xref: /openbmc/linux/drivers/md/dm-raid1.c (revision a1e58bbd)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-list.h"
9 #include "dm-bio-record.h"
10 #include "dm-io.h"
11 #include "dm-log.h"
12 #include "kcopyd.h"
13 
14 #include <linux/ctype.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/pagemap.h>
19 #include <linux/slab.h>
20 #include <linux/time.h>
21 #include <linux/vmalloc.h>
22 #include <linux/workqueue.h>
23 #include <linux/log2.h>
24 #include <linux/hardirq.h>
25 
26 #define DM_MSG_PREFIX "raid1"
27 #define DM_IO_PAGES 64
28 
29 #define DM_RAID1_HANDLE_ERRORS 0x01
30 #define errors_handled(p)	((p)->features & DM_RAID1_HANDLE_ERRORS)
31 
32 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
33 
34 /*-----------------------------------------------------------------
35  * Region hash
36  *
37  * The mirror splits itself up into discrete regions.  Each
38  * region can be in one of three states: clean, dirty,
39  * nosync.  There is no need to put clean regions in the hash.
40  *
41  * In addition to being present in the hash table a region _may_
42  * be present on one of three lists.
43  *
44  *   clean_regions: Regions on this list have no io pending to
45  *   them, they are in sync, we are no longer interested in them,
46  *   they are dull.  rh_update_states() will remove them from the
47  *   hash table.
48  *
49  *   quiesced_regions: These regions have been spun down, ready
50  *   for recovery.  rh_recovery_start() will remove regions from
51  *   this list and hand them to kmirrord, which will schedule the
52  *   recovery io with kcopyd.
53  *
54  *   recovered_regions: Regions that kcopyd has successfully
55  *   recovered.  rh_update_states() will now schedule any delayed
56  *   io, up the recovery_count, and remove the region from the
57  *   hash.
58  *
59  * There are 2 locks:
60  *   A rw spin lock 'hash_lock' protects just the hash table,
61  *   this is never held in write mode from interrupt context,
62  *   which I believe means that we only have to disable irqs when
63  *   doing a write lock.
64  *
65  *   An ordinary spin lock 'region_lock' that protects the three
66  *   lists in the region_hash, with the 'state', 'list' and
67  *   'bhs_delayed' fields of the regions.  This is used from irq
68  *   context, so all other uses will have to suspend local irqs.
69  *---------------------------------------------------------------*/
70 struct mirror_set;
71 struct region_hash {
72 	struct mirror_set *ms;
73 	uint32_t region_size;
74 	unsigned region_shift;
75 
76 	/* holds persistent region state */
77 	struct dirty_log *log;
78 
79 	/* hash table */
80 	rwlock_t hash_lock;
81 	mempool_t *region_pool;
82 	unsigned int mask;
83 	unsigned int nr_buckets;
84 	struct list_head *buckets;
85 
86 	spinlock_t region_lock;
87 	atomic_t recovery_in_flight;
88 	struct semaphore recovery_count;
89 	struct list_head clean_regions;
90 	struct list_head quiesced_regions;
91 	struct list_head recovered_regions;
92 	struct list_head failed_recovered_regions;
93 };
94 
95 enum {
96 	RH_CLEAN,
97 	RH_DIRTY,
98 	RH_NOSYNC,
99 	RH_RECOVERING
100 };
101 
102 struct region {
103 	struct region_hash *rh;	/* FIXME: can we get rid of this ? */
104 	region_t key;
105 	int state;
106 
107 	struct list_head hash_list;
108 	struct list_head list;
109 
110 	atomic_t pending;
111 	struct bio_list delayed_bios;
112 };
113 
114 
115 /*-----------------------------------------------------------------
116  * Mirror set structures.
117  *---------------------------------------------------------------*/
118 enum dm_raid1_error {
119 	DM_RAID1_WRITE_ERROR,
120 	DM_RAID1_SYNC_ERROR,
121 	DM_RAID1_READ_ERROR
122 };
123 
124 struct mirror {
125 	struct mirror_set *ms;
126 	atomic_t error_count;
127 	unsigned long error_type;
128 	struct dm_dev *dev;
129 	sector_t offset;
130 };
131 
132 struct mirror_set {
133 	struct dm_target *ti;
134 	struct list_head list;
135 	struct region_hash rh;
136 	struct kcopyd_client *kcopyd_client;
137 	uint64_t features;
138 
139 	spinlock_t lock;	/* protects the lists */
140 	struct bio_list reads;
141 	struct bio_list writes;
142 	struct bio_list failures;
143 
144 	struct dm_io_client *io_client;
145 	mempool_t *read_record_pool;
146 
147 	/* recovery */
148 	region_t nr_regions;
149 	int in_sync;
150 	int log_failure;
151 	atomic_t suspend;
152 
153 	atomic_t default_mirror;	/* Default mirror */
154 
155 	struct workqueue_struct *kmirrord_wq;
156 	struct work_struct kmirrord_work;
157 	struct work_struct trigger_event;
158 
159 	unsigned int nr_mirrors;
160 	struct mirror mirror[0];
161 };
162 
163 /*
164  * Conversion fns
165  */
166 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
167 {
168 	return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift;
169 }
170 
171 static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
172 {
173 	return region << rh->region_shift;
174 }
175 
176 static void wake(struct mirror_set *ms)
177 {
178 	queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
179 }
180 
181 /* FIXME move this */
182 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
183 
184 #define MIN_REGIONS 64
185 #define MAX_RECOVERY 1
186 static int rh_init(struct region_hash *rh, struct mirror_set *ms,
187 		   struct dirty_log *log, uint32_t region_size,
188 		   region_t nr_regions)
189 {
190 	unsigned int nr_buckets, max_buckets;
191 	size_t i;
192 
193 	/*
194 	 * Calculate a suitable number of buckets for our hash
195 	 * table.
