xref: /openbmc/linux/drivers/md/dm-raid1.c (revision b68e31d0)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-list.h"
9 #include "dm-io.h"
10 #include "dm-log.h"
11 #include "kcopyd.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21 #include <linux/workqueue.h>
22 
23 #define DM_MSG_PREFIX "raid1"
24 
25 static struct workqueue_struct *_kmirrord_wq;
26 static struct work_struct _kmirrord_work;
27 
28 static inline void wake(void)
29 {
30 	queue_work(_kmirrord_wq, &_kmirrord_work);
31 }
32 
33 /*-----------------------------------------------------------------
34  * Region hash
35  *
36  * The mirror splits itself up into discrete regions.  Each
37  * region can be in one of three states: clean, dirty,
38  * nosync.  There is no need to put clean regions in the hash.
39  *
40  * In addition to being present in the hash table a region _may_
41  * be present on one of three lists.
42  *
43  *   clean_regions: Regions on this list have no io pending to
44  *   them, they are in sync, we are no longer interested in them,
45  *   they are dull.  rh_update_states() will remove them from the
46  *   hash table.
47  *
48  *   quiesced_regions: These regions have been spun down, ready
49  *   for recovery.  rh_recovery_start() will remove regions from
50  *   this list and hand them to kmirrord, which will schedule the
51  *   recovery io with kcopyd.
52  *
53  *   recovered_regions: Regions that kcopyd has successfully
54  *   recovered.  rh_update_states() will now schedule any delayed
55  *   io, up the recovery_count, and remove the region from the
56  *   hash.
57  *
58  * There are 2 locks:
59  *   A rw spin lock 'hash_lock' protects just the hash table,
60  *   this is never held in write mode from interrupt context,
61  *   which I believe means that we only have to disable irqs when
62  *   doing a write lock.
63  *
64  *   An ordinary spin lock 'region_lock' that protects the three
65  *   lists in the region_hash, with the 'state', 'list' and
66  *   'bhs_delayed' fields of the regions.  This is used from irq
67  *   context, so all other uses will have to suspend local irqs.
68  *---------------------------------------------------------------*/
69 struct mirror_set;
70 struct region_hash {
71 	struct mirror_set *ms;
72 	uint32_t region_size;
73 	unsigned region_shift;
74 
75 	/* holds persistent region state */
76 	struct dirty_log *log;
77 
78 	/* hash table */
79 	rwlock_t hash_lock;
80 	mempool_t *region_pool;
81 	unsigned int mask;
82 	unsigned int nr_buckets;
83 	struct list_head *buckets;
84 
85 	spinlock_t region_lock;
86 	struct semaphore recovery_count;
87 	struct list_head clean_regions;
88 	struct list_head quiesced_regions;
89 	struct list_head recovered_regions;
90 };
91 
92 enum {
93 	RH_CLEAN,
94 	RH_DIRTY,
95 	RH_NOSYNC,
96 	RH_RECOVERING
97 };
98 
99 struct region {
100 	struct region_hash *rh;	/* FIXME: can we get rid of this ? */
101 	region_t key;
102 	int state;
103 
104 	struct list_head hash_list;
105 	struct list_head list;
106 
107 	atomic_t pending;
108 	struct bio_list delayed_bios;
109 };
110 
111 
112 /*-----------------------------------------------------------------
113  * Mirror set structures.
114  *---------------------------------------------------------------*/
115 struct mirror {
116 	atomic_t error_count;
117 	struct dm_dev *dev;
118 	sector_t offset;
119 };
120 
121 struct mirror_set {
122 	struct dm_target *ti;
123 	struct list_head list;
124 	struct region_hash rh;
125 	struct kcopyd_client *kcopyd_client;
126 
127 	spinlock_t lock;	/* protects the next two lists */
128 	struct bio_list reads;
129 	struct bio_list writes;
130 
131 	/* recovery */
132 	region_t nr_regions;
133 	int in_sync;
134 
135 	struct mirror *default_mirror;	/* Default mirror */
136 
137 	unsigned int nr_mirrors;
138 	struct mirror mirror[0];
139 };
140 
141 /*
142  * Conversion fns
143  */
144 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
145 {
146 	return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift;
147 }
148 
149 static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
150 {
151 	return region << rh->region_shift;
152 }
153 
154 /* FIXME move this */
155 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
156 
157 #define MIN_REGIONS 64
158 #define MAX_RECOVERY 1
159 static int rh_init(struct region_hash *rh, struct mirror_set *ms,
160 		   struct dirty_log *log, uint32_t region_size,
161 		   region_t nr_regions)
162 {
163 	unsigned int nr_buckets, max_buckets;
164 	size_t i;
165 
166 	/*
167 	 * Calculate a suitable number of buckets for our hash
168 	 * table.
