899 dm_io_client_destroy(ms->io_client); 900 mempool_destroy(ms->read_record_pool); 901 kfree(ms); 902 return NULL; 903 } 904 905 return ms; 906 } 907 908 static void free_context(struct mirror_set *ms, struct dm_target *ti, 909 unsigned int m) 910 { 911 while (m--) 912 dm_put_device(ti, ms->mirror[m].dev); 913 914 dm_io_client_destroy(ms->io_client); 915 dm_region_hash_destroy(ms->rh); 916 mempool_destroy(ms->read_record_pool); 917 kfree(ms); 918 } 919 920 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 921 unsigned int mirror, char **argv) 922 { 923 unsigned long long offset; 924 925 if (sscanf(argv[1], "%llu", &offset) != 1) { 926 ti->error = "Invalid offset"; 927 return -EINVAL; 928 } 929 930 if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), 931 &ms->mirror[mirror].dev)) { 932 ti->error = "Device lookup failure"; 933 return -ENXIO; 934 } 935 936 ms->mirror[mirror].ms = ms; 937 atomic_set(&(ms->mirror[mirror].error_count), 0); 938 ms->mirror[mirror].error_type = 0; 939 ms->mirror[mirror].offset = offset; 940 941 return 0; 942 } 943 944 /* 945 * Create dirty log: log_type #log_params <log_params> 946 */ 947 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti, 948 unsigned argc, char **argv, 949 unsigned *args_used) 950 { 951 unsigned param_count; 952 struct dm_dirty_log *dl; 953 954 if (argc < 2) { 955 ti->error = "Insufficient mirror log arguments"; 956 return NULL; 957 } 958 959 if (sscanf(argv[1], "%u", ¶m_count) != 1) { 960 ti->error = "Invalid mirror log argument count"; 961 return NULL; 962 } 963 964 *args_used = 2 + param_count; 965 966 if (argc < *args_used) { 967 ti->error = "Insufficient mirror log arguments"; 968 return NULL; 969 } 970 971 dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count, 972 argv + 2); 973 if (!dl) { 974 ti->error = "Error creating mirror dirty log"; 975 return NULL; 976 } 977 978 return dl; 979 } 980 981 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv, 982 unsigned *args_used) 983 { 984 unsigned num_features; 985 struct dm_target *ti = ms->ti; 986 987 *args_used = 0; 988 989 if (!argc) 990 return 0; 991 992 if (sscanf(argv[0], "%u", &num_features) != 1) { 993 ti->error = "Invalid number of features"; 994 return -EINVAL; 995 } 996 997 argc--; 998 argv++; 999 (*args_used)++; 1000 1001 if (num_features > argc) { 1002 ti->error = "Not enough arguments to support feature count"; 1003 return -EINVAL; 1004 } 1005 1006 if (!strcmp("handle_errors", argv[0])) 1007 ms->features |= DM_RAID1_HANDLE_ERRORS; 1008 else { 1009 ti->error = "Unrecognised feature requested"; 1010 return -EINVAL; 1011 } 1012 1013 (*args_used)++; 1014 1015 return 0; 1016 } 1017 1018 /* 1019 * Construct a mirror mapping: 1020 * 1021 * log_type #log_params <log_params> 1022 * #mirrors [mirror_path offset]{2,} 1023 * [#features <features>] 1024 * 1025 * log_type is "core" or "disk" 1026 * #log_params is between 1 and 3 1027 * 1028 * If present, features must be "handle_errors". 1029 */ 1030 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1031 { 1032 int r; 1033 unsigned int nr_mirrors, m, args_used; 1034 struct mirror_set *ms; 1035 struct dm_dirty_log *dl; 1036 1037 dl = create_dirty_log(ti, argc, argv, &args_used); 1038 if (!dl) 1039 return -EINVAL; 1040 1041 argv += args_used; 1042 argc -= args_used; 1043 1044 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 || 1045 nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) { 1046 ti->error = "Invalid number of mirrors"; 1047 dm_dirty_log_destroy(dl); 1048 return -EINVAL; 1049 } 1050 1051 argv++, argc--; 1052 1053 if (argc < nr_mirrors * 2) { 1054 ti->error = "Too few mirror arguments"; 1055 dm_dirty_log_destroy(dl); 1056 return -EINVAL; 1057 } 1058 