196 	 */
197 	max_buckets = nr_regions >> 6;
198 	for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
199 		;
200 	nr_buckets >>= 1;
201 
202 	rh->ms = ms;
203 	rh->log = log;
204 	rh->region_size = region_size;
205 	rh->region_shift = ffs(region_size) - 1;
206 	rwlock_init(&rh->hash_lock);
207 	rh->mask = nr_buckets - 1;
208 	rh->nr_buckets = nr_buckets;
209 
210 	rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
211 	if (!rh->buckets) {
212 		DMERR("unable to allocate region hash memory");
213 		return -ENOMEM;
214 	}
215 
216 	for (i = 0; i < nr_buckets; i++)
217 		INIT_LIST_HEAD(rh->buckets + i);
218 
219 	spin_lock_init(&rh->region_lock);
220 	sema_init(&rh->recovery_count, 0);
221 	atomic_set(&rh->recovery_in_flight, 0);
222 	INIT_LIST_HEAD(&rh->clean_regions);
223 	INIT_LIST_HEAD(&rh->quiesced_regions);
224 	INIT_LIST_HEAD(&rh->recovered_regions);
225 	INIT_LIST_HEAD(&rh->failed_recovered_regions);
226 
227 	rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS,
228 						      sizeof(struct region));
229 	if (!rh->region_pool) {
230 		vfree(rh->buckets);
231 		rh->buckets = NULL;
232 		return -ENOMEM;
233 	}
234 
235 	return 0;
236 }
237 
238 static void rh_exit(struct region_hash *rh)
239 {
240 	unsigned int h;
241 	struct region *reg, *nreg;
242 
243 	BUG_ON(!list_empty(&rh->quiesced_regions));
244 	for (h = 0; h < rh->nr_buckets; h++) {
245 		list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
246 			BUG_ON(atomic_read(&reg->pending));
247 			mempool_free(reg, rh->region_pool);
248 		}
249 	}
250 
251 	if (rh->log)
252 		dm_destroy_dirty_log(rh->log);
253 	if (rh->region_pool)
254 		mempool_destroy(rh->region_pool);
255 	vfree(rh->buckets);
256 }
257 
258 #define RH_HASH_MULT 2654435387U
259 
260 static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
261 {
262 	return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
263 }
264 
265 static struct region *__rh_lookup(struct region_hash *rh, region_t region)
266 {
267 	struct region *reg;
268 
269 	list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
270 		if (reg->key == region)
271 			return reg;
272 
273 	return NULL;
274 }
275 
276 static void __rh_insert(struct region_hash *rh, struct region *reg)
277 {
278 	unsigned int h = rh_hash(rh, reg->key);
279 	list_add(&reg->hash_list, rh->buckets + h);
280 }
281 
282 static struct region *__rh_alloc(struct region_hash *rh, region_t region)
283 {
284 	struct region *reg, *nreg;
285 
286 	read_unlock(&rh->hash_lock);
287 	nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC);
288 	if (unlikely(!nreg))
289 		nreg = kmalloc(sizeof(struct region), GFP_NOIO);
290 	nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
291 		RH_CLEAN : RH_NOSYNC;
292 	nreg->rh = rh;
293 	nreg->key = region;
294 
295 	INIT_LIST_HEAD(&nreg->list);
296 
297 	atomic_set(&nreg->pending, 0);
298 	bio_list_init(&nreg->delayed_bios);
299 	write_lock_irq(&rh->hash_lock);
300 
301 	reg = __rh_lookup(rh, region);
302 	if (reg)
303 		/* we lost the race */
304 		mempool_free(nreg, rh->region_pool);
305 
306 	else {
307 		__rh_insert(rh, nreg);
308 		if (nreg->state == RH_CLEAN) {
309 			spin_lock(&rh->region_lock);
310 			list_add(&nreg->list, &rh->clean_regions);
311 			spin_unlock(&rh->region_lock);
312 		}
313 		reg = nreg;
314 	}
315 	write_unlock_irq(&rh->hash_lock);
316 	read_lock(&rh->hash_lock);
317 
318 	return reg;
319 }
320 
321 static inline struct region *__rh_find(struct region_hash *rh, region_t region)
322 {
323 	struct region *reg;
324 
325 	reg = __rh_lookup(rh, region);
326 	if (!reg)
327 		reg = __rh_alloc(rh, region);
328 
329 	return reg;
330 }
331 
332 static int rh_state(struct region_hash *rh, region_t region, int may_block)
333 {
334 	int r;
335 	struct region *reg;
336 
337 	read_lock(&rh->hash_lock);
338 	reg = __rh_lookup(rh, region);
339 	read_unlock(&rh->hash_lock);
340 
341 	if (reg)
342 		return reg->state;
343 
344 	/*
345 	 * The region wasn't in the hash, so we fall back to the
346 	 * dirty log.
347 	 */
348 	r = rh->log->type->in_sync(rh->log, region, may_block);
349 
350 	/*
351 	 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
352 	 * taken as a RH_NOSYNC
353 	 */
354 	return r == 1 ? RH_CLEAN : RH_NOSYNC;
355 }
356 
357 static inline int rh_in_sync(struct region_hash *rh,
358 			     region_t region, int may_block)
359 {
360 	int state = rh_state(rh, region, may_block);
361 	return state == RH_CLEAN || state == RH_DIRTY;
362 }
363 
364 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
365 {
366 	struct bio *bio;
367 
368 	while ((bio = bio_list_pop(bio_list))) {
369 		queue_bio(ms, bio, WRITE);
370 	}
371 }
372 
373 static void complete_resync_work(struct region *reg, int success)
374 {
375 	struct region_hash *rh = reg->rh;
376 
377 	rh->log->type->set_region_sync(rh->log, reg->key, success);
378 
379 	/*
380 	 * Dispatch the bios before we call 'wake_up_all'.
381 	 * This is important because if we are suspending,
382 	 * we want to know that recovery is complete and
383 	 * the work queue is flushed.  If we wake_up_all
384 	 * before we dispatch_bios (queue bios and call wake()),
385 	 * then we risk suspending before the work queue
386 	 * has been properly flushed.
387 	 */
388 	dispatch_bios(rh->ms, &reg->delayed_bios);
389 	if (atomic_dec_and_test(&rh->recovery_in_flight))
390 		wake_up_all(&_kmirrord_recovery_stopped);
391 	up(&rh->recovery_count);
392 }
393 
394 static void rh_update_states(struct region_hash *rh)
395 {
396 	struct region *reg, *next;
397 
398 	LIST_HEAD(clean);
399 	LIST_HEAD(recovered);
400 	LIST_HEAD(failed_recovered);
401 
402 	/*
403 	 * Quickly grab the lists.
404 	 */
405 	write_lock_irq(&rh->hash_lock);
406 	spin_lock(&rh->region_lock);
407 	if (!list_empty(&rh->clean_regions)) {
408 		list_splice(&rh->clean_regions, &clean);
409 		INIT_LIST_HEAD(&rh->clean_regions);
410 
411 		list_for_each_entry(reg, &clean, list)
412 			list_del(&reg->hash_list);
413 	}
414 
415 	if (!list_empty(&rh->recovered_regions)) {
416 		list_splice(&rh->recovered_regions, &recovered);
417 		INIT_LIST_HEAD(&rh->recovered_regions);
418 
419 		list_for_each_entry (reg, &recovered, list)
420 			list_del(&reg->hash_list);
421 	}
422 
423 	if (!list_empty(&rh->failed_recovered_regions)) {
424 		list_splice(&rh->failed_recovered_regions, &failed_recovered);
425 		INIT_LIST_HEAD(&rh->failed_recovered_regions);
426 
427 		list_for_each_entry(reg, &failed_recovered, list)
428 			list_del(&reg->hash_list);
429 	}
430 
431 	spin_unlock(&rh->region_lock);
432 	write_unlock_irq(&rh->hash_lock);
433 
434 	/*
435 	 * All the regions on the recovered and clean lists have
436 	 * now been pulled out of the system, so no need to do
437 	 * any more locking.
438 	 */
439 	list_for_each_entry_safe (reg, next, &recovered, list) {
440 		rh->log->type->clear_region(rh->log, reg->key);
441 		complete_resync_work(reg, 1);
442 		mempool_free(reg, rh->region_pool);
443 	}
444 
445 	list_for_each_entry_safe(reg, next, &failed_recovered, list) {
446 		complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1);
447 		mempool_free(reg, rh->region_pool);
448 	}
449 
450 	list_for_each_entry_safe(reg, next, &clean, list) {
451 		rh->log->type->clear_region(rh->log, reg->key);
452 		mempool_free(reg, rh->region_pool);
453 	}
454 
455 	rh->log->type->flush(rh->log);
456 }
457 
458 static void rh_inc(struct region_hash *rh, region_t region)
459 {
460 	struct region *reg;
461 
462 	read_lock(&rh->hash_lock);
463 	reg = __rh_find(rh, region);
464 
465 	spin_lock_irq(&rh->region_lock);
466 	atomic_inc(&reg->pending);
467 
468 	if (reg->state == RH_CLEAN) {
469 		reg->state = RH_DIRTY;
470 		list_del_init(&reg->list);	/* take off the clean list */
471 		spin_unlock_irq(&rh->region_lock);
472 
473 		rh->log->type->mark_region(rh->log, reg->key);
474 	} else
475 		spin_unlock_irq(&rh->region_lock);
476 
477 
478 	read_unlock(&rh->hash_lock);
479 }
480 
481 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
482 {
483 	struct bio *bio;
484 
485 	for (bio = bios->head; bio; bio = bio->bi_next)
486 		rh_inc(rh, bio_to_region(rh, bio));
487 }
488 
489 static void rh_dec(struct region_hash *rh, region_t region)
490 {
491 	unsigned long flags;
492 	struct region *reg;
493 	int should_wake = 0;
494 
495 	read_lock(&rh->hash_lock);
496 	reg = __rh_lookup(rh, region);
497 	read_unlock(&rh->hash_lock);
498 
499 	spin_lock_irqsave(&rh->region_lock, flags);
500 	if (atomic_dec_and_test(&reg->pending)) {
501 		/*
502 		 * There is no pending I/O for this region.