169 	 */
170 	max_buckets = nr_regions >> 6;
171 	for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
172 		;
173 	nr_buckets >>= 1;
174 
175 	rh->ms = ms;
176 	rh->log = log;
177 	rh->region_size = region_size;
178 	rh->region_shift = ffs(region_size) - 1;
179 	rwlock_init(&rh->hash_lock);
180 	rh->mask = nr_buckets - 1;
181 	rh->nr_buckets = nr_buckets;
182 
183 	rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
184 	if (!rh->buckets) {
185 		DMERR("unable to allocate region hash memory");
186 		return -ENOMEM;
187 	}
188 
189 	for (i = 0; i < nr_buckets; i++)
190 		INIT_LIST_HEAD(rh->buckets + i);
191 
192 	spin_lock_init(&rh->region_lock);
193 	sema_init(&rh->recovery_count, 0);
194 	INIT_LIST_HEAD(&rh->clean_regions);
195 	INIT_LIST_HEAD(&rh->quiesced_regions);
196 	INIT_LIST_HEAD(&rh->recovered_regions);
197 
198 	rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS,
199 						      sizeof(struct region));
200 	if (!rh->region_pool) {
201 		vfree(rh->buckets);
202 		rh->buckets = NULL;
203 		return -ENOMEM;
204 	}
205 
206 	return 0;
207 }
208 
209 static void rh_exit(struct region_hash *rh)
210 {
211 	unsigned int h;
212 	struct region *reg, *nreg;
213 
214 	BUG_ON(!list_empty(&rh->quiesced_regions));
215 	for (h = 0; h < rh->nr_buckets; h++) {
216 		list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
217 			BUG_ON(atomic_read(&reg->pending));
218 			mempool_free(reg, rh->region_pool);
219 		}
220 	}
221 
222 	if (rh->log)
223 		dm_destroy_dirty_log(rh->log);
224 	if (rh->region_pool)
225 		mempool_destroy(rh->region_pool);
226 	vfree(rh->buckets);
227 }
228 
229 #define RH_HASH_MULT 2654435387U
230 
231 static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
232 {
233 	return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
234 }
235 
236 static struct region *__rh_lookup(struct region_hash *rh, region_t region)
237 {
238 	struct region *reg;
239 
240 	list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
241 		if (reg->key == region)
242 			return reg;
243 
244 	return NULL;
245 }
246 
247 static void __rh_insert(struct region_hash *rh, struct region *reg)
248 {
249 	unsigned int h = rh_hash(rh, reg->key);
250 	list_add(&reg->hash_list, rh->buckets + h);
251 }
252 
253 static struct region *__rh_alloc(struct region_hash *rh, region_t region)
254 {
255 	struct region *reg, *nreg;
256 
257 	read_unlock(&rh->hash_lock);
258 	nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC);
259 	if (unlikely(!nreg))
260 		nreg = kmalloc(sizeof(struct region), GFP_NOIO);
261 	nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
262 		RH_CLEAN : RH_NOSYNC;
263 	nreg->rh = rh;
264 	nreg->key = region;
265 
266 	INIT_LIST_HEAD(&nreg->list);
267 
268 	atomic_set(&nreg->pending, 0);
269 	bio_list_init(&nreg->delayed_bios);
270 	write_lock_irq(&rh->hash_lock);
271 
272 	reg = __rh_lookup(rh, region);
273 	if (reg)
274 		/* we lost the race */
275 		mempool_free(nreg, rh->region_pool);
276 
277 	else {
278 		__rh_insert(rh, nreg);
279 		if (nreg->state == RH_CLEAN) {
280 			spin_lock(&rh->region_lock);
281 			list_add(&nreg->list, &rh->clean_regions);
282 			spin_unlock(&rh->region_lock);
283 		}
284 		reg = nreg;
285 	}
286 	write_unlock_irq(&rh->hash_lock);
287 	read_lock(&rh->hash_lock);
288 
289 	return reg;
290 }
291 
292 static inline struct region *__rh_find(struct region_hash *rh, region_t region)
293 {
294 	struct region *reg;
295 
296 	reg = __rh_lookup(rh, region);
297 	if (!reg)
298 		reg = __rh_alloc(rh, region);
299 
300 	return reg;
301 }
302 
303 static int rh_state(struct region_hash *rh, region_t region, int may_block)
304 {
305 	int r;
306 	struct region *reg;
307 
308 	read_lock(&rh->hash_lock);
309 	reg = __rh_lookup(rh, region);
310 	read_unlock(&rh->hash_lock);
311 
312 	if (reg)
313 		return reg->state;
314 
315 	/*
316 	 * The region wasn't in the hash, so we fall back to the
317 	 * dirty log.
318 	 */
319 	r = rh->log->type->in_sync(rh->log, region, may_block);
320 
321 	/*
322 	 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
323 	 * taken as a RH_NOSYNC
324 	 */
325 	return r == 1 ? RH_CLEAN : RH_NOSYNC;
326 }
327 
328 static inline int rh_in_sync(struct region_hash *rh,
329 			     region_t region, int may_block)
330 {
331 	int state = rh_state(rh, region, may_block);
332 	return state == RH_CLEAN || state == RH_DIRTY;
333 }
334 
335 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
336 {
337 	struct bio *bio;
338 
339 	while ((bio = bio_list_pop(bio_list))) {
340 		queue_bio(ms, bio, WRITE);
341 	}
342 }
343 
344 static void rh_update_states(struct region_hash *rh)
345 {
346 	struct region *reg, *next;
347 
348 	LIST_HEAD(clean);
349 	LIST_HEAD(recovered);
350 
351 	/*
352 	 * Quickly grab the lists.
