xref: /openbmc/linux/drivers/md/dm-raid.c (revision f2a89d3b)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* md-raid kernel limit */
21 
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define	MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26 
27 static bool devices_handle_discard_safely = false;
28 
29 /*
30  * The following flags are used by dm-raid.c to set up the array state.
31  * They must be cleared before md_run is called.
32  */
33 #define FirstUse 10		/* rdev flag */
34 
35 struct raid_dev {
36 	/*
37 	 * Two DM devices, one to hold metadata and one to hold the
38 	 * actual data/parity.	The reason for this is to not confuse
39 	 * ti->len and give more flexibility in altering size and
40 	 * characteristics.
41 	 *
42 	 * While it is possible for this device to be associated
43 	 * with a different physical device than the data_dev, it
44 	 * is intended for it to be the same.
45 	 *    |--------- Physical Device ---------|
46 	 *    |- meta_dev -|------ data_dev ------|
47 	 */
48 	struct dm_dev *meta_dev;
49 	struct dm_dev *data_dev;
50 	struct md_rdev rdev;
51 };
52 
53 /*
54  * Bits for establishing rs->ctr_flags
55  *
56  * 1 = no flag value
57  * 2 = flag with value
58  */
59 #define __CTR_FLAG_SYNC			0  /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC		1  /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD		2  /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP		3  /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE	4  /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE	5  /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND	6  /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY		7  /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE		8  /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE		9  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES	10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT	11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS		12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET		13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75 
76 /*
77  * Flags for rs->ctr_flags field.
78  */
79 #define CTR_FLAG_SYNC			(1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC			(1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD		(1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP		(1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE	(1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE	(1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND	(1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY		(1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE		(1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE		(1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES		(1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT		(1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS		(1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET		(1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS	(1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94 
95 /*
96  * Definitions of various constructor flags to
97  * be used in checks of valid / invalid flags
98  * per raid level.
99  */
100 /* Define all any sync flags */
101 #define	CTR_FLAGS_ANY_SYNC		(CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102 
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define	CTR_FLAG_OPTIONS_NO_ARGS	(CTR_FLAGS_ANY_SYNC | \
105 					 CTR_FLAG_RAID10_USE_NEAR_SETS)
106 
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 				  CTR_FLAG_WRITE_MOSTLY | \
110 				  CTR_FLAG_DAEMON_SLEEP | \
111 				  CTR_FLAG_MIN_RECOVERY_RATE | \
112 				  CTR_FLAG_MAX_RECOVERY_RATE | \
113 				  CTR_FLAG_MAX_WRITE_BEHIND | \
114 				  CTR_FLAG_STRIPE_CACHE | \
115 				  CTR_FLAG_REGION_SIZE | \
116 				  CTR_FLAG_RAID10_COPIES | \
117 				  CTR_FLAG_RAID10_FORMAT | \
118 				  CTR_FLAG_DELTA_DISKS | \
119 				  CTR_FLAG_DATA_OFFSET)
120 
121 /* Valid options definitions per raid level... */
122 
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS	(CTR_FLAG_DATA_OFFSET)
125 
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
128 				 CTR_FLAG_REBUILD | \
129 				 CTR_FLAG_WRITE_MOSTLY | \
130 				 CTR_FLAG_DAEMON_SLEEP | \
131 				 CTR_FLAG_MIN_RECOVERY_RATE | \
132 				 CTR_FLAG_MAX_RECOVERY_RATE | \
133 				 CTR_FLAG_MAX_WRITE_BEHIND | \
134 				 CTR_FLAG_REGION_SIZE | \
135 				 CTR_FLAG_DELTA_DISKS | \
136 				 CTR_FLAG_DATA_OFFSET)
137 
138 /* "raid10" does not accept any raid1 or stripe cache options */
139 #define RAID10_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
140 				 CTR_FLAG_REBUILD | \
141 				 CTR_FLAG_DAEMON_SLEEP | \
142 				 CTR_FLAG_MIN_RECOVERY_RATE | \
143 				 CTR_FLAG_MAX_RECOVERY_RATE | \
144 				 CTR_FLAG_REGION_SIZE | \
145 				 CTR_FLAG_RAID10_COPIES | \
146 				 CTR_FLAG_RAID10_FORMAT | \
147 				 CTR_FLAG_DELTA_DISKS | \
148 				 CTR_FLAG_DATA_OFFSET | \
149 				 CTR_FLAG_RAID10_USE_NEAR_SETS)
150 
151 /*
152  * "raid4/5/6" do not accept any raid1 or raid10 specific options
153  *
154  * "raid6" does not accept "nosync", because it is not guaranteed
155  * that both parity and q-syndrome are being written properly with
156  * any writes
157  */
158 #define RAID45_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
159 				 CTR_FLAG_REBUILD | \
160 				 CTR_FLAG_DAEMON_SLEEP | \
161 				 CTR_FLAG_MIN_RECOVERY_RATE | \
162 				 CTR_FLAG_MAX_RECOVERY_RATE | \
163 				 CTR_FLAG_MAX_WRITE_BEHIND | \
164 				 CTR_FLAG_STRIPE_CACHE | \
165 				 CTR_FLAG_REGION_SIZE | \
166 				 CTR_FLAG_DELTA_DISKS | \
167 				 CTR_FLAG_DATA_OFFSET)
168 
169 #define RAID6_VALID_FLAGS	(CTR_FLAG_SYNC | \
170 				 CTR_FLAG_REBUILD | \
171 				 CTR_FLAG_DAEMON_SLEEP | \
172 				 CTR_FLAG_MIN_RECOVERY_RATE | \
173 				 CTR_FLAG_MAX_RECOVERY_RATE | \
174 				 CTR_FLAG_MAX_WRITE_BEHIND | \
175 				 CTR_FLAG_STRIPE_CACHE | \
176 				 CTR_FLAG_REGION_SIZE | \
177 				 CTR_FLAG_DELTA_DISKS | \
178 				 CTR_FLAG_DATA_OFFSET)
179 /* ...valid options definitions per raid level */
180 
181 /*
182  * Flags for rs->runtime_flags field
183  * (RT_FLAG prefix meaning "runtime flag")
184  *
185  * These are all internal and used to define runtime state,
186  * e.g. to prevent another resume from preresume processing
187  * the raid set all over again.
