1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-list.h" 9 #include "dm-bio-record.h" 10 11 #include <linux/ctype.h> 12 #include <linux/init.h> 13 #include <linux/mempool.h> 14 #include <linux/module.h> 15 #include <linux/pagemap.h> 16 #include <linux/slab.h> 17 #include <linux/time.h> 18 #include <linux/vmalloc.h> 19 #include <linux/workqueue.h> 20 #include <linux/log2.h> 21 #include <linux/hardirq.h> 22 #include <linux/dm-io.h> 23 #include <linux/dm-dirty-log.h> 24 #include <linux/dm-kcopyd.h> 25 26 #define DM_MSG_PREFIX "raid1" 27 #define DM_IO_PAGES 64 28 29 #define DM_RAID1_HANDLE_ERRORS 0x01 30 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS) 31 32 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped); 33 34 /*----------------------------------------------------------------- 35 * Region hash 36 * 37 * The mirror splits itself up into discrete regions. Each 38 * region can be in one of three states: clean, dirty, 39 * nosync. There is no need to put clean regions in the hash. 40 * 41 * In addition to being present in the hash table a region _may_ 42 * be present on one of three lists. 43 * 44 * clean_regions: Regions on this list have no io pending to 45 * them, they are in sync, we are no longer interested in them, 46 * they are dull. rh_update_states() will remove them from the 47 * hash table. 48 * 49 * quiesced_regions: These regions have been spun down, ready 50 * for recovery. rh_recovery_start() will remove regions from 51 * this list and hand them to kmirrord, which will schedule the 52 * recovery io with kcopyd. 53 * 54 * recovered_regions: Regions that kcopyd has successfully 55 * recovered. rh_update_states() will now schedule any delayed 56 * io, up the recovery_count, and remove the region from the 57 * hash. 58 * 59 * There are 2 locks: 60 * A rw spin lock 'hash_lock' protects just the hash table, 61 * this is never held in write mode from interrupt context, 62 * which I believe means that we only have to disable irqs when 63 * doing a write lock. 64 * 65 * An ordinary spin lock 'region_lock' that protects the three 66 * lists in the region_hash, with the 'state', 'list' and 67 * 'bhs_delayed' fields of the regions. This is used from irq 68 * context, so all other uses will have to suspend local irqs. 69 *---------------------------------------------------------------*/ 70 struct mirror_set; 71 struct region_hash { 72 struct mirror_set *ms; 73 uint32_t region_size; 74 unsigned region_shift; 75 76 /* holds persistent region state */ 77 struct dm_dirty_log *log; 78 79 /* hash table */ 80 rwlock_t hash_lock; 81 mempool_t *region_pool; 82 unsigned int mask; 83 unsigned int nr_buckets; 84 struct list_head *buckets; 85 86 spinlock_t region_lock; 87 atomic_t recovery_in_flight; 88 struct semaphore recovery_count; 89 struct list_head clean_regions; 90 struct list_head quiesced_regions; 91 struct list_head recovered_regions; 92 struct list_head failed_recovered_regions; 93 }; 94 95 enum { 96 RH_CLEAN, 97 RH_DIRTY, 98 RH_NOSYNC, 99 RH_RECOVERING 100 }; 101 102 struct region { 103 struct region_hash *rh; /* FIXME: can we get rid of this ? */ 104 region_t key; 105 int state; 106 107 struct list_head hash_list; 108 struct list_head list; 109 110 atomic_t pending; 111 struct bio_list delayed_bios; 112 }; 113 114 115 /*----------------------------------------------------------------- 116 * Mirror set structures. 117 *---------------------------------------------------------------*/ 118 enum dm_raid1_error { 119 DM_RAID1_WRITE_ERROR, 120 DM_RAID1_SYNC_ERROR, 121 DM_RAID1_READ_ERROR 122 }; 123 124 struct mirror { 125 struct mirror_set *ms; 126 atomic_t error_count; 127 unsigned long error_type; 128 struct dm_dev *dev; 129 sector_t offset; 130 }; 131 132 struct mirror_set { 133 struct dm_target *ti; 134 struct list_head list; 135 struct region_hash rh; 136 struct dm_kcopyd_client *kcopyd_client; 137 uint64_t features; 138 139 spinlock_t lock; /* protects the lists */ 140 struct bio_list reads; 141 struct bio_list writes; 142 struct bio_list failures; 143 144 struct dm_io_client *io_client; 145 mempool_t *read_record_pool; 146 147 /* recovery */ 148 region_t nr_regions; 149 int in_sync; 150 int log_failure; 151 atomic_t suspend; 152 153 atomic_t default_mirror; /* Default mirror */ 154 155 struct workqueue_struct *kmirrord_wq; 156 struct work_struct kmirrord_work; 157 struct timer_list timer; 158 unsigned long timer_pending; 159 160 struct work_struct trigger_event; 161 162 unsigned int nr_mirrors; 163 struct mirror mirror[0]; 164 }; 165 166 /* 167 * Conversion fns 168 */ 169 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio) 170 { 171 return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift; 172 } 173 174 static inline sector_t region_to_sector(struct region_hash *rh, region_t region) 175 { 176 return region << rh->region_shift; 177 } 178 179 static void wake(struct mirror_set *ms) 180 { 181 queue_work(ms->kmirrord_wq, &ms->kmirrord_work); 182 } 183 184 static void delayed_wake_fn(unsigned long data) 185 { 186 struct mirror_set *ms = (struct mirror_set *) data; 187 188 clear_bit(0, &ms->timer_pending); 189 wake(ms); 190 } 191 192 static void delayed_wake(struct mirror_set *ms) 193 { 194 if (test_and_set_bit(0, &ms->timer_pending)) 195 return; 196 197 ms->timer.expires = jiffies + HZ / 5; 198 ms->timer.data = (unsigned long) ms; 199 ms->timer.function = delayed_wake_fn; 200 add_timer(&ms->timer); 201 } 202 203 /* FIXME move this */ 204 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw); 205 206 #define MIN_REGIONS 64 207 #define MAX_RECOVERY 1 208 static int rh_init(struct region_hash *rh, struct mirror_set *ms, 209 struct dm_dirty_log *log, uint32_t region_size, 210 region_t nr_regions) 211 { 212 unsigned int nr_buckets, max_buckets; 213 size_t i; 214 215 /* 216 * Calculate a suitable number of buckets for our hash 217 * table. 