353 	 */
354 	write_lock_irq(&rh->hash_lock);
355 	spin_lock(&rh->region_lock);
356 	if (!list_empty(&rh->clean_regions)) {
357 		list_splice(&rh->clean_regions, &clean);
358 		INIT_LIST_HEAD(&rh->clean_regions);
359 
360 		list_for_each_entry (reg, &clean, list) {
361 			rh->log->type->clear_region(rh->log, reg->key);
362 			list_del(&reg->hash_list);
363 		}
364 	}
365 
366 	if (!list_empty(&rh->recovered_regions)) {
367 		list_splice(&rh->recovered_regions, &recovered);
368 		INIT_LIST_HEAD(&rh->recovered_regions);
369 
370 		list_for_each_entry (reg, &recovered, list)
371 			list_del(&reg->hash_list);
372 	}
373 	spin_unlock(&rh->region_lock);
374 	write_unlock_irq(&rh->hash_lock);
375 
376 	/*
377 	 * All the regions on the recovered and clean lists have
378 	 * now been pulled out of the system, so no need to do
379 	 * any more locking.
380 	 */
381 	list_for_each_entry_safe (reg, next, &recovered, list) {
382 		rh->log->type->clear_region(rh->log, reg->key);
383 		rh->log->type->complete_resync_work(rh->log, reg->key, 1);
384 		dispatch_bios(rh->ms, &reg->delayed_bios);
385 		up(&rh->recovery_count);
386 		mempool_free(reg, rh->region_pool);
387 	}
388 
389 	if (!list_empty(&recovered))
390 		rh->log->type->flush(rh->log);
391 
392 	list_for_each_entry_safe (reg, next, &clean, list)
393 		mempool_free(reg, rh->region_pool);
394 }
395 
396 static void rh_inc(struct region_hash *rh, region_t region)
397 {
398 	struct region *reg;
399 
400 	read_lock(&rh->hash_lock);
401 	reg = __rh_find(rh, region);
402 
403 	spin_lock_irq(&rh->region_lock);
404 	atomic_inc(&reg->pending);
405 
406 	if (reg->state == RH_CLEAN) {
407 		reg->state = RH_DIRTY;
408 		list_del_init(&reg->list);	/* take off the clean list */
409 		spin_unlock_irq(&rh->region_lock);
410 
411 		rh->log->type->mark_region(rh->log, reg->key);
412 	} else
413 		spin_unlock_irq(&rh->region_lock);
414 
415 
416 	read_unlock(&rh->hash_lock);
417 }
418 
419 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
420 {
421 	struct bio *bio;
422 
423 	for (bio = bios->head; bio; bio = bio->bi_next)
424 		rh_inc(rh, bio_to_region(rh, bio));
425 }
426 
427 static void rh_dec(struct region_hash *rh, region_t region)
428 {
429 	unsigned long flags;
430 	struct region *reg;
431 	int should_wake = 0;
432 
433 	read_lock(&rh->hash_lock);
434 	reg = __rh_lookup(rh, region);
435 	read_unlock(&rh->hash_lock);
436 
437 	spin_lock_irqsave(&rh->region_lock, flags);
438 	if (atomic_dec_and_test(&reg->pending)) {
439 		/*
440 		 * There is no pending I/O for this region.
441 		 * We can move the region to corresponding list for next action.
442 		 * At this point, the region is not yet connected to any list.
443 		 *
444 		 * If the state is RH_NOSYNC, the region should be kept off
445 		 * from clean list.
446 		 * The hash entry for RH_NOSYNC will remain in memory
447 		 * until the region is recovered or the map is reloaded.
448 		 */
449 
450 		/* do nothing for RH_NOSYNC */
451 		if (reg->state == RH_RECOVERING) {
452 			list_add_tail(&reg->list, &rh->quiesced_regions);
453 		} else if (reg->state == RH_DIRTY) {
454 			reg->state = RH_CLEAN;
455 			list_add(&reg->list, &rh->clean_regions);
456 		}
457 		should_wake = 1;
458 	}
459 	spin_unlock_irqrestore(&rh->region_lock, flags);
460 
461 	if (should_wake)
462 		wake();
463 }
464 
465 /*
466  * Starts quiescing a region in preparation for recovery.
467  */
468 static int __rh_recovery_prepare(struct region_hash *rh)
469 {
470 	int r;
471 	struct region *reg;
472 	region_t region;
473 
474 	/*
475 	 * Ask the dirty log what's next.
476 	 */
477 	r = rh->log->type->get_resync_work(rh->log, &region);
478 	if (r <= 0)
479 		return r;
480 
481 	/*
482 	 * Get this region, and start it quiescing by setting the
483 	 * recovering flag.
