1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-list.h" 9 #include "dm-bio-record.h" 10 #include "dm-io.h" 11 #include "dm-log.h" 12 #include "kcopyd.h" 13 14 #include <linux/ctype.h> 15 #include <linux/init.h> 16 #include <linux/mempool.h> 17 #include <linux/module.h> 18 #include <linux/pagemap.h> 19 #include <linux/slab.h> 20 #include <linux/time.h> 21 #include <linux/vmalloc.h> 22 #include <linux/workqueue.h> 23 #include <linux/log2.h> 24 #include <linux/hardirq.h> 25 26 #define DM_MSG_PREFIX "raid1" 27 #define DM_IO_PAGES 64 28 29 #define DM_RAID1_HANDLE_ERRORS 0x01 30 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS) 31 32 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped); 33 34 /*----------------------------------------------------------------- 35 * Region hash 36 * 37 * The mirror splits itself up into discrete regions. Each 38 * region can be in one of three states: clean, dirty, 39 * nosync. There is no need to put clean regions in the hash. 40 * 41 * In addition to being present in the hash table a region _may_ 42 * be present on one of three lists. 43 * 44 * clean_regions: Regions on this list have no io pending to 45 * them, they are in sync, we are no longer interested in them, 46 * they are dull. rh_update_states() will remove them from the 47 * hash table. 48 * 49 * quiesced_regions: These regions have been spun down, ready 50 * for recovery. rh_recovery_start() will remove regions from 51 * this list and hand them to kmirrord, which will schedule the 52 * recovery io with kcopyd. 53 * 54 * recovered_regions: Regions that kcopyd has successfully 55 * recovered. rh_update_states() will now schedule any delayed 56 * io, up the recovery_count, and remove the region from the 57 * hash. 58 * 59 * There are 2 locks: 60 * A rw spin lock 'hash_lock' protects just the hash table, 61 * this is never held in write mode from interrupt context, 62 * which I believe means that we only have to disable irqs when 63 * doing a write lock. 64 * 65 * An ordinary spin lock 'region_lock' that protects the three 66 * lists in the region_hash, with the 'state', 'list' and 67 * 'bhs_delayed' fields of the regions. This is used from irq 68 * context, so all other uses will have to suspend local irqs. 69 *---------------------------------------------------------------*/ 70 struct mirror_set; 71 struct region_hash { 72 struct mirror_set *ms; 73 uint32_t region_size; 74 unsigned region_shift; 75 76 /* holds persistent region state */ 77 struct dirty_log *log; 78 79 /* hash table */ 80 rwlock_t hash_lock; 81 mempool_t *region_pool; 82 unsigned int mask; 83 unsigned int nr_buckets; 84 struct list_head *buckets; 85 86 spinlock_t region_lock; 87 atomic_t recovery_in_flight; 88 struct semaphore recovery_count; 89 struct list_head clean_regions; 90 struct list_head quiesced_regions; 91 struct list_head recovered_regions; 92 struct list_head failed_recovered_regions; 93 }; 94 95 enum { 96 RH_CLEAN, 97 RH_DIRTY, 98 RH_NOSYNC, 99 RH_RECOVERING 100 }; 101 102 struct region { 103 struct region_hash *rh; /* FIXME: can we get rid of this ? */ 104 region_t key; 105 int state; 106 107 struct list_head hash_list; 108 struct list_head list; 109 110 atomic_t pending; 111 struct bio_list delayed_bios; 112 }; 113 114 115 /*----------------------------------------------------------------- 116 * Mirror set structures. 117 *---------------------------------------------------------------*/ 118 enum dm_raid1_error { 119 DM_RAID1_WRITE_ERROR, 120 DM_RAID1_SYNC_ERROR, 121 DM_RAID1_READ_ERROR 122 }; 123 124 struct mirror { 125 struct mirror_set *ms; 126 atomic_t error_count; 127 unsigned long error_type; 128 struct dm_dev *dev; 129 sector_t offset; 130 }; 131 132 struct mirror_set { 133 struct dm_target *ti; 134 struct list_head list; 135 struct region_hash rh; 136 struct kcopyd_client *kcopyd_client; 137 uint64_t features; 138 139 spinlock_t lock; /* protects the lists */ 140 struct bio_list reads; 141 struct bio_list writes; 142 struct bio_list failures; 143 144 struct dm_io_client *io_client; 145 mempool_t *read_record_pool; 146 147 /* recovery */ 148 region_t nr_regions; 149 int in_sync; 150 int log_failure; 151 atomic_t suspend; 152 153 atomic_t default_mirror; /* Default mirror */ 154 155 struct workqueue_struct *kmirrord_wq; 156 struct work_struct kmirrord_work; 157 struct work_struct trigger_event; 158 159 unsigned int nr_mirrors; 160 struct mirror mirror[0]; 161 }; 162 163 /* 164 * Conversion fns 165 */ 166 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio) 167 { 168 return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift; 169 } 170 171 static inline sector_t region_to_sector(struct region_hash *rh, region_t region) 172 { 173 return region << rh->region_shift; 174 } 175 176 static void wake(struct mirror_set *ms) 177 { 178 queue_work(ms->kmirrord_wq, &ms->kmirrord_work); 179 } 180 181 /* FIXME move this */ 182 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw); 183 184 #define MIN_REGIONS 64 185 #define MAX_RECOVERY 1 186 static int rh_init(struct region_hash *rh, struct mirror_set *ms, 187 struct dirty_log *log, uint32_t region_size, 188 region_t nr_regions) 189 { 190 unsigned int nr_buckets, max_buckets; 191 size_t i; 192 193 /* 194 * Calculate a suitable number of buckets for our hash 195 * table. 196 */ 197 max_buckets = nr_regions >> 6; 198 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1) 199 ; 200 nr_buckets >>= 1; 201 202 rh->ms = ms; 203 rh->log = log; 204 rh->region_size = region_size; 205 rh->region_shift = ffs(region_size) - 1; 206 rwlock_init(&rh->hash_lock); 207 rh->mask = nr_buckets - 1; 208 rh->nr_buckets = nr_buckets; 209 210 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets)); 211 if (!rh->buckets) { 212 DMERR("unable to allocate region hash memory"); 213 return -ENOMEM; 214 } 215 216 for (i = 0; i < nr_buckets; i++) 217 INIT_LIST_HEAD(rh->buckets + i); 218 219 spin_lock_init(&rh->region_lock); 220 sema_init(&rh->recovery_count, 0); 221 atomic_set(&rh->recovery_in_flight, 0); 222 INIT_LIST_HEAD(&rh->clean_regions); 223 INIT_LIST_HEAD(&rh->quiesced_regions); 224 INIT_LIST_HEAD(&rh->recovered_regions); 225 INIT_LIST_HEAD(&rh->failed_recovered_regions); 226 227 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS, 228 sizeof(struct region)); 229 if (!rh->region_pool) { 230 vfree(rh->buckets); 