503 		 * We can move the region to corresponding list for next action.
504 		 * At this point, the region is not yet connected to any list.
505 		 *
506 		 * If the state is RH_NOSYNC, the region should be kept off
507 		 * from clean list.
508 		 * The hash entry for RH_NOSYNC will remain in memory
509 		 * until the region is recovered or the map is reloaded.
510 		 */
511 
512 		/* do nothing for RH_NOSYNC */
513 		if (reg->state == RH_RECOVERING) {
514 			list_add_tail(&reg->list, &rh->quiesced_regions);
515 		} else if (reg->state == RH_DIRTY) {
516 			reg->state = RH_CLEAN;
517 			list_add(&reg->list, &rh->clean_regions);
518 		}
519 		should_wake = 1;
520 	}
521 	spin_unlock_irqrestore(&rh->region_lock, flags);
522 
523 	if (should_wake)
524 		wake(rh->ms);
525 }
526 
527 /*
528  * Starts quiescing a region in preparation for recovery.
529  */
530 static int __rh_recovery_prepare(struct region_hash *rh)
531 {
532 	int r;
533 	struct region *reg;
534 	region_t region;
535 
536 	/*
537 	 * Ask the dirty log what's next.
538 	 */
539 	r = rh->log->type->get_resync_work(rh->log, &region);
540 	if (r <= 0)
541 		return r;
542 
543 	/*
544 	 * Get this region, and start it quiescing by setting the
545 	 * recovering flag.
546 	 */
547 	read_lock(&rh->hash_lock);
548 	reg = __rh_find(rh, region);
549 	read_unlock(&rh->hash_lock);
550 
551 	spin_lock_irq(&rh->region_lock);
552 	reg->state = RH_RECOVERING;
553 
554 	/* Already quiesced ? */
555 	if (atomic_read(&reg->pending))
556 		list_del_init(&reg->list);
557 	else
558 		list_move(&reg->list, &rh->quiesced_regions);
559 
560 	spin_unlock_irq(&rh->region_lock);
561 
562 	return 1;
563 }
564 
565 static void rh_recovery_prepare(struct region_hash *rh)
566 {
567 	/* Extra reference to avoid race with rh_stop_recovery */
568 	atomic_inc(&rh->recovery_in_flight);
569 
570 	while (!down_trylock(&rh->recovery_count)) {
571 		atomic_inc(&rh->recovery_in_flight);
572 		if (__rh_recovery_prepare(rh) <= 0) {
573 			atomic_dec(&rh->recovery_in_flight);
574 			up(&rh->recovery_count);
575 			break;
576 		}
577 	}
578 
579 	/* Drop the extra reference */
580 	if (atomic_dec_and_test(&rh->recovery_in_flight))
581 		wake_up_all(&_kmirrord_recovery_stopped);
582 }
583 
584 /*
585  * Returns any quiesced regions.
586  */
587 static struct region *rh_recovery_start(struct region_hash *rh)
588 {
589 	struct region *reg = NULL;
590 
591 	spin_lock_irq(&rh->region_lock);
592 	if (!list_empty(&rh->quiesced_regions)) {
593 		reg = list_entry(rh->quiesced_regions.next,
594 				 struct region, list);
595 		list_del_init(&reg->list);	/* remove from the quiesced list */
596 	}
597 	spin_unlock_irq(&rh->region_lock);
598 
599 	return reg;
600 }
601 
602 static void rh_recovery_end(struct region *reg, int success)
603 {
604 	struct region_hash *rh = reg->rh;
605 
606 	spin_lock_irq(&rh->region_lock);
607 	if (success)
608 		list_add(&reg->list, &reg->rh->recovered_regions);
609 	else {
610 		reg->state = RH_NOSYNC;
611 		list_add(&reg->list, &reg->rh->failed_recovered_regions);
612 	}
613 	spin_unlock_irq(&rh->region_lock);
614 
615 	wake(rh->ms);
616 }
617 
618 static int rh_flush(struct region_hash *rh)
619 {
620 	return rh->log->type->flush(rh->log);
621 }
622 
623 static void rh_delay(struct region_hash *rh, struct bio *bio)
624 {
625 	struct region *reg;
626 
627 	read_lock(&rh->hash_lock);
628 	reg = __rh_find(rh, bio_to_region(rh, bio));
629 	bio_list_add(&reg->delayed_bios, bio);
630 	read_unlock(&rh->hash_lock);
631 }
632 
633 static void rh_stop_recovery(struct region_hash *rh)
634 {
635 	int i;
636 
637 	/* wait for any recovering regions */
638 	for (i = 0; i < MAX_RECOVERY; i++)
639 		down(&rh->recovery_count);
640 }
641 
642 static void rh_start_recovery(struct region_hash *rh)
643 {
644 	int i;
645 
646 	for (i = 0; i < MAX_RECOVERY; i++)
647 		up(&rh->recovery_count);
648 
649 	wake(rh->ms);
650 }
651 
652 #define MIN_READ_RECORDS 20
653 struct dm_raid1_read_record {
654 	struct mirror *m;
655 	struct dm_bio_details details;
656 };
657 
658 /*
659  * Every mirror should look like this one.
660  */
661 #define DEFAULT_MIRROR 0
662 
663 /*
664  * This is yucky.  We squirrel the mirror struct away inside
665  * bi_next for read/write buffers.  This is safe since the bh
666  * doesn't get submitted to the lower levels of block layer.
667  */
668 static struct mirror *bio_get_m(struct bio *bio)
669 {
670 	return (struct mirror *) bio->bi_next;
671 }
672 
673 static void bio_set_m(struct bio *bio, struct mirror *m)
674 {
675 	bio->bi_next = (struct bio *) m;
676 }
677 
678 static struct mirror *get_default_mirror(struct mirror_set *ms)
679 {
680 	return &ms->mirror[atomic_read(&ms->default_mirror)];
681 }
682 
683 static void set_default_mirror(struct mirror *m)
684 {
685 	struct mirror_set *ms = m->ms;
686 	struct mirror *m0 = &(ms->mirror[0]);
687 
688 	atomic_set(&ms->default_mirror, m - m0);
689 }
690 
691 /* fail_mirror
692  * @m: mirror device to fail
693  * @error_type: one of the enum's, DM_RAID1_*_ERROR
694  *
695  * If errors are being handled, record the type of
696  * error encountered for this device.  If this type
697  * of error has already been recorded, we can return;
698  * otherwise, we must signal userspace by triggering
699  * an event.  Additionally, if the device is the
700  * primary device, we must choose a new primary, but
701  * only if the mirror is in-sync.
702  *
703  * This function must not block.
704  */
705 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
706 {
707 	struct mirror_set *ms = m->ms;
708 	struct mirror *new;
709 
710 	if (!errors_handled(ms))
711 		return;
712 
713 	/*
714 	 * error_count is used for nothing more than a
715 	 * simple way to tell if a device has encountered
716 	 * errors.
717 	 */
718 	atomic_inc(&m->error_count);
719 
720 	if (test_and_set_bit(error_type, &m->error_type))
721 		return;
722 
723 	if (m != get_default_mirror(ms))
724 		goto out;
725 
726 	if (!ms->in_sync) {
727 		/*
728 		 * Better to issue requests to same failing device
729 		 * than to risk returning corrupt data.
