xref: /openbmc/linux/drivers/md/dm-raid1.c (revision 384740dc)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-list.h"
9 #include "dm-bio-record.h"
10 
11 #include <linux/ctype.h>
12 #include <linux/init.h>
13 #include <linux/mempool.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <linux/vmalloc.h>
19 #include <linux/workqueue.h>
20 #include <linux/log2.h>
21 #include <linux/hardirq.h>
22 #include <linux/dm-io.h>
23 #include <linux/dm-dirty-log.h>
24 #include <linux/dm-kcopyd.h>
25 
26 #define DM_MSG_PREFIX "raid1"
27 #define DM_IO_PAGES 64
28 
29 #define DM_RAID1_HANDLE_ERRORS 0x01
30 #define errors_handled(p)	((p)->features & DM_RAID1_HANDLE_ERRORS)
31 
32 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
33 
34 /*-----------------------------------------------------------------
35  * Region hash
36  *
37  * The mirror splits itself up into discrete regions.  Each
38  * region can be in one of three states: clean, dirty,
39  * nosync.  There is no need to put clean regions in the hash.
40  *
41  * In addition to being present in the hash table a region _may_
42  * be present on one of three lists.
43  *
44  *   clean_regions: Regions on this list have no io pending to
45  *   them, they are in sync, we are no longer interested in them,
46  *   they are dull.  rh_update_states() will remove them from the
47  *   hash table.
48  *
49  *   quiesced_regions: These regions have been spun down, ready
50  *   for recovery.  rh_recovery_start() will remove regions from
51  *   this list and hand them to kmirrord, which will schedule the
52  *   recovery io with kcopyd.
53  *
54  *   recovered_regions: Regions that kcopyd has successfully
55  *   recovered.  rh_update_states() will now schedule any delayed
56  *   io, up the recovery_count, and remove the region from the
57  *   hash.
58  *
59  * There are 2 locks:
60  *   A rw spin lock 'hash_lock' protects just the hash table,
61  *   this is never held in write mode from interrupt context,
62  *   which I believe means that we only have to disable irqs when
63  *   doing a write lock.
64  *
65  *   An ordinary spin lock 'region_lock' that protects the three
66  *   lists in the region_hash, with the 'state', 'list' and
67  *   'bhs_delayed' fields of the regions.  This is used from irq
68  *   context, so all other uses will have to suspend local irqs.
69  *---------------------------------------------------------------*/
70 struct mirror_set;
71 struct region_hash {
72 	struct mirror_set *ms;
73 	uint32_t region_size;
74 	unsigned region_shift;
75 
76 	/* holds persistent region state */
77 	struct dm_dirty_log *log;
78 
79 	/* hash table */
80 	rwlock_t hash_lock;
81 	mempool_t *region_pool;
82 	unsigned int mask;
83 	unsigned int nr_buckets;
84 	struct list_head *buckets;
85 
86 	spinlock_t region_lock;
87 	atomic_t recovery_in_flight;
88 	struct semaphore recovery_count;
89 	struct list_head clean_regions;
90 	struct list_head quiesced_regions;
91 	struct list_head recovered_regions;
92 	struct list_head failed_recovered_regions;
93 };
94 
95 enum {
96 	RH_CLEAN,
97 	RH_DIRTY,
98 	RH_NOSYNC,
99 	RH_RECOVERING
100 };
101 
102 struct region {
103 	struct region_hash *rh;	/* FIXME: can we get rid of this ? */
104 	region_t key;
105 	int state;
106 
107 	struct list_head hash_list;
108 	struct list_head list;
109 
110 	atomic_t pending;
111 	struct bio_list delayed_bios;
112 };
113 
114 
115 /*-----------------------------------------------------------------
116  * Mirror set structures.
117  *---------------------------------------------------------------*/
118 enum dm_raid1_error {
119 	DM_RAID1_WRITE_ERROR,
120 	DM_RAID1_SYNC_ERROR,
121 	DM_RAID1_READ_ERROR
122 };
123 
124 struct mirror {
125 	struct mirror_set *ms;
126 	atomic_t error_count;
127 	unsigned long error_type;
128 	struct dm_dev *dev;
129 	sector_t offset;
130 };
131 
132 struct mirror_set {
133 	struct dm_target *ti;
134 	struct list_head list;
135 	struct region_hash rh;
136 	struct dm_kcopyd_client *kcopyd_client;
137 	uint64_t features;
138 
139 	spinlock_t lock;	/* protects the lists */
140 	struct bio_list reads;
141 	struct bio_list writes;
142 	struct bio_list failures;
143 
144 	struct dm_io_client *io_client;
145 	mempool_t *read_record_pool;
146 
147 	/* recovery */
148 	region_t nr_regions;
149 	int in_sync;
150 	int log_failure;
151 	atomic_t suspend;
152 
153 	atomic_t default_mirror;	/* Default mirror */
154 
155 	struct workqueue_struct *kmirrord_wq;
156 	struct work_struct kmirrord_work;
157 	struct timer_list timer;
158 	unsigned long timer_pending;
159 
160 	struct work_struct trigger_event;
161 
162 	unsigned int nr_mirrors;
163 	struct mirror mirror[0];
164 };
165 
166 /*
167  * Conversion fns
168  */
169 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
170 {
171 	return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift;
172 }
173 
174 static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
175 {
176 	return region << rh->region_shift;
177 }
178 
179 static void wake(struct mirror_set *ms)
180 {
181 	queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
182 }
183 
184 static void delayed_wake_fn(unsigned long data)
185 {
186 	struct mirror_set *ms = (struct mirror_set *) data;
187 
188 	clear_bit(0, &ms->timer_pending);
189 	wake(ms);
190 }
191 
192 static void delayed_wake(struct mirror_set *ms)
193 {
194 	if (test_and_set_bit(0, &ms->timer_pending))
195 		return;
196 
197 	ms->timer.expires = jiffies + HZ / 5;
198 	ms->timer.data = (unsigned long) ms;
199 	ms->timer.function = delayed_wake_fn;
200 	add_timer(&ms->timer);
201 }
202 
203 /* FIXME move this */
204 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
205 
206 #define MIN_REGIONS 64
207 #define MAX_RECOVERY 1
208 static int rh_init(struct region_hash *rh, struct mirror_set *ms,
209 		   struct dm_dirty_log *log, uint32_t region_size,
210 		   region_t nr_regions)
211 {
212 	unsigned int nr_buckets, max_buckets;
213 	size_t i;
214 
215 	/*
216 	 * Calculate a suitable number of buckets for our hash
217 	 * table.