231 rh->buckets = NULL; 232 return -ENOMEM; 233 } 234 235 return 0; 236 } 237 238 static void rh_exit(struct region_hash *rh) 239 { 240 unsigned int h; 241 struct region *reg, *nreg; 242 243 BUG_ON(!list_empty(&rh->quiesced_regions)); 244 for (h = 0; h < rh->nr_buckets; h++) { 245 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) { 246 BUG_ON(atomic_read(®->pending)); 247 mempool_free(reg, rh->region_pool); 248 } 249 } 250 251 if (rh->log) 252 dm_destroy_dirty_log(rh->log); 253 if (rh->region_pool) 254 mempool_destroy(rh->region_pool); 255 vfree(rh->buckets); 256 } 257 258 #define RH_HASH_MULT 2654435387U 259 260 static inline unsigned int rh_hash(struct region_hash *rh, region_t region) 261 { 262 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask; 263 } 264 265 static struct region *__rh_lookup(struct region_hash *rh, region_t region) 266 { 267 struct region *reg; 268 269 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list) 270 if (reg->key == region) 271 return reg; 272 273 return NULL; 274 } 275 276 static void __rh_insert(struct region_hash *rh, struct region *reg) 277 { 278 unsigned int h = rh_hash(rh, reg->key); 279 list_add(®->hash_list, rh->buckets + h); 280 } 281 282 static struct region *__rh_alloc(struct region_hash *rh, region_t region) 283 { 284 struct region *reg, *nreg; 285 286 read_unlock(&rh->hash_lock); 287 nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC); 288 if (unlikely(!nreg)) 289 nreg = kmalloc(sizeof(struct region), GFP_NOIO); 290 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ? 291 RH_CLEAN : RH_NOSYNC; 292 nreg->rh = rh; 293 nreg->key = region; 294 295 INIT_LIST_HEAD(&nreg->list); 296 297 atomic_set(&nreg->pending, 0); 298 bio_list_init(&nreg->delayed_bios); 299 write_lock_irq(&rh->hash_lock); 300 301 reg = __rh_lookup(rh, region); 302 if (reg) 303 /* we lost the race */ 304 mempool_free(nreg, rh->region_pool); 305 306 else { 307 __rh_insert(rh, nreg); 308 if (nreg->state == RH_CLEAN) { 309 spin_lock(&rh->region_lock); 310 list_add(&nreg->list, &rh->clean_regions); 311 spin_unlock(&rh->region_lock); 312 } 313 reg = nreg; 314 } 315 write_unlock_irq(&rh->hash_lock); 316 read_lock(&rh->hash_lock); 317 318 return reg; 319 } 320 321 static inline struct region *__rh_find(struct region_hash *rh, region_t region) 322 { 323 struct region *reg; 324 325 reg = __rh_lookup(rh, region); 326 if (!reg) 327 reg = __rh_alloc(rh, region); 328 329 return reg; 330 } 331 332 static int rh_state(struct region_hash *rh, region_t region, int may_block) 333 { 334 int r; 335 struct region *reg; 336 337 read_lock(&rh->hash_lock); 338 reg = __rh_lookup(rh, region); 339 read_unlock(&rh->hash_lock); 340 341 if (reg) 342 return reg->state; 343 344 /* 345 * The region wasn't in the hash, so we fall back to the 346 * dirty log. 347 */ 348 r = rh->log->type->in_sync(rh->log, region, may_block); 349 350 /* 351 * Any error from the dirty log (eg. -EWOULDBLOCK) gets 352 * taken as a RH_NOSYNC 353 */ 354 return r == 1 ? RH_CLEAN : RH_NOSYNC; 355 } 356 357 static inline int rh_in_sync(struct region_hash *rh, 358 region_t region, int may_block) 359 { 360 int state = rh_state(rh, region, may_block); 361 return state == RH_CLEAN || state == RH_DIRTY; 362 } 363 364 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list) 365 { 366 struct bio *bio; 367 368 while ((bio = bio_list_pop(bio_list))) { 369 queue_bio(ms, bio, WRITE); 370 } 371 } 372 373 static void complete_resync_work(struct region *reg, int success) 374 { 375 struct region_hash *rh = reg->rh; 376 377 rh->log->type->set_region_sync(rh->log, reg->key, success); 378 379 /* 380 * Dispatch the bios before we call 'wake_up_all'. 381 * This is important because if we are suspending, 382 * we want to know that recovery is complete and 383 * the work queue is flushed. If we wake_up_all 384 * before we dispatch_bios (queue bios and call wake()), 385 * then we risk suspending before the work queue 386 * has been properly flushed. 387 */ 388 dispatch_bios(rh->ms, ®->delayed_bios); 389 if (atomic_dec_and_test(&rh->recovery_in_flight)) 390 wake_up_all(&_kmirrord_recovery_stopped); 391 up(&rh->recovery_count); 392 } 393 394 static void rh_update_states(struct region_hash *rh) 395 { 396 struct region *reg, *next; 397 398 LIST_HEAD(clean); 399 LIST_HEAD(recovered); 400 LIST_HEAD(failed_recovered); 401 402 /* 403 * Quickly grab the lists. 404 */ 405 write_lock_irq(&rh->hash_lock); 406 spin_lock(&rh->region_lock); 407 if (!list_empty(&rh->clean_regions)) { 408 list_splice(&rh->clean_regions, &clean); 409 INIT_LIST_HEAD(&rh->clean_regions); 410 411 list_for_each_entry(reg, &clean, list) 412 list_del(®->hash_list); 413 } 414 415 if (!list_empty(&rh->recovered_regions)) { 416 list_splice(&rh->recovered_regions, &recovered); 417 INIT_LIST_HEAD(&rh->recovered_regions); 418 419 list_for_each_entry (reg, &recovered, list) 420 list_del(®->hash_list); 421 } 422 423 if (!list_empty(&rh->failed_recovered_regions)) { 424 list_splice(&rh->failed_recovered_regions, &failed_recovered); 425 INIT_LIST_HEAD(&rh->failed_recovered_regions); 426 427 list_for_each_entry(reg, &failed_recovered, list) 428 list_del(®->hash_list); 429 } 430 431 spin_unlock(&rh->region_lock); 432 write_unlock_irq(&rh->hash_lock); 433 434 /* 435 * All the regions on the recovered and clean lists have 436 * now been pulled out of the system, so no need to do 437 * any more locking. 438 */ 439 list_for_each_entry_safe (reg, next, &recovered, list) { 440 rh->log->type->clear_region(rh->log, reg->key); 441 complete_resync_work(reg, 1); 442 mempool_free(reg, rh->region_pool); 443 } 444 445 list_for_each_entry_safe(reg, next, &failed_recovered, list) { 446 complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1); 447 mempool_free(reg, rh->region_pool); 448 } 449 450 list_for_each_entry_safe(reg, next, &clean, list) { 451 rh->log->type->clear_region(rh->log, reg->key); 452 mempool_free(reg, rh->region_pool); 453 } 454 455 rh->log->type->flush(rh->log); 456 } 457 458 static void rh_inc(struct region_hash *rh, region_t region) 459 { 460 struct region *reg; 461 462 read_lock(&rh->hash_lock); 463 reg = __rh_find(rh, region); 464 465 spin_lock_irq(&rh->region_lock); 466 atomic_inc(®->pending); 467 468 if (reg->state == RH_CLEAN) { 469 reg->state = RH_DIRTY; 470 list_del_init(®->list); /* take off the clean list */ 471 spin_unlock_irq(&rh->region_lock); 472 473 rh->log->type->mark_region(rh->log, reg->key); 474 } else 475 spin_unlock_irq(&rh->region_lock); 476 477 478 read_unlock(&rh->hash_lock); 479 } 480 481 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios) 482 { 483 struct bio *bio; 484 485 for (bio = bios->head; bio; bio = bio->bi_next) 486 rh_inc(rh, bio_to_region(rh, bio)); 487 } 488 489 static void rh_dec(struct region_hash *rh, region_t region) 490 { 491 unsigned long flags; 492 struct region *reg; 493 int should_wake = 0; 494 495 read_lock(&rh->hash_lock); 496 reg = __rh_lookup(rh, region); 497 read_unlock(&rh->hash_lock); 498 499 spin_lock_irqsave(&rh->region_lock, flags); 500 if (atomic_dec_and_test(®->pending)) { 501 /* 502 * There is no pending I/O for this region. 