xref: /openbmc/linux/drivers/md/dm-raid1.c (revision 22fd411a)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-bio-record.h"
9 
10 #include <linux/init.h>
11 #include <linux/mempool.h>
12 #include <linux/module.h>
13 #include <linux/pagemap.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/device-mapper.h>
17 #include <linux/dm-io.h>
18 #include <linux/dm-dirty-log.h>
19 #include <linux/dm-kcopyd.h>
20 #include <linux/dm-region-hash.h>
21 
22 #define DM_MSG_PREFIX "raid1"
23 
24 #define MAX_RECOVERY 1	/* Maximum number of regions recovered in parallel. */
25 #define DM_IO_PAGES 64
26 #define DM_KCOPYD_PAGES 64
27 
28 #define DM_RAID1_HANDLE_ERRORS 0x01
29 #define errors_handled(p)	((p)->features & DM_RAID1_HANDLE_ERRORS)
30 
31 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
32 
33 /*-----------------------------------------------------------------
34  * Mirror set structures.
35  *---------------------------------------------------------------*/
36 enum dm_raid1_error {
37 	DM_RAID1_WRITE_ERROR,
38 	DM_RAID1_FLUSH_ERROR,
39 	DM_RAID1_SYNC_ERROR,
40 	DM_RAID1_READ_ERROR
41 };
42 
43 struct mirror {
44 	struct mirror_set *ms;
45 	atomic_t error_count;
46 	unsigned long error_type;
47 	struct dm_dev *dev;
48 	sector_t offset;
49 };
50 
51 struct mirror_set {
52 	struct dm_target *ti;
53 	struct list_head list;
54 
55 	uint64_t features;
56 
57 	spinlock_t lock;	/* protects the lists */
58 	struct bio_list reads;
59 	struct bio_list writes;
60 	struct bio_list failures;
61 	struct bio_list holds;	/* bios are waiting until suspend */
62 
63 	struct dm_region_hash *rh;
64 	struct dm_kcopyd_client *kcopyd_client;
65 	struct dm_io_client *io_client;
66 	mempool_t *read_record_pool;
67 
68 	/* recovery */
69 	region_t nr_regions;
70 	int in_sync;
71 	int log_failure;
72 	int leg_failure;
73 	atomic_t suspend;
74 
75 	atomic_t default_mirror;	/* Default mirror */
76 
77 	struct workqueue_struct *kmirrord_wq;
78 	struct work_struct kmirrord_work;
79 	struct timer_list timer;
80 	unsigned long timer_pending;
81 
82 	struct work_struct trigger_event;
83 
84 	unsigned nr_mirrors;
85 	struct mirror mirror[0];
86 };
87 
88 static void wakeup_mirrord(void *context)
89 {
90 	struct mirror_set *ms = context;
91 
92 	queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
93 }
94 
95 static void delayed_wake_fn(unsigned long data)
96 {
97 	struct mirror_set *ms = (struct mirror_set *) data;
98 
99 	clear_bit(0, &ms->timer_pending);
100 	wakeup_mirrord(ms);
101 }
102 
103 static void delayed_wake(struct mirror_set *ms)
104 {
105 	if (test_and_set_bit(0, &ms->timer_pending))
106 		return;
107 
108 	ms->timer.expires = jiffies + HZ / 5;
109 	ms->timer.data = (unsigned long) ms;
110 	ms->timer.function = delayed_wake_fn;
111 	add_timer(&ms->timer);
112 }
113 
114 static void wakeup_all_recovery_waiters(void *context)
115 {
116 	wake_up_all(&_kmirrord_recovery_stopped);
117 }
118 
119 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
120 {
121 	unsigned long flags;
122 	int should_wake = 0;
123 	struct bio_list *bl;
124 
125 	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
126 	spin_lock_irqsave(&ms->lock, flags);
127 	should_wake = !(bl->head);
128 	bio_list_add(bl, bio);
129 	spin_unlock_irqrestore(&ms->lock, flags);
130 
131 	if (should_wake)
132 		wakeup_mirrord(ms);
133 }
134 
135 static void dispatch_bios(void *context, struct bio_list *bio_list)
136 {
137 	struct mirror_set *ms = context;
138 	struct bio *bio;
139 
140 	while ((bio = bio_list_pop(bio_list)))
141 		queue_bio(ms, bio, WRITE);
142 }
143 
144 #define MIN_READ_RECORDS 20
145 struct dm_raid1_read_record {
146 	struct mirror *m;
147 	struct dm_bio_details details;
148 };
149 
150 static struct kmem_cache *_dm_raid1_read_record_cache;
151 
152 /*
153  * Every mirror should look like this one.
154  */
155 #define DEFAULT_MIRROR 0
156 
157 /*
158  * This is yucky.  We squirrel the mirror struct away inside
159  * bi_next for read/write buffers.  This is safe since the bh
160  * doesn't get submitted to the lower levels of block layer.
161  */
162 static struct mirror *bio_get_m(struct bio *bio)
163 {
164 	return (struct mirror *) bio->bi_next;
165 }
166 
167 static void bio_set_m(struct bio *bio, struct mirror *m)
168 {
169 	bio->bi_next = (struct bio *) m;
170 }
171 
172 static struct mirror *get_default_mirror(struct mirror_set *ms)
173 {
174 	return &ms->mirror[atomic_read(&ms->default_mirror)];
175 }
176 
177 static void set_default_mirror(struct mirror *m)
178 {
179 	struct mirror_set *ms = m->ms;
180 	struct mirror *m0 = &(ms->mirror[0]);
181 
182 	atomic_set(&ms->default_mirror, m - m0);
183 }
184 
185 static struct mirror *get_valid_mirror(struct mirror_set *ms)
186 {
187 	struct mirror *m;
188 
189 	for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++)
190 		if (!atomic_read(&m->error_count))
191 			return m;
192 
193 	return NULL;
194 }
195 
196 /* fail_mirror
197  * @m: mirror device to fail
198  * @error_type: one of the enum's, DM_RAID1_*_ERROR
199  *
200  * If errors are being handled, record the type of
201  * error encountered for this device.  If this type
202  * of error has already been recorded, we can return;
203  * otherwise, we must signal userspace by triggering
204  * an event.  Additionally, if the device is the
205  * primary device, we must choose a new primary, but
206  * only if the mirror is in-sync.