218 */ 219 max_buckets = nr_regions >> 6; 220 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1) 221 ; 222 nr_buckets >>= 1; 223 224 rh->ms = ms; 225 rh->log = log; 226 rh->region_size = region_size; 227 rh->region_shift = ffs(region_size) - 1; 228 rwlock_init(&rh->hash_lock); 229 rh->mask = nr_buckets - 1; 230 rh->nr_buckets = nr_buckets; 231 232 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets)); 233 if (!rh->buckets) { 234 DMERR("unable to allocate region hash memory"); 235 return -ENOMEM; 236 } 237 238 for (i = 0; i < nr_buckets; i++) 239 INIT_LIST_HEAD(rh->buckets + i); 240 241 spin_lock_init(&rh->region_lock); 242 sema_init(&rh->recovery_count, 0); 243 atomic_set(&rh->recovery_in_flight, 0); 244 INIT_LIST_HEAD(&rh->clean_regions); 245 INIT_LIST_HEAD(&rh->quiesced_regions); 246 INIT_LIST_HEAD(&rh->recovered_regions); 247 INIT_LIST_HEAD(&rh->failed_recovered_regions); 248 249 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS, 250 sizeof(struct region)); 251 if (!rh->region_pool) { 252 vfree(rh->buckets); 253 rh->buckets = NULL; 254 return -ENOMEM; 255 } 256 257 return 0; 258 } 259 260 static void rh_exit(struct region_hash *rh) 261 { 262 unsigned int h; 263 struct region *reg, *nreg; 264 265 BUG_ON(!list_empty(&rh->quiesced_regions)); 266 for (h = 0; h < rh->nr_buckets; h++) { 267 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) { 268 BUG_ON(atomic_read(®->pending)); 269 mempool_free(reg, rh->region_pool); 270 } 271 } 272 273 if (rh->log) 274 dm_dirty_log_destroy(rh->log); 275 if (rh->region_pool) 276 mempool_destroy(rh->region_pool); 277 vfree(rh->buckets); 278 } 279 280 #define RH_HASH_MULT 2654435387U 281 282 static inline unsigned int rh_hash(struct region_hash *rh, region_t region) 283 { 284 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask; 285 } 286 287 static struct region *__rh_lookup(struct region_hash *rh, region_t region) 288 { 289 struct region *reg; 290 291 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list) 292 if (reg->key == region) 293 return reg; 294 295 return NULL; 296 } 297 298 static void __rh_insert(struct region_hash *rh, struct region *reg) 299 { 300 unsigned int h = rh_hash(rh, reg->key); 301 list_add(®->hash_list, rh->buckets + h); 302 } 303 304 static struct region *__rh_alloc(struct region_hash *rh, region_t region) 305 { 306 struct region *reg, *nreg; 307 308 read_unlock(&rh->hash_lock); 309 nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC); 310 if (unlikely(!nreg)) 311 nreg = kmalloc(sizeof(struct region), GFP_NOIO); 312 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ? 313 RH_CLEAN : RH_NOSYNC; 314 nreg->rh = rh; 315 nreg->key = region; 316 317 INIT_LIST_HEAD(&nreg->list); 318 319 atomic_set(&nreg->pending, 0); 320 bio_list_init(&nreg->delayed_bios); 321 write_lock_irq(&rh->hash_lock); 322 323 reg = __rh_lookup(rh, region); 324 if (reg) 325 /* we lost the race */ 326 mempool_free(nreg, rh->region_pool); 327 328 else { 329 __rh_insert(rh, nreg); 330 if (nreg->state == RH_CLEAN) { 331 spin_lock(&rh->region_lock); 332 list_add(&nreg->list, &rh->clean_regions); 333 spin_unlock(&rh->region_lock); 334 } 335 reg = nreg; 336 } 337 write_unlock_irq(&rh->hash_lock); 338 read_lock(&rh->hash_lock); 339 340 return reg; 341 } 342 343 static inline struct region *__rh_find(struct region_hash *rh, region_t region) 344 { 345 struct region *reg; 346 347 reg = __rh_lookup(rh, region); 348 if (!reg) 349 reg = __rh_alloc(rh, region); 350 351 return reg; 352 } 353 354 static int rh_state(struct region_hash *rh, region_t region, int may_block) 355 { 356 int r; 357 struct region *reg; 358 359 read_lock(&rh->hash_lock); 360 reg = __rh_lookup(rh, region); 361 read_unlock(&rh->hash_lock); 362 363 if (reg) 364 return reg->state; 365 366 /* 367 * The region wasn't in the hash, so we fall back to the 368 * dirty log. 369 */ 370 r = rh->log->type->in_sync(rh->log, region, may_block); 371 372 /* 373 * Any error from the dirty log (eg. -EWOULDBLOCK) gets 374 * taken as a RH_NOSYNC 375 */ 376 return r == 1 ? RH_CLEAN : RH_NOSYNC; 377 } 378 379 static inline int rh_in_sync(struct region_hash *rh, 380 region_t region, int may_block) 381 { 382 int state = rh_state(rh, region, may_block); 383 return state == RH_CLEAN || state == RH_DIRTY; 384 } 385 386 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list) 387 { 388 struct bio *bio; 389 390 while ((bio = bio_list_pop(bio_list))) { 391 queue_bio(ms, bio, WRITE); 392 } 393 } 394 395 static void complete_resync_work(struct region *reg, int success) 396 { 397 struct region_hash *rh = reg->rh; 398 399 rh->log->type->set_region_sync(rh->log, reg->key, success); 400 401 /* 402 * Dispatch the bios before we call 'wake_up_all'. 403 * This is important because if we are suspending, 404 * we want to know that recovery is complete and 405 * the work queue is flushed. If we wake_up_all 406 * before we dispatch_bios (queue bios and call wake()), 407 * then we risk suspending before the work queue 408 * has been properly flushed. 409 */ 410 dispatch_bios(rh->ms, ®->delayed_bios); 411 if (atomic_dec_and_test(&rh->recovery_in_flight)) 412 wake_up_all(&_kmirrord_recovery_stopped); 413 up(&rh->recovery_count); 414 } 415 416 static void rh_update_states(struct region_hash *rh) 417 { 418 struct region *reg, *next; 419 420 LIST_HEAD(clean); 421 LIST_HEAD(recovered); 422 LIST_HEAD(failed_recovered); 423 424 /* 425 * Quickly grab the lists. 426 */ 427 write_lock_irq(&rh->hash_lock); 428 spin_lock(&rh->region_lock); 429 if (!list_empty(&rh->clean_regions)) { 430 list_splice_init(&rh->clean_regions, &clean); 431 432 list_for_each_entry(reg, &clean, list) 433 list_del(®->hash_list); 434 } 435 436 if (!list_empty(&rh->recovered_regions)) { 437 list_splice_init(&rh->recovered_regions, &recovered); 438 439 list_for_each_entry (reg, &recovered, list) 440 list_del(®->hash_list); 441 } 442 443 if (!list_empty(&rh->failed_recovered_regions)) { 444 list_splice_init(&rh->failed_recovered_regions, 445 &failed_recovered); 446 447 list_for_each_entry(reg, &failed_recovered, list) 448 list_del(®->hash_list); 449 } 450 451 spin_unlock(&rh->region_lock); 452 write_unlock_irq(&rh->hash_lock); 453 454 /* 455 * All the regions on the recovered and clean lists have 456 * now been pulled out of the system, so no need to do 457 * any more locking. 