730 		 */
731 		DMERR("Primary mirror (%s) failed while out-of-sync: "
732 		      "Reads may fail.", m->dev->name);
733 		goto out;
734 	}
735 
736 	for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++)
737 		if (!atomic_read(&new->error_count)) {
738 			set_default_mirror(new);
739 			break;
740 		}
741 
742 	if (unlikely(new == ms->mirror + ms->nr_mirrors))
743 		DMWARN("All sides of mirror have failed.");
744 
745 out:
746 	schedule_work(&ms->trigger_event);
747 }
748 
749 /*-----------------------------------------------------------------
750  * Recovery.
751  *
752  * When a mirror is first activated we may find that some regions
753  * are in the no-sync state.  We have to recover these by
754  * recopying from the default mirror to all the others.
755  *---------------------------------------------------------------*/
756 static void recovery_complete(int read_err, unsigned long write_err,
757 			      void *context)
758 {
759 	struct region *reg = (struct region *)context;
760 	struct mirror_set *ms = reg->rh->ms;
761 	int m, bit = 0;
762 
763 	if (read_err) {
764 		/* Read error means the failure of default mirror. */
765 		DMERR_LIMIT("Unable to read primary mirror during recovery");
766 		fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
767 	}
768 
769 	if (write_err) {
770 		DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
771 			    write_err);
772 		/*
773 		 * Bits correspond to devices (excluding default mirror).
774 		 * The default mirror cannot change during recovery.
775 		 */
776 		for (m = 0; m < ms->nr_mirrors; m++) {
777 			if (&ms->mirror[m] == get_default_mirror(ms))
778 				continue;
779 			if (test_bit(bit, &write_err))
780 				fail_mirror(ms->mirror + m,
781 					    DM_RAID1_SYNC_ERROR);
782 			bit++;
783 		}
784 	}
785 
786 	rh_recovery_end(reg, !(read_err || write_err));
787 }
788 
789 static int recover(struct mirror_set *ms, struct region *reg)
790 {
791 	int r;
792 	unsigned int i;
793 	struct io_region from, to[KCOPYD_MAX_REGIONS], *dest;
794 	struct mirror *m;
795 	unsigned long flags = 0;
796 
797 	/* fill in the source */
798 	m = get_default_mirror(ms);
799 	from.bdev = m->dev->bdev;
800 	from.sector = m->offset + region_to_sector(reg->rh, reg->key);
801 	if (reg->key == (ms->nr_regions - 1)) {
802 		/*
803 		 * The final region may be smaller than
804 		 * region_size.
805 		 */
806 		from.count = ms->ti->len & (reg->rh->region_size - 1);
807 		if (!from.count)
808 			from.count = reg->rh->region_size;
809 	} else
810 		from.count = reg->rh->region_size;
811 
812 	/* fill in the destinations */
813 	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
814 		if (&ms->mirror[i] == get_default_mirror(ms))
815 			continue;
816 
817 		m = ms->mirror + i;
818 		dest->bdev = m->dev->bdev;
819 		dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
820 		dest->count = from.count;
821 		dest++;
822 	}
823 
824 	/* hand to kcopyd */
825 	set_bit(KCOPYD_IGNORE_ERROR, &flags);
826 	r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags,
827 			recovery_complete, reg);
828 
829 	return r;
830 }
831 
832 static void do_recovery(struct mirror_set *ms)
833 {
834 	int r;
835 	struct region *reg;
836 	struct dirty_log *log = ms->rh.log;
837 
838 	/*
839 	 * Start quiescing some regions.
840 	 */
841 	rh_recovery_prepare(&ms->rh);
842 
843 	/*
844 	 * Copy any already quiesced regions.
845 	 */
846 	while ((reg = rh_recovery_start(&ms->rh))) {
847 		r = recover(ms, reg);
848 		if (r)
849 			rh_recovery_end(reg, 0);
850 	}
851 
852 	/*
853 	 * Update the in sync flag.
854 	 */
855 	if (!ms->in_sync &&
856 	    (log->type->get_sync_count(log) == ms->nr_regions)) {
857 		/* the sync is complete */
858 		dm_table_event(ms->ti->table);
859 		ms->in_sync = 1;
860 	}
861 }
862 
863 /*-----------------------------------------------------------------
864  * Reads
865  *---------------------------------------------------------------*/
866 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
867 {
868 	struct mirror *m = get_default_mirror(ms);
869 
870 	do {
871 		if (likely(!atomic_read(&m->error_count)))
872 			return m;
873 
874 		if (m-- == ms->mirror)
875 			m += ms->nr_mirrors;
876 	} while (m != get_default_mirror(ms));
877 
878 	return NULL;
879 }
880 
881 static int default_ok(struct mirror *m)
882 {
883 	struct mirror *default_mirror = get_default_mirror(m->ms);
884 
885 	return !atomic_read(&default_mirror->error_count);
886 }
887 
888 static int mirror_available(struct mirror_set *ms, struct bio *bio)
889 {
890 	region_t region = bio_to_region(&ms->rh, bio);
891 
892 	if (ms->rh.log->type->in_sync(ms->rh.log, region, 0))
893 		return choose_mirror(ms,  bio->bi_sector) ? 1 : 0;
894 
895 	return 0;
896 }
897 
898 /*
899  * remap a buffer to a particular mirror.
900  */
901 static sector_t map_sector(struct mirror *m, struct bio *bio)
902 {
903 	return m->offset + (bio->bi_sector - m->ms->ti->begin);
904 }
905 
906 static void map_bio(struct mirror *m, struct bio *bio)
907 {
908 	bio->bi_bdev = m->dev->bdev;
909 	bio->bi_sector = map_sector(m, bio);
910 }
911 
912 static void map_region(struct io_region *io, struct mirror *m,
913 		       struct bio *bio)
914 {
915 	io->bdev = m->dev->bdev;
916 	io->sector = map_sector(m, bio);
917 	io->count = bio->bi_size >> 9;
918 }
919 
920 /*-----------------------------------------------------------------
921  * Reads
922  *---------------------------------------------------------------*/
923 static void read_callback(unsigned long error, void *context)
924 {
925 	struct bio *bio = context;
926 	struct mirror *m;
927 
928 	m = bio_get_m(bio);
929 	bio_set_m(bio, NULL);
930 
931 	if (likely(!error)) {
932 		bio_endio(bio, 0);
933 		return;
934 	}
935 
936 	fail_mirror(m, DM_RAID1_READ_ERROR);
937 
938 	if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
939 		DMWARN_LIMIT("Read failure on mirror device %s.  "
940 			     "Trying alternative device.",
941 			     m->dev->name);
942 		queue_bio(m->ms, bio, bio_rw(bio));
943 		return;
944 	}
945 
946 	DMERR_LIMIT("Read failure on mirror device %s.  Failing I/O.",
947 		    m->dev->name);
948 	bio_endio(bio, -EIO);
949 }
950 
951 /* Asynchronous read. */
952 static void read_async_bio(struct mirror *m, struct bio *bio)
953 {
954 	struct io_region io;
955 	struct dm_io_request io_req = {
956 		.bi_rw = READ,
957 		.mem.type = DM_IO_BVEC,
958 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
959 		.notify.fn = read_callback,
960 		.notify.context = bio,
961 		.client = m->ms->io_client,
962 	};
963 
964 	map_region(&io, m, bio);
965 	bio_set_m(bio, m);
966 	(void) dm_io(&io_req, 1, &io, NULL);
967 }
968 
969 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
970 {
971 	region_t region;
972 	struct bio *bio;
973 	struct mirror *m;
974 
975 	while ((bio = bio_list_pop(reads))) {
976 		region = bio_to_region(&ms->rh, bio);
977 		m = get_default_mirror(ms);
978 
979 		/*
980 		 * We can only read balance if the region is in sync.