207  *
208  * This function must not block.
209  */
210 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
211 {
212 	struct mirror_set *ms = m->ms;
213 	struct mirror *new;
214 
215 	ms->leg_failure = 1;
216 
217 	/*
218 	 * error_count is used for nothing more than a
219 	 * simple way to tell if a device has encountered
220 	 * errors.
221 	 */
222 	atomic_inc(&m->error_count);
223 
224 	if (test_and_set_bit(error_type, &m->error_type))
225 		return;
226 
227 	if (!errors_handled(ms))
228 		return;
229 
230 	if (m != get_default_mirror(ms))
231 		goto out;
232 
233 	if (!ms->in_sync) {
234 		/*
235 		 * Better to issue requests to same failing device
236 		 * than to risk returning corrupt data.
237 		 */
238 		DMERR("Primary mirror (%s) failed while out-of-sync: "
239 		      "Reads may fail.", m->dev->name);
240 		goto out;
241 	}
242 
243 	new = get_valid_mirror(ms);
244 	if (new)
245 		set_default_mirror(new);
246 	else
247 		DMWARN("All sides of mirror have failed.");
248 
249 out:
250 	schedule_work(&ms->trigger_event);
251 }
252 
253 static int mirror_flush(struct dm_target *ti)
254 {
255 	struct mirror_set *ms = ti->private;
256 	unsigned long error_bits;
257 
258 	unsigned int i;
259 	struct dm_io_region io[ms->nr_mirrors];
260 	struct mirror *m;
261 	struct dm_io_request io_req = {
262 		.bi_rw = WRITE_FLUSH,
263 		.mem.type = DM_IO_KMEM,
264 		.mem.ptr.addr = NULL,
265 		.client = ms->io_client,
266 	};
267 
268 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) {
269 		io[i].bdev = m->dev->bdev;
270 		io[i].sector = 0;
271 		io[i].count = 0;
272 	}
273 
274 	error_bits = -1;
275 	dm_io(&io_req, ms->nr_mirrors, io, &error_bits);
276 	if (unlikely(error_bits != 0)) {
277 		for (i = 0; i < ms->nr_mirrors; i++)
278 			if (test_bit(i, &error_bits))
279 				fail_mirror(ms->mirror + i,
280 					    DM_RAID1_FLUSH_ERROR);
281 		return -EIO;
282 	}
283 
284 	return 0;
285 }
286 
287 /*-----------------------------------------------------------------
288  * Recovery.
289  *
290  * When a mirror is first activated we may find that some regions
291  * are in the no-sync state.  We have to recover these by
292  * recopying from the default mirror to all the others.
293  *---------------------------------------------------------------*/
294 static void recovery_complete(int read_err, unsigned long write_err,
295 			      void *context)
296 {
297 	struct dm_region *reg = context;
298 	struct mirror_set *ms = dm_rh_region_context(reg);
299 	int m, bit = 0;
300 
301 	if (read_err) {
302 		/* Read error means the failure of default mirror. */
303 		DMERR_LIMIT("Unable to read primary mirror during recovery");
304 		fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
305 	}
306 
307 	if (write_err) {
308 		DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
309 			    write_err);
310 		/*
311 		 * Bits correspond to devices (excluding default mirror).
312 		 * The default mirror cannot change during recovery.
313 		 */
314 		for (m = 0; m < ms->nr_mirrors; m++) {
315 			if (&ms->mirror[m] == get_default_mirror(ms))
316 				continue;
317 			if (test_bit(bit, &write_err))
318 				fail_mirror(ms->mirror + m,
319 					    DM_RAID1_SYNC_ERROR);
320 			bit++;
321 		}
322 	}
323 
324 	dm_rh_recovery_end(reg, !(read_err || write_err));
325 }
326 
327 static int recover(struct mirror_set *ms, struct dm_region *reg)
328 {
329 	int r;
330 	unsigned i;
331 	struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
332 	struct mirror *m;
333 	unsigned long flags = 0;
334 	region_t key = dm_rh_get_region_key(reg);
335 	sector_t region_size = dm_rh_get_region_size(ms->rh);
336 
337 	/* fill in the source */
338 	m = get_default_mirror(ms);
339 	from.bdev = m->dev->bdev;
340 	from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
341 	if (key == (ms->nr_regions - 1)) {
342 		/*
343 		 * The final region may be smaller than
344 		 * region_size.
345 		 */
346 		from.count = ms->ti->len & (region_size - 1);
347 		if (!from.count)
348 			from.count = region_size;
349 	} else
350 		from.count = region_size;
351 
352 	/* fill in the destinations */
353 	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
354 		if (&ms->mirror[i] == get_default_mirror(ms))
355 			continue;
356 
357 		m = ms->mirror + i;
358 		dest->bdev = m->dev->bdev;
359 		dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
360 		dest->count = from.count;
361 		dest++;
362 	}
363 
364 	/* hand to kcopyd */
365 	if (!errors_handled(ms))
366 		set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
367 
368 	r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
369 			   flags, recovery_complete, reg);
370 
371 	return r;
372 }
373 
374 static void do_recovery(struct mirror_set *ms)
375 {
376 	struct dm_region *reg;
377 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
378 	int r;
379 
380 	/*
381 	 * Start quiescing some regions.
382 	 */
383 	dm_rh_recovery_prepare(ms->rh);
384 
385 	/*
386 	 * Copy any already quiesced regions.
387 	 */
388 	while ((reg = dm_rh_recovery_start(ms->rh))) {
389 		r = recover(ms, reg);
390 		if (r)
391 			dm_rh_recovery_end(reg, 0);
392 	}
393 
394 	/*
395 	 * Update the in sync flag.