503 * We can move the region to corresponding list for next action. 504 * At this point, the region is not yet connected to any list. 505 * 506 * If the state is RH_NOSYNC, the region should be kept off 507 * from clean list. 508 * The hash entry for RH_NOSYNC will remain in memory 509 * until the region is recovered or the map is reloaded. 510 */ 511 512 /* do nothing for RH_NOSYNC */ 513 if (reg->state == RH_RECOVERING) { 514 list_add_tail(®->list, &rh->quiesced_regions); 515 } else if (reg->state == RH_DIRTY) { 516 reg->state = RH_CLEAN; 517 list_add(®->list, &rh->clean_regions); 518 } 519 should_wake = 1; 520 } 521 spin_unlock_irqrestore(&rh->region_lock, flags); 522 523 if (should_wake) 524 wake(rh->ms); 525 } 526 527 /* 528 * Starts quiescing a region in preparation for recovery. 529 */ 530 static int __rh_recovery_prepare(struct region_hash *rh) 531 { 532 int r; 533 struct region *reg; 534 region_t region; 535 536 /* 537 * Ask the dirty log what's next. 538 */ 539 r = rh->log->type->get_resync_work(rh->log, ®ion); 540 if (r <= 0) 541 return r; 542 543 /* 544 * Get this region, and start it quiescing by setting the 545 * recovering flag. 546 */ 547 read_lock(&rh->hash_lock); 548 reg = __rh_find(rh, region); 549 read_unlock(&rh->hash_lock); 550 551 spin_lock_irq(&rh->region_lock); 552 reg->state = RH_RECOVERING; 553 554 /* Already quiesced ? */ 555 if (atomic_read(®->pending)) 556 list_del_init(®->list); 557 else 558 list_move(®->list, &rh->quiesced_regions); 559 560 spin_unlock_irq(&rh->region_lock); 561 562 return 1; 563 } 564 565 static void rh_recovery_prepare(struct region_hash *rh) 566 { 567 /* Extra reference to avoid race with rh_stop_recovery */ 568 atomic_inc(&rh->recovery_in_flight); 569 570 while (!down_trylock(&rh->recovery_count)) { 571 atomic_inc(&rh->recovery_in_flight); 572 if (__rh_recovery_prepare(rh) <= 0) { 573 atomic_dec(&rh->recovery_in_flight); 574 up(&rh->recovery_count); 575 break; 576 } 577 } 578 579 /* Drop the extra reference */ 580 if (atomic_dec_and_test(&rh->recovery_in_flight)) 581 wake_up_all(&_kmirrord_recovery_stopped); 582 } 583 584 /* 585 * Returns any quiesced regions. 586 */ 587 static struct region *rh_recovery_start(struct region_hash *rh) 588 { 589 struct region *reg = NULL; 590 591 spin_lock_irq(&rh->region_lock); 592 if (!list_empty(&rh->quiesced_regions)) { 593 reg = list_entry(rh->quiesced_regions.next, 594 struct region, list); 595 list_del_init(®->list); /* remove from the quiesced list */ 596 } 597 spin_unlock_irq(&rh->region_lock); 598 599 return reg; 600 } 601 602 static void rh_recovery_end(struct region *reg, int success) 603 { 604 struct region_hash *rh = reg->rh; 605 606 spin_lock_irq(&rh->region_lock); 607 if (success) 608 list_add(®->list, ®->rh->recovered_regions); 609 else { 610 reg->state = RH_NOSYNC; 611 list_add(®->list, ®->rh->failed_recovered_regions); 612 } 613 spin_unlock_irq(&rh->region_lock); 614 615 wake(rh->ms); 616 } 617 618 static int rh_flush(struct region_hash *rh) 619 { 620 return rh->log->type->flush(rh->log); 621 } 622 623 static void rh_delay(struct region_hash *rh, struct bio *bio) 624 { 625 struct region *reg; 626 627 read_lock(&rh->hash_lock); 628 reg = __rh_find(rh, bio_to_region(rh, bio)); 629 bio_list_add(®->delayed_bios, bio); 630 read_unlock(&rh->hash_lock); 631 } 632 633 static void rh_stop_recovery(struct region_hash *rh) 634 { 635 int i; 636 637 /* wait for any recovering regions */ 638 for (i = 0; i < MAX_RECOVERY; i++) 639 down(&rh->recovery_count); 640 } 641 642 static void rh_start_recovery(struct region_hash *rh) 643 { 644 int i; 645 646 for (i = 0; i < MAX_RECOVERY; i++) 647 up(&rh->recovery_count); 648 649 wake(rh->ms); 650 } 651 652 #define MIN_READ_RECORDS 20 653 struct dm_raid1_read_record { 654 struct mirror *m; 655 struct dm_bio_details details; 656 }; 657 658 /* 659 * Every mirror should look like this one. 660 */ 661 #define DEFAULT_MIRROR 0 662 663 /* 664 * This is yucky. We squirrel the mirror struct away inside 665 * bi_next for read/write buffers. This is safe since the bh 666 * doesn't get submitted to the lower levels of block layer. 667 */ 668 static struct mirror *bio_get_m(struct bio *bio) 669 { 670 return (struct mirror *) bio->bi_next; 671 } 672 673 static void bio_set_m(struct bio *bio, struct mirror *m) 674 { 675 bio->bi_next = (struct bio *) m; 676 } 677 678 static struct mirror *get_default_mirror(struct mirror_set *ms) 679 { 680 return &ms->mirror[atomic_read(&ms->default_mirror)]; 681 } 682 683 static void set_default_mirror(struct mirror *m) 684 { 685 struct mirror_set *ms = m->ms; 686 struct mirror *m0 = &(ms->mirror[0]); 687 688 atomic_set(&ms->default_mirror, m - m0); 689 } 690 691 /* fail_mirror 692 * @m: mirror device to fail 693 * @error_type: one of the enum's, DM_RAID1_*_ERROR 694 * 695 * If errors are being handled, record the type of 696 * error encountered for this device. If this type 697 * of error has already been recorded, we can return; 698 * otherwise, we must signal userspace by triggering 699 * an event. Additionally, if the device is the 700 * primary device, we must choose a new primary, but 701 * only if the mirror is in-sync. 702 * 703 * This function must not block. 704 */ 705 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type) 706 { 707 struct mirror_set *ms = m->ms; 708 struct mirror *new; 709 710 if (!errors_handled(ms)) 711 return; 712 713 /* 714 * error_count is used for nothing more than a 715 * simple way to tell if a device has encountered 716 * errors. 