981 		 */
982 		if (likely(rh_in_sync(&ms->rh, region, 1)))
983 			m = choose_mirror(ms, bio->bi_sector);
984 		else if (m && atomic_read(&m->error_count))
985 			m = NULL;
986 
987 		if (likely(m))
988 			read_async_bio(m, bio);
989 		else
990 			bio_endio(bio, -EIO);
991 	}
992 }
993 
994 /*-----------------------------------------------------------------
995  * Writes.
996  *
997  * We do different things with the write io depending on the
998  * state of the region that it's in:
999  *
1000  * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
1001  * RECOVERING:	delay the io until recovery completes
1002  * NOSYNC:	increment pending, just write to the default mirror
1003  *---------------------------------------------------------------*/
1004 
1005 /* __bio_mark_nosync
1006  * @ms
1007  * @bio
1008  * @done
1009  * @error
1010  *
1011  * The bio was written on some mirror(s) but failed on other mirror(s).
1012  * We can successfully endio the bio but should avoid the region being
1013  * marked clean by setting the state RH_NOSYNC.
1014  *
1015  * This function is _not_ safe in interrupt context!
1016  */
1017 static void __bio_mark_nosync(struct mirror_set *ms,
1018 			      struct bio *bio, unsigned done, int error)
1019 {
1020 	unsigned long flags;
1021 	struct region_hash *rh = &ms->rh;
1022 	struct dirty_log *log = ms->rh.log;
1023 	struct region *reg;
1024 	region_t region = bio_to_region(rh, bio);
1025 	int recovering = 0;
1026 
1027 	/* We must inform the log that the sync count has changed. */
1028 	log->type->set_region_sync(log, region, 0);
1029 	ms->in_sync = 0;
1030 
1031 	read_lock(&rh->hash_lock);
1032 	reg = __rh_find(rh, region);
1033 	read_unlock(&rh->hash_lock);
1034 
1035 	/* region hash entry should exist because write was in-flight */
1036 	BUG_ON(!reg);
1037 	BUG_ON(!list_empty(&reg->list));
1038 
1039 	spin_lock_irqsave(&rh->region_lock, flags);
1040 	/*
1041 	 * Possible cases:
1042 	 *   1) RH_DIRTY
1043 	 *   2) RH_NOSYNC: was dirty, other preceeding writes failed
1044 	 *   3) RH_RECOVERING: flushing pending writes
1045 	 * Either case, the region should have not been connected to list.
1046 	 */
1047 	recovering = (reg->state == RH_RECOVERING);
1048 	reg->state = RH_NOSYNC;
1049 	BUG_ON(!list_empty(&reg->list));
1050 	spin_unlock_irqrestore(&rh->region_lock, flags);
1051 
1052 	bio_endio(bio, error);
1053 	if (recovering)
1054 		complete_resync_work(reg, 0);
1055 }
1056 
1057 static void write_callback(unsigned long error, void *context)
1058 {
1059 	unsigned i, ret = 0;
1060 	struct bio *bio = (struct bio *) context;
1061 	struct mirror_set *ms;
1062 	int uptodate = 0;
1063 	int should_wake = 0;
1064 	unsigned long flags;
1065 
1066 	ms = bio_get_m(bio)->ms;
1067 	bio_set_m(bio, NULL);
1068 
1069 	/*
1070 	 * NOTE: We don't decrement the pending count here,
1071 	 * instead it is done by the targets endio function.
1072 	 * This way we handle both writes to SYNC and NOSYNC
1073 	 * regions with the same code.
1074 	 */
1075 	if (likely(!error))
1076 		goto out;
1077 
1078 	for (i = 0; i < ms->nr_mirrors; i++)
1079 		if (test_bit(i, &error))
1080 			fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
1081 		else
1082 			uptodate = 1;
1083 
1084 	if (unlikely(!uptodate)) {
1085 		DMERR("All replicated volumes dead, failing I/O");
1086 		/* None of the writes succeeded, fail the I/O. */
1087 		ret = -EIO;
1088 	} else if (errors_handled(ms)) {
1089 		/*
1090 		 * Need to raise event.  Since raising
1091 		 * events can block, we need to do it in
1092 		 * the main thread.
1093 		 */
1094 		spin_lock_irqsave(&ms->lock, flags);
1095 		if (!ms->failures.head)
1096 			should_wake = 1;
1097 		bio_list_add(&ms->failures, bio);
1098 		spin_unlock_irqrestore(&ms->lock, flags);
1099 		if (should_wake)
1100 			wake(ms);
1101 		return;
1102 	}
1103 out:
1104 	bio_endio(bio, ret);
1105 }
1106 
1107 static void do_write(struct mirror_set *ms, struct bio *bio)
1108 {
1109 	unsigned int i;
1110 	struct io_region io[ms->nr_mirrors], *dest = io;
1111 	struct mirror *m;
1112 	struct dm_io_request io_req = {
1113 		.bi_rw = WRITE,
1114 		.mem.type = DM_IO_BVEC,
1115 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
1116 		.notify.fn = write_callback,
1117 		.notify.context = bio,
1118 		.client = ms->io_client,
1119 	};
1120 
1121 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
1122 		map_region(dest++, m, bio);
1123 
1124 	/*
1125 	 * Use default mirror because we only need it to retrieve the reference
1126 	 * to the mirror set in write_callback().
1127 	 */
1128 	bio_set_m(bio, get_default_mirror(ms));
1129 
1130 	(void) dm_io(&io_req, ms->nr_mirrors, io, NULL);
1131 }
1132 
1133 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
1134 {
1135 	int state;
1136 	struct bio *bio;
1137 	struct bio_list sync, nosync, recover, *this_list = NULL;
1138 
1139 	if (!writes->head)
1140 		return;
1141 
1142 	/*
1143 	 * Classify each write.
1144 	 */
1145 	bio_list_init(&sync);
1146 	bio_list_init(&nosync);
1147 	bio_list_init(&recover);
1148 
1149 	while ((bio = bio_list_pop(writes))) {
1150 		state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
1151 		switch (state) {
1152 		case RH_CLEAN:
1153 		case RH_DIRTY:
1154 			this_list = &sync;
1155 			break;
1156 
1157 		case RH_NOSYNC:
1158 			this_list = &nosync;
1159 			break;
1160 
1161 		case RH_RECOVERING:
1162 			this_list = &recover;
1163 			break;
1164 		}
1165 
1166 		bio_list_add(this_list, bio);
1167 	}
1168 
1169 	/*
1170 	 * Increment the pending counts for any regions that will
1171 	 * be written to (writes to recover regions are going to
1172 	 * be delayed).
1173 	 */
1174 	rh_inc_pending(&ms->rh, &sync);
1175 	rh_inc_pending(&ms->rh, &nosync);
1176 	ms->log_failure = rh_flush(&ms->rh) ? 1 : 0;
1177 
1178 	/*
1179 	 * Dispatch io.
1180 	 */
1181 	if (unlikely(ms->log_failure)) {
1182 		spin_lock_irq(&ms->lock);
1183 		bio_list_merge(&ms->failures, &sync);
1184 		spin_unlock_irq(&ms->lock);
1185 	} else
1186 		while ((bio = bio_list_pop(&sync)))
1187 			do_write(ms, bio);
1188 
1189 	while ((bio = bio_list_pop(&recover)))
1190 		rh_delay(&ms->rh, bio);
1191 
1192 	while ((bio = bio_list_pop(&nosync))) {
1193 		map_bio(get_default_mirror(ms), bio);
1194 		generic_make_request(bio);
1195 	}
1196 }
1197 
1198 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
1199 {
1200 	struct bio *bio;
1201 
1202 	if (!failures->head)
1203 		return;
1204 
1205 	if (!ms->log_failure) {
1206 		while ((bio = bio_list_pop(failures)))
1207 			__bio_mark_nosync(ms, bio, bio->bi_size, 0);
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * If the log has failed, unattempted writes are being
1213 	 * put on the failures list.  We can't issue those writes
1214 	 * until a log has been marked, so we must store them.