396 	 */
397 	if (!ms->in_sync &&
398 	    (log->type->get_sync_count(log) == ms->nr_regions)) {
399 		/* the sync is complete */
400 		dm_table_event(ms->ti->table);
401 		ms->in_sync = 1;
402 	}
403 }
404 
405 /*-----------------------------------------------------------------
406  * Reads
407  *---------------------------------------------------------------*/
408 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
409 {
410 	struct mirror *m = get_default_mirror(ms);
411 
412 	do {
413 		if (likely(!atomic_read(&m->error_count)))
414 			return m;
415 
416 		if (m-- == ms->mirror)
417 			m += ms->nr_mirrors;
418 	} while (m != get_default_mirror(ms));
419 
420 	return NULL;
421 }
422 
423 static int default_ok(struct mirror *m)
424 {
425 	struct mirror *default_mirror = get_default_mirror(m->ms);
426 
427 	return !atomic_read(&default_mirror->error_count);
428 }
429 
430 static int mirror_available(struct mirror_set *ms, struct bio *bio)
431 {
432 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
433 	region_t region = dm_rh_bio_to_region(ms->rh, bio);
434 
435 	if (log->type->in_sync(log, region, 0))
436 		return choose_mirror(ms,  bio->bi_sector) ? 1 : 0;
437 
438 	return 0;
439 }
440 
441 /*
442  * remap a buffer to a particular mirror.
443  */
444 static sector_t map_sector(struct mirror *m, struct bio *bio)
445 {
446 	if (unlikely(!bio->bi_size))
447 		return 0;
448 	return m->offset + dm_target_offset(m->ms->ti, bio->bi_sector);
449 }
450 
451 static void map_bio(struct mirror *m, struct bio *bio)
452 {
453 	bio->bi_bdev = m->dev->bdev;
454 	bio->bi_sector = map_sector(m, bio);
455 }
456 
457 static void map_region(struct dm_io_region *io, struct mirror *m,
458 		       struct bio *bio)
459 {
460 	io->bdev = m->dev->bdev;
461 	io->sector = map_sector(m, bio);
462 	io->count = bio->bi_size >> 9;
463 }
464 
465 static void hold_bio(struct mirror_set *ms, struct bio *bio)
466 {
467 	/*
468 	 * Lock is required to avoid race condition during suspend
469 	 * process.
470 	 */
471 	spin_lock_irq(&ms->lock);
472 
473 	if (atomic_read(&ms->suspend)) {
474 		spin_unlock_irq(&ms->lock);
475 
476 		/*
477 		 * If device is suspended, complete the bio.
478 		 */
479 		if (dm_noflush_suspending(ms->ti))
480 			bio_endio(bio, DM_ENDIO_REQUEUE);
481 		else
482 			bio_endio(bio, -EIO);
483 		return;
484 	}
485 
486 	/*
487 	 * Hold bio until the suspend is complete.
488 	 */
489 	bio_list_add(&ms->holds, bio);
490 	spin_unlock_irq(&ms->lock);
491 }
492 
493 /*-----------------------------------------------------------------
494  * Reads
495  *---------------------------------------------------------------*/
496 static void read_callback(unsigned long error, void *context)
497 {
498 	struct bio *bio = context;
499 	struct mirror *m;
500 
501 	m = bio_get_m(bio);
502 	bio_set_m(bio, NULL);
503 
504 	if (likely(!error)) {
505 		bio_endio(bio, 0);
506 		return;
507 	}
508 
509 	fail_mirror(m, DM_RAID1_READ_ERROR);
510 
511 	if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
512 		DMWARN_LIMIT("Read failure on mirror device %s.  "
513 			     "Trying alternative device.",
514 			     m->dev->name);
515 		queue_bio(m->ms, bio, bio_rw(bio));
516 		return;
517 	}
518 
519 	DMERR_LIMIT("Read failure on mirror device %s.  Failing I/O.",
520 		    m->dev->name);
521 	bio_endio(bio, -EIO);
522 }
523 
524 /* Asynchronous read. */
525 static void read_async_bio(struct mirror *m, struct bio *bio)
526 {
527 	struct dm_io_region io;
528 	struct dm_io_request io_req = {
529 		.bi_rw = READ,
530 		.mem.type = DM_IO_BVEC,
531 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
532 		.notify.fn = read_callback,
533 		.notify.context = bio,
534 		.client = m->ms->io_client,
535 	};
536 
537 	map_region(&io, m, bio);
538 	bio_set_m(bio, m);
539 	BUG_ON(dm_io(&io_req, 1, &io, NULL));
540 }
541 
542 static inline int region_in_sync(struct mirror_set *ms, region_t region,
543 				 int may_block)
544 {
545 	int state = dm_rh_get_state(ms->rh, region, may_block);
546 	return state == DM_RH_CLEAN || state == DM_RH_DIRTY;
547 }
548 
549 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
550 {
551 	region_t region;
552 	struct bio *bio;
553 	struct mirror *m;
554 
555 	while ((bio = bio_list_pop(reads))) {
556 		region = dm_rh_bio_to_region(ms->rh, bio);
557 		m = get_default_mirror(ms);
558 
559 		/*
560 		 * We can only read balance if the region is in sync.
561 		 */
562 		if (likely(region_in_sync(ms, region, 1)))
563 			m = choose_mirror(ms, bio->bi_sector);
564 		else if (m && atomic_read(&m->error_count))
565 			m = NULL;
566 
567 		if (likely(m))
568 			read_async_bio(m, bio);
569 		else
570 			bio_endio(bio, -EIO);
571 	}
572 }
573 
574 /*-----------------------------------------------------------------
575  * Writes.