218 	 */
219 	max_buckets = nr_regions >> 6;
220 	for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
221 		;
222 	nr_buckets >>= 1;
223 
224 	rh->ms = ms;
225 	rh->log = log;
226 	rh->region_size = region_size;
227 	rh->region_shift = ffs(region_size) - 1;
228 	rwlock_init(&rh->hash_lock);
229 	rh->mask = nr_buckets - 1;
230 	rh->nr_buckets = nr_buckets;
231 
232 	rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
233 	if (!rh->buckets) {
234 		DMERR("unable to allocate region hash memory");
235 		return -ENOMEM;
236 	}
237 
238 	for (i = 0; i < nr_buckets; i++)
239 		INIT_LIST_HEAD(rh->buckets + i);
240 
241 	spin_lock_init(&rh->region_lock);
242 	sema_init(&rh->recovery_count, 0);
243 	atomic_set(&rh->recovery_in_flight, 0);
244 	INIT_LIST_HEAD(&rh->clean_regions);
245 	INIT_LIST_HEAD(&rh->quiesced_regions);
246 	INIT_LIST_HEAD(&rh->recovered_regions);
247 	INIT_LIST_HEAD(&rh->failed_recovered_regions);
248 
249 	rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS,
250 						      sizeof(struct region));
251 	if (!rh->region_pool) {
252 		vfree(rh->buckets);
253 		rh->buckets = NULL;
254 		return -ENOMEM;
255 	}
256 
257 	return 0;
258 }
259 
260 static void rh_exit(struct region_hash *rh)
261 {
262 	unsigned int h;
263 	struct region *reg, *nreg;
264 
265 	BUG_ON(!list_empty(&rh->quiesced_regions));
266 	for (h = 0; h < rh->nr_buckets; h++) {
267 		list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
268 			BUG_ON(atomic_read(&reg->pending));
269 			mempool_free(reg, rh->region_pool);
270 		}
271 	}
272 
273 	if (rh->log)
274 		dm_dirty_log_destroy(rh->log);
275 	if (rh->region_pool)
276 		mempool_destroy(rh->region_pool);
277 	vfree(rh->buckets);
278 }
279 
280 #define RH_HASH_MULT 2654435387U
281 
282 static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
283 {
284 	return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
285 }
286 
287 static struct region *__rh_lookup(struct region_hash *rh, region_t region)
288 {
289 	struct region *reg;
290 
291 	list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
292 		if (reg->key == region)
293 			return reg;
294 
295 	return NULL;
296 }
297 
298 static void __rh_insert(struct region_hash *rh, struct region *reg)
299 {
300 	unsigned int h = rh_hash(rh, reg->key);
301 	list_add(&reg->hash_list, rh->buckets + h);
302 }
303 
304 static struct region *__rh_alloc(struct region_hash *rh, region_t region)
305 {
306 	struct region *reg, *nreg;
307 
308 	read_unlock(&rh->hash_lock);
309 	nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC);
310 	if (unlikely(!nreg))
311 		nreg = kmalloc(sizeof(struct region), GFP_NOIO);
312 	nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
313 		RH_CLEAN : RH_NOSYNC;
314 	nreg->rh = rh;
315 	nreg->key = region;
316 
317 	INIT_LIST_HEAD(&nreg->list);
318 
319 	atomic_set(&nreg->pending, 0);
320 	bio_list_init(&nreg->delayed_bios);
321 	write_lock_irq(&rh->hash_lock);
322 
323 	reg = __rh_lookup(rh, region);
324 	if (reg)
325 		/* we lost the race */
326 		mempool_free(nreg, rh->region_pool);
327 
328 	else {
329 		__rh_insert(rh, nreg);
330 		if (nreg->state == RH_CLEAN) {
331 			spin_lock(&rh->region_lock);
332 			list_add(&nreg->list, &rh->clean_regions);
333 			spin_unlock(&rh->region_lock);
334 		}
335 		reg = nreg;
336 	}
337 	write_unlock_irq(&rh->hash_lock);
338 	read_lock(&rh->hash_lock);
339 
340 	return reg;
341 }
342 
343 static inline struct region *__rh_find(struct region_hash *rh, region_t region)
344 {
345 	struct region *reg;
346 
347 	reg = __rh_lookup(rh, region);
348 	if (!reg)
349 		reg = __rh_alloc(rh, region);
350 
351 	return reg;
352 }
353 
354 static int rh_state(struct region_hash *rh, region_t region, int may_block)
355 {
356 	int r;
357 	struct region *reg;
358 
359 	read_lock(&rh->hash_lock);
360 	reg = __rh_lookup(rh, region);
361 	read_unlock(&rh->hash_lock);
362 
363 	if (reg)
364 		return reg->state;
365 
366 	/*
367 	 * The region wasn't in the hash, so we fall back to the
368 	 * dirty log.
369 	 */
370 	r = rh->log->type->in_sync(rh->log, region, may_block);
371 
372 	/*
373 	 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
374 	 * taken as a RH_NOSYNC
375 	 */
376 	return r == 1 ? RH_CLEAN : RH_NOSYNC;
377 }
378 
379 static inline int rh_in_sync(struct region_hash *rh,
380 			     region_t region, int may_block)
381 {
382 	int state = rh_state(rh, region, may_block);
383 	return state == RH_CLEAN || state == RH_DIRTY;
384 }
385 
386 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
387 {
388 	struct bio *bio;
389 
390 	while ((bio = bio_list_pop(bio_list))) {
391 		queue_bio(ms, bio, WRITE);
392 	}
393 }
394 
395 static void complete_resync_work(struct region *reg, int success)
396 {
397 	struct region_hash *rh = reg->rh;
398 
399 	rh->log->type->set_region_sync(rh->log, reg->key, success);
400 
401 	/*
402 	 * Dispatch the bios before we call 'wake_up_all'.
403 	 * This is important because if we are suspending,
404 	 * we want to know that recovery is complete and
405 	 * the work queue is flushed.  If we wake_up_all
406 	 * before we dispatch_bios (queue bios and call wake()),
407 	 * then we risk suspending before the work queue
408 	 * has been properly flushed.
409 	 */
410 	dispatch_bios(rh->ms, &reg->delayed_bios);
411 	if (atomic_dec_and_test(&rh->recovery_in_flight))
412 		wake_up_all(&_kmirrord_recovery_stopped);
413 	up(&rh->recovery_count);
414 }
415 
416 static void rh_update_states(struct region_hash *rh)
417 {
418 	struct region *reg, *next;
419 
420 	LIST_HEAD(clean);
421 	LIST_HEAD(recovered);
422 	LIST_HEAD(failed_recovered);
423 
424 	/*
425 	 * Quickly grab the lists.
426 	 */
427 	write_lock_irq(&rh->hash_lock);
428 	spin_lock(&rh->region_lock);
429 	if (!list_empty(&rh->clean_regions)) {
430 		list_splice_init(&rh->clean_regions, &clean);
431 
432 		list_for_each_entry(reg, &clean, list)
433 			list_del(&reg->hash_list);
434 	}
435 
436 	if (!list_empty(&rh->recovered_regions)) {
437 		list_splice_init(&rh->recovered_regions, &recovered);
438 
439 		list_for_each_entry (reg, &recovered, list)
440 			list_del(&reg->hash_list);
441 	}
442 
443 	if (!list_empty(&rh->failed_recovered_regions)) {
444 		list_splice_init(&rh->failed_recovered_regions,
445 				 &failed_recovered);
446 
447 		list_for_each_entry(reg, &failed_recovered, list)
448 			list_del(&reg->hash_list);
449 	}
450 
451 	spin_unlock(&rh->region_lock);
452 	write_unlock_irq(&rh->hash_lock);
453 
454 	/*
455 	 * All the regions on the recovered and clean lists have
456 	 * now been pulled out of the system, so no need to do
457 	 * any more locking.
458 	 */
459 	list_for_each_entry_safe (reg, next, &recovered, list) {
460 		rh->log->type->clear_region(rh->log, reg->key);
461 		complete_resync_work(reg, 1);
462 		mempool_free(reg, rh->region_pool);
463 	}
464 
465 	list_for_each_entry_safe(reg, next, &failed_recovered, list) {
466 		complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1);
467 		mempool_free(reg, rh->region_pool);
468 	}
469 
470 	list_for_each_entry_safe(reg, next, &clean, list) {
471 		rh->log->type->clear_region(rh->log, reg->key);
472 		mempool_free(reg, rh->region_pool);
473 	}
474 
475 	rh->log->type->flush(rh->log);
476 }
477 
478 static void rh_inc(struct region_hash *rh, region_t region)
479 {
480 	struct region *reg;
481 
482 	read_lock(&rh->hash_lock);
483 	reg = __rh_find(rh, region);
484 
485 	spin_lock_irq(&rh->region_lock);
486 	atomic_inc(&reg->pending);
487 
488 	if (reg->state == RH_CLEAN) {
489 		reg->state = RH_DIRTY;
490 		list_del_init(&reg->list);	/* take off the clean list */
491 		spin_unlock_irq(&rh->region_lock);
492 
493 		rh->log->type->mark_region(rh->log, reg->key);
494 	} else
495 		spin_unlock_irq(&rh->region_lock);
496 
497 
498 	read_unlock(&rh->hash_lock);
499 }
500 
501 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
502 {
503 	struct bio *bio;
504 
505 	for (bio = bios->head; bio; bio = bio->bi_next)
506 		rh_inc(rh, bio_to_region(rh, bio));
507 }
508 
509 static void rh_dec(struct region_hash *rh, region_t region)
510 {
511 	unsigned long flags;
512 	struct region *reg;
513 	int should_wake = 0;
514 
515 	read_lock(&rh->hash_lock);
516 	reg = __rh_lookup(rh, region);
517 	read_unlock(&rh->hash_lock);
518 
519 	spin_lock_irqsave(&rh->region_lock, flags);
520 	if (atomic_dec_and_test(&reg->pending)) {
521 		/*
522 		 * There is no pending I/O for this region.