1059 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1060 if (!ms) { 1061 dm_dirty_log_destroy(dl); 1062 return -ENOMEM; 1063 } 1064 1065 /* Get the mirror parameter sets */ 1066 for (m = 0; m < nr_mirrors; m++) { 1067 r = get_mirror(ms, ti, m, argv); 1068 if (r) { 1069 free_context(ms, ti, m); 1070 return r; 1071 } 1072 argv += 2; 1073 argc -= 2; 1074 } 1075 1076 ti->private = ms; 1077 ti->split_io = dm_rh_get_region_size(ms->rh); 1078 ti->num_flush_requests = 1; 1079 1080 ms->kmirrord_wq = create_singlethread_workqueue("kmirrord"); 1081 if (!ms->kmirrord_wq) { 1082 DMERR("couldn't start kmirrord"); 1083 r = -ENOMEM; 1084 goto err_free_context; 1085 } 1086 INIT_WORK(&ms->kmirrord_work, do_mirror); 1087 init_timer(&ms->timer); 1088 ms->timer_pending = 0; 1089 INIT_WORK(&ms->trigger_event, trigger_event); 1090 1091 r = parse_features(ms, argc, argv, &args_used); 1092 if (r) 1093 goto err_destroy_wq; 1094 1095 argv += args_used; 1096 argc -= args_used; 1097 1098 /* 1099 * Any read-balancing addition depends on the 1100 * DM_RAID1_HANDLE_ERRORS flag being present. 1101 * This is because the decision to balance depends 1102 * on the sync state of a region. If the above 1103 * flag is not present, we ignore errors; and 1104 * the sync state may be inaccurate. 1105 */ 1106 1107 if (argc) { 1108 ti->error = "Too many mirror arguments"; 1109 r = -EINVAL; 1110 goto err_destroy_wq; 1111 } 1112 1113 r = dm_kcopyd_client_create(DM_KCOPYD_PAGES, &ms->kcopyd_client); 1114 if (r) 1115 goto err_destroy_wq; 1116 1117 wakeup_mirrord(ms); 1118 return 0; 1119 1120 err_destroy_wq: 1121 destroy_workqueue(ms->kmirrord_wq); 1122 err_free_context: 1123 free_context(ms, ti, ms->nr_mirrors); 1124 return r; 1125 } 1126 1127 static void mirror_dtr(struct dm_target *ti) 1128 { 1129 struct mirror_set *ms = (struct mirror_set *) ti->private; 1130 1131 del_timer_sync(&ms->timer); 1132 flush_workqueue(ms->kmirrord_wq); 1133 flush_scheduled_work(); 1134 dm_kcopyd_client_destroy(ms->kcopyd_client); 1135 destroy_workqueue(ms->kmirrord_wq); 1136 free_context(ms, ti, ms->nr_mirrors); 1137 } 1138 1139 /* 1140 * Mirror mapping function 1141 */ 1142 static int mirror_map(struct dm_target *ti, struct bio *bio, 1143 union map_info *map_context) 1144 { 1145 int r, rw = bio_rw(bio); 1146 struct mirror *m; 1147 struct mirror_set *ms = ti->private; 1148 struct dm_raid1_read_record *read_record = NULL; 1149 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1150 1151 if (rw == WRITE) { 1152 /* Save region for mirror_end_io() handler */ 1153 map_context->ll = dm_rh_bio_to_region(ms->rh, bio); 1154 queue_bio(ms, bio, rw); 1155 return DM_MAPIO_SUBMITTED; 1156 } 1157 1158 r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0); 1159 if (r < 0 && r != -EWOULDBLOCK) 1160 return r; 1161 1162 /* 1163 * If region is not in-sync queue the bio. 1164 */ 1165 if (!r || (r == -EWOULDBLOCK)) { 1166 if (rw == READA) 1167 return -EWOULDBLOCK; 1168 1169 queue_bio(ms, bio, rw); 1170 return DM_MAPIO_SUBMITTED; 1171 } 1172 1173 /* 1174 * The region is in-sync and we can perform reads directly. 1175 * Store enough information so we can retry if it fails. 1176 */ 1177 m = choose_mirror(ms, bio->bi_sector); 1178 if (unlikely(!m)) 1179 return -EIO; 1180 1181 read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO); 1182 if (likely(read_record)) { 1183 dm_bio_record(&read_record->details, bio); 1184 map_context->ptr = read_record; 1185 read_record->m = m; 1186 } 1187 1188 map_bio(m, bio); 1189 1190 return DM_MAPIO_REMAPPED; 1191 } 1192 1193 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1194 int error, union map_info *map_context) 1195 { 1196 int rw = bio_rw(bio); 1197 struct mirror_set *ms = (struct mirror_set *) ti->private; 1198 struct mirror *m = NULL; 1199 struct dm_bio_details *bd = NULL; 1200 struct dm_raid1_read_record *read_record = map_context->ptr; 1201 1202 /* 1203 * We need to dec pending if this was a write. 