576  *
577  * We do different things with the write io depending on the
578  * state of the region that it's in:
579  *
580  * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
581  * RECOVERING:	delay the io until recovery completes
582  * NOSYNC:	increment pending, just write to the default mirror
583  *---------------------------------------------------------------*/
584 
585 
586 static void write_callback(unsigned long error, void *context)
587 {
588 	unsigned i, ret = 0;
589 	struct bio *bio = (struct bio *) context;
590 	struct mirror_set *ms;
591 	int should_wake = 0;
592 	unsigned long flags;
593 
594 	ms = bio_get_m(bio)->ms;
595 	bio_set_m(bio, NULL);
596 
597 	/*
598 	 * NOTE: We don't decrement the pending count here,
599 	 * instead it is done by the targets endio function.
600 	 * This way we handle both writes to SYNC and NOSYNC
601 	 * regions with the same code.
602 	 */
603 	if (likely(!error)) {
604 		bio_endio(bio, ret);
605 		return;
606 	}
607 
608 	for (i = 0; i < ms->nr_mirrors; i++)
609 		if (test_bit(i, &error))
610 			fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
611 
612 	/*
613 	 * Need to raise event.  Since raising
614 	 * events can block, we need to do it in
615 	 * the main thread.
616 	 */
617 	spin_lock_irqsave(&ms->lock, flags);
618 	if (!ms->failures.head)
619 		should_wake = 1;
620 	bio_list_add(&ms->failures, bio);
621 	spin_unlock_irqrestore(&ms->lock, flags);
622 	if (should_wake)
623 		wakeup_mirrord(ms);
624 }
625 
626 static void do_write(struct mirror_set *ms, struct bio *bio)
627 {
628 	unsigned int i;
629 	struct dm_io_region io[ms->nr_mirrors], *dest = io;
630 	struct mirror *m;
631 	struct dm_io_request io_req = {
632 		.bi_rw = WRITE | (bio->bi_rw & WRITE_FLUSH_FUA),
633 		.mem.type = DM_IO_BVEC,
634 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
635 		.notify.fn = write_callback,
636 		.notify.context = bio,
637 		.client = ms->io_client,
638 	};
639 
640 	if (bio->bi_rw & REQ_DISCARD) {
641 		io_req.bi_rw |= REQ_DISCARD;
642 		io_req.mem.type = DM_IO_KMEM;
643 		io_req.mem.ptr.addr = NULL;
644 	}
645 
646 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
647 		map_region(dest++, m, bio);
648 
649 	/*
650 	 * Use default mirror because we only need it to retrieve the reference
651 	 * to the mirror set in write_callback().
652 	 */
653 	bio_set_m(bio, get_default_mirror(ms));
654 
655 	BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL));
656 }
657 
658 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
659 {
660 	int state;
661 	struct bio *bio;
662 	struct bio_list sync, nosync, recover, *this_list = NULL;
663 	struct bio_list requeue;
664 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
665 	region_t region;
666 
667 	if (!writes->head)
668 		return;
669 
670 	/*
671 	 * Classify each write.
672 	 */
673 	bio_list_init(&sync);
674 	bio_list_init(&nosync);
675 	bio_list_init(&recover);
676 	bio_list_init(&requeue);
677 
678 	while ((bio = bio_list_pop(writes))) {
679 		if ((bio->bi_rw & REQ_FLUSH) ||
680 		    (bio->bi_rw & REQ_DISCARD)) {
681 			bio_list_add(&sync, bio);
682 			continue;
683 		}
684 
685 		region = dm_rh_bio_to_region(ms->rh, bio);
686 
687 		if (log->type->is_remote_recovering &&
688 		    log->type->is_remote_recovering(log, region)) {
689 			bio_list_add(&requeue, bio);
690 			continue;
691 		}
692 
693 		state = dm_rh_get_state(ms->rh, region, 1);
694 		switch (state) {
695 		case DM_RH_CLEAN:
696 		case DM_RH_DIRTY:
697 			this_list = &sync;
698 			break;
699 
700 		case DM_RH_NOSYNC:
701 			this_list = &nosync;
702 			break;
703 
704 		case DM_RH_RECOVERING:
705 			this_list = &recover;
706 			break;
707 		}
708 
709 		bio_list_add(this_list, bio);
710 	}
711 
712 	/*
713 	 * Add bios that are delayed due to remote recovery
714 	 * back on to the write queue
715 	 */
716 	if (unlikely(requeue.head)) {
717 		spin_lock_irq(&ms->lock);
718 		bio_list_merge(&ms->writes, &requeue);
719 		spin_unlock_irq(&ms->lock);
720 		delayed_wake(ms);
721 	}
722 
723 	/*
724 	 * Increment the pending counts for any regions that will
725 	 * be written to (writes to recover regions are going to
726 	 * be delayed).
727 	 */
728 	dm_rh_inc_pending(ms->rh, &sync);
729 	dm_rh_inc_pending(ms->rh, &nosync);
730 
731 	/*
732 	 * If the flush fails on a previous call and succeeds here,
733 	 * we must not reset the log_failure variable.  We need
734 	 * userspace interaction to do that.
735 	 */
736 	ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure;
737 
738 	/*
739 	 * Dispatch io.
740 	 */
741 	if (unlikely(ms->log_failure) && errors_handled(ms)) {
742 		spin_lock_irq(&ms->lock);
743 		bio_list_merge(&ms->failures, &sync);
744 		spin_unlock_irq(&ms->lock);
745 		wakeup_mirrord(ms);
746 	} else
747 		while ((bio = bio_list_pop(&sync)))
748 			do_write(ms, bio);
749 
750 	while ((bio = bio_list_pop(&recover)))
751 		dm_rh_delay(ms->rh, bio);
752 
753 	while ((bio = bio_list_pop(&nosync))) {
754 		if (unlikely(ms->leg_failure) && errors_handled(ms)) {
755 			spin_lock_irq(&ms->lock);
756 			bio_list_add(&ms->failures, bio);
757 			spin_unlock_irq(&ms->lock);
758 			wakeup_mirrord(ms);
759 		} else {
760 			map_bio(get_default_mirror(ms), bio);
761 			generic_make_request(bio);
762 		}
763 	}
764 }
765 
766 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
767 {
768 	struct bio *bio;
769 
770 	if (likely(!failures->head))
771 		return;
772 
773 	/*
774 	 * If the log has failed, unattempted writes are being
775 	 * put on the holds list.  We can't issue those writes
776 	 * until a log has been marked, so we must store them.