1215 	 *
1216 	 * If a 'noflush' suspend is in progress, we can requeue
1217 	 * the I/O's to the core.  This give userspace a chance
1218 	 * to reconfigure the mirror, at which point the core
1219 	 * will reissue the writes.  If the 'noflush' flag is
1220 	 * not set, we have no choice but to return errors.
1221 	 *
1222 	 * Some writes on the failures list may have been
1223 	 * submitted before the log failure and represent a
1224 	 * failure to write to one of the devices.  It is ok
1225 	 * for us to treat them the same and requeue them
1226 	 * as well.
1227 	 */
1228 	if (dm_noflush_suspending(ms->ti)) {
1229 		while ((bio = bio_list_pop(failures)))
1230 			bio_endio(bio, DM_ENDIO_REQUEUE);
1231 		return;
1232 	}
1233 
1234 	if (atomic_read(&ms->suspend)) {
1235 		while ((bio = bio_list_pop(failures)))
1236 			bio_endio(bio, -EIO);
1237 		return;
1238 	}
1239 
1240 	spin_lock_irq(&ms->lock);
1241 	bio_list_merge(&ms->failures, failures);
1242 	spin_unlock_irq(&ms->lock);
1243 
1244 	wake(ms);
1245 }
1246 
1247 static void trigger_event(struct work_struct *work)
1248 {
1249 	struct mirror_set *ms =
1250 		container_of(work, struct mirror_set, trigger_event);
1251 
1252 	dm_table_event(ms->ti->table);
1253 }
1254 
1255 /*-----------------------------------------------------------------
1256  * kmirrord
1257  *---------------------------------------------------------------*/
1258 static int _do_mirror(struct work_struct *work)
1259 {
1260 	struct mirror_set *ms =container_of(work, struct mirror_set,
1261 					    kmirrord_work);
1262 	struct bio_list reads, writes, failures;
1263 	unsigned long flags;
1264 
1265 	spin_lock_irqsave(&ms->lock, flags);
1266 	reads = ms->reads;
1267 	writes = ms->writes;
1268 	failures = ms->failures;
1269 	bio_list_init(&ms->reads);
1270 	bio_list_init(&ms->writes);
1271 	bio_list_init(&ms->failures);
1272 	spin_unlock_irqrestore(&ms->lock, flags);
1273 
1274 	rh_update_states(&ms->rh);
1275 	do_recovery(ms);
1276 	do_reads(ms, &reads);
1277 	do_writes(ms, &writes);
1278 	do_failures(ms, &failures);
1279 
1280 	return (ms->failures.head) ? 1 : 0;
1281 }
1282 
1283 static void do_mirror(struct work_struct *work)
1284 {
1285 	/*
1286 	 * If _do_mirror returns 1, we give it
1287 	 * another shot.  This helps for cases like
1288 	 * 'suspend' where we call flush_workqueue
1289 	 * and expect all work to be finished.  If
1290 	 * a failure happens during a suspend, we
1291 	 * couldn't issue a 'wake' because it would
1292 	 * not be honored.  Therefore, we return '1'
1293 	 * from _do_mirror, and retry here.
1294 	 */
1295 	while (_do_mirror(work))
1296 		schedule();
1297 }
1298 
1299 
1300 /*-----------------------------------------------------------------
1301  * Target functions
1302  *---------------------------------------------------------------*/
1303 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
1304 					uint32_t region_size,
1305 					struct dm_target *ti,
1306 					struct dirty_log *dl)
1307 {
1308 	size_t len;
1309 	struct mirror_set *ms = NULL;
1310 
1311 	if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors))
1312 		return NULL;
1313 
1314 	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
1315 
1316 	ms = kzalloc(len, GFP_KERNEL);
1317 	if (!ms) {
1318 		ti->error = "Cannot allocate mirror context";
1319 		return NULL;
1320 	}
1321 
1322 	spin_lock_init(&ms->lock);
1323 
1324 	ms->ti = ti;
1325 	ms->nr_mirrors = nr_mirrors;
1326 	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
1327 	ms->in_sync = 0;
1328 	ms->log_failure = 0;
1329 	atomic_set(&ms->suspend, 0);
1330 	atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
1331 
1332 	len = sizeof(struct dm_raid1_read_record);
1333 	ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS,
1334 							   len);
1335 	if (!ms->read_record_pool) {
1336 		ti->error = "Error creating mirror read_record_pool";
1337 		kfree(ms);
1338 		return NULL;
1339 	}
1340 
1341 	ms->io_client = dm_io_client_create(DM_IO_PAGES);
1342 	if (IS_ERR(ms->io_client)) {
1343 		ti->error = "Error creating dm_io client";
1344 		mempool_destroy(ms->read_record_pool);
1345 		kfree(ms);
1346  		return NULL;
1347 	}
1348 
1349 	if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
1350 		ti->error = "Error creating dirty region hash";
1351 		dm_io_client_destroy(ms->io_client);
1352 		mempool_destroy(ms->read_record_pool);
1353 		kfree(ms);
1354 		return NULL;
1355 	}
1356 
1357 	return ms;
1358 }
1359 
1360 static void free_context(struct mirror_set *ms, struct dm_target *ti,
1361 			 unsigned int m)
1362 {
1363 	while (m--)
1364 		dm_put_device(ti, ms->mirror[m].dev);
1365 
1366 	dm_io_client_destroy(ms->io_client);
1367 	rh_exit(&ms->rh);
1368 	mempool_destroy(ms->read_record_pool);
1369 	kfree(ms);
1370 }
1371 
1372 static inline int _check_region_size(struct dm_target *ti, uint32_t size)
1373 {
1374 	return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) ||
1375 		 size > ti->len);
1376 }
1377 
1378 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
1379 		      unsigned int mirror, char **argv)
1380 {
1381 	unsigned long long offset;
1382 
1383 	if (sscanf(argv[1], "%llu", &offset) != 1) {
1384 		ti->error = "Invalid offset";
1385 		return -EINVAL;
1386 	}
1387 
1388 	if (dm_get_device(ti, argv[0], offset, ti->len,
1389 			  dm_table_get_mode(ti->table),
1390 			  &ms->mirror[mirror].dev)) {
1391 		ti->error = "Device lookup failure";
1392 		return -ENXIO;
1393 	}
1394 
1395 	ms->mirror[mirror].ms = ms;
1396 	atomic_set(&(ms->mirror[mirror].error_count), 0);
1397 	ms->mirror[mirror].error_type = 0;
1398 	ms->mirror[mirror].offset = offset;
1399 
1400 	return 0;
1401 }
1402 
1403 /*
1404  * Create dirty log: log_type #log_params <log_params>
1405  */
1406 static struct dirty_log *create_dirty_log(struct dm_target *ti,
1407 					  unsigned int argc, char **argv,
1408 					  unsigned int *args_used)
1409 {
1410 	unsigned int param_count;
1411 	struct dirty_log *dl;
1412 
1413 	if (argc < 2) {
1414 		ti->error = "Insufficient mirror log arguments";
1415 		return NULL;
1416 	}
1417 
1418 	if (sscanf(argv[1], "%u", &param_count) != 1) {
1419 		ti->error = "Invalid mirror log argument count";
1420 		return NULL;
1421 	}
1422 
1423 	*args_used = 2 + param_count;
1424 
1425 	if (argc < *args_used) {
1426 		ti->error = "Insufficient mirror log arguments";
1427 		return NULL;
1428 	}
1429 
1430 	dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2);
1431 	if (!dl) {
1432 		ti->error = "Error creating mirror dirty log";
1433 		return NULL;
1434 	}
1435 
1436 	if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
1437 		ti->error = "Invalid region size";
1438 		dm_destroy_dirty_log(dl);
1439 		return NULL;
1440 	}
1441 
1442 	return dl;
1443 }
1444 
1445 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
1446 			  unsigned *args_used)
1447 {
1448 	unsigned num_features;
1449 	struct dm_target *ti = ms->ti;
1450 
1451 	*args_used = 0;
1452 
1453 	if (!argc)
1454 		return 0;
1455 
1456 	if (sscanf(argv[0], "%u", &num_features) != 1) {
1457 		ti->error = "Invalid number of features";
1458 		return -EINVAL;
1459 	}
1460 
1461 	argc--;
1462 	argv++;
1463 	(*args_used)++;
1464 
1465 	if (num_features > argc) {
1466 		ti->error = "Not enough arguments to support feature count";
1467 		return -EINVAL;
1468 	}
1469 
1470 	if (!strcmp("handle_errors", argv[0]))
1471 		ms->features |= DM_RAID1_HANDLE_ERRORS;
1472 	else {
1473 		ti->error = "Unrecognised feature requested";
1474 		return -EINVAL;
1475 	}
1476 
1477 	(*args_used)++;
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  * Construct a mirror mapping:
1484  *
1485  * log_type #log_params <log_params>
1486  * #mirrors [mirror_path offset]{2,}
1487  * [#features <features>]
1488  *
1489  * log_type is "core" or "disk"
1490  * #log_params is between 1 and 3
1491  *
1492  * If present, features must be "handle_errors".