458 */ 459 list_for_each_entry_safe (reg, next, &recovered, list) { 460 rh->log->type->clear_region(rh->log, reg->key); 461 complete_resync_work(reg, 1); 462 mempool_free(reg, rh->region_pool); 463 } 464 465 list_for_each_entry_safe(reg, next, &failed_recovered, list) { 466 complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1); 467 mempool_free(reg, rh->region_pool); 468 } 469 470 list_for_each_entry_safe(reg, next, &clean, list) { 471 rh->log->type->clear_region(rh->log, reg->key); 472 mempool_free(reg, rh->region_pool); 473 } 474 475 rh->log->type->flush(rh->log); 476 } 477 478 static void rh_inc(struct region_hash *rh, region_t region) 479 { 480 struct region *reg; 481 482 read_lock(&rh->hash_lock); 483 reg = __rh_find(rh, region); 484 485 spin_lock_irq(&rh->region_lock); 486 atomic_inc(®->pending); 487 488 if (reg->state == RH_CLEAN) { 489 reg->state = RH_DIRTY; 490 list_del_init(®->list); /* take off the clean list */ 491 spin_unlock_irq(&rh->region_lock); 492 493 rh->log->type->mark_region(rh->log, reg->key); 494 } else 495 spin_unlock_irq(&rh->region_lock); 496 497 498 read_unlock(&rh->hash_lock); 499 } 500 501 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios) 502 { 503 struct bio *bio; 504 505 for (bio = bios->head; bio; bio = bio->bi_next) 506 rh_inc(rh, bio_to_region(rh, bio)); 507 } 508 509 static void rh_dec(struct region_hash *rh, region_t region) 510 { 511 unsigned long flags; 512 struct region *reg; 513 int should_wake = 0; 514 515 read_lock(&rh->hash_lock); 516 reg = __rh_lookup(rh, region); 517 read_unlock(&rh->hash_lock); 518 519 spin_lock_irqsave(&rh->region_lock, flags); 520 if (atomic_dec_and_test(®->pending)) { 521 /* 522 * There is no pending I/O for this region. 523 * We can move the region to corresponding list for next action. 524 * At this point, the region is not yet connected to any list. 525 * 526 * If the state is RH_NOSYNC, the region should be kept off 527 * from clean list. 528 * The hash entry for RH_NOSYNC will remain in memory 529 * until the region is recovered or the map is reloaded. 530 */ 531 532 /* do nothing for RH_NOSYNC */ 533 if (reg->state == RH_RECOVERING) { 534 list_add_tail(®->list, &rh->quiesced_regions); 535 } else if (reg->state == RH_DIRTY) { 536 reg->state = RH_CLEAN; 537 list_add(®->list, &rh->clean_regions); 538 } 539 should_wake = 1; 540 } 541 spin_unlock_irqrestore(&rh->region_lock, flags); 542 543 if (should_wake) 544 wake(rh->ms); 545 } 546 547 /* 548 * Starts quiescing a region in preparation for recovery. 549 */ 550 static int __rh_recovery_prepare(struct region_hash *rh) 551 { 552 int r; 553 struct region *reg; 554 region_t region; 555 556 /* 557 * Ask the dirty log what's next. 558 */ 559 r = rh->log->type->get_resync_work(rh->log, ®ion); 560 if (r <= 0) 561 return r; 562 563 /* 564 * Get this region, and start it quiescing by setting the 565 * recovering flag. 566 */ 567 read_lock(&rh->hash_lock); 568 reg = __rh_find(rh, region); 569 read_unlock(&rh->hash_lock); 570 571 spin_lock_irq(&rh->region_lock); 572 reg->state = RH_RECOVERING; 573 574 /* Already quiesced ? */ 575 if (atomic_read(®->pending)) 576 list_del_init(®->list); 577 else 578 list_move(®->list, &rh->quiesced_regions); 579 580 spin_unlock_irq(&rh->region_lock); 581 582 return 1; 583 } 584 585 static void rh_recovery_prepare(struct region_hash *rh) 586 { 587 /* Extra reference to avoid race with rh_stop_recovery */ 588 atomic_inc(&rh->recovery_in_flight); 589 590 while (!down_trylock(&rh->recovery_count)) { 591 atomic_inc(&rh->recovery_in_flight); 592 if (__rh_recovery_prepare(rh) <= 0) { 593 atomic_dec(&rh->recovery_in_flight); 594 up(&rh->recovery_count); 595 break; 596 } 597 } 598 599 /* Drop the extra reference */ 600 if (atomic_dec_and_test(&rh->recovery_in_flight)) 601 wake_up_all(&_kmirrord_recovery_stopped); 602 } 603 604 /* 605 * Returns any quiesced regions. 606 */ 607 static struct region *rh_recovery_start(struct region_hash *rh) 608 { 609 struct region *reg = NULL; 610 611 spin_lock_irq(&rh->region_lock); 612 if (!list_empty(&rh->quiesced_regions)) { 613 reg = list_entry(rh->quiesced_regions.next, 614 struct region, list); 615 list_del_init(®->list); /* remove from the quiesced list */ 616 } 617 spin_unlock_irq(&rh->region_lock); 618 619 return reg; 620 } 621 622 static void rh_recovery_end(struct region *reg, int success) 623 { 624 struct region_hash *rh = reg->rh; 625 626 spin_lock_irq(&rh->region_lock); 627 if (success) 628 list_add(®->list, ®->rh->recovered_regions); 629 else { 630 reg->state = RH_NOSYNC; 631 list_add(®->list, ®->rh->failed_recovered_regions); 632 } 633 spin_unlock_irq(&rh->region_lock); 634 635 wake(rh->ms); 636 } 637 638 static int rh_flush(struct region_hash *rh) 639 { 640 return rh->log->type->flush(rh->log); 641 } 642 643 static void rh_delay(struct region_hash *rh, struct bio *bio) 644 { 645 struct region *reg; 646 647 read_lock(&rh->hash_lock); 648 reg = __rh_find(rh, bio_to_region(rh, bio)); 649 bio_list_add(®->delayed_bios, bio); 650 read_unlock(&rh->hash_lock); 651 } 652 653 static void rh_stop_recovery(struct region_hash *rh) 654 { 655 int i; 656 657 /* wait for any recovering regions */ 658 for (i = 0; i < MAX_RECOVERY; i++) 659 down(&rh->recovery_count); 660 } 661 662 static void rh_start_recovery(struct region_hash *rh) 663 { 664 int i; 665 666 for (i = 0; i < MAX_RECOVERY; i++) 667 up(&rh->recovery_count); 668 669 wake(rh->ms); 670 } 671 672 #define MIN_READ_RECORDS 20 673 struct dm_raid1_read_record { 674 struct mirror *m; 675 struct dm_bio_details details; 676 }; 677 678 /* 679 * Every mirror should look like this one. 680 */ 681 #define DEFAULT_MIRROR 0 682 683 /* 684 * This is yucky. We squirrel the mirror struct away inside 685 * bi_next for read/write buffers. This is safe since the bh 686 * doesn't get submitted to the lower levels of block layer. 687 */ 688 static struct mirror *bio_get_m(struct bio *bio) 689 { 690 return (struct mirror *) bio->bi_next; 691 } 692 693 static void bio_set_m(struct bio *bio, struct mirror *m) 694 { 695 bio->bi_next = (struct bio *) m; 696 } 697 698 static struct mirror *get_default_mirror(struct mirror_set *ms) 699 { 700 return &ms->mirror[atomic_read(&ms->default_mirror)]; 701 } 702 703 static void set_default_mirror(struct mirror *m) 704 { 705 struct mirror_set *ms = m->ms; 706 struct mirror *m0 = &(ms->mirror[0]); 707 708 atomic_set(&ms->default_mirror, m - m0); 709 } 710 711 /* fail_mirror 712 * @m: mirror device to fail 713 * @error_type: one of the enum's, DM_RAID1_*_ERROR 714 * 715 * If errors are being handled, record the type of 716 * error encountered for this device. If this type 717 * of error has already been recorded, we can return; 718 * otherwise, we must signal userspace by triggering 719 * an event. Additionally, if the device is the 720 * primary device, we must choose a new primary, but 721 * only if the mirror is in-sync. 722 * 723 * This function must not block. 