1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-list.h" 9 #include "dm-bio-record.h" 10 11 #include <linux/ctype.h> 12 #include <linux/init.h> 13 #include <linux/mempool.h> 14 #include <linux/module.h> 15 #include <linux/pagemap.h> 16 #include <linux/slab.h> 17 #include <linux/time.h> 18 #include <linux/vmalloc.h> 19 #include <linux/workqueue.h> 20 #include <linux/log2.h> 21 #include <linux/hardirq.h> 22 #include <linux/dm-io.h> 23 #include <linux/dm-dirty-log.h> 24 #include <linux/dm-kcopyd.h> 25 26 #define DM_MSG_PREFIX "raid1" 27 #define DM_IO_PAGES 64 28 29 #define DM_RAID1_HANDLE_ERRORS 0x01 30 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS) 31 32 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped); 33 34 /*----------------------------------------------------------------- 35 * Region hash 36 * 37 * The mirror splits itself up into discrete regions. Each 38 * region can be in one of three states: clean, dirty, 39 * nosync. There is no need to put clean regions in the hash. 40 * 41 * In addition to being present in the hash table a region _may_ 42 * be present on one of three lists. 43 * 44 * clean_regions: Regions on this list have no io pending to 45 * them, they are in sync, we are no longer interested in them, 46 * they are dull. rh_update_states() will remove them from the 47 * hash table. 48 * 49 * quiesced_regions: These regions have been spun down, ready 50 * for recovery. rh_recovery_start() will remove regions from 51 * this list and hand them to kmirrord, which will schedule the 52 * recovery io with kcopyd. 53 * 54 * recovered_regions: Regions that kcopyd has successfully 55 * recovered. rh_update_states() will now schedule any delayed 56 * io, up the recovery_count, and remove the region from the 57 * hash. 58 * 59 * There are 2 locks: 60 * A rw spin lock 'hash_lock' protects just the hash table, 61 * this is never held in write mode from interrupt context, 62 * which I believe means that we only have to disable irqs when 63 * doing a write lock. 64 * 65 * An ordinary spin lock 'region_lock' that protects the three 66 * lists in the region_hash, with the 'state', 'list' and 67 * 'bhs_delayed' fields of the regions. This is used from irq 68 * context, so all other uses will have to suspend local irqs. 69 *---------------------------------------------------------------*/ 70 struct mirror_set; 71 struct region_hash { 72 struct mirror_set *ms; 73 uint32_t region_size; 74 unsigned region_shift; 75 76 /* holds persistent region state */ 77 struct dm_dirty_log *log; 78 79 /* hash table */ 80 rwlock_t hash_lock; 81 mempool_t *region_pool; 82 unsigned int mask; 83 unsigned int nr_buckets; 84 struct list_head *buckets; 85 86 spinlock_t region_lock; 87 atomic_t recovery_in_flight; 88 struct semaphore recovery_count; 89 struct list_head clean_regions; 90 struct list_head quiesced_regions; 91 struct list_head recovered_regions; 92 struct list_head failed_recovered_regions; 93 }; 94 95 enum { 96 RH_CLEAN, 97 RH_DIRTY, 98 RH_NOSYNC, 99 RH_RECOVERING 100 }; 101 102 struct region { 103 struct region_hash *rh; /* FIXME: can we get rid of this ? */ 104 region_t key; 105 int state; 106 107 struct list_head hash_list; 108 struct list_head list; 109 110 atomic_t pending; 111 struct bio_list delayed_bios; 112 }; 113 114 115 /*----------------------------------------------------------------- 116 * Mirror set structures. 117 *---------------------------------------------------------------*/ 118 enum dm_raid1_error { 119 DM_RAID1_WRITE_ERROR, 120 DM_RAID1_SYNC_ERROR, 121 DM_RAID1_READ_ERROR 122 }; 123 124 struct mirror { 125 struct mirror_set *ms; 126 atomic_t error_count; 127 unsigned long error_type; 128 struct dm_dev *dev; 129 sector_t offset; 130 }; 131 132 struct mirror_set { 133 struct dm_target *ti; 134 struct list_head list; 135 struct region_hash rh; 136 struct dm_kcopyd_client *kcopyd_client; 137 uint64_t features; 138 139 spinlock_t lock; /* protects the lists */ 140 struct bio_list reads; 141 struct bio_list writes; 142 struct bio_list failures; 143 144 struct dm_io_client *io_client; 145 mempool_t *read_record_pool; 146 147 /* recovery */ 148 region_t nr_regions; 149 int in_sync; 150 int log_failure; 151 atomic_t suspend; 152 153 atomic_t default_mirror; /* Default mirror */ 154 155 struct workqueue_struct *kmirrord_wq; 156 struct work_struct kmirrord_work; 157 struct timer_list timer; 158 unsigned long timer_pending; 159 160 struct work_struct trigger_event; 161 162 unsigned int nr_mirrors; 163 struct mirror mirror[0]; 164 }; 165 166 /* 167 * Conversion fns 168 */ 169 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio) 170 { 171 return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift; 172 } 173 174 static inline sector_t region_to_sector(struct region_hash *rh, region_t region) 175 { 176 return region << rh->region_shift; 177 } 178 179 static void wake(struct mirror_set *ms) 180 { 181 queue_work(ms->kmirrord_wq, &ms->kmirrord_work); 182 } 183 184 static void delayed_wake_fn(unsigned long data) 185 { 186 struct mirror_set *ms = (struct mirror_set *) data; 187 188 clear_bit(0, &ms->timer_pending); 189 wake(ms); 190 } 191 192 static void delayed_wake(struct mirror_set *ms) 193 { 194 if (test_and_set_bit(0, &ms->timer_pending)) 195 return; 196 197 ms->timer.expires = jiffies + HZ / 5; 198 ms->timer.data = (unsigned long) ms; 199 ms->timer.function = delayed_wake_fn; 200 add_timer(&ms->timer); 201 } 202 203 /* FIXME move this */ 204 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw); 205 206 #define MIN_REGIONS 64 207 #define MAX_RECOVERY 1 208 static int rh_init(struct region_hash *rh, struct mirror_set *ms, 209 struct dm_dirty_log *log, uint32_t region_size, 210 region_t nr_regions) 211 { 212 unsigned int nr_buckets, max_buckets; 213 size_t i; 214 215 /* 216 * Calculate a suitable number of buckets for our hash 217 * table. 