1493  */
1494 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1495 {
1496 	int r;
1497 	unsigned int nr_mirrors, m, args_used;
1498 	struct mirror_set *ms;
1499 	struct dirty_log *dl;
1500 
1501 	dl = create_dirty_log(ti, argc, argv, &args_used);
1502 	if (!dl)
1503 		return -EINVAL;
1504 
1505 	argv += args_used;
1506 	argc -= args_used;
1507 
1508 	if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1509 	    nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) {
1510 		ti->error = "Invalid number of mirrors";
1511 		dm_destroy_dirty_log(dl);
1512 		return -EINVAL;
1513 	}
1514 
1515 	argv++, argc--;
1516 
1517 	if (argc < nr_mirrors * 2) {
1518 		ti->error = "Too few mirror arguments";
1519 		dm_destroy_dirty_log(dl);
1520 		return -EINVAL;
1521 	}
1522 
1523 	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1524 	if (!ms) {
1525 		dm_destroy_dirty_log(dl);
1526 		return -ENOMEM;
1527 	}
1528 
1529 	/* Get the mirror parameter sets */
1530 	for (m = 0; m < nr_mirrors; m++) {
1531 		r = get_mirror(ms, ti, m, argv);
1532 		if (r) {
1533 			free_context(ms, ti, m);
1534 			return r;
1535 		}
1536 		argv += 2;
1537 		argc -= 2;
1538 	}
1539 
1540 	ti->private = ms;
1541  	ti->split_io = ms->rh.region_size;
1542 
1543 	ms->kmirrord_wq = create_singlethread_workqueue("kmirrord");
1544 	if (!ms->kmirrord_wq) {
1545 		DMERR("couldn't start kmirrord");
1546 		r = -ENOMEM;
1547 		goto err_free_context;
1548 	}
1549 	INIT_WORK(&ms->kmirrord_work, do_mirror);
1550 	INIT_WORK(&ms->trigger_event, trigger_event);
1551 
1552 	r = parse_features(ms, argc, argv, &args_used);
1553 	if (r)
1554 		goto err_destroy_wq;
1555 
1556 	argv += args_used;
1557 	argc -= args_used;
1558 
1559 	/*
1560 	 * Any read-balancing addition depends on the
1561 	 * DM_RAID1_HANDLE_ERRORS flag being present.
1562 	 * This is because the decision to balance depends
1563 	 * on the sync state of a region.  If the above
1564 	 * flag is not present, we ignore errors; and
1565 	 * the sync state may be inaccurate.
1566 	 */
1567 
1568 	if (argc) {
1569 		ti->error = "Too many mirror arguments";
1570 		r = -EINVAL;
1571 		goto err_destroy_wq;
1572 	}
1573 
1574 	r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1575 	if (r)
1576 		goto err_destroy_wq;
1577 
1578 	wake(ms);
1579 	return 0;
1580 
1581 err_destroy_wq:
1582 	destroy_workqueue(ms->kmirrord_wq);
1583 err_free_context:
1584 	free_context(ms, ti, ms->nr_mirrors);
1585 	return r;
1586 }
1587 
1588 static void mirror_dtr(struct dm_target *ti)
1589 {
1590 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1591 
1592 	flush_workqueue(ms->kmirrord_wq);
1593 	kcopyd_client_destroy(ms->kcopyd_client);
1594 	destroy_workqueue(ms->kmirrord_wq);
1595 	free_context(ms, ti, ms->nr_mirrors);
1596 }
1597 
1598 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1599 {
1600 	unsigned long flags;
1601 	int should_wake = 0;
1602 	struct bio_list *bl;
1603 
1604 	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1605 	spin_lock_irqsave(&ms->lock, flags);
1606 	should_wake = !(bl->head);
1607 	bio_list_add(bl, bio);
1608 	spin_unlock_irqrestore(&ms->lock, flags);
1609 
1610 	if (should_wake)
1611 		wake(ms);
1612 }
1613 
1614 /*
1615  * Mirror mapping function
1616  */
1617 static int mirror_map(struct dm_target *ti, struct bio *bio,
1618 		      union map_info *map_context)
1619 {
1620 	int r, rw = bio_rw(bio);
1621 	struct mirror *m;
1622 	struct mirror_set *ms = ti->private;
1623 	struct dm_raid1_read_record *read_record = NULL;
1624 
1625 	if (rw == WRITE) {
1626 		/* Save region for mirror_end_io() handler */
1627 		map_context->ll = bio_to_region(&ms->rh, bio);
1628 		queue_bio(ms, bio, rw);
1629 		return DM_MAPIO_SUBMITTED;
1630 	}
1631 
1632 	r = ms->rh.log->type->in_sync(ms->rh.log,
1633 				      bio_to_region(&ms->rh, bio), 0);
1634 	if (r < 0 && r != -EWOULDBLOCK)
1635 		return r;
1636 
1637 	/*
1638 	 * If region is not in-sync queue the bio.
1639 	 */
1640 	if (!r || (r == -EWOULDBLOCK)) {
1641 		if (rw == READA)
1642 			return -EWOULDBLOCK;
1643 
1644 		queue_bio(ms, bio, rw);
1645 		return DM_MAPIO_SUBMITTED;
1646 	}
1647 
1648 	/*
1649 	 * The region is in-sync and we can perform reads directly.
1650 	 * Store enough information so we can retry if it fails.
1651 	 */
1652 	m = choose_mirror(ms, bio->bi_sector);
1653 	if (unlikely(!m))
1654 		return -EIO;
1655 
1656 	read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1657 	if (likely(read_record)) {
1658 		dm_bio_record(&read_record->details, bio);
1659 		map_context->ptr = read_record;
1660 		read_record->m = m;
1661 	}
1662 
1663 	map_bio(m, bio);
1664 
1665 	return DM_MAPIO_REMAPPED;
1666 }
1667 
1668 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1669 			 int error, union map_info *map_context)
1670 {
1671 	int rw = bio_rw(bio);
1672 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1673 	struct mirror *m = NULL;
1674 	struct dm_bio_details *bd = NULL;
1675 	struct dm_raid1_read_record *read_record = map_context->ptr;
1676 
1677 	/*
1678 	 * We need to dec pending if this was a write.