724 */ 725 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type) 726 { 727 struct mirror_set *ms = m->ms; 728 struct mirror *new; 729 730 if (!errors_handled(ms)) 731 return; 732 733 /* 734 * error_count is used for nothing more than a 735 * simple way to tell if a device has encountered 736 * errors. 737 */ 738 atomic_inc(&m->error_count); 739 740 if (test_and_set_bit(error_type, &m->error_type)) 741 return; 742 743 if (m != get_default_mirror(ms)) 744 goto out; 745 746 if (!ms->in_sync) { 747 /* 748 * Better to issue requests to same failing device 749 * than to risk returning corrupt data. 750 */ 751 DMERR("Primary mirror (%s) failed while out-of-sync: " 752 "Reads may fail.", m->dev->name); 753 goto out; 754 } 755 756 for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++) 757 if (!atomic_read(&new->error_count)) { 758 set_default_mirror(new); 759 break; 760 } 761 762 if (unlikely(new == ms->mirror + ms->nr_mirrors)) 763 DMWARN("All sides of mirror have failed."); 764 765 out: 766 schedule_work(&ms->trigger_event); 767 } 768 769 /*----------------------------------------------------------------- 770 * Recovery. 771 * 772 * When a mirror is first activated we may find that some regions 773 * are in the no-sync state. We have to recover these by 774 * recopying from the default mirror to all the others. 775 *---------------------------------------------------------------*/ 776 static void recovery_complete(int read_err, unsigned long write_err, 777 void *context) 778 { 779 struct region *reg = (struct region *)context; 780 struct mirror_set *ms = reg->rh->ms; 781 int m, bit = 0; 782 783 if (read_err) { 784 /* Read error means the failure of default mirror. */ 785 DMERR_LIMIT("Unable to read primary mirror during recovery"); 786 fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR); 787 } 788 789 if (write_err) { 790 DMERR_LIMIT("Write error during recovery (error = 0x%lx)", 791 write_err); 792 /* 793 * Bits correspond to devices (excluding default mirror). 794 * The default mirror cannot change during recovery. 795 */ 796 for (m = 0; m < ms->nr_mirrors; m++) { 797 if (&ms->mirror[m] == get_default_mirror(ms)) 798 continue; 799 if (test_bit(bit, &write_err)) 800 fail_mirror(ms->mirror + m, 801 DM_RAID1_SYNC_ERROR); 802 bit++; 803 } 804 } 805 806 rh_recovery_end(reg, !(read_err || write_err)); 807 } 808 809 static int recover(struct mirror_set *ms, struct region *reg) 810 { 811 int r; 812 unsigned int i; 813 struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest; 814 struct mirror *m; 815 unsigned long flags = 0; 816 817 /* fill in the source */ 818 m = get_default_mirror(ms); 819 from.bdev = m->dev->bdev; 820 from.sector = m->offset + region_to_sector(reg->rh, reg->key); 821 if (reg->key == (ms->nr_regions - 1)) { 822 /* 823 * The final region may be smaller than 824 * region_size. 825 */ 826 from.count = ms->ti->len & (reg->rh->region_size - 1); 827 if (!from.count) 828 from.count = reg->rh->region_size; 829 } else 830 from.count = reg->rh->region_size; 831 832 /* fill in the destinations */ 833 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 834 if (&ms->mirror[i] == get_default_mirror(ms)) 835 continue; 836 837 m = ms->mirror + i; 838 dest->bdev = m->dev->bdev; 839 dest->sector = m->offset + region_to_sector(reg->rh, reg->key); 840 dest->count = from.count; 841 dest++; 842 } 843 844 /* hand to kcopyd */ 845 set_bit(DM_KCOPYD_IGNORE_ERROR, &flags); 846 r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, 847 flags, recovery_complete, reg); 848 849 return r; 850 } 851 852 static void do_recovery(struct mirror_set *ms) 853 { 854 int r; 855 struct region *reg; 856 struct dm_dirty_log *log = ms->rh.log; 857 858 /* 859 * Start quiescing some regions. 860 */ 861 rh_recovery_prepare(&ms->rh); 862 863 /* 864 * Copy any already quiesced regions. 865 */ 866 while ((reg = rh_recovery_start(&ms->rh))) { 867 r = recover(ms, reg); 868 if (r) 869 rh_recovery_end(reg, 0); 870 } 871 872 /* 873 * Update the in sync flag. 874 */ 875 if (!ms->in_sync && 876 (log->type->get_sync_count(log) == ms->nr_regions)) { 877 /* the sync is complete */ 878 dm_table_event(ms->ti->table); 879 ms->in_sync = 1; 880 } 881 } 882 883 /*----------------------------------------------------------------- 884 * Reads 885 *---------------------------------------------------------------*/ 886 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 887 { 888 struct mirror *m = get_default_mirror(ms); 889 890 do { 891 if (likely(!atomic_read(&m->error_count))) 892 return m; 893 894 if (m-- == ms->mirror) 895 m += ms->nr_mirrors; 896 } while (m != get_default_mirror(ms)); 897 898 return NULL; 899 } 900 901 static int default_ok(struct mirror *m) 902 { 903 struct mirror *default_mirror = get_default_mirror(m->ms); 904 905 return !atomic_read(&default_mirror->error_count); 906 } 907 908 static int mirror_available(struct mirror_set *ms, struct bio *bio) 909 { 910 region_t region = bio_to_region(&ms->rh, bio); 911 912 if (ms->rh.log->type->in_sync(ms->rh.log, region, 0)) 913 return choose_mirror(ms, bio->bi_sector) ? 1 : 0; 914 915 return 0; 916 } 917 918 /* 919 * remap a buffer to a particular mirror. 920 */ 921 static sector_t map_sector(struct mirror *m, struct bio *bio) 922 { 923 return m->offset + (bio->bi_sector - m->ms->ti->begin); 924 } 925 926 static void map_bio(struct mirror *m, struct bio *bio) 927 { 928 bio->bi_bdev = m->dev->bdev; 929 bio->bi_sector = map_sector(m, bio); 930 } 931 932 static void map_region(struct dm_io_region *io, struct mirror *m, 933 struct bio *bio) 934 { 935 io->bdev = m->dev->bdev; 936 io->sector = map_sector(m, bio); 937 io->count = bio->bi_size >> 9; 938 } 939 940 /*----------------------------------------------------------------- 941 * Reads 942 *---------------------------------------------------------------*/ 943 static void read_callback(unsigned long error, void *context) 944 { 945 struct bio *bio = context; 946 struct mirror *m; 947 948 m = bio_get_m(bio); 949 bio_set_m(bio, NULL); 950 951 if (likely(!error)) { 952 bio_endio(bio, 0); 953 return; 954 } 955 956 fail_mirror(m, DM_RAID1_READ_ERROR); 957 958 if (likely(default_ok(m)) || mirror_available(m->ms, bio)) { 959 DMWARN_LIMIT("Read failure on mirror