523 		 * We can move the region to corresponding list for next action.
524 		 * At this point, the region is not yet connected to any list.
525 		 *
526 		 * If the state is RH_NOSYNC, the region should be kept off
527 		 * from clean list.
528 		 * The hash entry for RH_NOSYNC will remain in memory
529 		 * until the region is recovered or the map is reloaded.
530 		 */
531 
532 		/* do nothing for RH_NOSYNC */
533 		if (reg->state == RH_RECOVERING) {
534 			list_add_tail(&reg->list, &rh->quiesced_regions);
535 		} else if (reg->state == RH_DIRTY) {
536 			reg->state = RH_CLEAN;
537 			list_add(&reg->list, &rh->clean_regions);
538 		}
539 		should_wake = 1;
540 	}
541 	spin_unlock_irqrestore(&rh->region_lock, flags);
542 
543 	if (should_wake)
544 		wake(rh->ms);
545 }
546 
547 /*
548  * Starts quiescing a region in preparation for recovery.
549  */
550 static int __rh_recovery_prepare(struct region_hash *rh)
551 {
552 	int r;
553 	struct region *reg;
554 	region_t region;
555 
556 	/*
557 	 * Ask the dirty log what's next.
558 	 */
559 	r = rh->log->type->get_resync_work(rh->log, &region);
560 	if (r <= 0)
561 		return r;
562 
563 	/*
564 	 * Get this region, and start it quiescing by setting the
565 	 * recovering flag.
566 	 */
567 	read_lock(&rh->hash_lock);
568 	reg = __rh_find(rh, region);
569 	read_unlock(&rh->hash_lock);
570 
571 	spin_lock_irq(&rh->region_lock);
572 	reg->state = RH_RECOVERING;
573 
574 	/* Already quiesced ? */
575 	if (atomic_read(&reg->pending))
576 		list_del_init(&reg->list);
577 	else
578 		list_move(&reg->list, &rh->quiesced_regions);
579 
580 	spin_unlock_irq(&rh->region_lock);
581 
582 	return 1;
583 }
584 
585 static void rh_recovery_prepare(struct region_hash *rh)
586 {
587 	/* Extra reference to avoid race with rh_stop_recovery */
588 	atomic_inc(&rh->recovery_in_flight);
589 
590 	while (!down_trylock(&rh->recovery_count)) {
591 		atomic_inc(&rh->recovery_in_flight);
592 		if (__rh_recovery_prepare(rh) <= 0) {
593 			atomic_dec(&rh->recovery_in_flight);
594 			up(&rh->recovery_count);
595 			break;
596 		}
597 	}
598 
599 	/* Drop the extra reference */
600 	if (atomic_dec_and_test(&rh->recovery_in_flight))
601 		wake_up_all(&_kmirrord_recovery_stopped);
602 }
603 
604 /*
605  * Returns any quiesced regions.
606  */
607 static struct region *rh_recovery_start(struct region_hash *rh)
608 {
609 	struct region *reg = NULL;
610 
611 	spin_lock_irq(&rh->region_lock);
612 	if (!list_empty(&rh->quiesced_regions)) {
613 		reg = list_entry(rh->quiesced_regions.next,
614 				 struct region, list);
615 		list_del_init(&reg->list);	/* remove from the quiesced list */
616 	}
617 	spin_unlock_irq(&rh->region_lock);
618 
619 	return reg;
620 }
621 
622 static void rh_recovery_end(struct region *reg, int success)
623 {
624 	struct region_hash *rh = reg->rh;
625 
626 	spin_lock_irq(&rh->region_lock);
627 	if (success)
628 		list_add(&reg->list, &reg->rh->recovered_regions);
629 	else {
630 		reg->state = RH_NOSYNC;
631 		list_add(&reg->list, &reg->rh->failed_recovered_regions);
632 	}
633 	spin_unlock_irq(&rh->region_lock);
634 
635 	wake(rh->ms);
636 }
637 
638 static int rh_flush(struct region_hash *rh)
639 {
640 	return rh->log->type->flush(rh->log);
641 }
642 
643 static void rh_delay(struct region_hash *rh, struct bio *bio)
644 {
645 	struct region *reg;
646 
647 	read_lock(&rh->hash_lock);
648 	reg = __rh_find(rh, bio_to_region(rh, bio));
649 	bio_list_add(&reg->delayed_bios, bio);
650 	read_unlock(&rh->hash_lock);
651 }
652 
653 static void rh_stop_recovery(struct region_hash *rh)
654 {
655 	int i;
656 
657 	/* wait for any recovering regions */
658 	for (i = 0; i < MAX_RECOVERY; i++)
659 		down(&rh->recovery_count);
660 }
661 
662 static void rh_start_recovery(struct region_hash *rh)
663 {
664 	int i;
665 
666 	for (i = 0; i < MAX_RECOVERY; i++)
667 		up(&rh->recovery_count);
668 
669 	wake(rh->ms);
670 }
671 
672 #define MIN_READ_RECORDS 20
673 struct dm_raid1_read_record {
674 	struct mirror *m;
675 	struct dm_bio_details details;
676 };
677 
678 /*
679  * Every mirror should look like this one.
680  */
681 #define DEFAULT_MIRROR 0
682 
683 /*
684  * This is yucky.  We squirrel the mirror struct away inside
685  * bi_next for read/write buffers.  This is safe since the bh
686  * doesn't get submitted to the lower levels of block layer.
687  */
688 static struct mirror *bio_get_m(struct bio *bio)
689 {
690 	return (struct mirror *) bio->bi_next;
691 }
692 
693 static void bio_set_m(struct bio *bio, struct mirror *m)
694 {
695 	bio->bi_next = (struct bio *) m;
696 }
697 
698 static struct mirror *get_default_mirror(struct mirror_set *ms)
699 {
700 	return &ms->mirror[atomic_read(&ms->default_mirror)];
701 }
702 
703 static void set_default_mirror(struct mirror *m)
704 {
705 	struct mirror_set *ms = m->ms;
706 	struct mirror *m0 = &(ms->mirror[0]);
707 
708 	atomic_set(&ms->default_mirror, m - m0);
709 }
710 
711 /* fail_mirror
712  * @m: mirror device to fail
713  * @error_type: one of the enum's, DM_RAID1_*_ERROR
714  *
715  * If errors are being handled, record the type of
716  * error encountered for this device.  If this type
717  * of error has already been recorded, we can return;
718  * otherwise, we must signal userspace by triggering
719  * an event.  Additionally, if the device is the
720  * primary device, we must choose a new primary, but
721  * only if the mirror is in-sync.
722  *
723  * This function must not block.
724  */
725 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
726 {
727 	struct mirror_set *ms = m->ms;
728 	struct mirror *new;
729 
730 	if (!errors_handled(ms))
731 		return;
732 
733 	/*
734 	 * error_count is used for nothing more than a
735 	 * simple way to tell if a device has encountered
736 	 * errors.