218 */ 219 max_buckets = nr_regions >> 6; 220 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1) 221 ; 222 nr_buckets >>= 1; 223 224 rh->ms = ms; 225 rh->log = log; 226 rh->region_size = region_size; 227 rh->region_shift = ffs(region_size) - 1; 228 rwlock_init(&rh->hash_lock); 229 rh->mask = nr_buckets - 1; 230 rh->nr_buckets = nr_buckets; 231 232 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets)); 233 if (!rh->buckets) { 234 DMERR("unable to allocate region hash memory"); 235 return -ENOMEM; 236 } 237 238 for (i = 0; i < nr_buckets; i++) 239 INIT_LIST_HEAD(rh->buckets + i); 240 241 spin_lock_init(&rh->region_lock); 242 sema_init(&rh->recovery_count, 0); 243 atomic_set(&rh->recovery_in_flight, 0); 244 INIT_LIST_HEAD(&rh->clean_regions); 245 INIT_LIST_HEAD(&rh->quiesced_regions); 246 INIT_LIST_HEAD(&rh->recovered_regions); 247 INIT_LIST_HEAD(&rh->failed_recovered_regions); 248 249 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS, 250 sizeof(struct region)); 251 if (!rh->region_pool) { 252 vfree(rh->buckets); 253 rh->buckets = NULL; 254 return -ENOMEM; 255 } 256 257 return 0; 258 } 259 260 static void rh_exit(struct region_hash *rh) 261 { 262 unsigned int h; 263 struct region *reg, *nreg; 264 265 BUG_ON(!list_empty(&rh->quiesced_regions)); 266 for (h = 0; h < rh->nr_buckets; h++) { 267 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) { 268 BUG_ON(atomic_read(®->pending)); 269 mempool_free(reg, rh->region_pool); 270 } 271 } 272 273 if (rh->log) 274 dm_dirty_log_destroy(rh->log); 275 if (rh->region_pool) 276 mempool_destroy(rh->region_pool); 277 vfree(rh->buckets); 278 } 279 280 #define RH_HASH_MULT 2654435387U 281 282 static inline unsigned int rh_hash(struct region_hash *rh, region_t region) 283 { 284 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask; 285 } 286 287 static struct region *__rh_lookup(struct region_hash *rh, region_t region) 288 { 289 struct region *reg; 290 291 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list) 292 if (reg->key == region) 293 return reg; 294 295 return NULL; 296 } 297 298 static void __rh_insert(struct region_hash *rh, struct region *reg) 299 { 300 unsigned int h = rh_hash(rh, reg->key); 301 list_add(®->hash_list, rh->buckets + h); 302 } 303 304 static struct region *__rh_alloc(struct region_hash *rh, region_t region) 305 { 306 struct region *reg, *nreg; 307 308 read_unlock(&rh->hash_lock); 309 nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC); 310 if (unlikely(!nreg)) 311 nreg = kmalloc(sizeof(struct region), GFP_NOIO); 312 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ? 313 RH_CLEAN : RH_NOSYNC; 314 nreg->rh = rh; 315 nreg->key = region; 316 317 INIT_LIST_HEAD(&nreg->list); 318 319 atomic_set(&nreg->pending, 0); 320 bio_list_init(&nreg->delayed_bios); 321 write_lock_irq(&rh->hash_lock); 322 323 reg = __rh_lookup(rh, region); 324 if (reg) 325 /* we lost the race */ 326 mempool_free(nreg, rh->region_pool); 327 328 else { 329 __rh_insert(rh, nreg); 330 if (nreg->state == RH_CLEAN) { 331 spin_lock(&rh->region_lock); 332 list_add(&nreg->list, &rh->clean_regions); 333 spin_unlock(&rh->region_lock); 334 } 335 reg = nreg; 336 } 337 write_unlock_irq(&rh->hash_lock); 338 read_lock(&rh->hash_lock); 339 340 return reg; 341 } 342 343 static inline struct region *__rh_find(struct region_hash *rh, region_t region) 344 { 345 struct region *reg; 346 347 reg = __rh_lookup(rh, region); 348 if (!reg) 349 reg = __rh_alloc(rh, region); 350 351 return reg; 352 } 353 354 static int rh_state(struct region_hash *rh, region_t region, int may_block) 355 { 356 int r; 357 struct region *reg; 358 359 read_lock(&rh->hash_lock); 360 reg = __rh_lookup(rh, region); 361 read_unlock(&rh->hash_lock); 362 363 if (reg) 364 return reg->state; 365 366 /* 367 * The region wasn't in the hash, so we fall back to the 368 * dirty log. 369 */ 370 r = rh->log->type->in_sync(rh->log, region, may_block); 371 372 /* 373 * Any error from the dirty log (eg. -EWOULDBLOCK) gets 374 * taken as a RH_NOSYNC 375 */ 376 return r == 1 ? RH_CLEAN : RH_NOSYNC; 377 } 378 379 static inline int rh_in_sync(struct region_hash *rh, 380 region_t region, int may_block) 381 { 382 int state = rh_state(rh, region, may_block); 383 return state == RH_CLEAN || state == RH_DIRTY; 384 } 385 386 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list) 387 { 388 struct bio *bio; 389 390 while ((bio = bio_list_pop(bio_list))) { 391 queue_bio(ms, bio, WRITE); 392 } 393 } 394 395 static void complete_resync_work(struct region *reg, int success) 396 { 397 struct region_hash *rh = reg->rh; 398 399 rh->log->type->set_region_sync(rh->log, reg->key, success); 400 401 /* 402 * Dispatch the bios before we call 'wake_up_all'. 403 * This is important because if we are suspending, 404 * we want to know that recovery is complete and 405 * the work queue is flushed. If we wake_up_all 406 * before we dispatch_bios (queue bios and call wake()), 407 * then we risk suspending before the work queue 408 * has been properly flushed. 409 */ 410 dispatch_bios(rh->ms, ®->delayed_bios); 411 if (atomic_dec_and_test(&rh->recovery_in_flight)) 412 wake_up_all(&_kmirrord_recovery_stopped); 413 up(&rh->recovery_count); 414 } 415 416 static void rh_update_states(struct region_hash *rh) 417 { 418 struct region *reg, *next; 419 420 LIST_HEAD(clean); 421 LIST_HEAD(recovered); 422 LIST_HEAD(failed_recovered); 423 424 /* 425 * Quickly grab the lists. 426 */ 427 write_lock_irq(&rh->hash_lock); 428 spin_lock(&rh->region_lock); 429 if (!list_empty(&rh->clean_regions)) { 430 list_splice_init(&rh->clean_regions, &clean); 431 432 list_for_each_entry(reg, &clean, list) 433 list_del(®->hash_list); 434 } 435 436 if (!list_empty(&rh->recovered_regions)) { 437 list_splice_init(&rh->recovered_regions, &recovered); 438 439 list_for_each_entry (reg, &recovered, list) 440 list_del(®->hash_list); 441 } 442 443 if (!list_empty(&rh->failed_recovered_regions)) { 444 list_splice_init(&rh->failed_recovered_regions, 445 &failed_recovered); 446 447 list_for_each_entry(reg, &failed_recovered, list) 448 list_del(®->hash_list); 449 } 450 451 spin_unlock(&rh->region_lock); 452 write_unlock_irq(&rh->hash_lock); 453 454 /* 455 * All the regions on the recovered and clean lists have 456 * now been pulled out of the system, so no need to do 457 * any more locking. 