device %s. " 960 "Trying alternative device.", 961 m->dev->name); 962 queue_bio(m->ms, bio, bio_rw(bio)); 963 return; 964 } 965 966 DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.", 967 m->dev->name); 968 bio_endio(bio, -EIO); 969 } 970 971 /* Asynchronous read. */ 972 static void read_async_bio(struct mirror *m, struct bio *bio) 973 { 974 struct dm_io_region io; 975 struct dm_io_request io_req = { 976 .bi_rw = READ, 977 .mem.type = DM_IO_BVEC, 978 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 979 .notify.fn = read_callback, 980 .notify.context = bio, 981 .client = m->ms->io_client, 982 }; 983 984 map_region(&io, m, bio); 985 bio_set_m(bio, m); 986 (void) dm_io(&io_req, 1, &io, NULL); 987 } 988 989 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 990 { 991 region_t region; 992 struct bio *bio; 993 struct mirror *m; 994 995 while ((bio = bio_list_pop(reads))) { 996 region = bio_to_region(&ms->rh, bio); 997 m = get_default_mirror(ms); 998 999 /* 1000 * We can only read balance if the region is in sync. 1001 */ 1002 if (likely(rh_in_sync(&ms->rh, region, 1))) 1003 m = choose_mirror(ms, bio->bi_sector); 1004 else if (m && atomic_read(&m->error_count)) 1005 m = NULL; 1006 1007 if (likely(m)) 1008 read_async_bio(m, bio); 1009 else 1010 bio_endio(bio, -EIO); 1011 } 1012 } 1013 1014 /*----------------------------------------------------------------- 1015 * Writes. 1016 * 1017 * We do different things with the write io depending on the 1018 * state of the region that it's in: 1019 * 1020 * SYNC: increment pending, use kcopyd to write to *all* mirrors 1021 * RECOVERING: delay the io until recovery completes 1022 * NOSYNC: increment pending, just write to the default mirror 1023 *---------------------------------------------------------------*/ 1024 1025 /* __bio_mark_nosync 1026 * @ms 1027 * @bio 1028 * @done 1029 * @error 1030 * 1031 * The bio was written on some mirror(s) but failed on other mirror(s). 1032 * We can successfully endio the bio but should avoid the region being 1033 * marked clean by setting the state RH_NOSYNC. 1034 * 1035 * This function is _not_ safe in interrupt context! 1036 */ 1037 static void __bio_mark_nosync(struct mirror_set *ms, 1038 struct bio *bio, unsigned done, int error) 1039 { 1040 unsigned long flags; 1041 struct region_hash *rh = &ms->rh; 1042 struct dm_dirty_log *log = ms->rh.log; 1043 struct region *reg; 1044 region_t region = bio_to_region(rh, bio); 1045 int recovering = 0; 1046 1047 /* We must inform the log that the sync count has changed. */ 1048 log->type->set_region_sync(log, region, 0); 1049 ms->in_sync = 0; 1050 1051 read_lock(&rh->hash_lock); 1052 reg = __rh_find(rh, region); 1053 read_unlock(&rh->hash_lock); 1054 1055 /* region hash entry should exist because write was in-flight */ 1056 BUG_ON(!reg); 1057 BUG_ON(!list_empty(®->list)); 1058 1059 spin_lock_irqsave(&rh->region_lock, flags); 1060 /* 1061 * Possible cases: 1062 * 1) RH_DIRTY 1063 * 2) RH_NOSYNC: was dirty, other preceeding writes failed 1064 * 3) RH_RECOVERING: flushing pending writes 1065 * Either case, the region should have not been connected to list. 1066 */ 1067 recovering = (reg->state == RH_RECOVERING); 1068 reg->state = RH_NOSYNC; 1069 BUG_ON(!list_empty(®->list)); 1070 spin_unlock_irqrestore(&rh->region_lock, flags); 1071 1072 bio_endio(bio, error); 1073 if (recovering) 1074 complete_resync_work(reg, 0); 1075 } 1076 1077 static void write_callback(unsigned long error, void *context) 1078 { 1079 unsigned i, ret = 0; 1080 struct bio *bio = (struct bio *) context; 1081 struct mirror_set *ms; 1082 int uptodate = 0; 1083 int should_wake = 0; 1084 unsigned long flags; 1085 1086 ms = bio_get_m(bio)->ms; 1087 bio_set_m(bio, NULL); 1088 1089 /* 1090 * NOTE: We don't decrement the pending count here, 1091 * instead it is done by the targets endio function. 1092 * This way we handle both writes to SYNC and NOSYNC 1093 * regions with the same code. 1094 */ 1095 if (likely(!error)) 1096 goto out; 1097 1098 for (i = 0; i < ms->nr_mirrors; i++) 1099 if (test_bit(i, &error)) 1100 fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR); 1101 else 1102 uptodate = 1; 1103 1104 if (unlikely(!uptodate)) { 1105 DMERR("All replicated volumes dead, failing I/O"); 1106 /* None of the writes succeeded, fail the I/O. */ 1107 ret = -EIO; 1108 } else if (errors_handled(ms)) { 1109 /* 1110 * Need to raise event. Since raising 1111 * events can block, we need to do it in 1112 * the main thread. 1113 */ 1114 spin_lock_irqsave(&ms->lock, flags); 1115 if (!ms->failures.head) 1116 should_wake = 1; 1117 bio_list_add(&ms->failures, bio); 1118 spin_unlock_irqrestore(&ms->lock, flags); 1119 if (should_wake) 1120 wake(ms); 1121 return; 1122 } 1123 out: 1124 bio_endio(bio, ret); 1125 } 1126 1127 static void do_write(struct mirror_set *ms, struct bio *bio) 1128 { 1129 unsigned int i; 1130 struct dm_io_region io[ms->nr_mirrors], *dest = io; 1131 struct mirror *m; 1132 struct dm_io_request io_req = { 1133 .bi_rw = WRITE, 1134 .mem.type = DM_IO_BVEC, 1135 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 1136 .notify.fn = write_callback, 1137 .notify.context = bio, 1138 .client = ms->io_client, 1139 }; 1140 1141 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) 1142 map_region(dest++, m, bio); 1143 1144 /* 1145 * Use default mirror because we only need it to retrieve the reference 1146 * to the mirror set in write_callback(). 1147 */ 1148 bio_set_m(bio, get_default_mirror(ms)); 1149 1150 (void) dm_io(&io_req, ms->nr_mirrors, io, NULL); 1151 } 1152 1153 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 1154 { 1155 int state; 1156 struct bio *bio; 1157 struct bio_list sync, nosync, recover, *this_list = NULL; 1158 1159 if (!writes->head) 1160 return; 1161 1162 /* 1163 * Classify each write. 1164 */ 1165 bio_list_init(&sync); 1166 bio_list_init(&nosync); 1167 bio_list_init(&recover); 1168 1169 while ((bio = bio_list_pop(writes))) { 1170 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1); 1171 switch (state) { 1172 case RH_CLEAN: 1173 case RH_DIRTY: 1174 this_list = &sync; 1175 break; 1176 1177 case RH_NOSYNC: 1178 this_list = &nosync; 1179 break; 1180 1181 case RH_RECOVERING: 1182 this_list = &recover; 1183 break; 1184 } 1185 1186 bio_list_add(this_list, bio); 1187 } 1188 1189 /* 1190 * Increment the pending counts for any regions that will 1191 * be written to (writes to recover regions are going to 1192 * be delayed). 