737 	 */
738 	atomic_inc(&m->error_count);
739 
740 	if (test_and_set_bit(error_type, &m->error_type))
741 		return;
742 
743 	if (m != get_default_mirror(ms))
744 		goto out;
745 
746 	if (!ms->in_sync) {
747 		/*
748 		 * Better to issue requests to same failing device
749 		 * than to risk returning corrupt data.
750 		 */
751 		DMERR("Primary mirror (%s) failed while out-of-sync: "
752 		      "Reads may fail.", m->dev->name);
753 		goto out;
754 	}
755 
756 	for (new = ms->mirror; new < ms->mirror + ms->nr_mirrors; new++)
757 		if (!atomic_read(&new->error_count)) {
758 			set_default_mirror(new);
759 			break;
760 		}
761 
762 	if (unlikely(new == ms->mirror + ms->nr_mirrors))
763 		DMWARN("All sides of mirror have failed.");
764 
765 out:
766 	schedule_work(&ms->trigger_event);
767 }
768 
769 /*-----------------------------------------------------------------
770  * Recovery.
771  *
772  * When a mirror is first activated we may find that some regions
773  * are in the no-sync state.  We have to recover these by
774  * recopying from the default mirror to all the others.
775  *---------------------------------------------------------------*/
776 static void recovery_complete(int read_err, unsigned long write_err,
777 			      void *context)
778 {
779 	struct region *reg = (struct region *)context;
780 	struct mirror_set *ms = reg->rh->ms;
781 	int m, bit = 0;
782 
783 	if (read_err) {
784 		/* Read error means the failure of default mirror. */
785 		DMERR_LIMIT("Unable to read primary mirror during recovery");
786 		fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
787 	}
788 
789 	if (write_err) {
790 		DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
791 			    write_err);
792 		/*
793 		 * Bits correspond to devices (excluding default mirror).
794 		 * The default mirror cannot change during recovery.
795 		 */
796 		for (m = 0; m < ms->nr_mirrors; m++) {
797 			if (&ms->mirror[m] == get_default_mirror(ms))
798 				continue;
799 			if (test_bit(bit, &write_err))
800 				fail_mirror(ms->mirror + m,
801 					    DM_RAID1_SYNC_ERROR);
802 			bit++;
803 		}
804 	}
805 
806 	rh_recovery_end(reg, !(read_err || write_err));
807 }
808 
809 static int recover(struct mirror_set *ms, struct region *reg)
810 {
811 	int r;
812 	unsigned int i;
813 	struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
814 	struct mirror *m;
815 	unsigned long flags = 0;
816 
817 	/* fill in the source */
818 	m = get_default_mirror(ms);
819 	from.bdev = m->dev->bdev;
820 	from.sector = m->offset + region_to_sector(reg->rh, reg->key);
821 	if (reg->key == (ms->nr_regions - 1)) {
822 		/*
823 		 * The final region may be smaller than
824 		 * region_size.
825 		 */
826 		from.count = ms->ti->len & (reg->rh->region_size - 1);
827 		if (!from.count)
828 			from.count = reg->rh->region_size;
829 	} else
830 		from.count = reg->rh->region_size;
831 
832 	/* fill in the destinations */
833 	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
834 		if (&ms->mirror[i] == get_default_mirror(ms))
835 			continue;
836 
837 		m = ms->mirror + i;
838 		dest->bdev = m->dev->bdev;
839 		dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
840 		dest->count = from.count;
841 		dest++;
842 	}
843 
844 	/* hand to kcopyd */
845 	if (!errors_handled(ms))
846 		set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
847 
848 	r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
849 			   flags, recovery_complete, reg);
850 
851 	return r;
852 }
853 
854 static void do_recovery(struct mirror_set *ms)
855 {
856 	int r;
857 	struct region *reg;
858 	struct dm_dirty_log *log = ms->rh.log;
859 
860 	/*
861 	 * Start quiescing some regions.
862 	 */
863 	rh_recovery_prepare(&ms->rh);
864 
865 	/*
866 	 * Copy any already quiesced regions.
867 	 */
868 	while ((reg = rh_recovery_start(&ms->rh))) {
869 		r = recover(ms, reg);
870 		if (r)
871 			rh_recovery_end(reg, 0);
872 	}
873 
874 	/*
875 	 * Update the in sync flag.
876 	 */
877 	if (!ms->in_sync &&
878 	    (log->type->get_sync_count(log) == ms->nr_regions)) {
879 		/* the sync is complete */
880 		dm_table_event(ms->ti->table);
881 		ms->in_sync = 1;
882 	}
883 }
884 
885 /*-----------------------------------------------------------------
886  * Reads
887  *---------------------------------------------------------------*/
888 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
889 {
890 	struct mirror *m = get_default_mirror(ms);
891 
892 	do {
893 		if (likely(!atomic_read(&m->error_count)))
894 			return m;
895 
896 		if (m-- == ms->mirror)
897 			m += ms->nr_mirrors;
898 	} while (m != get_default_mirror(ms));
899 
900 	return NULL;
901 }
902 
903 static int default_ok(struct mirror *m)
904 {
905 	struct mirror *default_mirror = get_default_mirror(m->ms);
906 
907 	return !atomic_read(&default_mirror->error_count);
908 }
909 
910 static int mirror_available(struct mirror_set *ms, struct bio *bio)
911 {
912 	region_t region = bio_to_region(&ms->rh, bio);
913 
914 	if (ms->rh.log->type->in_sync(ms->rh.log, region, 0))
915 		return choose_mirror(ms,  bio->bi_sector) ? 1 : 0;
916 
917 	return 0;
918 }
919 
920 /*
921  * remap a buffer to a particular mirror.
922  */
923 static sector_t map_sector(struct mirror *m, struct bio *bio)
924 {
925 	return m->offset + (bio->bi_sector - m->ms->ti->begin);
926 }
927 
928 static void map_bio(struct mirror *m, struct bio *bio)
929 {
930 	bio->bi_bdev = m->dev->bdev;
931 	bio->bi_sector = map_sector(m, bio);
932 }
933 
934 static void map_region(struct dm_io_region *io, struct mirror *m,
935 		       struct bio *bio)
936 {
937 	io->bdev = m->dev->bdev;
938 	io->sector = map_sector(m, bio);
939 	io->count = bio->bi_size >> 9;
940 }
941 
942 /*-----------------------------------------------------------------
943  * Reads
944  *---------------------------------------------------------------*/
945 static void read_callback(unsigned long error, void *context)
946 {
947 	struct bio *bio = context;
948 	struct mirror *m;
949 
950 	m = bio_get_m(bio);
951 	bio_set_m(bio, NULL);
952 
953 	if (likely(!error)) {
954 		bio_endio(bio, 0);
955 		return;
956 	}
957 
958 	fail_mirror(m, DM_RAID1_READ_ERROR);
959 
960 	if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
961 		DMWARN_LIMIT("Read failure on mirror device %s.  "
962 			     "Trying alternative device.",
963 			     m->dev->name);
964 		queue_bio(m->ms, bio, bio_rw(bio));
965 		return;
966 	}
967 
968 	DMERR_LIMIT("Read failure on mirror device %s.  Failing I/O.",
969 		    m->dev->name);
970 	bio_endio(bio, -EIO);
971 }
972 
973 /* Asynchronous read. */
974 static void read_async_bio(struct mirror *m, struct bio *bio)
975 {
976 	struct dm_io_region io;
977 	struct dm_io_request io_req = {
978 		.bi_rw = READ,
979 		.mem.type = DM_IO_BVEC,
980 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
981 		.notify.fn = read_callback,
982 		.notify.context = bio,
983 		.client = m->ms->io_client,
984 	};
985 
986 	map_region(&io, m, bio);
987 	bio_set_m(bio, m);
988 	(void) dm_io(&io_req, 1, &io, NULL);
989 }
990 
991 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
992 {
993 	region_t region;
994 	struct bio *bio;
995 	struct mirror *m;
996 
997 	while ((bio = bio_list_pop(reads))) {
998 		region = bio_to_region(&ms->rh, bio);
999 		m = get_default_mirror(ms);
1000 
1001 		/*
1002 		 * We can only read balance if the region is in sync.