458 */ 459 list_for_each_entry_safe (reg, next, &recovered, list) { 460 rh->log->type->clear_region(rh->log, reg->key); 461 complete_resync_work(reg, 1); 462 mempool_free(reg, rh->region_pool); 463 } 464 465 list_for_each_entry_safe(reg, next, &failed_recovered, list) { 466 complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1); 467 mempool_free(reg, rh->region_pool); 468 } 469 470 list_for_each_entry_safe(reg, next, &clean, list) { 471 rh->log->type->clear_region(rh->log, reg->key); 472 mempool_free(reg, rh->region_pool); 473 } 474 475 rh->log->type->flush(rh->log); 476 } 477 478 static void rh_inc(struct region_hash *rh, region_t region) 479 { 480 struct region *reg; 481 482 read_lock(&rh->hash_lock); 483 reg = __rh_find(rh, region); 484 485 spin_lock_irq(&rh->region_lock); 486 atomic_inc(®->pending); 487 488 if (reg->state == RH_CLEAN) { 489 reg->state = RH_DIRTY; 490 list_del_init(®->list); /* take off the clean list */ 491 spin_unlock_irq(&rh->region_lock); 492 493 rh->log->type->mark_region(rh->log, reg->key); 494 } else 495 spin_unlock_irq(&rh->region_lock); 496 497 498 read_unlock(&rh->hash_lock); 499 } 500 501 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios) 502 { 503 struct bio *bio; 504 505 for (bio = bios->head; bio; bio = bio->bi_next) 506 rh_inc(rh, bio_to_region(rh, bio)); 507 } 508 509 static void rh_dec(struct region_hash *rh, region_t region) 510 { 511 unsigned long flags; 512 struct region *reg; 513 int should_wake = 0; 514 515 read_lock(&rh->hash_lock); 516 reg = __rh_lookup(rh, region); 517 read_unlock(&rh->hash_lock); 518 519 spin_lock_irqsave(&rh->region_lock, flags); 520 if (atomic_dec_and_test(®->pending)) { 521 /* 522 * There is no pending I/O for this region. 523 * We can move the region to corresponding list for next action. 524 * At this point, the region is not yet connected to any list. 525 * 526 * If the state is RH_NOSYNC, the region should be kept off 527 * from clean list. 528 * The hash entry for RH_NOSYNC will remain in memory 529 * until the region is recovered or the map is reloaded. 530 */ 531 532 /* do nothing for RH_NOSYNC */ 533 if (reg->state == RH_RECOVERING) { 534 list_add_tail(®->list, &rh->quiesced_regions); 535 } else if (reg->state == RH_DIRTY) { 536 reg->state = RH_CLEAN; 537 list_add(®->list, &rh->clean_regions); 538 } 539 should_wake = 1; 540 } 541 spin_unlock_irqrestore(&rh->region_lock, flags); 542 543 if (should_wake) 544 wake(rh->ms); 545 } 546 547 /* 548 * Starts quiescing a region in preparation for recovery. 549 */ 550 static int __rh_recovery_prepare(struct region_hash *rh) 551 { 552 int r; 553 struct region *reg; 554 region_t region; 555 556 /* 557 * Ask the dirty log what's next. 558 */ 559 r = rh->log->type->get_resync_work(rh->log, ®ion); 560 if (r <= 0) 561 return r; 562 563 /* 564 * Get this region, and start it quiescing by setting the 565 * recovering flag. 566 */ 567 read_lock(&rh->hash_lock); 568 reg = __rh_find(rh, region); 569 read_unlock(&rh->hash_lock); 570 571 spin_lock_irq(&rh->region_lock); 572 reg->state = RH_RECOVERING; 573 574 /* Already quiesced ? */ 575 if (atomic_read(®->pending)) 576 list_del_init(®->list); 577 else 578 list_move(®->list, &rh->quiesced_regions); 579 580 spin_unlock_irq(&rh->region_lock); 581 582 return 1; 583 } 584 585 static void rh_recovery_prepare(struct region_hash *rh) 586 { 587 /* Extra reference to avoid race with rh_stop_recovery */ 588 atomic_inc(&rh->recovery_in_flight); 589 590 while (!down_trylock(&rh->recovery_count)) { 591 atomic_inc(&rh->recovery_in_flight); 592 if (__rh_recovery_prepare(rh) <= 0) { 593 atomic_dec(&rh->recovery_in_flight); 594 up(&rh->recovery_count); 595 break; 596 } 597 } 598 599 /* Drop the extra reference */ 600 if (atomic_dec_and_test(&rh->recovery_in_flight)) 601 wake_up_all(&_kmirrord_recovery_stopped); 602 } 603 604 /* 605 * Returns any quiesced regions. 606 */ 607 static struct region *rh_recovery_start(struct region_hash *rh) 608 { 609 struct region *reg = NULL; 610 611 spin_lock_irq(&rh->region_lock); 612 if (!list_empty(&rh->quiesced_regions)) { 613 reg = list_entry(rh->quiesced_regions.next, 614 struct region, list); 615 list_del_init(®->list); /* remove from the quiesced list */ 616 } 617 spin_unlock_irq(&rh->region_lock); 618 619 return reg; 620 } 621 622 static void rh_recovery_end(struct region *reg, int success) 623 { 624 struct region_hash *rh = reg->rh; 625 626 spin_lock_irq(&rh->region_lock); 627 if (success) 628 list_add(®->list, ®->rh->recovered_regions); 629 else { 630 reg->state = RH_NOSYNC; 631 list_add(®->list, ®->rh->failed_recovered_regions); 632 } 633 spin_unlock_irq(&rh->region_lock); 634 635 wake(rh->ms); 636 } 637 638 static int rh_flush(struct region_hash *rh) 639 { 640 return rh->log->type->flush(rh->log); 641 } 642 643 static void rh_delay(struct region_hash *rh, struct bio *bio) 644 { 645 struct region *reg; 646 647 read_lock(&rh->hash_lock); 648 reg = __rh_find(rh, bio_to_region(rh, bio)); 649 bio_list_add(®->delayed_bios, bio); 650 read_unlock(&rh->hash_lock); 651 } 652 653 static void rh_stop_recovery(struct region_hash *rh) 654 { 655 int i; 656 657 /* wait for any recovering regions */ 658 for (i = 0; i < MAX_RECOVERY; i++) 659 down(&rh->recovery_count); 660 } 661 662 static void rh_start_recovery(struct region_hash *rh) 663 { 664 int i; 665 666 for (i = 0; i < MAX_RECOVERY; i++) 667 up(&rh->recovery_count); 668 669 wake(rh->ms); 670 } 671 672 #define MIN_READ_RECORDS 20 673 struct dm_raid1_read_record { 674 struct mirror *m; 675 struct dm_bio_details details; 676 }; 677 678 /* 679 * Every mirror should look like this one. 680 */ 681 #define DEFAULT_MIRROR 0 682 683 /* 684 * This is yucky. We squirrel the mirror struct away inside 685 * bi_next for read/write buffers. This is safe since the bh 686 * doesn't get submitted to the lower levels of block layer. 687 */ 688 static struct mirror *bio_get_m(struct bio *bio) 689 { 690 return (struct mirror *) bio->bi_next; 691 } 692 693 static void bio_set_m(struct bio *bio, struct mirror *m) 694 { 695 bio->bi_next = (struct bio *) m; 696 } 697 698 static struct mirror *get_default_mirror(struct mirror_set *ms) 699 { 700 return &ms->mirror[atomic_read(&ms->default_mirror)]; 701 } 702 703 static void set_default_mirror(struct mirror *m) 704 { 705 struct mirror_set *ms = m->ms; 706 struct mirror *m0 = &(ms->mirror[0]); 707 708 atomic_set(&ms->default_mirror, m - m0); 709 } 710 711 /* fail_mirror 712 * @m: mirror device to fail 713 * @error_type: one of the enum's, DM_RAID1_*_ERROR 714 * 715 * If errors are being handled, record the type of 716 * error encountered for this device. If this type 717 * of error has already been recorded, we can return; 718 * otherwise, we must signal userspace by triggering 719 * an event. Additionally, if the device is the 720 * primary device, we must choose a new primary, but 721 * only if the mirror is in-sync. 722 * 723 * This function must not block. 