777 	 *
778 	 * If a 'noflush' suspend is in progress, we can requeue
779 	 * the I/O's to the core.  This give userspace a chance
780 	 * to reconfigure the mirror, at which point the core
781 	 * will reissue the writes.  If the 'noflush' flag is
782 	 * not set, we have no choice but to return errors.
783 	 *
784 	 * Some writes on the failures list may have been
785 	 * submitted before the log failure and represent a
786 	 * failure to write to one of the devices.  It is ok
787 	 * for us to treat them the same and requeue them
788 	 * as well.
789 	 */
790 	while ((bio = bio_list_pop(failures))) {
791 		if (!ms->log_failure) {
792 			ms->in_sync = 0;
793 			dm_rh_mark_nosync(ms->rh, bio);
794 		}
795 
796 		/*
797 		 * If all the legs are dead, fail the I/O.
798 		 * If we have been told to handle errors, hold the bio
799 		 * and wait for userspace to deal with the problem.
800 		 * Otherwise pretend that the I/O succeeded. (This would
801 		 * be wrong if the failed leg returned after reboot and
802 		 * got replicated back to the good legs.)
803 		 */
804 		if (!get_valid_mirror(ms))
805 			bio_endio(bio, -EIO);
806 		else if (errors_handled(ms))
807 			hold_bio(ms, bio);
808 		else
809 			bio_endio(bio, 0);
810 	}
811 }
812 
813 static void trigger_event(struct work_struct *work)
814 {
815 	struct mirror_set *ms =
816 		container_of(work, struct mirror_set, trigger_event);
817 
818 	dm_table_event(ms->ti->table);
819 }
820 
821 /*-----------------------------------------------------------------
822  * kmirrord
823  *---------------------------------------------------------------*/
824 static void do_mirror(struct work_struct *work)
825 {
826 	struct mirror_set *ms = container_of(work, struct mirror_set,
827 					     kmirrord_work);
828 	struct bio_list reads, writes, failures;
829 	unsigned long flags;
830 
831 	spin_lock_irqsave(&ms->lock, flags);
832 	reads = ms->reads;
833 	writes = ms->writes;
834 	failures = ms->failures;
835 	bio_list_init(&ms->reads);
836 	bio_list_init(&ms->writes);
837 	bio_list_init(&ms->failures);
838 	spin_unlock_irqrestore(&ms->lock, flags);
839 
840 	dm_rh_update_states(ms->rh, errors_handled(ms));
841 	do_recovery(ms);
842 	do_reads(ms, &reads);
843 	do_writes(ms, &writes);
844 	do_failures(ms, &failures);
845 
846 	dm_table_unplug_all(ms->ti->table);
847 }
848 
849 /*-----------------------------------------------------------------
850  * Target functions
851  *---------------------------------------------------------------*/
852 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
853 					uint32_t region_size,
854 					struct dm_target *ti,
855 					struct dm_dirty_log *dl)
856 {
857 	size_t len;
858 	struct mirror_set *ms = NULL;
859 
860 	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
861 
862 	ms = kzalloc(len, GFP_KERNEL);
863 	if (!ms) {
864 		ti->error = "Cannot allocate mirror context";
865 		return NULL;
866 	}
867 
868 	spin_lock_init(&ms->lock);
869 	bio_list_init(&ms->reads);
870 	bio_list_init(&ms->writes);
871 	bio_list_init(&ms->failures);
872 	bio_list_init(&ms->holds);
873 
874 	ms->ti = ti;
875 	ms->nr_mirrors = nr_mirrors;
876 	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
877 	ms->in_sync = 0;
878 	ms->log_failure = 0;
879 	ms->leg_failure = 0;
880 	atomic_set(&ms->suspend, 0);
881 	atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
882 
883 	ms->read_record_pool = mempool_create_slab_pool(MIN_READ_RECORDS,
884 						_dm_raid1_read_record_cache);
885 
886 	if (!ms->read_record_pool) {
887 		ti->error = "Error creating mirror read_record_pool";
888 		kfree(ms);
889 		return NULL;
890 	}
891 
892 	ms->io_client = dm_io_client_create(DM_IO_PAGES);
893 	if (IS_ERR(ms->io_client)) {
894 		ti->error = "Error creating dm_io client";
895 		mempool_destroy(ms->read_record_pool);
896 		kfree(ms);
897  		return NULL;
898 	}
899 
900 	ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord,
901 				       wakeup_all_recovery_waiters,
902 				       ms->ti->begin, MAX_RECOVERY,
903 				       dl, region_size, ms->nr_regions);
904 	if (IS_ERR(ms->rh)) {
905 		ti->error = "Error creating dirty region hash";
906 		dm_io_client_destroy(ms->io_client);
907 		mempool_destroy(ms->read_record_pool);
908 		kfree(ms);
909 		return NULL;
910 	}
911 
912 	return ms;
913 }
914 
915 static void free_context(struct mirror_set *ms, struct dm_target *ti,
916 			 unsigned int m)
917 {
918 	while (m--)
919 		dm_put_device(ti, ms->mirror[m].dev);
920 
921 	dm_io_client_destroy(ms->io_client);
922 	dm_region_hash_destroy(ms->rh);
923 	mempool_destroy(ms->read_record_pool);
924 	kfree(ms);
925 }
926 
927 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
928 		      unsigned int mirror, char **argv)
929 {