484 	 */
485 	read_lock(&rh->hash_lock);
486 	reg = __rh_find(rh, region);
487 	read_unlock(&rh->hash_lock);
488 
489 	spin_lock_irq(&rh->region_lock);
490 	reg->state = RH_RECOVERING;
491 
492 	/* Already quiesced ? */
493 	if (atomic_read(&reg->pending))
494 		list_del_init(&reg->list);
495 	else
496 		list_move(&reg->list, &rh->quiesced_regions);
497 
498 	spin_unlock_irq(&rh->region_lock);
499 
500 	return 1;
501 }
502 
503 static void rh_recovery_prepare(struct region_hash *rh)
504 {
505 	while (!down_trylock(&rh->recovery_count))
506 		if (__rh_recovery_prepare(rh) <= 0) {
507 			up(&rh->recovery_count);
508 			break;
509 		}
510 }
511 
512 /*
513  * Returns any quiesced regions.
514  */
515 static struct region *rh_recovery_start(struct region_hash *rh)
516 {
517 	struct region *reg = NULL;
518 
519 	spin_lock_irq(&rh->region_lock);
520 	if (!list_empty(&rh->quiesced_regions)) {
521 		reg = list_entry(rh->quiesced_regions.next,
522 				 struct region, list);
523 		list_del_init(&reg->list);	/* remove from the quiesced list */
524 	}
525 	spin_unlock_irq(&rh->region_lock);
526 
527 	return reg;
528 }
529 
530 /* FIXME: success ignored for now */
531 static void rh_recovery_end(struct region *reg, int success)
532 {
533 	struct region_hash *rh = reg->rh;
534 
535 	spin_lock_irq(&rh->region_lock);
536 	list_add(&reg->list, &reg->rh->recovered_regions);
537 	spin_unlock_irq(&rh->region_lock);
538 
539 	wake();
540 }
541 
542 static void rh_flush(struct region_hash *rh)
543 {
544 	rh->log->type->flush(rh->log);
545 }
546 
547 static void rh_delay(struct region_hash *rh, struct bio *bio)
548 {
549 	struct region *reg;
550 
551 	read_lock(&rh->hash_lock);
552 	reg = __rh_find(rh, bio_to_region(rh, bio));
553 	bio_list_add(&reg->delayed_bios, bio);
554 	read_unlock(&rh->hash_lock);
555 }
556 
557 static void rh_stop_recovery(struct region_hash *rh)
558 {
559 	int i;
560 
561 	/* wait for any recovering regions */
562 	for (i = 0; i < MAX_RECOVERY; i++)
563 		down(&rh->recovery_count);
564 }
565 
566 static void rh_start_recovery(struct region_hash *rh)
567 {
568 	int i;
569 
570 	for (i = 0; i < MAX_RECOVERY; i++)
571 		up(&rh->recovery_count);
572 
573 	wake();
574 }
575 
576 /*
577  * Every mirror should look like this one.
578  */
579 #define DEFAULT_MIRROR 0
580 
581 /*
582  * This is yucky.  We squirrel the mirror_set struct away inside
583  * bi_next for write buffers.  This is safe since the bh
584  * doesn't get submitted to the lower levels of block layer.
585  */
586 static struct mirror_set *bio_get_ms(struct bio *bio)
587 {
588 	return (struct mirror_set *) bio->bi_next;
589 }
590 
591 static void bio_set_ms(struct bio *bio, struct mirror_set *ms)
592 {
593 	bio->bi_next = (struct bio *) ms;
594 }
595 
596 /*-----------------------------------------------------------------
597  * Recovery.
598  *
599  * When a mirror is first activated we may find that some regions
600  * are in the no-sync state.  We have to recover these by
601  * recopying from the default mirror to all the others.
602  *---------------------------------------------------------------*/
603 static void recovery_complete(int read_err, unsigned int write_err,
604 			      void *context)
605 {
606 	struct region *reg = (struct region *) context;
607 
608 	/* FIXME: better error handling */
609 	rh_recovery_end(reg, !(read_err || write_err));
610 }
611 
612 static int recover(struct mirror_set *ms, struct region *reg)
613 {
614 	int r;
615 	unsigned int i;
616 	struct io_region from, to[KCOPYD_MAX_REGIONS], *dest;
617 	struct mirror *m;
618 	unsigned long flags = 0;
619 
620 	/* fill in the source */
621 	m = ms->default_mirror;
622 	from.bdev = m->dev->bdev;
623 	from.sector = m->offset + region_to_sector(reg->rh, reg->key);
624 	if (reg->key == (ms->nr_regions - 1)) {
625 		/*
626 		 * The final region may be smaller than
627 		 * region_size.