724 */ 725 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type) 726 { 727 struct mirror_set *ms = m->ms; 728 struct mirror *new; 729 730 if (!errors_handled(ms)) 731 return; 732 733 /* 734 * error_count is used for nothing more than a 735 * simple way to tell if a device has encountered 736 * errors. 737 */ 738 atomic_inc(&m->error_count); 739 740 if (test_and_set_bit(error_type, &m->error_type)) 741 return; 742 743 if (m != get_default_mirror(ms)) 744 goto out; 745 746 if (!ms->in_sync) { 747 /* 748 * Better to issue requests to same failing device 749 * than to risk returning corrupt data. 750 */ 751 DMERR("Primary mirror (%s) failed while out-of-sync: " 752 "Reads may fail.", m->dev->name); 753 goto out; 754 } 755 756 for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++) 757 if (!atomic_read(&new->error_count)) { 758 set_default_mirror(new); 759 break; 760 } 761 762 if (unlikely(new == ms->mirror + ms->nr_mirrors)) 763 DMWARN("All sides of mirror have failed."); 764 765 out: 766 schedule_work(&ms->trigger_event); 767 } 768 769 /*----------------------------------------------------------------- 770 * Recovery. 771 * 772 * When a mirror is first activated we may find that some regions 773 * are in the no-sync state. We have to recover these by 774 * recopying from the default mirror to all the others. 775 *---------------------------------------------------------------*/ 776 static void recovery_complete(int read_err, unsigned long write_err, 777 void *context) 778 { 779 struct region *reg = (struct region *)context; 780 struct mirror_set *ms = reg->rh->ms; 781 int m, bit = 0; 782 783 if (read_err) { 784 /* Read error means the failure of default mirror. */ 785 DMERR_LIMIT("Unable to read primary mirror during recovery"); 786 fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR); 787 } 788 789 if (write_err) { 790 DMERR_LIMIT("Write error during recovery (error = 0x%lx)", 791 write_err); 792 /* 793 * Bits correspond to devices (excluding default mirror). 794 * The default mirror cannot change during recovery. 795 */ 796 for (m = 0; m < ms->nr_mirrors; m++) { 797 if (&ms->mirror[m] == get_default_mirror(ms)) 798 continue; 799 if (test_bit(bit, &write_err)) 800 fail_mirror(ms->mirror + m, 801 DM_RAID1_SYNC_ERROR); 802 bit++; 803 } 804 } 805 806 rh_recovery_end(reg, !(read_err || write_err)); 807 } 808 809 static int recover(struct mirror_set *ms, struct region *reg) 810 { 811 int r; 812 unsigned int i; 813 struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest; 814 struct mirror *m; 815 unsigned long flags = 0; 816 817 /* fill in the source */ 818 m = get_default_mirror(ms); 819 from.bdev = m->dev->bdev; 820 from.sector = m->offset + region_to_sector(reg->rh, reg->key); 821 if (reg->key == (ms->nr_regions - 1)) { 822 /* 823 * The final region may be smaller than 824 * region_size. 825 */ 826 from.count = ms->ti->len & (reg->rh->region_size - 1); 827 if (!from.count) 828 from.count = reg->rh->region_size; 829 } else 830 from.count = reg->rh->region_size; 831 832 /* fill in the destinations */ 833 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 834 if (&ms->mirror[i] == get_default_mirror(ms)) 835 continue; 836 837 m = ms->mirror + i; 838 dest->bdev = m->dev->bdev; 839 dest->sector = m->offset + region_to_sector(reg->rh, reg->key); 840 dest->count = from.count; 841 dest++; 842 } 843 844 /* hand to kcopyd */ 845 if (!errors_handled(ms)) 846 set_bit(DM_KCOPYD_IGNORE_ERROR, &flags); 847 848 r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, 849 flags, recovery_complete, reg); 850 851 return r; 852 } 853 854 static void do_recovery(struct mirror_set *ms) 855 { 856 int r; 857 struct region *reg; 858 struct dm_dirty_log *log = ms->rh.log; 859 860 /* 861 * Start quiescing some regions. 862 */ 863 rh_recovery_prepare(&ms->rh); 864 865 /* 866 * Copy any already quiesced regions. 867 */ 868 while ((reg = rh_recovery_start(&ms->rh))) { 869 r = recover(ms, reg); 870 if (r) 871 rh_recovery_end(reg, 0); 872 } 873 874 /* 875 * Update the in sync flag. 876 */ 877 if (!ms->in_sync && 878 (log->type->get_sync_count(log) == ms->nr_regions)) { 879 /* the sync is complete */ 880 dm_table_event(ms->ti->table); 881 ms->in_sync = 1; 882 } 883 } 884 885 /*----------------------------------------------------------------- 886 * Reads 887 *---------------------------------------------------------------*/ 888 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 889 { 890 struct mirror *m = get_default_mirror(ms); 891 892 do { 893 if (likely(!atomic_read(&m->error_count))) 894 return m; 895 896 if (m-- == ms->mirror) 897 m += ms->nr_mirrors; 898 } while (m != get_default_mirror(ms)); 899 900 return NULL; 901 } 902 903 static int default_ok(struct mirror *m) 904 { 905 struct mirror *default_mirror = get_default_mirror(m->ms); 906 907 return !atomic_read(&default_mirror->error_count); 908 } 909 910 static int mirror_available(struct mirror_set *ms, struct bio *bio) 911 { 912 region_t region = bio_to_region(&ms->rh, bio); 913 914 if (ms->rh.log->type->in_sync(ms->rh.log, region, 0)) 915 return choose_mirror(ms, bio->bi_sector) ? 1 : 0; 916 917 return 0; 918 } 919 920 /* 921 * remap a buffer to a particular mirror. 922 */ 923 static sector_t map_sector(struct mirror *m, struct bio *bio) 924 { 925 return m->offset + (bio->bi_sector - m->ms->ti->begin); 926 } 927 928 static void map_bio(struct mirror *m, struct bio *bio) 929 { 930 bio->bi_bdev = m->dev->bdev; 931 bio->bi_sector = map_sector(m, bio); 932 } 933 934 static void map_region(struct dm_io_region *io, struct mirror *m, 935 struct bio *bio) 936 { 937 io->bdev = m->dev->bdev; 938 io->sector = map_sector(m, bio); 939 io->count = bio->bi_size >> 9; 940 } 941 942 /*----------------------------------------------------------------- 943 * Reads 944 *---------------------------------------------------------------*/ 945 static void read_callback(unsigned long error, void *context) 946 { 947 struct bio *bio = context; 948 struct mirror *m; 949 950 m = bio_get_m(bio); 951 bio_set_m(bio, NULL); 952 953 if (likely(!error)) { 954 bio_endio(bio, 0); 955 return; 956 } 957 958 fail_mirror(m, DM_RAID1_READ_ERROR); 959 960 if (likely(default_ok(m)) || mirror_available(m->ms, bio)) { 961 DMWARN_LIMIT("Read failure