930 	unsigned long long offset;
931 
932 	if (sscanf(argv[1], "%llu", &offset) != 1) {
933 		ti->error = "Invalid offset";
934 		return -EINVAL;
935 	}
936 
937 	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
938 			  &ms->mirror[mirror].dev)) {
939 		ti->error = "Device lookup failure";
940 		return -ENXIO;
941 	}
942 
943 	ms->mirror[mirror].ms = ms;
944 	atomic_set(&(ms->mirror[mirror].error_count), 0);
945 	ms->mirror[mirror].error_type = 0;
946 	ms->mirror[mirror].offset = offset;
947 
948 	return 0;
949 }
950 
951 /*
952  * Create dirty log: log_type #log_params <log_params>
953  */
954 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
955 					     unsigned argc, char **argv,
956 					     unsigned *args_used)
957 {
958 	unsigned param_count;
959 	struct dm_dirty_log *dl;
960 
961 	if (argc < 2) {
962 		ti->error = "Insufficient mirror log arguments";
963 		return NULL;
964 	}
965 
966 	if (sscanf(argv[1], "%u", &param_count) != 1) {
967 		ti->error = "Invalid mirror log argument count";
968 		return NULL;
969 	}
970 
971 	*args_used = 2 + param_count;
972 
973 	if (argc < *args_used) {
974 		ti->error = "Insufficient mirror log arguments";
975 		return NULL;
976 	}
977 
978 	dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count,
979 				 argv + 2);
980 	if (!dl) {
981 		ti->error = "Error creating mirror dirty log";
982 		return NULL;
983 	}
984 
985 	return dl;
986 }
987 
988 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
989 			  unsigned *args_used)
990 {
991 	unsigned num_features;
992 	struct dm_target *ti = ms->ti;
993 
994 	*args_used = 0;
995 
996 	if (!argc)
997 		return 0;
998 
999 	if (sscanf(argv[0], "%u", &num_features) != 1) {
1000 		ti->error = "Invalid number of features";
1001 		return -EINVAL;
1002 	}
1003 
1004 	argc--;
1005 	argv++;
1006 	(*args_used)++;
1007 
1008 	if (num_features > argc) {
1009 		ti->error = "Not enough arguments to support feature count";
1010 		return -EINVAL;
1011 	}
1012 
1013 	if (!strcmp("handle_errors", argv[0]))
1014 		ms->features |= DM_RAID1_HANDLE_ERRORS;
1015 	else {
1016 		ti->error = "Unrecognised feature requested";
1017 		return -EINVAL;
1018 	}
1019 
1020 	(*args_used)++;
1021 
1022 	return 0;
1023 }
1024 
1025 /*
1026  * Construct a mirror mapping:
1027  *
1028  * log_type #log_params <log_params>
1029  * #mirrors [mirror_path offset]{2,}
1030  * [#features <features>]
1031  *
1032  * log_type is "core" or "disk"
1033  * #log_params is between 1 and 3
1034  *
1035  * If present, features must be "handle_errors".
1036  */
1037 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1038 {
1039 	int r;
1040 	unsigned int nr_mirrors, m, args_used;
1041 	struct mirror_set *ms;
1042 	struct dm_dirty_log *dl;
1043 
1044 	dl = create_dirty_log(ti, argc, argv, &args_used);
1045 	if (!dl)
1046 		return -EINVAL;
1047 
1048 	argv += args_used;
1049 	argc -= args_used;
1050 
1051 	if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1052 	    nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
1053 		ti->error = "Invalid number of mirrors";
1054 		dm_dirty_log_destroy(dl);
1055 		return -EINVAL;
1056 	}
1057 
1058 	argv++, argc--;
1059 
1060 	if (argc < nr_mirrors * 2) {
1061 		ti->error = "Too few mirror arguments";
1062 		dm_dirty_log_destroy(dl);
1063 		return -EINVAL;
1064 	}
1065 
1066 	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1067 	if (!ms) {
1068 		dm_dirty_log_destroy(dl);
1069 		return -ENOMEM;
1070 	}
1071 
1072 	/* Get the mirror parameter sets */
1073 	for (m = 0; m < nr_mirrors; m++) {
1074 		r = get_mirror(ms, ti, m, argv);
1075 		if (r) {
1076 			free_context(ms, ti, m);
1077 			return r;
1078 		}
1079 		argv += 2;
1080 		argc -= 2;
1081 	}
1082 
1083 	ti->private = ms;
1084 	ti->split_io = dm_rh_get_region_size(ms->rh);
1085 	ti->num_flush_requests = 1;
1086 	ti->num_discard_requests = 1;
1087 
1088 	ms->kmirrord_wq = alloc_workqueue("kmirrord",
1089 					  WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1090 	if (!ms->kmirrord_wq) {
1091 		DMERR("couldn't start kmirrord");
1092 		r = -ENOMEM;
1093 		goto err_free_context;
1094 	}
1095 	INIT_WORK(&ms->kmirrord_work, do_mirror);
1096 	init_timer(&ms->timer);
1097 	ms->timer_pending = 0;
1098 	INIT_WORK(&ms->trigger_event, trigger_event);
1099 
1100 	r = parse_features(ms, argc, argv, &args_used);
1101 	if (r)
1102 		goto err_destroy_wq;
1103 
1104 	argv += args_used;
1105 	argc -= args_used;
1106 
1107 	/*
1108 	 * Any read-balancing addition depends on the
1109 	 * DM_RAID1_HANDLE_ERRORS flag being present.
1110 	 * This is because the decision to balance depends
1111 	 * on the sync state of a region.  If the above
1112 	 * flag is not present, we ignore errors; and
1113 	 * the sync state may be inaccurate.