1003 		 */
1004 		if (likely(rh_in_sync(&ms->rh, region, 1)))
1005 			m = choose_mirror(ms, bio->bi_sector);
1006 		else if (m && atomic_read(&m->error_count))
1007 			m = NULL;
1008 
1009 		if (likely(m))
1010 			read_async_bio(m, bio);
1011 		else
1012 			bio_endio(bio, -EIO);
1013 	}
1014 }
1015 
1016 /*-----------------------------------------------------------------
1017  * Writes.
1018  *
1019  * We do different things with the write io depending on the
1020  * state of the region that it's in:
1021  *
1022  * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
1023  * RECOVERING:	delay the io until recovery completes
1024  * NOSYNC:	increment pending, just write to the default mirror
1025  *---------------------------------------------------------------*/
1026 
1027 /* __bio_mark_nosync
1028  * @ms
1029  * @bio
1030  * @done
1031  * @error
1032  *
1033  * The bio was written on some mirror(s) but failed on other mirror(s).
1034  * We can successfully endio the bio but should avoid the region being
1035  * marked clean by setting the state RH_NOSYNC.
1036  *
1037  * This function is _not_ safe in interrupt context!
1038  */
1039 static void __bio_mark_nosync(struct mirror_set *ms,
1040 			      struct bio *bio, unsigned done, int error)
1041 {
1042 	unsigned long flags;
1043 	struct region_hash *rh = &ms->rh;
1044 	struct dm_dirty_log *log = ms->rh.log;
1045 	struct region *reg;
1046 	region_t region = bio_to_region(rh, bio);
1047 	int recovering = 0;
1048 
1049 	/* We must inform the log that the sync count has changed. */
1050 	log->type->set_region_sync(log, region, 0);
1051 	ms->in_sync = 0;
1052 
1053 	read_lock(&rh->hash_lock);
1054 	reg = __rh_find(rh, region);
1055 	read_unlock(&rh->hash_lock);
1056 
1057 	/* region hash entry should exist because write was in-flight */
1058 	BUG_ON(!reg);
1059 	BUG_ON(!list_empty(&reg->list));
1060 
1061 	spin_lock_irqsave(&rh->region_lock, flags);
1062 	/*
1063 	 * Possible cases:
1064 	 *   1) RH_DIRTY
1065 	 *   2) RH_NOSYNC: was dirty, other preceeding writes failed
1066 	 *   3) RH_RECOVERING: flushing pending writes
1067 	 * Either case, the region should have not been connected to list.
1068 	 */
1069 	recovering = (reg->state == RH_RECOVERING);
1070 	reg->state = RH_NOSYNC;
1071 	BUG_ON(!list_empty(&reg->list));
1072 	spin_unlock_irqrestore(&rh->region_lock, flags);
1073 
1074 	bio_endio(bio, error);
1075 	if (recovering)
1076 		complete_resync_work(reg, 0);
1077 }
1078 
1079 static void write_callback(unsigned long error, void *context)
1080 {
1081 	unsigned i, ret = 0;
1082 	struct bio *bio = (struct bio *) context;
1083 	struct mirror_set *ms;
1084 	int uptodate = 0;
1085 	int should_wake = 0;
1086 	unsigned long flags;
1087 
1088 	ms = bio_get_m(bio)->ms;
1089 	bio_set_m(bio, NULL);
1090 
1091 	/*
1092 	 * NOTE: We don't decrement the pending count here,
1093 	 * instead it is done by the targets endio function.
1094 	 * This way we handle both writes to SYNC and NOSYNC
1095 	 * regions with the same code.
1096 	 */
1097 	if (likely(!error))
1098 		goto out;
1099 
1100 	for (i = 0; i < ms->nr_mirrors; i++)
1101 		if (test_bit(i, &error))
1102 			fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
1103 		else
1104 			uptodate = 1;
1105 
1106 	if (unlikely(!uptodate)) {
1107 		DMERR("All replicated volumes dead, failing I/O");
1108 		/* None of the writes succeeded, fail the I/O. */
1109 		ret = -EIO;
1110 	} else if (errors_handled(ms)) {
1111 		/*
1112 		 * Need to raise event.  Since raising
1113 		 * events can block, we need to do it in
1114 		 * the main thread.
1115 		 */
1116 		spin_lock_irqsave(&ms->lock, flags);
1117 		if (!ms->failures.head)
1118 			should_wake = 1;
1119 		bio_list_add(&ms->failures, bio);
1120 		spin_unlock_irqrestore(&ms->lock, flags);
1121 		if (should_wake)
1122 			wake(ms);
1123 		return;
1124 	}
1125 out:
1126 	bio_endio(bio, ret);
1127 }
1128 
1129 static void do_write(struct mirror_set *ms, struct bio *bio)
1130 {
1131 	unsigned int i;
1132 	struct dm_io_region io[ms->nr_mirrors], *dest = io;
1133 	struct mirror *m;
1134 	struct dm_io_request io_req = {
1135 		.bi_rw = WRITE,
1136 		.mem.type = DM_IO_BVEC,
1137 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
1138 		.notify.fn = write_callback,
1139 		.notify.context = bio,
1140 		.client = ms->io_client,
1141 	};
1142 
1143 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
1144 		map_region(dest++, m, bio);
1145 
1146 	/*
1147 	 * Use default mirror because we only need it to retrieve the reference
1148 	 * to the mirror set in write_callback().
1149 	 */
1150 	bio_set_m(bio, get_default_mirror(ms));
1151 
1152 	(void) dm_io(&io_req, ms->nr_mirrors, io, NULL);
1153 }
1154 
1155 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
1156 {
1157 	int state;
1158 	struct bio *bio;
1159 	struct bio_list sync, nosync, recover, *this_list = NULL;
1160 
1161 	if (!writes->head)
1162 		return;
1163 
1164 	/*
1165 	 * Classify each write.
1166 	 */
1167 	bio_list_init(&sync);
1168 	bio_list_init(&nosync);
1169 	bio_list_init(&recover);
1170 
1171 	while ((bio = bio_list_pop(writes))) {
1172 		state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
1173 		switch (state) {
1174 		case RH_CLEAN:
1175 		case RH_DIRTY:
1176 			this_list = &sync;
1177 			break;
1178 
1179 		case RH_NOSYNC:
1180 			this_list = &nosync;
1181 			break;
1182 
1183 		case RH_RECOVERING:
1184 			this_list = &recover;
1185 			break;
1186 		}
1187 
1188 		bio_list_add(this_list, bio);
1189 	}
1190 
1191 	/*
1192 	 * Increment the pending counts for any regions that will
1193 	 * be written to (writes to recover regions are going to
1194 	 * be delayed).
1195 	 */
1196 	rh_inc_pending(&ms->rh, &sync);
1197 	rh_inc_pending(&ms->rh, &nosync);
1198 	ms->log_failure = rh_flush(&ms->rh) ? 1 : 0;
1199 
1200 	/*
1201 	 * Dispatch io.