1204 */ 1205 if (rw == WRITE) { 1206 if (!(bio->bi_rw & REQ_FLUSH)) 1207 dm_rh_dec(ms->rh, map_context->ll); 1208 return error; 1209 } 1210 1211 if (error == -EOPNOTSUPP) 1212 goto out; 1213 1214 if ((error == -EWOULDBLOCK) && (bio->bi_rw & REQ_RAHEAD)) 1215 goto out; 1216 1217 if (unlikely(error)) { 1218 if (!read_record) { 1219 /* 1220 * There wasn't enough memory to record necessary 1221 * information for a retry or there was no other 1222 * mirror in-sync. 1223 */ 1224 DMERR_LIMIT("Mirror read failed."); 1225 return -EIO; 1226 } 1227 1228 m = read_record->m; 1229 1230 DMERR("Mirror read failed from %s. Trying alternative device.", 1231 m->dev->name); 1232 1233 fail_mirror(m, DM_RAID1_READ_ERROR); 1234 1235 /* 1236 * A failed read is requeued for another attempt using an intact 1237 * mirror. 1238 */ 1239 if (default_ok(m) || mirror_available(ms, bio)) { 1240 bd = &read_record->details; 1241 1242 dm_bio_restore(bd, bio); 1243 mempool_free(read_record, ms->read_record_pool); 1244 map_context->ptr = NULL; 1245 queue_bio(ms, bio, rw); 1246 return 1; 1247 } 1248 DMERR("All replicated volumes dead, failing I/O"); 1249 } 1250 1251 out: 1252 if (read_record) { 1253 mempool_free(read_record, ms->read_record_pool); 1254 map_context->ptr = NULL; 1255 } 1256 1257 return error; 1258 } 1259 1260 static void mirror_presuspend(struct dm_target *ti) 1261 { 1262 struct mirror_set *ms = (struct mirror_set *) ti->private; 1263 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1264 1265 struct bio_list holds; 1266 struct bio *bio; 1267 1268 atomic_set(&ms->suspend, 1); 1269 1270 /* 1271 * Process bios in the hold list to start recovery waiting 1272 * for bios in the hold list. After the process, no bio has 1273 * a chance to be added in the hold list because ms->suspend 1274 * is set. 1275 */ 1276 spin_lock_irq(&ms->lock); 1277 holds = ms->holds; 1278 bio_list_init(&ms->holds); 1279 spin_unlock_irq(&ms->lock); 1280 1281 while ((bio = bio_list_pop(&holds))) 1282 hold_bio(ms, bio); 1283 1284 /* 1285 * We must finish up all the work that we've 1286 * generated (i.e. recovery work). 1287 */ 1288 dm_rh_stop_recovery(ms->rh); 1289 1290 wait_event(_kmirrord_recovery_stopped, 1291 !dm_rh_recovery_in_flight(ms->rh)); 1292 1293 if (log->type->presuspend && log->type->presuspend(log)) 1294 /* FIXME: need better error handling */ 1295 DMWARN("log presuspend failed"); 1296 1297 /* 1298 * Now that recovery is complete/stopped and the 1299 * delayed bios are queued, we need to wait for 1300 * the worker thread to complete. This way, 1301 * we know that all of our I/O has been pushed. 1302 */ 1303 flush_workqueue(ms->kmirrord_wq); 1304 } 1305 1306 static void mirror_postsuspend(struct dm_target *ti) 1307 { 1308 struct mirror_set *ms = ti->private; 1309 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1310 1311 if (log->type->postsuspend && log->type->postsuspend(log)) 1312 /* FIXME: need better error handling */ 1313 DMWARN("log postsuspend failed"); 1314 } 1315 1316 static void mirror_resume(struct dm_target *ti) 1317 { 1318 struct mirror_set *ms = ti->private; 1319 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1320 1321 atomic_set(&ms->suspend, 0); 1322 if (log->type->resume && log->type->resume(log)) 1323 /* FIXME: need better error handling */ 1324 DMWARN("log resume failed"); 1325 dm_rh_start_recovery(ms->rh); 1326 } 1327 1328 /* 1329 * device_status_char 1330 * @m: mirror device/leg we want the status of 1331 * 1332 * We return one character representing the most severe error 1333 * we have encountered. 