on mirror device %s. " 962 "Trying alternative device.", 963 m->dev->name); 964 queue_bio(m->ms, bio, bio_rw(bio)); 965 return; 966 } 967 968 DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.", 969 m->dev->name); 970 bio_endio(bio, -EIO); 971 } 972 973 /* Asynchronous read. */ 974 static void read_async_bio(struct mirror *m, struct bio *bio) 975 { 976 struct dm_io_region io; 977 struct dm_io_request io_req = { 978 .bi_rw = READ, 979 .mem.type = DM_IO_BVEC, 980 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 981 .notify.fn = read_callback, 982 .notify.context = bio, 983 .client = m->ms->io_client, 984 }; 985 986 map_region(&io, m, bio); 987 bio_set_m(bio, m); 988 (void) dm_io(&io_req, 1, &io, NULL); 989 } 990 991 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 992 { 993 region_t region; 994 struct bio *bio; 995 struct mirror *m; 996 997 while ((bio = bio_list_pop(reads))) { 998 region = bio_to_region(&ms->rh, bio); 999 m = get_default_mirror(ms); 1000 1001 /* 1002 * We can only read balance if the region is in sync. 1003 */ 1004 if (likely(rh_in_sync(&ms->rh, region, 1))) 1005 m = choose_mirror(ms, bio->bi_sector); 1006 else if (m && atomic_read(&m->error_count)) 1007 m = NULL; 1008 1009 if (likely(m)) 1010 read_async_bio(m, bio); 1011 else 1012 bio_endio(bio, -EIO); 1013 } 1014 } 1015 1016 /*----------------------------------------------------------------- 1017 * Writes. 1018 * 1019 * We do different things with the write io depending on the 1020 * state of the region that it's in: 1021 * 1022 * SYNC: increment pending, use kcopyd to write to *all* mirrors 1023 * RECOVERING: delay the io until recovery completes 1024 * NOSYNC: increment pending, just write to the default mirror 1025 *---------------------------------------------------------------*/ 1026 1027 /* __bio_mark_nosync 1028 * @ms 1029 * @bio 1030 * @done 1031 * @error 1032 * 1033 * The bio was written on some mirror(s) but failed on other mirror(s). 1034 * We can successfully endio the bio but should avoid the region being 1035 * marked clean by setting the state RH_NOSYNC. 1036 * 1037 * This function is _not_ safe in interrupt context! 1038 */ 1039 static void __bio_mark_nosync(struct mirror_set *ms, 1040 struct bio *bio, unsigned done, int error) 1041 { 1042 unsigned long flags; 1043 struct region_hash *rh = &ms->rh; 1044 struct dm_dirty_log *log = ms->rh.log; 1045 struct region *reg; 1046 region_t region = bio_to_region(rh, bio); 1047 int recovering = 0; 1048 1049 /* We must inform the log that the sync count has changed. */ 1050 log->type->set_region_sync(log, region, 0); 1051 ms->in_sync = 0; 1052 1053 read_lock(&rh->hash_lock); 1054 reg = __rh_find(rh, region); 1055 read_unlock(&rh->hash_lock); 1056 1057 /* region hash entry should exist because write was in-flight */ 1058 BUG_ON(!reg); 1059 BUG_ON(!list_empty(®->list)); 1060 1061 spin_lock_irqsave(&rh->region_lock, flags); 1062 /* 1063 * Possible cases: 1064 * 1) RH_DIRTY 1065 * 2) RH_NOSYNC: was dirty, other preceeding writes failed 1066 * 3) RH_RECOVERING: flushing pending writes 1067 * Either case, the region should have not been connected to list. 1068 */ 1069 recovering = (reg->state == RH_RECOVERING); 1070 reg->state = RH_NOSYNC; 1071 BUG_ON(!list_empty(®->list)); 1072 spin_unlock_irqrestore(&rh->region_lock, flags); 1073 1074 bio_endio(bio, error); 1075 if (recovering) 1076 complete_resync_work(reg, 0); 1077 } 1078 1079 static void write_callback(unsigned long error, void *context) 1080 { 1081 unsigned i, ret = 0; 1082 struct bio *bio = (struct bio *) context; 1083 struct mirror_set *ms; 1084 int uptodate = 0; 1085 int should_wake = 0; 1086 unsigned long flags; 1087 1088 ms = bio_get_m(bio)->ms; 1089 bio_set_m(bio, NULL); 1090 1091 /* 1092 * NOTE: We don't decrement the pending count here, 1093 * instead it is done by the targets endio function. 1094 * This way we handle both writes to SYNC and NOSYNC 1095 * regions with the same code. 1096 */ 1097 if (likely(!error)) 1098 goto out; 1099 1100 for (i = 0; i < ms->nr_mirrors; i++) 1101 if (test_bit(i, &error)) 1102 fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR); 1103 else 1104 uptodate = 1; 1105 1106 if (unlikely(!uptodate)) { 1107 DMERR("All replicated volumes dead, failing I/O"); 1108 /* None of the writes succeeded, fail the I/O. */ 1109 ret = -EIO; 1110 } else if (errors_handled(ms)) { 1111 /* 1112 * Need to raise event. Since raising 1113 * events can block, we need to do it in 1114 * the main thread. 1115 */ 1116 spin_lock_irqsave(&ms->lock, flags); 1117 if (!ms->failures.head) 1118 should_wake = 1; 1119 bio_list_add(&ms->failures, bio); 1120 spin_unlock_irqrestore(&ms->lock, flags); 1121 if (should_wake) 1122 wake(ms); 1123 return; 1124 } 1125 out: 1126 bio_endio(bio, ret); 1127 } 1128 1129 static void do_write(struct mirror_set *ms, struct bio *bio) 1130 { 1131 unsigned int i; 1132 struct dm_io_region io[ms->nr_mirrors], *dest = io; 1133 struct mirror *m; 1134 struct dm_io_request io_req = { 1135 .bi_rw = WRITE, 1136 .mem.type = DM_IO_BVEC, 1137 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 1138 .notify.fn = write_callback, 1139 .notify.context = bio, 1140 .client = ms->io_client, 1141 }; 1142 1143 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) 1144 map_region(dest++, m, bio); 1145 1146 /* 1147 * Use default mirror because we only need it to retrieve the reference 1148 * to the mirror set in write_callback(). 1149 */ 1150 bio_set_m(bio, get_default_mirror(ms)); 1151 1152 (void) dm_io(&io_req, ms->nr_mirrors, io, NULL); 1153 } 1154 1155 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 1156 { 1157 int state; 1158 struct bio *bio; 1159 struct bio_list sync, nosync, recover, *this_list = NULL; 1160 1161 if (!writes->head) 1162 return; 1163 1164 /* 1165 * Classify each write. 1166 */ 1167 bio_list_init(&sync); 1168 bio_list_init(&nosync); 1169 bio_list_init(&recover); 1170 1171 while ((bio = bio_list_pop(writes))) { 1172 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1); 1173 switch (state) { 1174 case RH_CLEAN: 1175 case RH_DIRTY: 1176 this_list = &sync; 1177 break; 1178 1179 case RH_NOSYNC: 1180 this_list = &nosync; 1181 break; 1182 1183 case RH_RECOVERING: 1184 this_list = &recover; 1185 break; 1186 } 1187 1188 bio_list_add(this_list, bio); 1189 } 1190 1191 /* 1192 * Increment the pending counts for any regions that will 1193 * be written to (writes to recover regions are going to 1194 * be delayed). 