1202 	 */
1203 	if (unlikely(ms->log_failure)) {
1204 		spin_lock_irq(&ms->lock);
1205 		bio_list_merge(&ms->failures, &sync);
1206 		spin_unlock_irq(&ms->lock);
1207 		wake(ms);
1208 	} else
1209 		while ((bio = bio_list_pop(&sync)))
1210 			do_write(ms, bio);
1211 
1212 	while ((bio = bio_list_pop(&recover)))
1213 		rh_delay(&ms->rh, bio);
1214 
1215 	while ((bio = bio_list_pop(&nosync))) {
1216 		map_bio(get_default_mirror(ms), bio);
1217 		generic_make_request(bio);
1218 	}
1219 }
1220 
1221 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
1222 {
1223 	struct bio *bio;
1224 
1225 	if (!failures->head)
1226 		return;
1227 
1228 	if (!ms->log_failure) {
1229 		while ((bio = bio_list_pop(failures)))
1230 			__bio_mark_nosync(ms, bio, bio->bi_size, 0);
1231 		return;
1232 	}
1233 
1234 	/*
1235 	 * If the log has failed, unattempted writes are being
1236 	 * put on the failures list.  We can't issue those writes
1237 	 * until a log has been marked, so we must store them.
1238 	 *
1239 	 * If a 'noflush' suspend is in progress, we can requeue
1240 	 * the I/O's to the core.  This give userspace a chance
1241 	 * to reconfigure the mirror, at which point the core
1242 	 * will reissue the writes.  If the 'noflush' flag is
1243 	 * not set, we have no choice but to return errors.
1244 	 *
1245 	 * Some writes on the failures list may have been
1246 	 * submitted before the log failure and represent a
1247 	 * failure to write to one of the devices.  It is ok
1248 	 * for us to treat them the same and requeue them
1249 	 * as well.
1250 	 */
1251 	if (dm_noflush_suspending(ms->ti)) {
1252 		while ((bio = bio_list_pop(failures)))
1253 			bio_endio(bio, DM_ENDIO_REQUEUE);
1254 		return;
1255 	}
1256 
1257 	if (atomic_read(&ms->suspend)) {
1258 		while ((bio = bio_list_pop(failures)))
1259 			bio_endio(bio, -EIO);
1260 		return;
1261 	}
1262 
1263 	spin_lock_irq(&ms->lock);
1264 	bio_list_merge(&ms->failures, failures);
1265 	spin_unlock_irq(&ms->lock);
1266 
1267 	delayed_wake(ms);
1268 }
1269 
1270 static void trigger_event(struct work_struct *work)
1271 {
1272 	struct mirror_set *ms =
1273 		container_of(work, struct mirror_set, trigger_event);
1274 
1275 	dm_table_event(ms->ti->table);
1276 }
1277 
1278 /*-----------------------------------------------------------------
1279  * kmirrord
1280  *---------------------------------------------------------------*/
1281 static void do_mirror(struct work_struct *work)
1282 {
1283 	struct mirror_set *ms =container_of(work, struct mirror_set,
1284 					    kmirrord_work);
1285 	struct bio_list reads, writes, failures;
1286 	unsigned long flags;
1287 
1288 	spin_lock_irqsave(&ms->lock, flags);
1289 	reads = ms->reads;
1290 	writes = ms->writes;
1291 	failures = ms->failures;
1292 	bio_list_init(&ms->reads);
1293 	bio_list_init(&ms->writes);
1294 	bio_list_init(&ms->failures);
1295 	spin_unlock_irqrestore(&ms->lock, flags);
1296 
1297 	rh_update_states(&ms->rh);
1298 	do_recovery(ms);
1299 	do_reads(ms, &reads);
1300 	do_writes(ms, &writes);
1301 	do_failures(ms, &failures);
1302 
1303 	dm_table_unplug_all(ms->ti->table);
1304 }
1305 
1306 
1307 /*-----------------------------------------------------------------
1308  * Target functions
1309  *---------------------------------------------------------------*/
1310 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
1311 					uint32_t region_size,
1312 					struct dm_target *ti,
1313 					struct dm_dirty_log *dl)
1314 {
1315 	size_t len;
1316 	struct mirror_set *ms = NULL;
1317 
1318 	if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors))
1319 		return NULL;
1320 
1321 	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
1322 
1323 	ms = kzalloc(len, GFP_KERNEL);
1324 	if (!ms) {
1325 		ti->error = "Cannot allocate mirror context";
1326 		return NULL;
1327 	}
1328 
1329 	spin_lock_init(&ms->lock);
1330 
1331 	ms->ti = ti;
1332 	ms->nr_mirrors = nr_mirrors;
1333 	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
1334 	ms->in_sync = 0;
1335 	ms->log_failure = 0;
1336 	atomic_set(&ms->suspend, 0);
1337 	atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
1338 
1339 	len = sizeof(struct dm_raid1_read_record);
1340 	ms->read_record_pool = mempool_create_kmalloc_pool(MIN_READ_RECORDS,
1341 							   len);
1342 	if (!ms->read_record_pool) {
1343 		ti->error = "Error creating mirror read_record_pool";
1344 		kfree(ms);
1345 		return NULL;
1346 	}
1347 
1348 	ms->io_client = dm_io_client_create(DM_IO_PAGES);
1349 	if (IS_ERR(ms->io_client)) {
1350 		ti->error = "Error creating dm_io client";
1351 		mempool_destroy(ms->read_record_pool);
1352 		kfree(ms);
1353  		return NULL;
1354 	}
1355 
1356 	if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
1357 		ti->error = "Error creating dirty region hash";
1358 		dm_io_client_destroy(ms->io_client);
1359 		mempool_destroy(ms->read_record_pool);
1360 		kfree(ms);
1361 		return NULL;
1362 	}
1363 
1364 	return ms;
1365 }
1366 
1367 static void free_context(struct mirror_set *ms, struct dm_target *ti,
1368 			 unsigned int m)
1369 {
1370 	while (m--)
1371 		dm_put_device(ti, ms->mirror[m].dev);
1372 
1373 	dm_io_client_destroy(ms->io_client);
1374 	rh_exit(&ms->rh);
1375 	mempool_destroy(ms->read_record_pool);
1376 	kfree(ms);
1377 }
1378 
1379 static inline int _check_region_size(struct dm_target *ti, uint32_t size)
1380 {
1381 	return !(size % (PAGE_SIZE >> 9) || !is_power_of_2(size) ||
1382 		 size > ti->len);
1383 }
1384 
1385 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
1386 		      unsigned int mirror, char **argv)
1387 {
1388 	unsigned long long offset;
1389 
1390 	if (sscanf(argv[1], "%llu", &offset) != 1) {
1391 		ti->error = "Invalid offset";
1392 		return -EINVAL;
1393 	}
1394 
1395 	if (dm_get_device(ti, argv[0], offset, ti->len,
1396 			  dm_table_get_mode(ti->table),
1397 			  &ms->mirror[mirror].dev)) {
1398 		ti->error = "Device lookup failure";
1399 		return -ENXIO;
1400 	}
1401 
1402 	ms->mirror[mirror].ms = ms;
1403 	atomic_set(&(ms->mirror[mirror].error_count), 0);
1404 	ms->mirror[mirror].error_type = 0;
1405 	ms->mirror[mirror].offset = offset;
1406 
1407 	return 0;
1408 }
1409 
1410 /*
1411  * Create dirty log: log_type #log_params <log_params>
1412  */
1413 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
1414 					  unsigned int argc, char **argv,
1415 					  unsigned int *args_used)
1416 {
1417 	unsigned int param_count;
1418 	struct dm_dirty_log *dl;
1419 
1420 	if (argc < 2) {
1421 		ti->error = "Insufficient mirror log arguments";
1422 		return NULL;
1423 	}
1424 
1425 	if (sscanf(argv[1], "%u", &param_count) != 1) {
1426 		ti->error = "Invalid mirror log argument count";
1427 		return NULL;
1428 	}
1429 
1430 	*args_used = 2 + param_count;
1431 
1432 	if (argc < *args_used) {
1433 		ti->error = "Insufficient mirror log arguments";
1434 		return NULL;
1435 	}
1436 
1437 	dl = dm_dirty_log_create(argv[0], ti, param_count, argv + 2);
1438 	if (!dl) {
1439 		ti->error = "Error creating mirror dirty log";
1440 		return NULL;
1441 	}
1442 
1443 	if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
1444 		ti->error = "Invalid region size";
1445 		dm_dirty_log_destroy(dl);
1446 		return NULL;
1447 	}
1448 
1449 	return dl;
1450 }
1451 
1452 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
1453 			  unsigned *args_used)
1454 {
1455 	unsigned num_features;
1456 	struct dm_target *ti = ms->ti;
1457 
1458 	*args_used = 0;
1459 
1460 	if (!argc)
1461 		return 0;
1462 
1463 	if (sscanf(argv[0], "%u", &num_features) != 1) {
1464 		ti->error = "Invalid number of features";
1465 		return -EINVAL;
1466 	}
1467 
1468 	argc--;
1469 	argv++;
1470 	(*args_used)++;
1471 
1472 	if (num_features > argc) {
1473 		ti->error = "Not enough arguments to support feature count";
1474 		return -EINVAL;
1475 	}
1476 
1477 	if (!strcmp("handle_errors", argv[0]))
1478 		ms->features |= DM_RAID1_HANDLE_ERRORS;
1479 	else {
1480 		ti->error = "Unrecognised feature requested";
1481 		return -EINVAL;
1482 	}
1483 
1484 	(*args_used)++;
1485 
1486 	return 0;
1487 }
1488 
1489 /*
1490  * Construct a mirror mapping:
1491  *
1492  * log_type #log_params <log_params>
1493  * #mirrors [mirror_path offset]{2,}
1494  * [#features <features>]
1495  *
1496  * log_type is "core" or "disk"
1497  * #log_params is between 1 and 3
1498  *
1499  * If present, features must be "handle_errors".