628 		 */
629 		from.count = ms->ti->len & (reg->rh->region_size - 1);
630 		if (!from.count)
631 			from.count = reg->rh->region_size;
632 	} else
633 		from.count = reg->rh->region_size;
634 
635 	/* fill in the destinations */
636 	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
637 		if (&ms->mirror[i] == ms->default_mirror)
638 			continue;
639 
640 		m = ms->mirror + i;
641 		dest->bdev = m->dev->bdev;
642 		dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
643 		dest->count = from.count;
644 		dest++;
645 	}
646 
647 	/* hand to kcopyd */
648 	set_bit(KCOPYD_IGNORE_ERROR, &flags);
649 	r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags,
650 			recovery_complete, reg);
651 
652 	return r;
653 }
654 
655 static void do_recovery(struct mirror_set *ms)
656 {
657 	int r;
658 	struct region *reg;
659 	struct dirty_log *log = ms->rh.log;
660 
661 	/*
662 	 * Start quiescing some regions.
663 	 */
664 	rh_recovery_prepare(&ms->rh);
665 
666 	/*
667 	 * Copy any already quiesced regions.
668 	 */
669 	while ((reg = rh_recovery_start(&ms->rh))) {
670 		r = recover(ms, reg);
671 		if (r)
672 			rh_recovery_end(reg, 0);
673 	}
674 
675 	/*
676 	 * Update the in sync flag.
677 	 */
678 	if (!ms->in_sync &&
679 	    (log->type->get_sync_count(log) == ms->nr_regions)) {
680 		/* the sync is complete */
681 		dm_table_event(ms->ti->table);
682 		ms->in_sync = 1;
683 	}
684 }
685 
686 /*-----------------------------------------------------------------
687  * Reads
688  *---------------------------------------------------------------*/
689 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
690 {
691 	/* FIXME: add read balancing */
692 	return ms->default_mirror;
693 }
694 
695 /*
696  * remap a buffer to a particular mirror.
697  */
698 static void map_bio(struct mirror_set *ms, struct mirror *m, struct bio *bio)
699 {
700 	bio->bi_bdev = m->dev->bdev;
701 	bio->bi_sector = m->offset + (bio->bi_sector - ms->ti->begin);
702 }
703 
704 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
705 {
706 	region_t region;
707 	struct bio *bio;
708 	struct mirror *m;
709 
710 	while ((bio = bio_list_pop(reads))) {
711 		region = bio_to_region(&ms->rh, bio);
712 
713 		/*
714 		 * We can only read balance if the region is in sync.
715 		 */
716 		if (rh_in_sync(&ms->rh, region, 0))
717 			m = choose_mirror(ms, bio->bi_sector);
718 		else
719 			m = ms->default_mirror;
720 
721 		map_bio(ms, m, bio);
722 		generic_make_request(bio);
723 	}
724 }
725 
726 /*-----------------------------------------------------------------
727  * Writes.
728  *
729  * We do different things with the write io depending on the
730  * state of the region that it's in:
731  *
732  * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
733  * RECOVERING:	delay the io until recovery completes
734  * NOSYNC:	increment pending, just write to the default mirror
735  *---------------------------------------------------------------*/
736 static void write_callback(unsigned long error, void *context)
737 {
738 	unsigned int i;
739 	int uptodate = 1;
740 	struct bio *bio = (struct bio *) context;
741 	struct mirror_set *ms;
742 
743 	ms = bio_get_ms(bio);
744 	bio_set_ms(bio, NULL);
745 
746 	/*
747 	 * NOTE: We don't decrement the pending count here,
748 	 * instead it is done by the targets endio function.
749 	 * This way we handle both writes to SYNC and NOSYNC
750 	 * regions with the same code.
751 	 */
752 
753 	if (error) {
754 		/*
755 		 * only error the io if all mirrors failed.
756 		 * FIXME: bogus
757 		 */
758 		uptodate = 0;
759 		for (i = 0; i < ms->nr_mirrors; i++)
760 			if (!test_bit(i, &error)) {
761 				uptodate = 1;
762 				break;
763 			}
764 	}
765 	bio_endio(bio, bio->bi_size, 0);
766 }
767 
768 static void do_write(struct mirror_set *ms, struct bio *bio)
769 {
770 	unsigned int i;
771 	struct io_region io[KCOPYD_MAX_REGIONS+1];
772 	struct mirror *m;
773 
774 	for (i = 0; i < ms->nr_mirrors; i++) {
775 		m = ms->mirror + i;
776 
777 		io[i].bdev = m->dev->bdev;
778 		io[i].sector = m->offset + (bio->bi_sector - ms->ti->begin);
779 		io[i].count = bio->bi_size >> 9;
780 	}
781 
782 	bio_set_ms(bio, ms);
783 	dm_io_async_bvec(ms->nr_mirrors, io, WRITE,
784 			 bio->bi_io_vec + bio->bi_idx,
785 			 write_callback, bio);
786 }
787 
788 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
789 {
790 	int state;
791 	struct bio *bio;
792 	struct bio_list sync, nosync, recover, *this_list = NULL;
793 
794 	if (!writes->head)
795 		return;
796 
797 	/*
798 	 * Classify each write.