1679 	 */
1680 	if (rw == WRITE) {
1681 		rh_dec(&ms->rh, map_context->ll);
1682 		return error;
1683 	}
1684 
1685 	if (error == -EOPNOTSUPP)
1686 		goto out;
1687 
1688 	if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio))
1689 		goto out;
1690 
1691 	if (unlikely(error)) {
1692 		if (!read_record) {
1693 			/*
1694 			 * There wasn't enough memory to record necessary
1695 			 * information for a retry or there was no other
1696 			 * mirror in-sync.
1697 			 */
1698 			DMERR_LIMIT("Mirror read failed.");
1699 			return -EIO;
1700 		}
1701 
1702 		m = read_record->m;
1703 
1704 		DMERR("Mirror read failed from %s. Trying alternative device.",
1705 		      m->dev->name);
1706 
1707 		fail_mirror(m, DM_RAID1_READ_ERROR);
1708 
1709 		/*
1710 		 * A failed read is requeued for another attempt using an intact
1711 		 * mirror.
1712 		 */
1713 		if (default_ok(m) || mirror_available(ms, bio)) {
1714 			bd = &read_record->details;
1715 
1716 			dm_bio_restore(bd, bio);
1717 			mempool_free(read_record, ms->read_record_pool);
1718 			map_context->ptr = NULL;
1719 			queue_bio(ms, bio, rw);
1720 			return 1;
1721 		}
1722 		DMERR("All replicated volumes dead, failing I/O");
1723 	}
1724 
1725 out:
1726 	if (read_record) {
1727 		mempool_free(read_record, ms->read_record_pool);
1728 		map_context->ptr = NULL;
1729 	}
1730 
1731 	return error;
1732 }
1733 
1734 static void mirror_presuspend(struct dm_target *ti)
1735 {
1736 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1737 	struct dirty_log *log = ms->rh.log;
1738 
1739 	atomic_set(&ms->suspend, 1);
1740 
1741 	/*
1742 	 * We must finish up all the work that we've
1743 	 * generated (i.e. recovery work).
1744 	 */
1745 	rh_stop_recovery(&ms->rh);
1746 
1747 	wait_event(_kmirrord_recovery_stopped,
1748 		   !atomic_read(&ms->rh.recovery_in_flight));
1749 
1750 	if (log->type->presuspend && log->type->presuspend(log))
1751 		/* FIXME: need better error handling */
1752 		DMWARN("log presuspend failed");
1753 
1754 	/*
1755 	 * Now that recovery is complete/stopped and the
1756 	 * delayed bios are queued, we need to wait for
1757 	 * the worker thread to complete.  This way,
1758 	 * we know that all of our I/O has been pushed.
1759 	 */
1760 	flush_workqueue(ms->kmirrord_wq);
1761 }
1762 
1763 static void mirror_postsuspend(struct dm_target *ti)
1764 {
1765 	struct mirror_set *ms = ti->private;
1766 	struct dirty_log *log = ms->rh.log;
1767 
1768 	if (log->type->postsuspend && log->type->postsuspend(log))
1769 		/* FIXME: need better error handling */
1770 		DMWARN("log postsuspend failed");
1771 }
1772 
1773 static void mirror_resume(struct dm_target *ti)
1774 {
1775 	struct mirror_set *ms = ti->private;
1776 	struct dirty_log *log = ms->rh.log;
1777 
1778 	atomic_set(&ms->suspend, 0);
1779 	if (log->type->resume && log->type->resume(log))
1780 		/* FIXME: need better error handling */
1781 		DMWARN("log resume failed");
1782 	rh_start_recovery(&ms->rh);
1783 }
1784 
1785 /*
1786  * device_status_char
1787  * @m: mirror device/leg we want the status of
1788  *
1789  * We return one character representing the most severe error
1790  * we have encountered.
1791  *    A => Alive - No failures
1792  *    D => Dead - A write failure occurred leaving mirror out-of-sync
1793  *    S => Sync - A sychronization failure occurred, mirror out-of-sync
1794  *    R => Read - A read failure occurred, mirror data unaffected
1795  *
1796  * Returns: <char>
1797  */
1798 static char device_status_char(struct mirror *m)
1799 {
1800 	if (!atomic_read(&(m->error_count)))
1801 		return 'A';
1802 
1803 	return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1804 		(test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1805 		(test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1806 }
1807 
1808 
1809 static int mirror_status(struct dm_target *ti, status_type_t type,
1810 			 char *result, unsigned int maxlen)
1811 {
1812 	unsigned int m, sz = 0;
1813 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1814 	struct dirty_log *log = ms->rh.log;
1815 	char buffer[ms->nr_mirrors + 1];
1816 
1817 	switch (type) {
1818 	case STATUSTYPE_INFO:
1819 		DMEMIT("%d ", ms->nr_mirrors);
1820 		for (m = 0; m < ms->nr_mirrors; m++) {
1821 			DMEMIT("%s ", ms->mirror[m].dev->name);
1822 			buffer[m] = device_status_char(&(ms->mirror[m]));
1823 		}
1824 		buffer[m] = '\0';
1825 
1826 		DMEMIT("%llu/%llu 1 %s ",
1827 		      (unsigned long long)log->type->get_sync_count(ms->rh.log),
1828 		      (unsigned long long)ms->nr_regions, buffer);
1829 
1830 		sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz);
1831 
1832 		break;
1833 
1834 	case STATUSTYPE_TABLE:
1835 		sz = log->type->status(ms->rh.log, type, result, maxlen);
1836 
1837 		DMEMIT("%d", ms->nr_mirrors);
1838 		for (m = 0; m < ms->nr_mirrors; m++)
1839 			DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1840 			       (unsigned long long)ms->mirror[m].offset);
1841 
1842 		if (ms->features & DM_RAID1_HANDLE_ERRORS)
1843 			DMEMIT(" 1 handle_errors");
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 static struct target_type mirror_target = {
1850 	.name	 = "mirror",
1851 	.version = {1, 0, 20},
1852 	.module	 = THIS_MODULE,
1853 	.ctr	 = mirror_ctr,
1854 	.dtr	 = mirror_dtr,
1855 	.map	 = mirror_map,
1856 	.end_io	 = mirror_end_io,
1857 	.presuspend = mirror_presuspend,
1858 	.postsuspend = mirror_postsuspend,
1859 	.resume	 = mirror_resume,
1860 	.status	 = mirror_status,
1861 };
1862 
1863 static int __init dm_mirror_init(void)
1864 {
1865 	int r;
1866 
1867 	r = dm_dirty_log_init();
1868 	if (r)
1869 		return r;
1870 
1871 	r = dm_register_target(&mirror_target);
1872 	if (r < 0) {
1873 		DMERR("Failed to register mirror target");
1874 		dm_dirty_log_exit();
1875 	}
1876 
1877 	return r;
1878 }
1879 
1880 static void __exit dm_mirror_exit(void)
1881 {
1882 	int r;
1883 
1884 	r = dm_unregister_target(&mirror_target);
1885 	if (r < 0)
1886 		DMERR("unregister failed %d", r);
1887 
1888 	dm_dirty_log_exit();
1889 }
1890 
1891 /* Module hooks */
1892 module_init(dm_mirror_init);
1893 module_exit(dm_mirror_exit);
1894 
1895 MODULE_DESCRIPTION(DM_NAME " mirror target");
1896 MODULE_AUTHOR("Joe Thornber");
1897 MODULE_LICENSE("GPL");
1898