717 */ 718 atomic_inc(&m->error_count); 719 720 if (test_and_set_bit(error_type, &m->error_type)) 721 return; 722 723 if (m != get_default_mirror(ms)) 724 goto out; 725 726 if (!ms->in_sync) { 727 /* 728 * Better to issue requests to same failing device 729 * than to risk returning corrupt data. 730 */ 731 DMERR("Primary mirror (%s) failed while out-of-sync: " 732 "Reads may fail.", m->dev->name); 733 goto out; 734 } 735 736 for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++) 737 if (!atomic_read(&new->error_count)) { 738 set_default_mirror(new); 739 break; 740 } 741 742 if (unlikely(new == ms->mirror + ms->nr_mirrors)) 743 DMWARN("All sides of mirror have failed."); 744 745 out: 746 schedule_work(&ms->trigger_event); 747 } 748 749 /*----------------------------------------------------------------- 750 * Recovery. 751 * 752 * When a mirror is first activated we may find that some regions 753 * are in the no-sync state. We have to recover these by 754 * recopying from the default mirror to all the others. 755 *---------------------------------------------------------------*/ 756 static void recovery_complete(int read_err, unsigned long write_err, 757 void *context) 758 { 759 struct region *reg = (struct region *)context; 760 struct mirror_set *ms = reg->rh->ms; 761 int m, bit = 0; 762 763 if (read_err) { 764 /* Read error means the failure of default mirror. */ 765 DMERR_LIMIT("Unable to read primary mirror during recovery"); 766 fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR); 767 } 768 769 if (write_err) { 770 DMERR_LIMIT("Write error during recovery (error = 0x%lx)", 771 write_err); 772 /* 773 * Bits correspond to devices (excluding default mirror). 774 * The default mirror cannot change during recovery. 775 */ 776 for (m = 0; m < ms->nr_mirrors; m++) { 777 if (&ms->mirror[m] == get_default_mirror(ms)) 778 continue; 779 if (test_bit(bit, &write_err)) 780 fail_mirror(ms->mirror + m, 781 DM_RAID1_SYNC_ERROR); 782 bit++; 783 } 784 } 785 786 rh_recovery_end(reg, !(read_err || write_err)); 787 } 788 789 static int recover(struct mirror_set *ms, struct region *reg) 790 { 791 int r; 792 unsigned int i; 793 struct io_region from, to[KCOPYD_MAX_REGIONS], *dest; 794 struct mirror *m; 795 unsigned long flags = 0; 796 797 /* fill in the source */ 798 m = get_default_mirror(ms); 799 from.bdev = m->dev->bdev; 800 from.sector = m->offset + region_to_sector(reg->rh, reg->key); 801 if (reg->key == (ms->nr_regions - 1)) { 802 /* 803 * The final region may be smaller than 804 * region_size. 805 */ 806 from.count = ms->ti->len & (reg->rh->region_size - 1); 807 if (!from.count) 808 from.count = reg->rh->region_size; 809 } else 810 from.count = reg->rh->region_size; 811 812 /* fill in the destinations */ 813 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 814 if (&ms->mirror[i] == get_default_mirror(ms)) 815 continue; 816 817 m = ms->mirror + i; 818 dest->bdev = m->dev->bdev; 819 dest->sector = m->offset + region_to_sector(reg->rh, reg->key); 820 dest->count = from.count; 821 dest++; 822 } 823 824 /* hand to kcopyd */ 825 set_bit(KCOPYD_IGNORE_ERROR, &flags); 826 r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags, 827 recovery_complete, reg); 828 829 return r; 830 } 831 832 static void do_recovery(struct mirror_set *ms) 833 { 834 int r; 835 struct region *reg; 836 struct dirty_log *log = ms->rh.log; 837 838 /* 839 * Start quiescing some regions. 840 */ 841 rh_recovery_prepare(&ms->rh); 842 843 /* 844 * Copy any already quiesced regions. 845 */ 846 while ((reg = rh_recovery_start(&ms->rh))) { 847 r = recover(ms, reg); 848 if (r) 849 rh_recovery_end(reg, 0); 850 } 851 852 /* 853 * Update the in sync flag. 854 */ 855 if (!ms->in_sync && 856 (log->type->get_sync_count(log) == ms->nr_regions)) { 857 /* the sync is complete */ 858 dm_table_event(ms->ti->table); 859 ms->in_sync = 1; 860 } 861 } 862 863 /*----------------------------------------------------------------- 864 * Reads 865 *---------------------------------------------------------------*/ 866 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 867 { 868 struct mirror *m = get_default_mirror(ms); 869 870 do { 871 if (likely(!atomic_read(&m->error_count))) 872 return m; 873 874 if (m-- == ms->mirror) 875 m += ms->nr_mirrors; 876 } while (m != get_default_mirror(ms)); 877 878 return NULL; 879 } 880 881 static int default_ok(struct mirror *m) 882 { 883 struct mirror *default_mirror = get_default_mirror(m->ms); 884 885 return !atomic_read(&default_mirror->error_count); 886 } 887 888 static int mirror_available(struct mirror_set *ms, struct bio *bio) 889 { 890 region_t region = bio_to_region(&ms->rh, bio); 891 892 if (ms->rh.log->type->in_sync(ms->rh.log, region, 0)) 893 return choose_mirror(ms, bio->bi_sector) ? 1 : 0; 894 895 return 0; 896 } 897 898 /* 899 * remap a buffer to a particular mirror. 900 */ 901 static sector_t map_sector(struct mirror *m, struct bio *bio) 902 { 903 return m->offset + (bio->bi_sector - m->ms->ti->begin); 904 } 905 906 static void map_bio(struct mirror *m, struct bio *bio) 907 { 908 bio->bi_bdev = m->dev->bdev; 909 bio->bi_sector = map_sector(m, bio); 910 } 911 912 static void map_region(struct io_region *io, struct mirror *m, 913 struct bio *bio) 914 { 915 io->bdev = m->dev->bdev; 916 io->sector = map_sector(m, bio); 917 io->count = bio->bi_size >> 9; 918 } 919 920 /*----------------------------------------------------------------- 921 * Reads 922 *---------------------------------------------------------------*/ 923 static void read_callback(unsigned long error, void *context) 924 { 925 struct bio *bio = context; 926 struct mirror *m; 927 928 m = bio_get_m(bio); 929 bio_set_m(bio, NULL); 930 931 if (likely(!error)) { 932 bio_endio(bio, 0); 933 return; 934 } 935 936 fail_mirror(m, DM_RAID1_READ_ERROR); 937 938 if (likely(default_ok(m)) || mirror_available(m->ms, bio)) { 939 DMWARN_LIMIT("Read failure on mirror device %s. " 940 "Trying alternative device.", 941 m->dev->name); 942 queue_bio(m->ms, bio, bio_rw(bio)); 943 return; 944 } 945 946 DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.", 947 m->dev->name); 948 bio_endio(bio, -EIO); 949 } 950 951 /* Asynchronous read. */ 952 static void read_async_bio(struct mirror *m, struct bio *bio) 953 { 954 struct io_region io; 955 struct dm_io_request io_req = { 956 .bi_rw = READ, 957 .mem.type = DM_IO_BVEC, 958 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 959 .notify.fn = read_callback, 960 .notify.context = bio, 961 .client = m->ms->io_client, 962 }; 963 964 map_region(&io, m, bio); 965 bio_set_m(bio, m); 966 (void) dm_io(&io_req, 1, &io, NULL); 967 } 968 969 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 970 { 971 region_t region; 972 struct bio *bio; 973 struct mirror *m; 974 975 while ((bio = bio_list_pop(reads))) { 976 region = bio_to_region(&ms->rh, bio); 977 m = get_default_mirror(ms); 978 979 /* 980 * We can only read balance if the region is in sync. 981 */ 982 if (likely(rh_in_sync(&ms->rh, region, 1))) 983 m = choose_mirror(ms, bio->bi_sector); 984 else if (m && atomic_read(&m->error_count)) 985 m = NULL; 986 987 if (likely(m)) 988 read_async_bio(m, bio); 989 else 990 bio_endio(bio, -EIO); 991 } 992 } 993 994 /*----------------------------------------------------------------- 995 * Writes. 