1195 */ 1196 rh_inc_pending(&ms->rh, &sync); 1197 rh_inc_pending(&ms->rh, &nosync); 1198 ms->log_failure = rh_flush(&ms->rh) ? 1 : 0; 1199 1200 /* 1201 * Dispatch io. 1202 */ 1203 if (unlikely(ms->log_failure)) { 1204 spin_lock_irq(&ms->lock); 1205 bio_list_merge(&ms->failures, &sync); 1206 spin_unlock_irq(&ms->lock); 1207 wake(ms); 1208 } else 1209 while ((bio = bio_list_pop(&sync))) 1210 do_write(ms, bio); 1211 1212 while ((bio = bio_list_pop(&recover))) 1213 rh_delay(&ms->rh, bio); 1214 1215 while ((bio = bio_list_pop(&nosync))) { 1216 map_bio(get_default_mirror(ms), bio); 1217 generic_make_request(bio); 1218 } 1219 } 1220 1221 static void do_failures(struct mirror_set *ms, struct bio_list *failures) 1222 { 1223 struct bio *bio; 1224 1225 if (!failures->head) 1226 return; 1227 1228 if (!ms->log_failure) { 1229 while ((bio = bio_list_pop(failures))) 1230 __bio_mark_nosync(ms, bio, bio->bi_size, 0); 1231 return; 1232 } 1233 1234 /* 1235 * If the log has failed, unattempted writes are being 1236 * put on the failures list. We can't issue those writes 1237 * until a log has been marked, so we must store them. 1238 * 1239 * If a 'noflush' suspend is in progress, we can requeue 1240 * the I/O's to the core. This give userspace a chance 1241 * to reconfigure the mirror, at which point the core 1242 * will reissue the writes. If the 'noflush' flag is 1243 * not set, we have no choice but to return errors. 1244 * 1245 * Some writes on the failures list may have been 1246 * submitted before the log failure and represent a 1247 * failure to write to one of the devices. It is ok 1248 * for us to treat them the same and requeue them 1249 * as well. 1250 */ 1251 if (dm_noflush_suspending(ms->ti)) { 1252 while ((bio = bio_list_pop(failures))) 1253 bio_endio(bio, DM_ENDIO_REQUEUE); 1254 return; 1255 } 1256 1257 if (atomic_read(&ms->suspend)) { 1258 while ((bio = bio_list_pop(failures))) 1259 bio_endio(bio, -EIO); 1260 return; 1261 } 1262 1263 spin_lock_irq(&ms->lock); 1264 bio_list_merge(&ms->failures, failures); 1265 spin_unlock_irq(&ms->lock); 1266 1267 delayed_wake(ms); 1268 } 1269 1270 static void trigger_event(struct work_struct *work) 1271 { 1272 struct mirror_set *ms = 1273 container_of(work, struct mirror_set, trigger_event); 1274 1275 dm_table_event(ms->ti->table); 1276 } 1277 1278 /*----------------------------------------------------------------- 1279 * kmirrord 1280 *---------------------------------------------------------------*/ 1281 static void do_mirror(struct work_struct *work) 1282 { 1283 struct mirror_set *ms =container_of(work, struct mirror_set, 1284 kmirrord_work); 1285 struct bio_list reads, writes, failures; 1286 unsigned long flags; 1287 1288 spin_lock_irqsave(&ms->lock, flags); 1289 reads = ms->reads; 1290 writes = ms->writes; 1291 failures = ms->failures; 1292 bio_list_init(&ms->reads); 1293 bio_list_init(&ms->writes); 1294 bio_list_init(&ms->failures); 1295 spin_unlock_irqrestore(&ms->lock, flags); 1296 1297 rh_update_states(&ms->rh); 1298 do_recovery(ms); 1299 do_reads(ms, &reads); 1300 do_writes(ms, &writes); 1301 do_failures(ms, &failures); 1302 1303 dm_table_unplug_all(ms->ti->table); 1304 } 1305 1306 1307 /*----------------------------------------------------------------- 1308 * Target functions 1309 *---------------------------------------------------------------*/ 1310 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 1311 uint32_t region_size, 1312 struct dm_target *ti, 1313 struct dm_dirty_log *dl) 1314 { 1315 size_t len; 1316 struct mirror_set *ms = NULL; 1317 1318 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors)) 1319 return NULL; 1320 1321 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors); 1322 1323 ms = kzalloc(len, GFP_KERNEL); 1324 if (!ms) { 1325 ti->error = "Cannot allocate mirror context"; 1326 return NULL; 1327 } 1328 1329 spin_lock_init(&ms->lock); 1330 1331 ms->ti = ti; 1332 ms->nr_mirrors = nr_mirrors; 1333 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 1334 ms->in_sync = 0; 1335 ms->log_failure = 0; 1336 atomic_set(&ms->suspend, 0); 1337 atomic_set(&ms->default_mirror, DEFAULT_MIRROR); 1338 1339 len = sizeof(struct dm_raid1_read_record); 1340 ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS, 1341 len); 1342 if (!ms->read_record_pool) { 1343 ti->error = "Error creating mirror read_record_pool"; 1344 kfree(ms); 1345 return NULL; 1346 } 1347 1348 ms->io_client = dm_io_client_create(DM_IO_PAGES); 1349 if (IS_ERR(ms->io_client)) { 1350 ti->error = "Error creating dm_io client"; 1351 mempool_destroy(ms->read_record_pool); 1352 kfree(ms); 1353 return NULL; 1354 } 1355 1356 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) { 1357 ti->error = "Error creating dirty region hash"; 1358 dm_io_client_destroy(ms->io_client); 1359 mempool_destroy(ms->read_record_pool); 1360 kfree(ms); 1361 return NULL; 1362 } 1363 1364 return ms; 1365 } 1366 1367 static void free_context(struct mirror_set *ms, struct dm_target *ti, 1368 unsigned int m) 1369 { 1370 while (m--) 1371 dm_put_device(ti, ms->mirror[m].dev); 1372 1373 dm_io_client_destroy(ms->io_client); 1374 rh_exit(&ms->rh); 1375 mempool_destroy(ms->read_record_pool); 1376 kfree(ms); 1377 } 1378 1379 static inline int _check_region_size(struct dm_target *ti, uint32_t size) 1380 { 1381 return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) || 1382 size > ti->len); 1383 } 1384 1385 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 1386 unsigned int mirror, char **argv) 1387 { 1388 unsigned long long offset; 1389 1390 if (sscanf(argv[1], "%llu", &offset) != 1) { 1391 ti->error = "Invalid offset"; 1392 return -EINVAL; 1393 } 1394 1395 if (dm_get_device(ti, argv[0], offset, ti->len, 1396 dm_table_get_mode(ti->table), 1397 &ms->mirror[mirror].dev)) { 1398 ti->error = "Device lookup failure"; 1399 return -ENXIO; 1400 } 1401 1402 ms->mirror[mirror].ms = ms; 1403 atomic_set(&(ms->mirror[mirror].error_count), 0); 1404 ms->mirror[mirror].error_type = 0; 1405 ms->mirror[mirror].offset = offset; 1406 1407 return 0; 1408 } 1409 1410 /* 1411 * Create dirty log: log_type #log_params <log_params> 1412 */ 1413 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti, 1414 unsigned int argc, char **argv, 1415 unsigned int *args_used) 1416 { 1417 unsigned int param_count; 1418 struct dm_dirty_log *dl; 1419 1420 if (argc < 2) { 1421 ti->error = "Insufficient mirror log arguments"; 1422 return NULL; 1423 } 1424 1425 if (sscanf(argv[1], "%u", ¶m_count) != 1) { 1426 ti->error = "Invalid mirror log argument count"; 1427 return NULL; 1428 } 1429 1430 *args_used = 2 + param_count; 1431 1432 if (argc < *args_used) { 1433 ti->error = "Insufficient mirror log arguments"; 1434 return NULL; 1435 } 1436 1437 dl = dm_dirty_log_create(argv[0], ti, param_count, argv + 2); 1438 if (!dl) { 1439 ti->error = "Error creating mirror dirty log"; 1440 return NULL; 1441 } 1442 1443 if (!