1114 	 */
1115 
1116 	if (argc) {
1117 		ti->error = "Too many mirror arguments";
1118 		r = -EINVAL;
1119 		goto err_destroy_wq;
1120 	}
1121 
1122 	r = dm_kcopyd_client_create(DM_KCOPYD_PAGES, &ms->kcopyd_client);
1123 	if (r)
1124 		goto err_destroy_wq;
1125 
1126 	wakeup_mirrord(ms);
1127 	return 0;
1128 
1129 err_destroy_wq:
1130 	destroy_workqueue(ms->kmirrord_wq);
1131 err_free_context:
1132 	free_context(ms, ti, ms->nr_mirrors);
1133 	return r;
1134 }
1135 
1136 static void mirror_dtr(struct dm_target *ti)
1137 {
1138 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1139 
1140 	del_timer_sync(&ms->timer);
1141 	flush_workqueue(ms->kmirrord_wq);
1142 	flush_work_sync(&ms->trigger_event);
1143 	dm_kcopyd_client_destroy(ms->kcopyd_client);
1144 	destroy_workqueue(ms->kmirrord_wq);
1145 	free_context(ms, ti, ms->nr_mirrors);
1146 }
1147 
1148 /*
1149  * Mirror mapping function
1150  */
1151 static int mirror_map(struct dm_target *ti, struct bio *bio,
1152 		      union map_info *map_context)
1153 {
1154 	int r, rw = bio_rw(bio);
1155 	struct mirror *m;
1156 	struct mirror_set *ms = ti->private;
1157 	struct dm_raid1_read_record *read_record = NULL;
1158 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1159 
1160 	if (rw == WRITE) {
1161 		/* Save region for mirror_end_io() handler */
1162 		map_context->ll = dm_rh_bio_to_region(ms->rh, bio);
1163 		queue_bio(ms, bio, rw);
1164 		return DM_MAPIO_SUBMITTED;
1165 	}
1166 
1167 	r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0);
1168 	if (r < 0 && r != -EWOULDBLOCK)
1169 		return r;
1170 
1171 	/*
1172 	 * If region is not in-sync queue the bio.
1173 	 */
1174 	if (!r || (r == -EWOULDBLOCK)) {
1175 		if (rw == READA)
1176 			return -EWOULDBLOCK;
1177 
1178 		queue_bio(ms, bio, rw);
1179 		return DM_MAPIO_SUBMITTED;
1180 	}
1181 
1182 	/*
1183 	 * The region is in-sync and we can perform reads directly.
1184 	 * Store enough information so we can retry if it fails.
1185 	 */
1186 	m = choose_mirror(ms, bio->bi_sector);
1187 	if (unlikely(!m))
1188 		return -EIO;
1189 
1190 	read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1191 	if (likely(read_record)) {
1192 		dm_bio_record(&read_record->details, bio);
1193 		map_context->ptr = read_record;
1194 		read_record->m = m;
1195 	}
1196 
1197 	map_bio(m, bio);
1198 
1199 	return DM_MAPIO_REMAPPED;
1200 }
1201 
1202 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1203 			 int error, union map_info *map_context)
1204 {
1205 	int rw = bio_rw(bio);
1206 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1207 	struct mirror *m = NULL;
1208 	struct dm_bio_details *bd = NULL;
1209 	struct dm_raid1_read_record *read_record = map_context->ptr;
1210 
1211 	/*
1212 	 * We need to dec pending if this was a write.
1213 	 */
1214 	if (rw == WRITE) {
1215 		if (!(bio->bi_rw & REQ_FLUSH))
1216 			dm_rh_dec(ms->rh, map_context->ll);
1217 		return error;
1218 	}
1219 
1220 	if (error == -EOPNOTSUPP)
1221 		goto out;
1222 
1223 	if ((error == -EWOULDBLOCK) && (bio->bi_rw & REQ_RAHEAD))
1224 		goto out;
1225 
1226 	if (unlikely(error)) {
1227 		if (!read_record) {
1228 			/*
1229 			 * There wasn't enough memory to record necessary
1230 			 * information for a retry or there was no other
1231 			 * mirror in-sync.
1232 			 */
1233 			DMERR_LIMIT("Mirror read failed.");
1234 			return -EIO;
1235 		}
1236 
1237 		m = read_record->m;
1238 
1239 		DMERR("Mirror read failed from %s. Trying alternative device.",
1240 		      m->dev->name);
1241 
1242 		fail_mirror(m, DM_RAID1_READ_ERROR);
1243 
1244 		/*
1245 		 * A failed read is requeued for another attempt using an intact
1246 		 * mirror.
1247 		 */
1248 		if (default_ok(m) || mirror_available(ms, bio)) {
1249 			bd = &read_record->details;
1250 
1251 			dm_bio_restore(bd, bio);
1252 			mempool_free(read_record, ms->read_record_pool);
1253 			map_context->ptr = NULL;
1254 			queue_bio(ms, bio, rw);
1255 			return 1;
1256 		}
1257 		DMERR("All replicated volumes dead, failing I/O");
1258 	}
1259 
1260 out:
1261 	if (read_record) {
1262 		mempool_free(read_record, ms->read_record_pool);
1263 		map_context->ptr = NULL;
1264 	}
1265 
1266 	return error;
1267 }
1268 
1269 static void mirror_presuspend(struct dm_target *ti)
1270 {
1271 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1272 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1273 
1274 	struct bio_list holds;
1275 	struct bio *bio;
1276 
1277 	atomic_set(&ms->suspend, 1);
1278 
1279 	/*
1280 	 * Process bios in the hold list to start recovery waiting
1281 	 * for bios in the hold list. After the process, no bio has
1282 	 * a chance to be added in the hold list because ms->suspend
1283 	 * is set.
1284 	 */
1285 	spin_lock_irq(&ms->lock);
1286 	holds = ms->holds;
1287 	bio_list_init(&ms->holds);
1288 	spin_unlock_irq(&ms->lock);
1289 
1290 	while ((bio = bio_list_pop(&holds)))
1291 		hold_bio(ms, bio);
1292 
1293 	/*
1294 	 * We must finish up all the work that we've
1295 	 * generated (i.e. recovery work).