996 * 997 * We do different things with the write io depending on the 998 * state of the region that it's in: 999 * 1000 * SYNC: increment pending, use kcopyd to write to *all* mirrors 1001 * RECOVERING: delay the io until recovery completes 1002 * NOSYNC: increment pending, just write to the default mirror 1003 *---------------------------------------------------------------*/ 1004 1005 /* __bio_mark_nosync 1006 * @ms 1007 * @bio 1008 * @done 1009 * @error 1010 * 1011 * The bio was written on some mirror(s) but failed on other mirror(s). 1012 * We can successfully endio the bio but should avoid the region being 1013 * marked clean by setting the state RH_NOSYNC. 1014 * 1015 * This function is _not_ safe in interrupt context! 1016 */ 1017 static void __bio_mark_nosync(struct mirror_set *ms, 1018 struct bio *bio, unsigned done, int error) 1019 { 1020 unsigned long flags; 1021 struct region_hash *rh = &ms->rh; 1022 struct dirty_log *log = ms->rh.log; 1023 struct region *reg; 1024 region_t region = bio_to_region(rh, bio); 1025 int recovering = 0; 1026 1027 /* We must inform the log that the sync count has changed. */ 1028 log->type->set_region_sync(log, region, 0); 1029 ms->in_sync = 0; 1030 1031 read_lock(&rh->hash_lock); 1032 reg = __rh_find(rh, region); 1033 read_unlock(&rh->hash_lock); 1034 1035 /* region hash entry should exist because write was in-flight */ 1036 BUG_ON(!reg); 1037 BUG_ON(!list_empty(®->list)); 1038 1039 spin_lock_irqsave(&rh->region_lock, flags); 1040 /* 1041 * Possible cases: 1042 * 1) RH_DIRTY 1043 * 2) RH_NOSYNC: was dirty, other preceeding writes failed 1044 * 3) RH_RECOVERING: flushing pending writes 1045 * Either case, the region should have not been connected to list. 1046 */ 1047 recovering = (reg->state == RH_RECOVERING); 1048 reg->state = RH_NOSYNC; 1049 BUG_ON(!list_empty(®->list)); 1050 spin_unlock_irqrestore(&rh->region_lock, flags); 1051 1052 bio_endio(bio, error); 1053 if (recovering) 1054 complete_resync_work(reg, 0); 1055 } 1056 1057 static void write_callback(unsigned long error, void *context) 1058 { 1059 unsigned i, ret = 0; 1060 struct bio *bio = (struct bio *) context; 1061 struct mirror_set *ms; 1062 int uptodate = 0; 1063 int should_wake = 0; 1064 unsigned long flags; 1065 1066 ms = bio_get_m(bio)->ms; 1067 bio_set_m(bio, NULL); 1068 1069 /* 1070 * NOTE: We don't decrement the pending count here, 1071 * instead it is done by the targets endio function. 1072 * This way we handle both writes to SYNC and NOSYNC 1073 * regions with the same code. 1074 */ 1075 if (likely(!error)) 1076 goto out; 1077 1078 for (i = 0; i < ms->nr_mirrors; i++) 1079 if (test_bit(i, &error)) 1080 fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR); 1081 else 1082 uptodate = 1; 1083 1084 if (unlikely(!uptodate)) { 1085 DMERR("All replicated volumes dead, failing I/O"); 1086 /* None of the writes succeeded, fail the I/O. */ 1087 ret = -EIO; 1088 } else if (errors_handled(ms)) { 1089 /* 1090 * Need to raise event. Since raising 1091 * events can block, we need to do it in 1092 * the main thread. 1093 */ 1094 spin_lock_irqsave(&ms->lock, flags); 1095 if (!ms->failures.head) 1096 should_wake = 1; 1097 bio_list_add(&ms->failures, bio); 1098 spin_unlock_irqrestore(&ms->lock, flags); 1099 if (should_wake) 1100 wake(ms); 1101 return; 1102 } 1103 out: 1104 bio_endio(bio, ret); 1105 } 1106 1107 static void do_write(struct mirror_set *ms, struct bio *bio) 1108 { 1109 unsigned int i; 1110 struct io_region io[ms->nr_mirrors], *dest = io; 1111 struct mirror *m; 1112 struct dm_io_request io_req = { 1113 .bi_rw = WRITE, 1114 .mem.type = DM_IO_BVEC, 1115 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 1116 .notify.fn = write_callback, 1117 .notify.context = bio, 1118 .client = ms->io_client, 1119 }; 1120 1121 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) 1122 map_region(dest++, m, bio); 1123 1124 /* 1125 * Use default mirror because we only need it to retrieve the reference 1126 * to the mirror set in write_callback(). 1127 */ 1128 bio_set_m(bio, get_default_mirror(ms)); 1129 1130 (void) dm_io(&io_req, ms->nr_mirrors, io, NULL); 1131 } 1132 1133 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 1134 { 1135 int state; 1136 struct bio *bio; 1137 struct bio_list sync, nosync, recover, *this_list = NULL; 1138 1139 if (!writes->head) 1140 return; 1141 1142 /* 1143 * Classify each write. 1144 */ 1145 bio_list_init(&sync); 1146 bio_list_init(&nosync); 1147 bio_list_init(&recover); 1148 1149 while ((bio = bio_list_pop(writes))) { 1150 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1); 1151 switch (state) { 1152 case RH_CLEAN: 1153 case RH_DIRTY: 1154 this_list = &sync; 1155 break; 1156 1157 case RH_NOSYNC: 1158 this_list = &nosync; 1159 break; 1160 1161 case RH_RECOVERING: 1162 this_list = &recover; 1163 break; 1164 } 1165 1166 bio_list_add(this_list, bio); 1167 } 1168 1169 /* 1170 * Increment the pending counts for any regions that will 1171 * be written to (writes to recover regions are going to 1172 * be delayed). 1173 */ 1174 rh_inc_pending(&ms->rh, &sync); 1175 rh_inc_pending(&ms->rh, &nosync); 1176 ms->log_failure = rh_flush(&ms->rh) ? 