1193 */ 1194 rh_inc_pending(&ms->rh, &sync); 1195 rh_inc_pending(&ms->rh, &nosync); 1196 ms->log_failure = rh_flush(&ms->rh) ? 1 : 0; 1197 1198 /* 1199 * Dispatch io. 1200 */ 1201 if (unlikely(ms->log_failure)) { 1202 spin_lock_irq(&ms->lock); 1203 bio_list_merge(&ms->failures, &sync); 1204 spin_unlock_irq(&ms->lock); 1205 wake(ms); 1206 } else 1207 while ((bio = bio_list_pop(&sync))) 1208 do_write(ms, bio); 1209 1210 while ((bio = bio_list_pop(&recover))) 1211 rh_delay(&ms->rh, bio); 1212 1213 while ((bio = bio_list_pop(&nosync))) { 1214 map_bio(get_default_mirror(ms), bio); 1215 generic_make_request(bio); 1216 } 1217 } 1218 1219 static void do_failures(struct mirror_set *ms, struct bio_list *failures) 1220 { 1221 struct bio *bio; 1222 1223 if (!failures->head) 1224 return; 1225 1226 if (!ms->log_failure) { 1227 while ((bio = bio_list_pop(failures))) 1228 __bio_mark_nosync(ms, bio, bio->bi_size, 0); 1229 return; 1230 } 1231 1232 /* 1233 * If the log has failed, unattempted writes are being 1234 * put on the failures list. We can't issue those writes 1235 * until a log has been marked, so we must store them. 1236 * 1237 * If a 'noflush' suspend is in progress, we can requeue 1238 * the I/O's to the core. This give userspace a chance 1239 * to reconfigure the mirror, at which point the core 1240 * will reissue the writes. If the 'noflush' flag is 1241 * not set, we have no choice but to return errors. 1242 * 1243 * Some writes on the failures list may have been 1244 * submitted before the log failure and represent a 1245 * failure to write to one of the devices. It is ok 1246 * for us to treat them the same and requeue them 1247 * as well. 1248 */ 1249 if (dm_noflush_suspending(ms->ti)) { 1250 while ((bio = bio_list_pop(failures))) 1251 bio_endio(bio, DM_ENDIO_REQUEUE); 1252 return; 1253 } 1254 1255 if (atomic_read(&ms->suspend)) { 1256 while ((bio = bio_list_pop(failures))) 1257 bio_endio(bio, -EIO); 1258 return; 1259 } 1260 1261 spin_lock_irq(&ms->lock); 1262 bio_list_merge(&ms->failures, failures); 1263 spin_unlock_irq(&ms->lock); 1264 1265 delayed_wake(ms); 1266 } 1267 1268 static void trigger_event(struct work_struct *work) 1269 { 1270 struct mirror_set *ms = 1271 container_of(work, struct mirror_set, trigger_event); 1272 1273 dm_table_event(ms->ti->table); 1274 } 1275 1276 /*----------------------------------------------------------------- 1277 * kmirrord 1278 *---------------------------------------------------------------*/ 1279 static void do_mirror(struct work_struct *work) 1280 { 1281 struct mirror_set *ms =container_of(work, struct mirror_set, 1282 kmirrord_work); 1283 struct bio_list reads, writes, failures; 1284 unsigned long flags; 1285 1286 spin_lock_irqsave(&ms->lock, flags); 1287 reads = ms->reads; 1288 writes = ms->writes; 1289 failures = ms->failures; 1290 bio_list_init(&ms->reads); 1291 bio_list_init(&ms->writes); 1292 bio_list_init(&ms->failures); 1293 spin_unlock_irqrestore(&ms->lock, flags); 1294 1295 rh_update_states(&ms->rh); 1296 do_recovery(ms); 1297 do_reads(ms, &reads); 1298 do_writes(ms, &writes); 1299 do_failures(ms, &failures); 1300 1301 dm_table_unplug_all(ms->ti->table); 1302 } 1303 1304 1305 /*----------------------------------------------------------------- 1306 * Target functions 1307 *---------------------------------------------------------------*/ 1308 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 1309 uint32_t region_size, 1310 struct dm_target *ti, 1311 struct dm_dirty_log *dl) 1312 { 1313 size_t len; 1314 struct mirror_set *ms = NULL; 1315 1316 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors)) 1317 return NULL; 1318 1319 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors); 1320 1321 ms = kzalloc(len, GFP_KERNEL); 1322 if (!ms) { 1323 ti->error = "Cannot allocate mirror context"; 1324 return NULL; 1325 } 1326 1327 spin_lock_init(&ms->lock); 1328 1329 ms->ti = ti; 1330 ms->nr_mirrors = nr_mirrors; 1331 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 1332 ms->in_sync = 0; 1333 ms->log_failure = 0; 1334 atomic_set(&ms->suspend, 0); 1335 atomic_set(&ms->default_mirror, DEFAULT_MIRROR); 1336 1337 len = sizeof(struct dm_raid1_read_record); 1338 ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS, 1339 len); 1340 if (!ms->read_record_pool) { 1341 ti->error = "Error creating mirror read_record_pool"; 1342 kfree(ms); 1343 return NULL; 1344 } 1345 1346 ms->io_client = dm_io_client_create(DM_IO_PAGES); 1347 if (IS_ERR(ms->io_client)) { 1348 ti->error = "Error creating dm_io client"; 1349 mempool_destroy(ms->read_record_pool); 1350 kfree(ms); 1351 return NULL; 1352 } 1353 1354 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) { 1355 ti->error = "Error creating dirty region hash"; 1356 dm_io_client_destroy(ms->io_client); 1357 mempool_destroy(ms->read_record_pool); 1358 kfree(ms); 1359 return NULL; 1360 } 1361 1362 return ms; 1363 } 1364 1365 static void free_context(struct mirror_set *ms, struct dm_target *ti, 1366 unsigned int m) 1367 { 1368 while (m--) 1369 dm_put_device(ti, ms->mirror[m].dev); 1370 1371 dm_io_client_destroy(ms->io_client); 1372 rh_exit(&ms->rh); 1373 mempool_destroy(ms->read_record_pool); 1374 kfree(ms); 1375 } 1376 1377 static inline int _check_region_size(struct dm_target *ti, uint32_t size) 1378 { 1379 return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) || 1380 size > ti->len); 1381 } 1382 1383 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 1384 unsigned int mirror, char **argv) 1385 { 1386 unsigned long long offset; 1387 1388 if (sscanf(argv[1], "%llu", &offset) != 1) { 1389 ti->error = "Invalid offset"; 1390 return -EINVAL; 1391 } 1392 1393 if (dm_get_device(ti, argv[0], offset, ti->len, 1394 dm_table_get_mode(ti->table), 1395 &ms->mirror[mirror].dev)) { 1396 ti->error = "Device lookup failure"; 1397 return -ENXIO; 1398 } 1399 1400 ms->mirror[mirror].ms = ms; 1401 atomic_set(&(ms->mirror[mirror].error_count), 0); 1402 ms->mirror[mirror].error_type = 0; 1403 ms->mirror[mirror].offset = offset; 1404 1405 return 0; 1406 } 1407 1408 /* 1409 * Create dirty log: log_type #log_params <log_params> 1410 */ 1411 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti, 1412 unsigned int argc, char **argv, 1413 unsigned int *args_used) 1414 { 1415 unsigned int param_count; 1416 struct dm_dirty_log *dl; 1417 1418 if (argc < 2) { 1419 ti->error = "Insufficient mirror log arguments"; 1420 return NULL; 1421 } 1422 1423 if (sscanf(argv[1], "%u", ¶m_count) != 1) { 1424 ti->error = "Invalid mirror log argument count"; 1425 return NULL; 1426 } 1427 1428 *args_used = 2 + param_count; 1429 1430 if (argc < *args_used) { 1431 ti->error = "Insufficient mirror log arguments"; 1432 return NULL; 1433 } 1434 1435 dl = dm_dirty_log_create(argv[0], ti, param_count, argv + 2); 1436 if (!dl) { 1437 ti->error = "Error creating mirror dirty log"; 1438 return NULL; 1439 } 1440 1441 if (!