1334 * A => Alive - No failures 1335 * D => Dead - A write failure occurred leaving mirror out-of-sync 1336 * S => Sync - A sychronization failure occurred, mirror out-of-sync 1337 * R => Read - A read failure occurred, mirror data unaffected 1338 * 1339 * Returns: <char> 1340 */ 1341 static char device_status_char(struct mirror *m) 1342 { 1343 if (!atomic_read(&(m->error_count))) 1344 return 'A'; 1345 1346 return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' : 1347 (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' : 1348 (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' : 1349 (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U'; 1350 } 1351 1352 1353 static int mirror_status(struct dm_target *ti, status_type_t type, 1354 char *result, unsigned int maxlen) 1355 { 1356 unsigned int m, sz = 0; 1357 struct mirror_set *ms = (struct mirror_set *) ti->private; 1358 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1359 char buffer[ms->nr_mirrors + 1]; 1360 1361 switch (type) { 1362 case STATUSTYPE_INFO: 1363 DMEMIT("%d ", ms->nr_mirrors); 1364 for (m = 0; m < ms->nr_mirrors; m++) { 1365 DMEMIT("%s ", ms->mirror[m].dev->name); 1366 buffer[m] = device_status_char(&(ms->mirror[m])); 1367 } 1368 buffer[m] = '\0'; 1369 1370 DMEMIT("%llu/%llu 1 %s ", 1371 (unsigned long long)log->type->get_sync_count(log), 1372 (unsigned long long)ms->nr_regions, buffer); 1373 1374 sz += log->type->status(log, type, result+sz, maxlen-sz); 1375 1376 break; 1377 1378 case STATUSTYPE_TABLE: 1379 sz = log->type->status(log, type, result, maxlen); 1380 1381 DMEMIT("%d", ms->nr_mirrors); 1382 for (m = 0; m < ms->nr_mirrors; m++) 1383 DMEMIT(" %s %llu", ms->mirror[m].dev->name, 1384 (unsigned long long)ms->mirror[m].offset); 1385 1386 if (ms->features & DM_RAID1_HANDLE_ERRORS) 1387 DMEMIT(" 1 handle_errors"); 1388 } 1389 1390 return 0; 1391 } 1392 1393 static int mirror_iterate_devices(struct dm_target *ti, 1394 iterate_devices_callout_fn fn, void *data) 1395 { 1396 struct mirror_set *ms = ti->private; 1397 int ret = 0; 1398 unsigned i; 1399 1400 for (i = 0; !ret && i < ms->nr_mirrors; i++) 1401 ret = fn(ti, ms->mirror[i].dev, 1402 ms->mirror[i].offset, ti->len, data); 1403 1404 return ret; 1405 } 1406 1407 static struct target_type mirror_target = { 1408 .name = "mirror", 1409 .version = {1, 12, 0}, 1410 .module = THIS_MODULE, 1411 .ctr = mirror_ctr, 1412 .dtr = mirror_dtr, 1413 .map = mirror_map, 1414 .end_io = mirror_end_io, 1415 .presuspend = mirror_presuspend, 1416 .postsuspend = mirror_postsuspend, 1417 .resume = mirror_resume, 1418 .status = mirror_status, 1419 .iterate_devices = mirror_iterate_devices, 1420 }; 1421 1422 static int __init dm_mirror_init(void) 1423 { 1424 int r; 1425 1426 _dm_raid1_read_record_cache = KMEM_CACHE(dm_raid1_read_record, 0); 1427 if (!_dm_raid1_read_record_cache) { 1428 DMERR("Can't allocate dm_raid1_read_record cache"); 1429 r = -ENOMEM; 1430 goto bad_cache; 1431 } 1432 1433 r = dm_register_target(&mirror_target); 1434 if (r < 0) { 1435 DMERR("Failed to register mirror target"); 1436 goto bad_target; 1437 } 1438 1439 return 0; 1440 1441 bad_target: 1442 kmem_cache_destroy(_dm_raid1_read_record_cache); 1443 bad_cache: 1444 return r; 1445 } 1446 1447 static void __exit dm_mirror_exit(void) 1448 { 1449 dm_unregister_target(&mirror_target); 1450 kmem_cache_destroy(_dm_raid1_read_record_cache); 1451 } 1452 1453 /* Module hooks */ 1454 module_init(dm_mirror_init); 1455 module_exit(dm_mirror_exit); 1456 1457 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1458 MODULE_AUTHOR("Joe Thornber"); 1459 MODULE_LICENSE("GPL"); 1460