1 : 0; 1177 1178 /* 1179 * Dispatch io. 1180 */ 1181 if (unlikely(ms->log_failure)) { 1182 spin_lock_irq(&ms->lock); 1183 bio_list_merge(&ms->failures, &sync); 1184 spin_unlock_irq(&ms->lock); 1185 } else 1186 while ((bio = bio_list_pop(&sync))) 1187 do_write(ms, bio); 1188 1189 while ((bio = bio_list_pop(&recover))) 1190 rh_delay(&ms->rh, bio); 1191 1192 while ((bio = bio_list_pop(&nosync))) { 1193 map_bio(get_default_mirror(ms), bio); 1194 generic_make_request(bio); 1195 } 1196 } 1197 1198 static void do_failures(struct mirror_set *ms, struct bio_list *failures) 1199 { 1200 struct bio *bio; 1201 1202 if (!failures->head) 1203 return; 1204 1205 if (!ms->log_failure) { 1206 while ((bio = bio_list_pop(failures))) 1207 __bio_mark_nosync(ms, bio, bio->bi_size, 0); 1208 return; 1209 } 1210 1211 /* 1212 * If the log has failed, unattempted writes are being 1213 * put on the failures list. We can't issue those writes 1214 * until a log has been marked, so we must store them. 1215 * 1216 * If a 'noflush' suspend is in progress, we can requeue 1217 * the I/O's to the core. This give userspace a chance 1218 * to reconfigure the mirror, at which point the core 1219 * will reissue the writes. If the 'noflush' flag is 1220 * not set, we have no choice but to return errors. 1221 * 1222 * Some writes on the failures list may have been 1223 * submitted before the log failure and represent a 1224 * failure to write to one of the devices. It is ok 1225 * for us to treat them the same and requeue them 1226 * as well. 1227 */ 1228 if (dm_noflush_suspending(ms->ti)) { 1229 while ((bio = bio_list_pop(failures))) 1230 bio_endio(bio, DM_ENDIO_REQUEUE); 1231 return; 1232 } 1233 1234 if (atomic_read(&ms->suspend)) { 1235 while ((bio = bio_list_pop(failures))) 1236 bio_endio(bio, -EIO); 1237 return; 1238 } 1239 1240 spin_lock_irq(&ms->lock); 1241 bio_list_merge(&ms->failures, failures); 1242 spin_unlock_irq(&ms->lock); 1243 1244 wake(ms); 1245 } 1246 1247 static void trigger_event(struct work_struct *work) 1248 { 1249 struct mirror_set *ms = 1250 container_of(work, struct mirror_set, trigger_event); 1251 1252 dm_table_event(ms->ti->table); 1253 } 1254 1255 /*----------------------------------------------------------------- 1256 * kmirrord 1257 *---------------------------------------------------------------*/ 1258 static int _do_mirror(struct work_struct *work) 1259 { 1260 struct mirror_set *ms =container_of(work, struct mirror_set, 1261 kmirrord_work); 1262 struct bio_list reads, writes, failures; 1263 unsigned long flags; 1264 1265 spin_lock_irqsave(&ms->lock, flags); 1266 reads = ms->reads; 1267 writes = ms->writes; 1268 failures = ms->failures; 1269 bio_list_init(&ms->reads); 1270 bio_list_init(&ms->writes); 1271 bio_list_init(&ms->failures); 1272 spin_unlock_irqrestore(&ms->lock, flags); 1273 1274 rh_update_states(&ms->rh); 1275 do_recovery(ms); 1276 do_reads(ms, &reads); 1277 do_writes(ms, &writes); 1278 do_failures(ms, &failures); 1279 1280 return (ms->failures.head) ? 1 : 0; 1281 } 1282 1283 static void do_mirror(struct work_struct *work) 1284 { 1285 /* 1286 * If _do_mirror returns 1, we give it 1287 * another shot. This helps for cases like 1288 * 'suspend' where we call flush_workqueue 1289 * and expect all work to be finished. If 1290 * a failure happens during a suspend, we 1291 * couldn't issue a 'wake' because it would 1292 * not be honored. Therefore, we return '1' 1293 * from _do_mirror, and retry here. 1294 */ 1295 while (_do_mirror(work)) 1296 schedule(); 1297 } 1298 1299 1300 /*----------------------------------------------------------------- 1301 * Target functions 1302 *---------------------------------------------------------------*/ 1303 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 1304 uint32_t region_size, 1305 struct dm_target *ti, 1306 struct dirty_log *dl) 1307 { 1308 size_t len; 1309 struct mirror_set *ms = NULL; 1310 1311 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors)) 1312 return NULL; 1313 1314 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors); 1315 1316 ms = kzalloc(len, GFP_KERNEL); 1317 if (!ms) { 1318 ti->error = "Cannot allocate mirror context"; 1319 return NULL; 1320 } 1321 1322 spin_lock_init(&ms->lock); 1323 1324 ms->ti = ti; 1325 ms->nr_mirrors = nr_mirrors; 1326 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 1327 ms->in_sync = 0; 1328 ms->log_failure = 0; 1329 atomic_set(&ms->suspend, 0); 1330 atomic_set(&ms->default_mirror, DEFAULT_MIRROR); 1331 1332 len = sizeof(struct dm_raid1_read_record); 1333 ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS, 1334 len); 1335 if (!ms->read_record_pool) { 1336 ti->error = "Error creating mirror read_record_pool"; 1337 kfree(ms); 1338 return NULL; 1339 } 1340 1341 ms->io_client = dm_io_client_create(DM_IO_PAGES); 1342 if (IS_ERR(ms->io_client)) { 1343 ti->error = "Error creating dm_io client"; 1344 mempool_destroy(ms->read_record_pool); 1345 kfree(ms); 1346 return NULL; 1347 } 1348 1349 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) { 1350 ti->error = "Error creating dirty region hash"; 1351 dm_io_client_destroy(ms->io_client); 1352 mempool_destroy(ms->read_record_pool); 1353 kfree(ms); 1354 return NULL; 1355 } 1356 1357 return ms; 1358 } 1359 1360 static void free_context(struct mirror_set *ms, struct dm_target *ti, 1361 unsigned int m) 1362 { 1363 while (m--) 1364 dm_put_device(ti, ms->mirror[m].dev); 1365 1366 dm_io_client_destroy(ms->io_client); 1367 rh_exit(&ms->rh); 1368 mempool_destroy(ms->read_record_pool); 1369 kfree(ms); 1370 } 1371 1372 static inline int _check_region_size(struct dm_target *ti, uint32_t size) 1373 { 1374 return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) || 1375 size > ti->len); 1376 } 1377 1378 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 1379 unsigned int mirror, char **argv) 1380 { 1381 unsigned long long offset; 1382 1383 if (sscanf(argv[1], "%llu", &offset) != 1) { 1384 ti->error = "Invalid offset"; 1385 return -EINVAL; 1386 } 1387 1388 if (dm_get_device(ti, argv[0], offset, ti->len, 1389 dm_table_get_mode(ti->table), 1390 &ms->mirror[mirror].dev)) { 1391 ti->error = "Device lookup failure"; 1392 return -ENXIO; 1393 } 1394 1395 ms->mirror[mirror].ms = ms; 1396 atomic_set(&(ms->mirror[mirror].error_count), 0); 1397 ms->mirror[mirror].error_type = 0; 1398 ms->mirror[mirror].offset = offset; 1399 1400 return 0; 1401 } 1402 1403 /* 1404 * Create dirty log: log_type #log_params <log_params> 1405 */ 1406 static struct dirty_log *create_dirty_log(struct dm_target *ti, 1407 unsigned int argc, char **argv, 1408 unsigned int *args_used) 1409 { 1410 unsigned int param_count; 1411 struct dirty_log *dl; 1412 1413 if (argc < 2) { 1414 ti->error = "Insufficient mirror log arguments"; 1415 return NULL; 1416 } 1417 1418 if (sscanf(argv[1], "%u", ¶m_count) != 1) { 1419 ti->error = "Invalid mirror log argument count"; 1420 return NULL; 1421 } 1422 1423 *args_used = 2 + param_count; 1424 1425 if (argc < *args_used) { 1426 ti->error = "Insufficient mirror log arguments"; 1427 return NULL; 1428 } 1429 1430 dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2); 1431 if (!dl) { 1432 ti->error = "Error creating mirror dirty log"; 1433 return NULL; 1434 } 1435 1436 if (!