_check_region_size(ti, dl->type->get_region_size(dl))) { 1442 ti->error = "Invalid region size"; 1443 dm_dirty_log_destroy(dl); 1444 return NULL; 1445 } 1446 1447 return dl; 1448 } 1449 1450 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv, 1451 unsigned *args_used) 1452 { 1453 unsigned num_features; 1454 struct dm_target *ti = ms->ti; 1455 1456 *args_used = 0; 1457 1458 if (!argc) 1459 return 0; 1460 1461 if (sscanf(argv[0], "%u", &num_features) != 1) { 1462 ti->error = "Invalid number of features"; 1463 return -EINVAL; 1464 } 1465 1466 argc--; 1467 argv++; 1468 (*args_used)++; 1469 1470 if (num_features > argc) { 1471 ti->error = "Not enough arguments to support feature count"; 1472 return -EINVAL; 1473 } 1474 1475 if (!strcmp("handle_errors", argv[0])) 1476 ms->features |= DM_RAID1_HANDLE_ERRORS; 1477 else { 1478 ti->error = "Unrecognised feature requested"; 1479 return -EINVAL; 1480 } 1481 1482 (*args_used)++; 1483 1484 return 0; 1485 } 1486 1487 /* 1488 * Construct a mirror mapping: 1489 * 1490 * log_type #log_params <log_params> 1491 * #mirrors [mirror_path offset]{2,} 1492 * [#features <features>] 1493 * 1494 * log_type is "core" or "disk" 1495 * #log_params is between 1 and 3 1496 * 1497 * If present, features must be "handle_errors". 1498 */ 1499 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1500 { 1501 int r; 1502 unsigned int nr_mirrors, m, args_used; 1503 struct mirror_set *ms; 1504 struct dm_dirty_log *dl; 1505 1506 dl = create_dirty_log(ti, argc, argv, &args_used); 1507 if (!dl) 1508 return -EINVAL; 1509 1510 argv += args_used; 1511 argc -= args_used; 1512 1513 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 || 1514 nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) { 1515 ti->error = "Invalid number of mirrors"; 1516 dm_dirty_log_destroy(dl); 1517 return -EINVAL; 1518 } 1519 1520 argv++, argc--; 1521 1522 if (argc < nr_mirrors * 2) { 1523 ti->error = "Too few mirror arguments"; 1524 dm_dirty_log_destroy(dl); 1525 return -EINVAL; 1526 } 1527 1528 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1529 if (!ms) { 1530 dm_dirty_log_destroy(dl); 1531 return -ENOMEM; 1532 } 1533 1534 /* Get the mirror parameter sets */ 1535 for (m = 0; m < nr_mirrors; m++) { 1536 r = get_mirror(ms, ti, m, argv); 1537 if (r) { 1538 free_context(ms, ti, m); 1539 return r; 1540 } 1541 argv += 2; 1542 argc -= 2; 1543 } 1544 1545 ti->private = ms; 1546 ti->split_io = ms->rh.region_size; 1547 1548 ms->kmirrord_wq = create_singlethread_workqueue("kmirrord"); 1549 if (!ms->kmirrord_wq) { 1550 DMERR("couldn't start kmirrord"); 1551 r = -ENOMEM; 1552 goto err_free_context; 1553 } 1554 INIT_WORK(&ms->kmirrord_work, do_mirror); 1555 init_timer(&ms->timer); 1556 ms->timer_pending = 0; 1557 INIT_WORK(&ms->trigger_event, trigger_event); 1558 1559 r = parse_features(ms, argc, argv, &args_used); 1560 if (r) 1561 goto err_destroy_wq; 1562 1563 argv += args_used; 1564 argc -= args_used; 1565 1566 /* 1567 * Any read-balancing addition depends on the 1568 * DM_RAID1_HANDLE_ERRORS flag being present. 1569 * This is because the decision to balance depends 1570 * on the sync state of a region. If the above 1571 * flag is not present, we ignore errors; and 1572 * the sync state may be inaccurate. 1573 */ 1574 1575 if (argc) { 1576 ti->error = "Too many mirror arguments"; 1577 r = -EINVAL; 1578 goto err_destroy_wq; 1579 } 1580 1581 r = dm_kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client); 1582 if (r) 1583 goto err_destroy_wq; 1584 1585 wake(ms); 1586 return 0; 1587 1588 err_destroy_wq: 1589 destroy_workqueue(ms->kmirrord_wq); 1590 err_free_context: 1591 free_context(ms, ti, ms->nr_mirrors); 1592 return r; 1593 } 1594 1595 static void mirror_dtr(struct dm_target *ti) 1596 { 1597 struct mirror_set *ms = (struct mirror_set *) ti->private; 1598 1599 del_timer_sync(&ms->timer); 1600 flush_workqueue(ms->kmirrord_wq); 1601 dm_kcopyd_client_destroy(ms->kcopyd_client); 1602 destroy_workqueue(ms->kmirrord_wq); 1603 free_context(ms, ti, ms->nr_mirrors); 1604 } 1605 1606 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 1607 { 1608 unsigned long flags; 1609 int should_wake = 0; 1610 struct bio_list *bl; 1611 1612 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 1613 spin_lock_irqsave(&ms->lock, flags); 1614 should_wake = !(bl->head); 1615 bio_list_add(bl, bio); 1616 spin_unlock_irqrestore(&ms->lock, flags); 1617 1618 if (should_wake) 1619 wake(ms); 1620 } 1621 1622 /* 1623 * Mirror mapping function 1624 */ 1625 static int mirror_map(struct dm_target *ti, struct bio *bio, 1626 union map_info *map_context) 1627 { 1628 int r, rw = bio_rw(bio); 1629 struct mirror *m; 1630 struct mirror_set *ms = ti->private; 1631 struct dm_raid1_read_record *read_record = NULL; 1632 1633 if (rw == WRITE) { 1634 /* Save region for mirror_end_io() handler */ 1635 map_context->ll = bio_to_region(&ms->rh, bio); 1636 queue_bio(ms, bio, rw); 1637 return DM_MAPIO_SUBMITTED; 1638 } 1639 1640 r = ms->rh.log->type->in_sync(ms->rh.log, 1641 bio_to_region(&ms->rh, bio), 0); 1642 if (r < 0 && r != -EWOULDBLOCK) 1643 return r; 1644 1645 /* 1646 * If region is not in-sync queue the bio. 1647 */ 1648 if (!r || (r == -EWOULDBLOCK)) { 1649 if (rw == READA) 1650 return -EWOULDBLOCK; 1651 1652 queue_bio(ms, bio, rw); 1653 return DM_MAPIO_SUBMITTED; 1654 } 1655 1656 /* 1657 * The region is in-sync and we can perform reads directly. 1658 * Store enough information so we can retry if it fails. 