799 	 */
800 	bio_list_init(&sync);
801 	bio_list_init(&nosync);
802 	bio_list_init(&recover);
803 
804 	while ((bio = bio_list_pop(writes))) {
805 		state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
806 		switch (state) {
807 		case RH_CLEAN:
808 		case RH_DIRTY:
809 			this_list = &sync;
810 			break;
811 
812 		case RH_NOSYNC:
813 			this_list = &nosync;
814 			break;
815 
816 		case RH_RECOVERING:
817 			this_list = &recover;
818 			break;
819 		}
820 
821 		bio_list_add(this_list, bio);
822 	}
823 
824 	/*
825 	 * Increment the pending counts for any regions that will
826 	 * be written to (writes to recover regions are going to
827 	 * be delayed).
828 	 */
829 	rh_inc_pending(&ms->rh, &sync);
830 	rh_inc_pending(&ms->rh, &nosync);
831 	rh_flush(&ms->rh);
832 
833 	/*
834 	 * Dispatch io.
835 	 */
836 	while ((bio = bio_list_pop(&sync)))
837 		do_write(ms, bio);
838 
839 	while ((bio = bio_list_pop(&recover)))
840 		rh_delay(&ms->rh, bio);
841 
842 	while ((bio = bio_list_pop(&nosync))) {
843 		map_bio(ms, ms->default_mirror, bio);
844 		generic_make_request(bio);
845 	}
846 }
847 
848 /*-----------------------------------------------------------------
849  * kmirrord
850  *---------------------------------------------------------------*/
851 static LIST_HEAD(_mirror_sets);
852 static DECLARE_RWSEM(_mirror_sets_lock);
853 
854 static void do_mirror(struct mirror_set *ms)
855 {
856 	struct bio_list reads, writes;
857 
858 	spin_lock(&ms->lock);
859 	reads = ms->reads;
860 	writes = ms->writes;
861 	bio_list_init(&ms->reads);
862 	bio_list_init(&ms->writes);
863 	spin_unlock(&ms->lock);
864 
865 	rh_update_states(&ms->rh);
866 	do_recovery(ms);
867 	do_reads(ms, &reads);
868 	do_writes(ms, &writes);
869 }
870 
871 static void do_work(void *ignored)
872 {
873 	struct mirror_set *ms;
874 
875 	down_read(&_mirror_sets_lock);
876 	list_for_each_entry (ms, &_mirror_sets, list)
877 		do_mirror(ms);
878 	up_read(&_mirror_sets_lock);
879 }
880 
881 /*-----------------------------------------------------------------
882  * Target functions
883  *---------------------------------------------------------------*/
884 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
885 					uint32_t region_size,
886 					struct dm_target *ti,
887 					struct dirty_log *dl)
888 {
889 	size_t len;
890 	struct mirror_set *ms = NULL;
891 
892 	if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors))
893 		return NULL;
894 
895 	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
896 
897 	ms = kmalloc(len, GFP_KERNEL);
898 	if (!ms) {
899 		ti->error = "Cannot allocate mirror context";
900 		return NULL;
901 	}
902 
903 	memset(ms, 0, len);
904 	spin_lock_init(&ms->lock);
905 
906 	ms->ti = ti;
907 	ms->nr_mirrors = nr_mirrors;
908 	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
909 	ms->in_sync = 0;
910 	ms->default_mirror = &ms->mirror[DEFAULT_MIRROR];
911 
912 	if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
913 		ti->error = "Error creating dirty region hash";
914 		kfree(ms);
915 		return NULL;
916 	}
917 
918 	return ms;
919 }
920 
921 static void free_context(struct mirror_set *ms, struct dm_target *ti,
922 			 unsigned int m)
923 {
924 	while (m--)
925 		dm_put_device(ti, ms->mirror[m].dev);
926 
927 	rh_exit(&ms->rh);
928 	kfree(ms);
929 }
930 
931 static inline int _check_region_size(struct dm_target *ti, uint32_t size)
932 {
933 	return !(size % (PAGE_SIZE >> 9) || (size & (size - 1)) ||
934 		 size > ti->len);
935 }
936 
937 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
938 		      unsigned int mirror, char **argv)
939 {
940 	unsigned long long offset;
941 
942 	if (sscanf(argv[1], "%llu", &offset) != 1) {
943 		ti->error = "Invalid offset";
944 		return -EINVAL;
945 	}
946 
947 	if (dm_get_device(ti, argv[0], offset, ti->len,
948 			  dm_table_get_mode(ti->table),
949 			  &ms->mirror[mirror].dev)) {
950 		ti->error = "Device lookup failure";
951 		return -ENXIO;
952 	}
953 
954 	ms->mirror[mirror].offset = offset;
955 
956 	return 0;
957 }
958 
959 static int add_mirror_set(struct mirror_set *ms)
960 {
961 	down_write(&_mirror_sets_lock);
962 	list_add_tail(&ms->list, &_mirror_sets);
963 	up_write(&_mirror_sets_lock);
964 	wake();
965 
966 	return 0;
967 }
968 