_check_region_size(ti, dl->type->get_region_size(dl))) { 1437 ti->error = "Invalid region size"; 1438 dm_destroy_dirty_log(dl); 1439 return NULL; 1440 } 1441 1442 return dl; 1443 } 1444 1445 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv, 1446 unsigned *args_used) 1447 { 1448 unsigned num_features; 1449 struct dm_target *ti = ms->ti; 1450 1451 *args_used = 0; 1452 1453 if (!argc) 1454 return 0; 1455 1456 if (sscanf(argv[0], "%u", &num_features) != 1) { 1457 ti->error = "Invalid number of features"; 1458 return -EINVAL; 1459 } 1460 1461 argc--; 1462 argv++; 1463 (*args_used)++; 1464 1465 if (num_features > argc) { 1466 ti->error = "Not enough arguments to support feature count"; 1467 return -EINVAL; 1468 } 1469 1470 if (!strcmp("handle_errors", argv[0])) 1471 ms->features |= DM_RAID1_HANDLE_ERRORS; 1472 else { 1473 ti->error = "Unrecognised feature requested"; 1474 return -EINVAL; 1475 } 1476 1477 (*args_used)++; 1478 1479 return 0; 1480 } 1481 1482 /* 1483 * Construct a mirror mapping: 1484 * 1485 * log_type #log_params <log_params> 1486 * #mirrors [mirror_path offset]{2,} 1487 * [#features <features>] 1488 * 1489 * log_type is "core" or "disk" 1490 * #log_params is between 1 and 3 1491 * 1492 * If present, features must be "handle_errors". 1493 */ 1494 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1495 { 1496 int r; 1497 unsigned int nr_mirrors, m, args_used; 1498 struct mirror_set *ms; 1499 struct dirty_log *dl; 1500 1501 dl = create_dirty_log(ti, argc, argv, &args_used); 1502 if (!dl) 1503 return -EINVAL; 1504 1505 argv += args_used; 1506 argc -= args_used; 1507 1508 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 || 1509 nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) { 1510 ti->error = "Invalid number of mirrors"; 1511 dm_destroy_dirty_log(dl); 1512 return -EINVAL; 1513 } 1514 1515 argv++, argc--; 1516 1517 if (argc < nr_mirrors * 2) { 1518 ti->error = "Too few mirror arguments"; 1519 dm_destroy_dirty_log(dl); 1520 return -EINVAL; 1521 } 1522 1523 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1524 if (!ms) { 1525 dm_destroy_dirty_log(dl); 1526 return -ENOMEM; 1527 } 1528 1529 /* Get the mirror parameter sets */ 1530 for (m = 0; m < nr_mirrors; m++) { 1531 r = get_mirror(ms, ti, m, argv); 1532 if (r) { 1533 free_context(ms, ti, m); 1534 return r; 1535 } 1536 argv += 2; 1537 argc -= 2; 1538 } 1539 1540 ti->private = ms; 1541 ti->split_io = ms->rh.region_size; 1542 1543 ms->kmirrord_wq = create_singlethread_workqueue("kmirrord"); 1544 if (!ms->kmirrord_wq) { 1545 DMERR("couldn't start kmirrord"); 1546 r = -ENOMEM; 1547 goto err_free_context; 1548 } 1549 INIT_WORK(&ms->kmirrord_work, do_mirror); 1550 INIT_WORK(&ms->trigger_event, trigger_event); 1551 1552 r = parse_features(ms, argc, argv, &args_used); 1553 if (r) 1554 goto err_destroy_wq; 1555 1556 argv += args_used; 1557 argc -= args_used; 1558 1559 /* 1560 * Any read-balancing addition depends on the 1561 * DM_RAID1_HANDLE_ERRORS flag being present. 1562 * This is because the decision to balance depends 1563 * on the sync state of a region. If the above 1564 * flag is not present, we ignore errors; and 1565 * the sync state may be inaccurate. 1566 */ 1567 1568 if (argc) { 1569 ti->error = "Too many mirror arguments"; 1570 r = -EINVAL; 1571 goto err_destroy_wq; 1572 } 1573 1574 r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client); 1575 if (r) 1576 goto err_destroy_wq; 1577 1578 wake(ms); 1579 return 0; 1580 1581 err_destroy_wq: 1582 destroy_workqueue(ms->kmirrord_wq); 1583 err_free_context: 1584 free_context(ms, ti, ms->nr_mirrors); 1585 return r; 1586 } 1587 1588 static void mirror_dtr(struct dm_target *ti) 1589 { 1590 struct mirror_set *ms = (struct mirror_set *) ti->private; 1591 1592 flush_workqueue(ms->kmirrord_wq); 1593 kcopyd_client_destroy(ms->kcopyd_client); 1594 destroy_workqueue(ms->kmirrord_wq); 1595 free_context(ms, ti, ms->nr_mirrors); 1596 } 1597 1598 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 1599 { 1600 unsigned long flags; 1601 int should_wake = 0; 1602 struct bio_list *bl; 1603 1604 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 1605 spin_lock_irqsave(&ms->lock, flags); 1606 should_wake = !(bl->head); 1607 bio_list_add(bl, bio); 1608 spin_unlock_irqrestore(&ms->lock, flags); 1609 1610 if (should_wake) 1611 wake(ms); 1612 } 1613 1614 /* 1615 * Mirror mapping function 1616 */ 1617 static int mirror_map(struct dm_target *ti, struct bio *bio, 1618 union map_info *map_context) 1619 { 1620 int r, rw = bio_rw(bio); 1621 struct mirror *m; 1622 struct mirror_set *ms = ti->private; 1623 struct dm_raid1_read_record *read_record = NULL; 1624 1625 if (rw == WRITE) { 1626 /* Save region for mirror_end_io() handler */ 1627 map_context->ll = bio_to_region(&ms->rh, bio); 1628 queue_bio(ms, bio, rw); 1629 return DM_MAPIO_SUBMITTED; 1630 } 1631 1632 r = ms->rh.log->type->in_sync(ms->rh.log, 1633 bio_to_region(&ms->rh, bio), 0); 1634 if (r < 0 && r != -EWOULDBLOCK) 1635 return r; 1636 1637 /* 1638 * If region is not in-sync queue the bio. 1639 */ 1640 if (!r || (r == -EWOULDBLOCK)) { 1641 if (rw == READA) 1642 return -EWOULDBLOCK; 1643 1644 queue_bio(ms, bio, rw); 1645 return DM_MAPIO_SUBMITTED; 1646 } 1647 1648 /* 1649 * The region is in-sync and we can perform reads directly. 1650 * Store enough information so we can retry if it fails. 