1296 	 */
1297 	dm_rh_stop_recovery(ms->rh);
1298 
1299 	wait_event(_kmirrord_recovery_stopped,
1300 		   !dm_rh_recovery_in_flight(ms->rh));
1301 
1302 	if (log->type->presuspend && log->type->presuspend(log))
1303 		/* FIXME: need better error handling */
1304 		DMWARN("log presuspend failed");
1305 
1306 	/*
1307 	 * Now that recovery is complete/stopped and the
1308 	 * delayed bios are queued, we need to wait for
1309 	 * the worker thread to complete.  This way,
1310 	 * we know that all of our I/O has been pushed.
1311 	 */
1312 	flush_workqueue(ms->kmirrord_wq);
1313 }
1314 
1315 static void mirror_postsuspend(struct dm_target *ti)
1316 {
1317 	struct mirror_set *ms = ti->private;
1318 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1319 
1320 	if (log->type->postsuspend && log->type->postsuspend(log))
1321 		/* FIXME: need better error handling */
1322 		DMWARN("log postsuspend failed");
1323 }
1324 
1325 static void mirror_resume(struct dm_target *ti)
1326 {
1327 	struct mirror_set *ms = ti->private;
1328 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1329 
1330 	atomic_set(&ms->suspend, 0);
1331 	if (log->type->resume && log->type->resume(log))
1332 		/* FIXME: need better error handling */
1333 		DMWARN("log resume failed");
1334 	dm_rh_start_recovery(ms->rh);
1335 }
1336 
1337 /*
1338  * device_status_char
1339  * @m: mirror device/leg we want the status of
1340  *
1341  * We return one character representing the most severe error
1342  * we have encountered.
1343  *    A => Alive - No failures
1344  *    D => Dead - A write failure occurred leaving mirror out-of-sync
1345  *    S => Sync - A sychronization failure occurred, mirror out-of-sync
1346  *    R => Read - A read failure occurred, mirror data unaffected
1347  *
1348  * Returns: <char>
1349  */
1350 static char device_status_char(struct mirror *m)
1351 {
1352 	if (!atomic_read(&(m->error_count)))
1353 		return 'A';
1354 
1355 	return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' :
1356 		(test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1357 		(test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1358 		(test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1359 }
1360 
1361 
1362 static int mirror_status(struct dm_target *ti, status_type_t type,
1363 			 char *result, unsigned int maxlen)
1364 {
1365 	unsigned int m, sz = 0;
1366 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1367 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1368 	char buffer[ms->nr_mirrors + 1];
1369 
1370 	switch (type) {
1371 	case STATUSTYPE_INFO:
1372 		DMEMIT("%d ", ms->nr_mirrors);
1373 		for (m = 0; m < ms->nr_mirrors; m++) {
1374 			DMEMIT("%s ", ms->mirror[m].dev->name);
1375 			buffer[m] = device_status_char(&(ms->mirror[m]));
1376 		}
1377 		buffer[m] = '\0';
1378 
1379 		DMEMIT("%llu/%llu 1 %s ",
1380 		      (unsigned long long)log->type->get_sync_count(log),
1381 		      (unsigned long long)ms->nr_regions, buffer);
1382 
1383 		sz += log->type->status(log, type, result+sz, maxlen-sz);
1384 
1385 		break;
1386 
1387 	case STATUSTYPE_TABLE:
1388 		sz = log->type->status(log, type, result, maxlen);
1389 
1390 		DMEMIT("%d", ms->nr_mirrors);
1391 		for (m = 0; m < ms->nr_mirrors; m++)
1392 			DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1393 			       (unsigned long long)ms->mirror[m].offset);
1394 
1395 		if (ms->features & DM_RAID1_HANDLE_ERRORS)
1396 			DMEMIT(" 1 handle_errors");
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int mirror_iterate_devices(struct dm_target *ti,
1403 				  iterate_devices_callout_fn fn, void *data)
1404 {
1405 	struct mirror_set *ms = ti->private;
1406 	int ret = 0;
1407 	unsigned i;
1408 
1409 	for (i = 0; !ret && i < ms->nr_mirrors; i++)
1410 		ret = fn(ti, ms->mirror[i].dev,
1411 			 ms->mirror[i].offset, ti->len, data);
1412 
1413 	return ret;
1414 }
1415 
1416 static struct target_type mirror_target = {
1417 	.name	 = "mirror",
1418 	.version = {1, 12, 1},
1419 	.module	 = THIS_MODULE,
1420 	.ctr	 = mirror_ctr,
1421 	.dtr	 = mirror_dtr,
1422 	.map	 = mirror_map,
1423 	.end_io	 = mirror_end_io,
1424 	.presuspend = mirror_presuspend,
1425 	.postsuspend = mirror_postsuspend,
1426 	.resume	 = mirror_resume,
1427 	.status	 = mirror_status,
1428 	.iterate_devices = mirror_iterate_devices,
1429 };
1430 
1431 static int __init dm_mirror_init(void)
1432 {
1433 	int r;
1434 
1435 	_dm_raid1_read_record_cache = KMEM_CACHE(dm_raid1_read_record, 0);
1436 	if (!_dm_raid1_read_record_cache) {
1437 		DMERR("Can't allocate dm_raid1_read_record cache");
1438 		r = -ENOMEM;
1439 		goto bad_cache;
1440 	}
1441 
1442 	r = dm_register_target(&mirror_target);
1443 	if (r < 0) {
1444 		DMERR("Failed to register mirror target");
1445 		goto bad_target;
1446 	}
1447 
1448 	return 0;
1449 
1450 bad_target:
1451 	kmem_cache_destroy(_dm_raid1_read_record_cache);
1452 bad_cache:
1453 	return r;
1454 }
1455 
1456 static void __exit dm_mirror_exit(void)
1457 {
1458 	dm_unregister_target(&mirror_target);
1459 	kmem_cache_destroy(_dm_raid1_read_record_cache);
1460 }
1461 
1462 /* Module hooks */
1463 module_init(dm_mirror_init);
1464 module_exit(dm_mirror_exit);
1465 
1466 MODULE_DESCRIPTION(DM_NAME " mirror target");
1467 MODULE_AUTHOR("Joe Thornber");
1468 MODULE_LICENSE("GPL");
1469