969 static void del_mirror_set(struct mirror_set *ms)
970 {
971 	down_write(&_mirror_sets_lock);
972 	list_del(&ms->list);
973 	up_write(&_mirror_sets_lock);
974 }
975 
976 /*
977  * Create dirty log: log_type #log_params <log_params>
978  */
979 static struct dirty_log *create_dirty_log(struct dm_target *ti,
980 					  unsigned int argc, char **argv,
981 					  unsigned int *args_used)
982 {
983 	unsigned int param_count;
984 	struct dirty_log *dl;
985 
986 	if (argc < 2) {
987 		ti->error = "Insufficient mirror log arguments";
988 		return NULL;
989 	}
990 
991 	if (sscanf(argv[1], "%u", &param_count) != 1) {
992 		ti->error = "Invalid mirror log argument count";
993 		return NULL;
994 	}
995 
996 	*args_used = 2 + param_count;
997 
998 	if (argc < *args_used) {
999 		ti->error = "Insufficient mirror log arguments";
1000 		return NULL;
1001 	}
1002 
1003 	dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2);
1004 	if (!dl) {
1005 		ti->error = "Error creating mirror dirty log";
1006 		return NULL;
1007 	}
1008 
1009 	if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
1010 		ti->error = "Invalid region size";
1011 		dm_destroy_dirty_log(dl);
1012 		return NULL;
1013 	}
1014 
1015 	return dl;
1016 }
1017 
1018 /*
1019  * Construct a mirror mapping:
1020  *
1021  * log_type #log_params <log_params>
1022  * #mirrors [mirror_path offset]{2,}
1023  *
1024  * log_type is "core" or "disk"
1025  * #log_params is between 1 and 3
1026  */
1027 #define DM_IO_PAGES 64
1028 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1029 {
1030 	int r;
1031 	unsigned int nr_mirrors, m, args_used;
1032 	struct mirror_set *ms;
1033 	struct dirty_log *dl;
1034 
1035 	dl = create_dirty_log(ti, argc, argv, &args_used);
1036 	if (!dl)
1037 		return -EINVAL;
1038 
1039 	argv += args_used;
1040 	argc -= args_used;
1041 
1042 	if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1043 	    nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) {
1044 		ti->error = "Invalid number of mirrors";
1045 		dm_destroy_dirty_log(dl);
1046 		return -EINVAL;
1047 	}
1048 
1049 	argv++, argc--;
1050 
1051 	if (argc != nr_mirrors * 2) {
1052 		ti->error = "Wrong number of mirror arguments";
1053 		dm_destroy_dirty_log(dl);
1054 		return -EINVAL;
1055 	}
1056 
1057 	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1058 	if (!ms) {
1059 		dm_destroy_dirty_log(dl);
1060 		return -ENOMEM;
1061 	}
1062 
1063 	/* Get the mirror parameter sets */
1064 	for (m = 0; m < nr_mirrors; m++) {
1065 		r = get_mirror(ms, ti, m, argv);
1066 		if (r) {
1067 			free_context(ms, ti, m);
1068 			return r;
1069 		}
1070 		argv += 2;
1071 		argc -= 2;
1072 	}
1073 
1074 	ti->private = ms;
1075  	ti->split_io = ms->rh.region_size;
1076 
1077 	r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1078 	if (r) {
1079 		free_context(ms, ti, ms->nr_mirrors);
1080 		return r;
1081 	}
1082 
1083 	add_mirror_set(ms);
1084 	return 0;
1085 }
1086 
1087 static void mirror_dtr(struct dm_target *ti)
1088 {
1089 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1090 
1091 	del_mirror_set(ms);
1092 	kcopyd_client_destroy(ms->kcopyd_client);
1093 	free_context(ms, ti, ms->nr_mirrors);
1094 }
1095 
1096 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1097 {
1098 	int should_wake = 0;
1099 	struct bio_list *bl;
1100 
1101 	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1102 	spin_lock(&ms->lock);
1103 	should_wake = !(bl->head);
1104 	bio_list_add(bl, bio);
1105 	spin_unlock(&ms->lock);
1106 
1107 	if (should_wake)
1108 		wake();
1109 }
1110 
1111 /*
1112  * Mirror mapping function
1113  */
1114 static int mirror_map(struct dm_target *ti, struct bio *bio,
1115 		      union map_info *map_context)
1116 {
1117 	int r, rw = bio_rw(bio);
1118 	struct mirror *m;
1119 	struct mirror_set *ms = ti->private;
1120 
1121 	map_context->ll = bio_to_region(&ms->rh, bio);
1122 
1123 	if (rw == WRITE) {
1124 		queue_bio(ms, bio, rw);
1125 		return 0;
1126 	}
1127 
1128 	r = ms->rh.log->type->in_sync(ms->rh.log,
1129 				      bio_to_region(&ms->rh, bio), 0);
1130 	if (r < 0 && r != -EWOULDBLOCK)
1131 		return r;
1132 
1133 	if (r == -EWOULDBLOCK)	/* FIXME: ugly */
1134 		r = 0;
1135 
1136 	/*
1137 	 * We don't want to fast track a recovery just for a read
1138 	 * ahead.  So we just let it silently fail.