1659 */ 1660 m = choose_mirror(ms, bio->bi_sector); 1661 if (unlikely(!m)) 1662 return -EIO; 1663 1664 read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO); 1665 if (likely(read_record)) { 1666 dm_bio_record(&read_record->details, bio); 1667 map_context->ptr = read_record; 1668 read_record->m = m; 1669 } 1670 1671 map_bio(m, bio); 1672 1673 return DM_MAPIO_REMAPPED; 1674 } 1675 1676 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1677 int error, union map_info *map_context) 1678 { 1679 int rw = bio_rw(bio); 1680 struct mirror_set *ms = (struct mirror_set *) ti->private; 1681 struct mirror *m = NULL; 1682 struct dm_bio_details *bd = NULL; 1683 struct dm_raid1_read_record *read_record = map_context->ptr; 1684 1685 /* 1686 * We need to dec pending if this was a write. 1687 */ 1688 if (rw == WRITE) { 1689 rh_dec(&ms->rh, map_context->ll); 1690 return error; 1691 } 1692 1693 if (error == -EOPNOTSUPP) 1694 goto out; 1695 1696 if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio)) 1697 goto out; 1698 1699 if (unlikely(error)) { 1700 if (!read_record) { 1701 /* 1702 * There wasn't enough memory to record necessary 1703 * information for a retry or there was no other 1704 * mirror in-sync. 1705 */ 1706 DMERR_LIMIT("Mirror read failed."); 1707 return -EIO; 1708 } 1709 1710 m = read_record->m; 1711 1712 DMERR("Mirror read failed from %s. Trying alternative device.", 1713 m->dev->name); 1714 1715 fail_mirror(m, DM_RAID1_READ_ERROR); 1716 1717 /* 1718 * A failed read is requeued for another attempt using an intact 1719 * mirror. 1720 */ 1721 if (default_ok(m) || mirror_available(ms, bio)) { 1722 bd = &read_record->details; 1723 1724 dm_bio_restore(bd, bio); 1725 mempool_free(read_record, ms->read_record_pool); 1726 map_context->ptr = NULL; 1727 queue_bio(ms, bio, rw); 1728 return 1; 1729 } 1730 DMERR("All replicated volumes dead, failing I/O"); 1731 } 1732 1733 out: 1734 if (read_record) { 1735 mempool_free(read_record, ms->read_record_pool); 1736 map_context->ptr = NULL; 1737 } 1738 1739 return error; 1740 } 1741 1742 static void mirror_presuspend(struct dm_target *ti) 1743 { 1744 struct mirror_set *ms = (struct mirror_set *) ti->private; 1745 struct dm_dirty_log *log = ms->rh.log; 1746 1747 atomic_set(&ms->suspend, 1); 1748 1749 /* 1750 * We must finish up all the work that we've 1751 * generated (i.e. recovery work). 1752 */ 1753 rh_stop_recovery(&ms->rh); 1754 1755 wait_event(_kmirrord_recovery_stopped, 1756 !atomic_read(&ms->rh.recovery_in_flight)); 1757 1758 if (log->type->presuspend && log->type->presuspend(log)) 1759 /* FIXME: need better error handling */ 1760 DMWARN("log presuspend failed"); 1761 1762 /* 1763 * Now that recovery is complete/stopped and the 1764 * delayed bios are queued, we need to wait for 1765 * the worker thread to complete. This way, 1766 * we know that all of our I/O has been pushed. 1767 */ 1768 flush_workqueue(ms->kmirrord_wq); 1769 } 1770 1771 static void mirror_postsuspend(struct dm_target *ti) 1772 { 1773 struct mirror_set *ms = ti->private; 1774 struct dm_dirty_log *log = ms->rh.log; 1775 1776 if (log->type->postsuspend && log->type->postsuspend(log)) 1777 /* FIXME: need better error handling */ 1778 DMWARN("log postsuspend failed"); 1779 } 1780 1781 static void mirror_resume(struct dm_target *ti) 1782 { 1783 struct mirror_set *ms = ti->private; 1784 struct dm_dirty_log *log = ms->rh.log; 1785 1786 atomic_set(&ms->suspend, 0); 1787 if (log->type->resume && log->type->resume(log)) 1788 /* FIXME: need better error handling */ 1789 DMWARN("log resume failed"); 1790 rh_start_recovery(&ms->rh); 1791 } 1792 1793 /* 1794 * device_status_char 1795 * @m: mirror device/leg we want the status of 1796 * 1797 * We return one character representing the most severe error 1798 * we have encountered. 1799 * A => Alive - No failures 1800 * D => Dead - A write failure occurred leaving mirror out-of-sync 1801 * S => Sync - A sychronization failure occurred, mirror out-of-sync 1802 * R => Read - A read failure occurred, mirror data unaffected 1803 * 1804 * Returns: <char> 1805 */ 1806 static char device_status_char(struct mirror *m) 1807 { 1808 if (!atomic_read(&(m->error_count))) 1809 return 'A'; 1810 1811 return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' : 1812 (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' : 1813 (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U'; 1814 } 1815 1816 1817 static int mirror_status(struct dm_target *ti, status_type_t type, 1818 char *result, unsigned int maxlen) 1819 { 1820 unsigned int m, sz = 0; 1821 struct mirror_set *ms = (struct mirror_set *) ti->private; 1822 struct dm_dirty_log *log = ms->rh.log; 1823 char buffer[ms->nr_mirrors + 1]; 1824 1825 switch (type) { 1826 case STATUSTYPE_INFO: 1827 DMEMIT("%d ", ms->nr_mirrors); 1828 for (m = 0; m < ms->nr_mirrors; m++) { 1829 DMEMIT("%s ", ms->mirror[m].dev->name); 1830 buffer[m] = device_status_char(&(ms->mirror[m])); 1831 } 1832 buffer[m] = '\0'; 1833 1834 DMEMIT("%llu/%llu 1 %s ", 1835 (unsigned long long)log->type->get_sync_count(ms->rh.log), 1836 (unsigned long long)ms->nr_regions, buffer); 1837 1838 sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz); 1839 1840 break; 1841 1842 case STATUSTYPE_TABLE: 1843 sz = log->type->status(ms->rh.log, type, result, maxlen); 1844 1845 DMEMIT("%d", ms->nr_mirrors); 1846 for (m = 0; m < ms->nr_mirrors; m++) 1847 DMEMIT(" %s %llu", ms->mirror[m].dev->name, 1848 (unsigned long long)ms->mirror[m].offset); 1849 1850 if (ms->features & DM_RAID1_HANDLE_ERRORS) 1851 DMEMIT(" 1 handle_errors"); 1852 } 1853 1854 return 0; 1855 } 1856 1857 static struct target_type mirror_target = { 1858 .name = "mirror", 1859 .version = {1, 0, 20}, 1860 .module = THIS_MODULE, 1861 .ctr = mirror_ctr, 1862 .dtr = mirror_dtr, 1863 .map = mirror_map, 1864 .end_io = mirror_end_io, 1865 .presuspend = mirror_presuspend, 1866 .postsuspend = mirror_postsuspend, 1867 .resume = mirror_resume, 1868 .status = mirror_status, 1869 }; 1870 1871 static int __init dm_mirror_init(void) 1872 { 1873 int r; 1874 1875 r = dm_register_target(&mirror_target); 1876 if (r < 0) 1877 DMERR("Failed to register mirror target"); 1878 1879 return r; 1880 } 1881 1882 static void __exit dm_mirror_exit(void) 1883 { 1884 int r; 1885 1886 r = dm_unregister_target(&mirror_target); 1887 if (r < 0) 1888 DMERR("unregister failed %d", r); 1889 } 1890 1891 /* Module hooks */ 1892 module_init(dm_mirror_init); 1893 module_exit(dm_mirror_exit); 1894 1895 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1896 MODULE_AUTHOR("Joe Thornber"); 1897 MODULE_LICENSE("GPL"); 1898