_check_region_size(ti, dl->type->get_region_size(dl))) { 1444 ti->error = "Invalid region size"; 1445 dm_dirty_log_destroy(dl); 1446 return NULL; 1447 } 1448 1449 return dl; 1450 } 1451 1452 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv, 1453 unsigned *args_used) 1454 { 1455 unsigned num_features; 1456 struct dm_target *ti = ms->ti; 1457 1458 *args_used = 0; 1459 1460 if (!argc) 1461 return 0; 1462 1463 if (sscanf(argv[0], "%u", &num_features) != 1) { 1464 ti->error = "Invalid number of features"; 1465 return -EINVAL; 1466 } 1467 1468 argc--; 1469 argv++; 1470 (*args_used)++; 1471 1472 if (num_features > argc) { 1473 ti->error = "Not enough arguments to support feature count"; 1474 return -EINVAL; 1475 } 1476 1477 if (!strcmp("handle_errors", argv[0])) 1478 ms->features |= DM_RAID1_HANDLE_ERRORS; 1479 else { 1480 ti->error = "Unrecognised feature requested"; 1481 return -EINVAL; 1482 } 1483 1484 (*args_used)++; 1485 1486 return 0; 1487 } 1488 1489 /* 1490 * Construct a mirror mapping: 1491 * 1492 * log_type #log_params <log_params> 1493 * #mirrors [mirror_path offset]{2,} 1494 * [#features <features>] 1495 * 1496 * log_type is "core" or "disk" 1497 * #log_params is between 1 and 3 1498 * 1499 * If present, features must be "handle_errors". 1500 */ 1501 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1502 { 1503 int r; 1504 unsigned int nr_mirrors, m, args_used; 1505 struct mirror_set *ms; 1506 struct dm_dirty_log *dl; 1507 1508 dl = create_dirty_log(ti, argc, argv, &args_used); 1509 if (!dl) 1510 return -EINVAL; 1511 1512 argv += args_used; 1513 argc -= args_used; 1514 1515 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 || 1516 nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) { 1517 ti->error = "Invalid number of mirrors"; 1518 dm_dirty_log_destroy(dl); 1519 return -EINVAL; 1520 } 1521 1522 argv++, argc--; 1523 1524 if (argc < nr_mirrors * 2) { 1525 ti->error = "Too few mirror arguments"; 1526 dm_dirty_log_destroy(dl); 1527 return -EINVAL; 1528 } 1529 1530 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1531 if (!ms) { 1532 dm_dirty_log_destroy(dl); 1533 return -ENOMEM; 1534 } 1535 1536 /* Get the mirror parameter sets */ 1537 for (m = 0; m < nr_mirrors; m++) { 1538 r = get_mirror(ms, ti, m, argv); 1539 if (r) { 1540 free_context(ms, ti, m); 1541 return r; 1542 } 1543 argv += 2; 1544 argc -= 2; 1545 } 1546 1547 ti->private = ms; 1548 ti->split_io = ms->rh.region_size; 1549 1550 ms->kmirrord_wq = create_singlethread_workqueue("kmirrord"); 1551 if (!ms->kmirrord_wq) { 1552 DMERR("couldn't start kmirrord"); 1553 r = -ENOMEM; 1554 goto err_free_context; 1555 } 1556 INIT_WORK(&ms->kmirrord_work, do_mirror); 1557 init_timer(&ms->timer); 1558 ms->timer_pending = 0; 1559 INIT_WORK(&ms->trigger_event, trigger_event); 1560 1561 r = parse_features(ms, argc, argv, &args_used); 1562 if (r) 1563 goto err_destroy_wq; 1564 1565 argv += args_used; 1566 argc -= args_used; 1567 1568 /* 1569 * Any read-balancing addition depends on the 1570 * DM_RAID1_HANDLE_ERRORS flag being present. 1571 * This is because the decision to balance depends 1572 * on the sync state of a region. If the above 1573 * flag is not present, we ignore errors; and 1574 * the sync state may be inaccurate. 1575 */ 1576 1577 if (argc) { 1578 ti->error = "Too many mirror arguments"; 1579 r = -EINVAL; 1580 goto err_destroy_wq; 1581 } 1582 1583 r = dm_kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client); 1584 if (r) 1585 goto err_destroy_wq; 1586 1587 wake(ms); 1588 return 0; 1589 1590 err_destroy_wq: 1591 destroy_workqueue(ms->kmirrord_wq); 1592 err_free_context: 1593 free_context(ms, ti, ms->nr_mirrors); 1594 return r; 1595 } 1596 1597 static void mirror_dtr(struct dm_target *ti) 1598 { 1599 struct mirror_set *ms = (struct mirror_set *) ti->private; 1600 1601 del_timer_sync(&ms->timer); 1602 flush_workqueue(ms->kmirrord_wq); 1603 dm_kcopyd_client_destroy(ms->kcopyd_client); 1604 destroy_workqueue(ms->kmirrord_wq); 1605 free_context(ms, ti, ms->nr_mirrors); 1606 } 1607 1608 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 1609 { 1610 unsigned long flags; 1611 int should_wake = 0; 1612 struct bio_list *bl; 1613 1614 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 1615 spin_lock_irqsave(&ms->lock, flags); 1616 should_wake = !(bl->head); 1617 bio_list_add(bl, bio); 1618 spin_unlock_irqrestore(&ms->lock, flags); 1619 1620 if (should_wake) 1621 wake(ms); 1622 } 1623 1624 /* 1625 * Mirror mapping function 1626 */ 1627 static int mirror_map(struct dm_target *ti, struct bio *bio, 1628 union map_info *map_context) 1629 { 1630 int r, rw = bio_rw(bio); 1631 struct mirror *m; 1632 struct mirror_set *ms = ti->private; 1633 struct dm_raid1_read_record *read_record = NULL; 1634 1635 if (rw == WRITE) { 1636 /* Save region for mirror_end_io() handler */ 1637 map_context->ll = bio_to_region(&ms->rh, bio); 1638 queue_bio(ms, bio, rw); 1639 return DM_MAPIO_SUBMITTED; 1640 } 1641 1642 r = ms->rh.log->type->in_sync(ms->rh.log, 1643 bio_to_region(&ms->rh, bio), 0); 1644 if (r < 0 && r != -EWOULDBLOCK) 1645 return r; 1646 1647 /* 1648 * If region is not in-sync queue the bio. 1649 */ 1650 if (!r || (r == -EWOULDBLOCK)) { 1651 if (rw == READA) 1652 return -EWOULDBLOCK; 1653 1654 queue_bio(ms, bio, rw); 1655 return DM_MAPIO_SUBMITTED; 1656 } 1657 1658 /* 1659 * The region is in-sync and we can perform reads directly. 1660 * Store enough information so we can retry if it fails. 