1651 */ 1652 m = choose_mirror(ms, bio->bi_sector); 1653 if (unlikely(!m)) 1654 return -EIO; 1655 1656 read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO); 1657 if (likely(read_record)) { 1658 dm_bio_record(&read_record->details, bio); 1659 map_context->ptr = read_record; 1660 read_record->m = m; 1661 } 1662 1663 map_bio(m, bio); 1664 1665 return DM_MAPIO_REMAPPED; 1666 } 1667 1668 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1669 int error, union map_info *map_context) 1670 { 1671 int rw = bio_rw(bio); 1672 struct mirror_set *ms = (struct mirror_set *) ti->private; 1673 struct mirror *m = NULL; 1674 struct dm_bio_details *bd = NULL; 1675 struct dm_raid1_read_record *read_record = map_context->ptr; 1676 1677 /* 1678 * We need to dec pending if this was a write. 1679 */ 1680 if (rw == WRITE) { 1681 rh_dec(&ms->rh, map_context->ll); 1682 return error; 1683 } 1684 1685 if (error == -EOPNOTSUPP) 1686 goto out; 1687 1688 if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio)) 1689 goto out; 1690 1691 if (unlikely(error)) { 1692 if (!read_record) { 1693 /* 1694 * There wasn't enough memory to record necessary 1695 * information for a retry or there was no other 1696 * mirror in-sync. 1697 */ 1698 DMERR_LIMIT("Mirror read failed."); 1699 return -EIO; 1700 } 1701 1702 m = read_record->m; 1703 1704 DMERR("Mirror read failed from %s. Trying alternative device.", 1705 m->dev->name); 1706 1707 fail_mirror(m, DM_RAID1_READ_ERROR); 1708 1709 /* 1710 * A failed read is requeued for another attempt using an intact 1711 * mirror. 1712 */ 1713 if (default_ok(m) || mirror_available(ms, bio)) { 1714 bd = &read_record->details; 1715 1716 dm_bio_restore(bd, bio); 1717 mempool_free(read_record, ms->read_record_pool); 1718 map_context->ptr = NULL; 1719 queue_bio(ms, bio, rw); 1720 return 1; 1721 } 1722 DMERR("All replicated volumes dead, failing I/O"); 1723 } 1724 1725 out: 1726 if (read_record) { 1727 mempool_free(read_record, ms->read_record_pool); 1728 map_context->ptr = NULL; 1729 } 1730 1731 return error; 1732 } 1733 1734 static void mirror_presuspend(struct dm_target *ti) 1735 { 1736 struct mirror_set *ms = (struct mirror_set *) ti->private; 1737 struct dirty_log *log = ms->rh.log; 1738 1739 atomic_set(&ms->suspend, 1); 1740 1741 /* 1742 * We must finish up all the work that we've 1743 * generated (i.e. recovery work). 1744 */ 1745 rh_stop_recovery(&ms->rh); 1746 1747 wait_event(_kmirrord_recovery_stopped, 1748 !atomic_read(&ms->rh.recovery_in_flight)); 1749 1750 if (log->type->presuspend && log->type->presuspend(log)) 1751 /* FIXME: need better error handling */ 1752 DMWARN("log presuspend failed"); 1753 1754 /* 1755 * Now that recovery is complete/stopped and the 1756 * delayed bios are queued, we need to wait for 1757 * the worker thread to complete. This way, 1758 * we know that all of our I/O has been pushed. 1759 */ 1760 flush_workqueue(ms->kmirrord_wq); 1761 } 1762 1763 static void mirror_postsuspend(struct dm_target *ti) 1764 { 1765 struct mirror_set *ms = ti->private; 1766 struct dirty_log *log = ms->rh.log; 1767 1768 if (log->type->postsuspend && log->type->postsuspend(log)) 1769 /* FIXME: need better error handling */ 1770 DMWARN("log postsuspend failed"); 1771 } 1772 1773 static void mirror_resume(struct dm_target *ti) 1774 { 1775 struct mirror_set *ms = ti->private; 1776 struct dirty_log *log = ms->rh.log; 1777 1778 atomic_set(&ms->suspend, 0); 1779 if (log->type->resume && log->type->resume(log)) 1780 /* FIXME: need better error handling */ 1781 DMWARN("log resume failed"); 1782 rh_start_recovery(&ms->rh); 1783 } 1784 1785 /* 1786 * device_status_char 1787 * @m: mirror device/leg we want the status of 1788 * 1789 * We return one character representing the most severe error 1790 * we have encountered. 1791 * A => Alive - No failures 1792 * D => Dead - A write failure occurred leaving mirror out-of-sync 1793 * S => Sync - A sychronization failure occurred, mirror out-of-sync 1794 * R => Read - A read failure occurred, mirror data unaffected 1795 * 1796 * Returns: <char> 1797 */ 1798 static char device_status_char(struct mirror *m) 1799 { 1800 if (!atomic_read(&(m->error_count))) 1801 return 'A'; 1802 1803 return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' : 1804 (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' : 1805 (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U'; 1806 } 1807 1808 1809 static int mirror_status(struct dm_target *ti, status_type_t type, 1810 char *result, unsigned int maxlen) 1811 { 1812 unsigned int m, sz = 0; 1813 struct mirror_set *ms = (struct mirror_set *) ti->private; 1814 struct dirty_log *log = ms->rh.log; 1815 char buffer[ms->nr_mirrors + 1]; 1816 1817 switch (type) { 1818 case STATUSTYPE_INFO: 1819 DMEMIT("%d ", ms->nr_mirrors); 1820 for (m = 0; m < ms->nr_mirrors; m++) { 1821 DMEMIT("%s ", ms->mirror[m].dev->name); 1822 buffer[m] = device_status_char(&(ms->mirror[m])); 1823 } 1824 buffer[m] = '\0'; 1825 1826 DMEMIT("%llu/%llu 1 %s ", 1827 (unsigned long long)log->type->get_sync_count(ms->rh.log), 1828 (unsigned long long)ms->nr_regions, buffer); 1829 1830 sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz); 1831 1832 break; 1833 1834 case STATUSTYPE_TABLE: 1835 sz = log->type->status(ms->rh.log, type, result, maxlen); 1836 1837 DMEMIT("%d", ms->nr_mirrors); 1838 for (m = 0; m < ms->nr_mirrors; m++) 1839 DMEMIT(" %s %llu", ms->mirror[m].dev->name, 1840 (unsigned long long)ms->mirror[m].offset); 1841 1842 if (ms->features & DM_RAID1_HANDLE_ERRORS) 1843 DMEMIT(" 1 handle_errors"); 1844 } 1845 1846 return 0; 1847 } 1848 1849 static struct target_type mirror_target = { 1850 .name = "mirror", 1851 .version = {1, 0, 20}, 1852 .module = THIS_MODULE, 1853 .ctr = mirror_ctr, 1854 .dtr = mirror_dtr, 1855 .map = mirror_map, 1856 .end_io = mirror_end_io, 1857 .presuspend = mirror_presuspend, 1858 .postsuspend = mirror_postsuspend, 1859 .resume = mirror_resume, 1860 .status = mirror_status, 1861 }; 1862 1863 static int __init dm_mirror_init(void) 1864 { 1865 int r; 1866 1867 r = dm_dirty_log_init(); 1868 if (r) 1869 return r; 1870 1871 r = dm_register_target(&mirror_target); 1872 if (r < 0) { 1873 DMERR("Failed to register mirror target"); 1874 dm_dirty_log_exit(); 1875 } 1876 1877 return r; 1878 } 1879 1880 static void __exit dm_mirror_exit(void) 1881 { 1882 int r; 1883 1884 r = dm_unregister_target(&mirror_target); 1885 if (r < 0) 1886 DMERR("unregister failed %d", r); 1887 1888 dm_dirty_log_exit(); 1889 } 1890 1891 /* Module hooks */ 1892 module_init(dm_mirror_init); 1893 module_exit(dm_mirror_exit); 1894 1895 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1896 MODULE_AUTHOR("Joe Thornber"); 1897 MODULE_LICENSE("GPL"); 1898