1139 	 * FIXME: get rid of this.
1140 	 */
1141 	if (!r && rw == READA)
1142 		return -EIO;
1143 
1144 	if (!r) {
1145 		/* Pass this io over to the daemon */
1146 		queue_bio(ms, bio, rw);
1147 		return 0;
1148 	}
1149 
1150 	m = choose_mirror(ms, bio->bi_sector);
1151 	if (!m)
1152 		return -EIO;
1153 
1154 	map_bio(ms, m, bio);
1155 	return 1;
1156 }
1157 
1158 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1159 			 int error, union map_info *map_context)
1160 {
1161 	int rw = bio_rw(bio);
1162 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1163 	region_t region = map_context->ll;
1164 
1165 	/*
1166 	 * We need to dec pending if this was a write.
1167 	 */
1168 	if (rw == WRITE)
1169 		rh_dec(&ms->rh, region);
1170 
1171 	return 0;
1172 }
1173 
1174 static void mirror_postsuspend(struct dm_target *ti)
1175 {
1176 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1177 	struct dirty_log *log = ms->rh.log;
1178 
1179 	rh_stop_recovery(&ms->rh);
1180 	if (log->type->suspend && log->type->suspend(log))
1181 		/* FIXME: need better error handling */
1182 		DMWARN("log suspend failed");
1183 }
1184 
1185 static void mirror_resume(struct dm_target *ti)
1186 {
1187 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1188 	struct dirty_log *log = ms->rh.log;
1189 	if (log->type->resume && log->type->resume(log))
1190 		/* FIXME: need better error handling */
1191 		DMWARN("log resume failed");
1192 	rh_start_recovery(&ms->rh);
1193 }
1194 
1195 static int mirror_status(struct dm_target *ti, status_type_t type,
1196 			 char *result, unsigned int maxlen)
1197 {
1198 	unsigned int m, sz;
1199 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1200 
1201 	sz = ms->rh.log->type->status(ms->rh.log, type, result, maxlen);
1202 
1203 	switch (type) {
1204 	case STATUSTYPE_INFO:
1205 		DMEMIT("%d ", ms->nr_mirrors);
1206 		for (m = 0; m < ms->nr_mirrors; m++)
1207 			DMEMIT("%s ", ms->mirror[m].dev->name);
1208 
1209 		DMEMIT("%llu/%llu",
1210 			(unsigned long long)ms->rh.log->type->
1211 				get_sync_count(ms->rh.log),
1212 			(unsigned long long)ms->nr_regions);
1213 		break;
1214 
1215 	case STATUSTYPE_TABLE:
1216 		DMEMIT("%d ", ms->nr_mirrors);
1217 		for (m = 0; m < ms->nr_mirrors; m++)
1218 			DMEMIT("%s %llu ", ms->mirror[m].dev->name,
1219 				(unsigned long long)ms->mirror[m].offset);
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static struct target_type mirror_target = {
1226 	.name	 = "mirror",
1227 	.version = {1, 0, 2},
1228 	.module	 = THIS_MODULE,
1229 	.ctr	 = mirror_ctr,
1230 	.dtr	 = mirror_dtr,
1231 	.map	 = mirror_map,
1232 	.end_io	 = mirror_end_io,
1233 	.postsuspend = mirror_postsuspend,
1234 	.resume	 = mirror_resume,
1235 	.status	 = mirror_status,
1236 };
1237 
1238 static int __init dm_mirror_init(void)
1239 {
1240 	int r;
1241 
1242 	r = dm_dirty_log_init();
1243 	if (r)
1244 		return r;
1245 
1246 	_kmirrord_wq = create_singlethread_workqueue("kmirrord");
1247 	if (!_kmirrord_wq) {
1248 		DMERR("couldn't start kmirrord");
1249 		dm_dirty_log_exit();
1250 		return r;
1251 	}
1252 	INIT_WORK(&_kmirrord_work, do_work, NULL);
1253 
1254 	r = dm_register_target(&mirror_target);
1255 	if (r < 0) {
1256 		DMERR("%s: Failed to register mirror target",
1257 		      mirror_target.name);
1258 		dm_dirty_log_exit();
1259 		destroy_workqueue(_kmirrord_wq);
1260 	}
1261 
1262 	return r;
1263 }
1264 
1265 static void __exit dm_mirror_exit(void)
1266 {
1267 	int r;
1268 
1269 	r = dm_unregister_target(&mirror_target);
1270 	if (r < 0)
1271 		DMERR("%s: unregister failed %d", mirror_target.name, r);
1272 
1273 	destroy_workqueue(_kmirrord_wq);
1274 	dm_dirty_log_exit();
1275 }
1276 
1277 /* Module hooks */
1278 module_init(dm_mirror_init);
1279 module_exit(dm_mirror_exit);
1280 
1281 MODULE_DESCRIPTION(DM_NAME " mirror target");
1282 MODULE_AUTHOR("Joe Thornber");
1283 MODULE_LICENSE("GPL");
1284