1661 */ 1662 m = choose_mirror(ms, bio->bi_sector); 1663 if (unlikely(!m)) 1664 return -EIO; 1665 1666 read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO); 1667 if (likely(read_record)) { 1668 dm_bio_record(&read_record->details, bio); 1669 map_context->ptr = read_record; 1670 read_record->m = m; 1671 } 1672 1673 map_bio(m, bio); 1674 1675 return DM_MAPIO_REMAPPED; 1676 } 1677 1678 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1679 int error, union map_info *map_context) 1680 { 1681 int rw = bio_rw(bio); 1682 struct mirror_set *ms = (struct mirror_set *) ti->private; 1683 struct mirror *m = NULL; 1684 struct dm_bio_details *bd = NULL; 1685 struct dm_raid1_read_record *read_record = map_context->ptr; 1686 1687 /* 1688 * We need to dec pending if this was a write. 1689 */ 1690 if (rw == WRITE) { 1691 rh_dec(&ms->rh, map_context->ll); 1692 return error; 1693 } 1694 1695 if (error == -EOPNOTSUPP) 1696 goto out; 1697 1698 if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio)) 1699 goto out; 1700 1701 if (unlikely(error)) { 1702 if (!read_record) { 1703 /* 1704 * There wasn't enough memory to record necessary 1705 * information for a retry or there was no other 1706 * mirror in-sync. 1707 */ 1708 DMERR_LIMIT("Mirror read failed."); 1709 return -EIO; 1710 } 1711 1712 m = read_record->m; 1713 1714 DMERR("Mirror read failed from %s. Trying alternative device.", 1715 m->dev->name); 1716 1717 fail_mirror(m, DM_RAID1_READ_ERROR); 1718 1719 /* 1720 * A failed read is requeued for another attempt using an intact 1721 * mirror. 1722 */ 1723 if (default_ok(m) || mirror_available(ms, bio)) { 1724 bd = &read_record->details; 1725 1726 dm_bio_restore(bd, bio); 1727 mempool_free(read_record, ms->read_record_pool); 1728 map_context->ptr = NULL; 1729 queue_bio(ms, bio, rw); 1730 return 1; 1731 } 1732 DMERR("All replicated volumes dead, failing I/O"); 1733 } 1734 1735 out: 1736 if (read_record) { 1737 mempool_free(read_record, ms->read_record_pool); 1738 map_context->ptr = NULL; 1739 } 1740 1741 return error; 1742 } 1743 1744 static void mirror_presuspend(struct dm_target *ti) 1745 { 1746 struct mirror_set *ms = (struct mirror_set *) ti->private; 1747 struct dm_dirty_log *log = ms->rh.log; 1748 1749 atomic_set(&ms->suspend, 1); 1750 1751 /* 1752 * We must finish up all the work that we've 1753 * generated (i.e. recovery work). 1754 */ 1755 rh_stop_recovery(&ms->rh); 1756 1757 wait_event(_kmirrord_recovery_stopped, 1758 !atomic_read(&ms->rh.recovery_in_flight)); 1759 1760 if (log->type->presuspend && log->type->presuspend(log)) 1761 /* FIXME: need better error handling */ 1762 DMWARN("log presuspend failed"); 1763 1764 /* 1765 * Now that recovery is complete/stopped and the 1766 * delayed bios are queued, we need to wait for 1767 * the worker thread to complete. This way, 1768 * we know that all of our I/O has been pushed. 1769 */ 1770 flush_workqueue(ms->kmirrord_wq); 1771 } 1772 1773 static void mirror_postsuspend(struct dm_target *ti) 1774 { 1775 struct mirror_set *ms = ti->private; 1776 struct dm_dirty_log *log = ms->rh.log; 1777 1778 if (log->type->postsuspend && log->type->postsuspend(log)) 1779 /* FIXME: need better error handling */ 1780 DMWARN("log postsuspend failed"); 1781 } 1782 1783 static void mirror_resume(struct dm_target *ti) 1784 { 1785 struct mirror_set *ms = ti->private; 1786 struct dm_dirty_log *log = ms->rh.log; 1787 1788 atomic_set(&ms->suspend, 0); 1789 if (log->type->resume && log->type->resume(log)) 1790 /* FIXME: need better error handling */ 1791 DMWARN("log resume failed"); 1792 rh_start_recovery(&ms->rh); 1793 } 1794 1795 /* 1796 * device_status_char 1797 * @m: mirror device/leg we want the status of 1798 * 1799 * We return one character representing the most severe error 1800 * we have encountered. 1801 * A => Alive - No failures 1802 * D => Dead - A write failure occurred leaving mirror out-of-sync 1803 * S => Sync - A sychronization failure occurred, mirror out-of-sync 1804 * R => Read - A read failure occurred, mirror data unaffected 1805 * 1806 * Returns: <char> 1807 */ 1808 static char device_status_char(struct mirror *m) 1809 { 1810 if (!atomic_read(&(m->error_count))) 1811 return 'A'; 1812 1813 return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' : 1814 (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' : 1815 (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U'; 1816 } 1817 1818 1819 static int mirror_status(struct dm_target *ti, status_type_t type, 1820 char *result, unsigned int maxlen) 1821 { 1822 unsigned int m, sz = 0; 1823 struct mirror_set *ms = (struct mirror_set *) ti->private; 1824 struct dm_dirty_log *log = ms->rh.log; 1825 char buffer[ms->nr_mirrors + 1]; 1826 1827 switch (type) { 1828 case STATUSTYPE_INFO: 1829 DMEMIT("%d ", ms->nr_mirrors); 1830 for (m = 0; m < ms->nr_mirrors; m++) { 1831 DMEMIT("%s ", ms->mirror[m].dev->name); 1832 buffer[m] = device_status_char(&(ms->mirror[m])); 1833 } 1834 buffer[m] = '\0'; 1835 1836 DMEMIT("%llu/%llu 1 %s ", 1837 (unsigned long long)log->type->get_sync_count(ms->rh.log), 1838 (unsigned long long)ms->nr_regions, buffer); 1839 1840 sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz); 1841 1842 break; 1843 1844 case STATUSTYPE_TABLE: 1845 sz = log->type->status(ms->rh.log, type, result, maxlen); 1846 1847 DMEMIT("%d", ms->nr_mirrors); 1848 for (m = 0; m < ms->nr_mirrors; m++) 1849 DMEMIT(" %s %llu", ms->mirror[m].dev->name, 1850 (unsigned long long)ms->mirror[m].offset); 1851 1852 if (ms->features & DM_RAID1_HANDLE_ERRORS) 1853 DMEMIT(" 1 handle_errors"); 1854 } 1855 1856 return 0; 1857 } 1858 1859 static struct target_type mirror_target = { 1860 .name = "mirror", 1861 .version = {1, 0, 20}, 1862 .module = THIS_MODULE, 1863 .ctr = mirror_ctr, 1864 .dtr = mirror_dtr, 1865 .map = mirror_map, 1866 .end_io = mirror_end_io, 1867 .presuspend = mirror_presuspend, 1868 .postsuspend = mirror_postsuspend, 1869 .resume = mirror_resume, 1870 .status = mirror_status, 1871 }; 1872 1873 static int __init dm_mirror_init(void) 1874 { 1875 int r; 1876 1877 r = dm_register_target(&mirror_target); 1878 if (r < 0) 1879 DMERR("Failed to register mirror target"); 1880 1881 return r; 1882 } 1883 1884 static void __exit dm_mirror_exit(void) 1885 { 1886 int r; 1887 1888 r = dm_unregister_target(&mirror_target); 1889 if (r < 0) 1890 DMERR("unregister failed %d", r); 1891 } 1892 1893 /* Module hooks */ 1894 module_init(dm_mirror_init); 1895 module_exit(dm_mirror_exit); 1896 1897 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1898 MODULE_AUTHOR("Joe Thornber"); 1899 MODULE_LICENSE("GPL"); 1900