1500  */
1501 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1502 {
1503 	int r;
1504 	unsigned int nr_mirrors, m, args_used;
1505 	struct mirror_set *ms;
1506 	struct dm_dirty_log *dl;
1507 
1508 	dl = create_dirty_log(ti, argc, argv, &args_used);
1509 	if (!dl)
1510 		return -EINVAL;
1511 
1512 	argv += args_used;
1513 	argc -= args_used;
1514 
1515 	if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1516 	    nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
1517 		ti->error = "Invalid number of mirrors";
1518 		dm_dirty_log_destroy(dl);
1519 		return -EINVAL;
1520 	}
1521 
1522 	argv++, argc--;
1523 
1524 	if (argc < nr_mirrors * 2) {
1525 		ti->error = "Too few mirror arguments";
1526 		dm_dirty_log_destroy(dl);
1527 		return -EINVAL;
1528 	}
1529 
1530 	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1531 	if (!ms) {
1532 		dm_dirty_log_destroy(dl);
1533 		return -ENOMEM;
1534 	}
1535 
1536 	/* Get the mirror parameter sets */
1537 	for (m = 0; m < nr_mirrors; m++) {
1538 		r = get_mirror(ms, ti, m, argv);
1539 		if (r) {
1540 			free_context(ms, ti, m);
1541 			return r;
1542 		}
1543 		argv += 2;
1544 		argc -= 2;
1545 	}
1546 
1547 	ti->private = ms;
1548  	ti->split_io = ms->rh.region_size;
1549 
1550 	ms->kmirrord_wq = create_singlethread_workqueue("kmirrord");
1551 	if (!ms->kmirrord_wq) {
1552 		DMERR("couldn't start kmirrord");
1553 		r = -ENOMEM;
1554 		goto err_free_context;
1555 	}
1556 	INIT_WORK(&ms->kmirrord_work, do_mirror);
1557 	init_timer(&ms->timer);
1558 	ms->timer_pending = 0;
1559 	INIT_WORK(&ms->trigger_event, trigger_event);
1560 
1561 	r = parse_features(ms, argc, argv, &args_used);
1562 	if (r)
1563 		goto err_destroy_wq;
1564 
1565 	argv += args_used;
1566 	argc -= args_used;
1567 
1568 	/*
1569 	 * Any read-balancing addition depends on the
1570 	 * DM_RAID1_HANDLE_ERRORS flag being present.
1571 	 * This is because the decision to balance depends
1572 	 * on the sync state of a region.  If the above
1573 	 * flag is not present, we ignore errors; and
1574 	 * the sync state may be inaccurate.
1575 	 */
1576 
1577 	if (argc) {
1578 		ti->error = "Too many mirror arguments";
1579 		r = -EINVAL;
1580 		goto err_destroy_wq;
1581 	}
1582 
1583 	r = dm_kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1584 	if (r)
1585 		goto err_destroy_wq;
1586 
1587 	wake(ms);
1588 	return 0;
1589 
1590 err_destroy_wq:
1591 	destroy_workqueue(ms->kmirrord_wq);
1592 err_free_context:
1593 	free_context(ms, ti, ms->nr_mirrors);
1594 	return r;
1595 }
1596 
1597 static void mirror_dtr(struct dm_target *ti)
1598 {
1599 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1600 
1601 	del_timer_sync(&ms->timer);
1602 	flush_workqueue(ms->kmirrord_wq);
1603 	dm_kcopyd_client_destroy(ms->kcopyd_client);
1604 	destroy_workqueue(ms->kmirrord_wq);
1605 	free_context(ms, ti, ms->nr_mirrors);
1606 }
1607 
1608 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1609 {
1610 	unsigned long flags;
1611 	int should_wake = 0;
1612 	struct bio_list *bl;
1613 
1614 	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1615 	spin_lock_irqsave(&ms->lock, flags);
1616 	should_wake = !(bl->head);
1617 	bio_list_add(bl, bio);
1618 	spin_unlock_irqrestore(&ms->lock, flags);
1619 
1620 	if (should_wake)
1621 		wake(ms);
1622 }
1623 
1624 /*
1625  * Mirror mapping function
1626  */
1627 static int mirror_map(struct dm_target *ti, struct bio *bio,
1628 		      union map_info *map_context)
1629 {
1630 	int r, rw = bio_rw(bio);
1631 	struct mirror *m;
1632 	struct mirror_set *ms = ti->private;
1633 	struct dm_raid1_read_record *read_record = NULL;
1634 
1635 	if (rw == WRITE) {
1636 		/* Save region for mirror_end_io() handler */
1637 		map_context->ll = bio_to_region(&ms->rh, bio);
1638 		queue_bio(ms, bio, rw);
1639 		return DM_MAPIO_SUBMITTED;
1640 	}
1641 
1642 	r = ms->rh.log->type->in_sync(ms->rh.log,
1643 				      bio_to_region(&ms->rh, bio), 0);
1644 	if (r < 0 && r != -EWOULDBLOCK)
1645 		return r;
1646 
1647 	/*
1648 	 * If region is not in-sync queue the bio.
1649 	 */
1650 	if (!r || (r == -EWOULDBLOCK)) {
1651 		if (rw == READA)
1652 			return -EWOULDBLOCK;
1653 
1654 		queue_bio(ms, bio, rw);
1655 		return DM_MAPIO_SUBMITTED;
1656 	}
1657 
1658 	/*
1659 	 * The region is in-sync and we can perform reads directly.
1660 	 * Store enough information so we can retry if it fails.
1661 	 */
1662 	m = choose_mirror(ms, bio->bi_sector);
1663 	if (unlikely(!m))
1664 		return -EIO;
1665 
1666 	read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1667 	if (likely(read_record)) {
1668 		dm_bio_record(&read_record->details, bio);
1669 		map_context->ptr = read_record;
1670 		read_record->m = m;
1671 	}
1672 
1673 	map_bio(m, bio);
1674 
1675 	return DM_MAPIO_REMAPPED;
1676 }
1677 
1678 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1679 			 int error, union map_info *map_context)
1680 {
1681 	int rw = bio_rw(bio);
1682 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1683 	struct mirror *m = NULL;
1684 	struct dm_bio_details *bd = NULL;
1685 	struct dm_raid1_read_record *read_record = map_context->ptr;
1686 
1687 	/*
1688 	 * We need to dec pending if this was a write.
1689 	 */
1690 	if (rw == WRITE) {
1691 		rh_dec(&ms->rh, map_context->ll);
1692 		return error;
1693 	}
1694 
1695 	if (error == -EOPNOTSUPP)
1696 		goto out;
1697 
1698 	if ((error == -EWOULDBLOCK) && bio_rw_ahead(bio))
1699 		goto out;
1700 
1701 	if (unlikely(error)) {
1702 		if (!read_record) {
1703 			/*
1704 			 * There wasn't enough memory to record necessary
1705 			 * information for a retry or there was no other
1706 			 * mirror in-sync.
1707 			 */
1708 			DMERR_LIMIT("Mirror read failed.");
1709 			return -EIO;
1710 		}
1711 
1712 		m = read_record->m;
1713 
1714 		DMERR("Mirror read failed from %s. Trying alternative device.",
1715 		      m->dev->name);
1716 
1717 		fail_mirror(m, DM_RAID1_READ_ERROR);
1718 
1719 		/*
1720 		 * A failed read is requeued for another attempt using an intact
1721 		 * mirror.
1722 		 */
1723 		if (default_ok(m) || mirror_available(ms, bio)) {
1724 			bd = &read_record->details;
1725 
1726 			dm_bio_restore(bd, bio);
1727 			mempool_free(read_record, ms->read_record_pool);
1728 			map_context->ptr = NULL;
1729 			queue_bio(ms, bio, rw);
1730 			return 1;
1731 		}
1732 		DMERR("All replicated volumes dead, failing I/O");
1733 	}
1734 
1735 out:
1736 	if (read_record) {
1737 		mempool_free(read_record, ms->read_record_pool);
1738 		map_context->ptr = NULL;
1739 	}
1740 
1741 	return error;
1742 }
1743 
1744 static void mirror_presuspend(struct dm_target *ti)
1745 {
1746 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1747 	struct dm_dirty_log *log = ms->rh.log;
1748 
1749 	atomic_set(&ms->suspend, 1);
1750 
1751 	/*
1752 	 * We must finish up all the work that we've
1753 	 * generated (i.e. recovery work).
1754 	 */
1755 	rh_stop_recovery(&ms->rh);
1756 
1757 	wait_event(_kmirrord_recovery_stopped,
1758 		   !atomic_read(&ms->rh.recovery_in_flight));
1759 
1760 	if (log->type->presuspend && log->type->presuspend(log))
1761 		/* FIXME: need better error handling */
1762 		DMWARN("log presuspend failed");
1763 
1764 	/*
1765 	 * Now that recovery is complete/stopped and the
1766 	 * delayed bios are queued, we need to wait for
1767 	 * the worker thread to complete.  This way,
1768 	 * we know that all of our I/O has been pushed.
1769 	 */
1770 	flush_workqueue(ms->kmirrord_wq);
1771 }
1772 
1773 static void mirror_postsuspend(struct dm_target *ti)
1774 {
1775 	struct mirror_set *ms = ti->private;
1776 	struct dm_dirty_log *log = ms->rh.log;
1777 
1778 	if (log->type->postsuspend && log->type->postsuspend(log))
1779 		/* FIXME: need better error handling */
1780 		DMWARN("log postsuspend failed");
1781 }
1782 
1783 static void mirror_resume(struct dm_target *ti)
1784 {
1785 	struct mirror_set *ms = ti->private;
1786 	struct dm_dirty_log *log = ms->rh.log;
1787 
1788 	atomic_set(&ms->suspend, 0);
1789 	if (log->type->resume && log->type->resume(log))
1790 		/* FIXME: need better error handling */
1791 		DMWARN("log resume failed");
1792 	rh_start_recovery(&ms->rh);
1793 }
1794 
1795 /*
1796  * device_status_char
1797  * @m: mirror device/leg we want the status of
1798  *
1799  * We return one character representing the most severe error
1800  * we have encountered.
1801  *    A => Alive - No failures
1802  *    D => Dead - A write failure occurred leaving mirror out-of-sync
1803  *    S => Sync - A sychronization failure occurred, mirror out-of-sync
1804  *    R => Read - A read failure occurred, mirror data unaffected
1805  *
1806  * Returns: <char>
1807  */
1808 static char device_status_char(struct mirror *m)
1809 {
1810 	if (!atomic_read(&(m->error_count)))
1811 		return 'A';
1812 
1813 	return (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1814 		(test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1815 		(test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1816 }
1817 
1818 
1819 static int mirror_status(struct dm_target *ti, status_type_t type,
1820 			 char *result, unsigned int maxlen)
1821 {
1822 	unsigned int m, sz = 0;
1823 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1824 	struct dm_dirty_log *log = ms->rh.log;
1825 	char buffer[ms->nr_mirrors + 1];
1826 
1827 	switch (type) {
1828 	case STATUSTYPE_INFO:
1829 		DMEMIT("%d ", ms->nr_mirrors);
1830 		for (m = 0; m < ms->nr_mirrors; m++) {
1831 			DMEMIT("%s ", ms->mirror[m].dev->name);
1832 			buffer[m] = device_status_char(&(ms->mirror[m]));
1833 		}
1834 		buffer[m] = '\0';
1835 
1836 		DMEMIT("%llu/%llu 1 %s ",
1837 		      (unsigned long long)log->type->get_sync_count(ms->rh.log),
1838 		      (unsigned long long)ms->nr_regions, buffer);
1839 
1840 		sz += log->type->status(ms->rh.log, type, result+sz, maxlen-sz);
1841 
1842 		break;
1843 
1844 	case STATUSTYPE_TABLE:
1845 		sz = log->type->status(ms->rh.log, type, result, maxlen);
1846 
1847 		DMEMIT("%d", ms->nr_mirrors);
1848 		for (m = 0; m < ms->nr_mirrors; m++)
1849 			DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1850 			       (unsigned long long)ms->mirror[m].offset);
1851 
1852 		if (ms->features & DM_RAID1_HANDLE_ERRORS)
1853 			DMEMIT(" 1 handle_errors");
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static struct target_type mirror_target = {
1860 	.name	 = "mirror",
1861 	.version = {1, 0, 20},
1862 	.module	 = THIS_MODULE,
1863 	.ctr	 = mirror_ctr,
1864 	.dtr	 = mirror_dtr,
1865 	.map	 = mirror_map,
1866 	.end_io	 = mirror_end_io,
1867 	.presuspend = mirror_presuspend,
1868 	.postsuspend = mirror_postsuspend,
1869 	.resume	 = mirror_resume,
1870 	.status	 = mirror_status,
1871 };
1872 
1873 static int __init dm_mirror_init(void)
1874 {
1875 	int r;
1876 
1877 	r = dm_register_target(&mirror_target);
1878 	if (r < 0)
1879 		DMERR("Failed to register mirror target");
1880 
1881 	return r;
1882 }
1883 
1884 static void __exit dm_mirror_exit(void)
1885 {
1886 	int r;
1887 
1888 	r = dm_unregister_target(&mirror_target);
1889 	if (r < 0)
1890 		DMERR("unregister failed %d", r);
1891 }
1892 
1893 /* Module hooks */
1894 module_init(dm_mirror_init);
1895 module_exit(dm_mirror_exit);
1896 
1897 MODULE_DESCRIPTION(DM_NAME " mirror target");
1898 MODULE_AUTHOR("Joe Thornber");
1899 MODULE_LICENSE("GPL");
1900