188  */
189 #define RT_FLAG_RS_PRERESUMED		0
190 #define RT_FLAG_RS_RESUMED		1
191 #define RT_FLAG_RS_BITMAP_LOADED	2
192 #define RT_FLAG_UPDATE_SBS		3
193 #define RT_FLAG_RESHAPE_RS		4
194 #define RT_FLAG_KEEP_RS_FROZEN		5
195 
196 /* Array elements of 64 bit needed for rebuild/failed disk bits */
197 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
198 
199 /*
200  * raid set level, layout and chunk sectors backup/restore
201  */
202 struct rs_layout {
203 	int new_level;
204 	int new_layout;
205 	int new_chunk_sectors;
206 };
207 
208 struct raid_set {
209 	struct dm_target *ti;
210 
211 	uint32_t bitmap_loaded;
212 	uint32_t stripe_cache_entries;
213 	unsigned long ctr_flags;
214 	unsigned long runtime_flags;
215 
216 	uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
217 
218 	int raid_disks;
219 	int delta_disks;
220 	int data_offset;
221 	int raid10_copies;
222 	int requested_bitmap_chunk_sectors;
223 
224 	struct mddev md;
225 	struct raid_type *raid_type;
226 	struct dm_target_callbacks callbacks;
227 
228 	struct raid_dev dev[0];
229 };
230 
231 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
232 {
233 	struct mddev *mddev = &rs->md;
234 
235 	l->new_level = mddev->new_level;
236 	l->new_layout = mddev->new_layout;
237 	l->new_chunk_sectors = mddev->new_chunk_sectors;
238 }
239 
240 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
241 {
242 	struct mddev *mddev = &rs->md;
243 
244 	mddev->new_level = l->new_level;
245 	mddev->new_layout = l->new_layout;
246 	mddev->new_chunk_sectors = l->new_chunk_sectors;
247 }
248 
249 /* raid10 algorithms (i.e. formats) */
250 #define	ALGORITHM_RAID10_DEFAULT	0
251 #define	ALGORITHM_RAID10_NEAR		1
252 #define	ALGORITHM_RAID10_OFFSET		2
253 #define	ALGORITHM_RAID10_FAR		3
254 
255 /* Supported raid types and properties. */
256 static struct raid_type {
257 	const char *name;		/* RAID algorithm. */
258 	const char *descr;		/* Descriptor text for logging. */
259 	const unsigned int parity_devs;	/* # of parity devices. */
260 	const unsigned int minimal_devs;/* minimal # of devices in set. */
261 	const unsigned int level;	/* RAID level. */
262 	const unsigned int algorithm;	/* RAID algorithm. */
263 } raid_types[] = {
264 	{"raid0",	  "raid0 (striping)",			    0, 2, 0,  0 /* NONE */},
265 	{"raid1",	  "raid1 (mirroring)",			    0, 2, 1,  0 /* NONE */},
266 	{"raid10_far",	  "raid10 far (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_FAR},
267 	{"raid10_offset", "raid10 offset (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_OFFSET},
268 	{"raid10_near",	  "raid10 near (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_NEAR},
269 	{"raid10",	  "raid10 (striped mirrors)",		    0, 2, 10, ALGORITHM_RAID10_DEFAULT},
270 	{"raid4",	  "raid4 (dedicated last parity disk)",	    1, 2, 4,  ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
271 	{"raid5_n",	  "raid5 (dedicated last parity disk)",	    1, 2, 5,  ALGORITHM_PARITY_N},
272 	{"raid5_ls",	  "raid5 (left symmetric)",		    1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
273 	{"raid5_rs",	  "raid5 (right symmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
274 	{"raid5_la",	  "raid5 (left asymmetric)",		    1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
275 	{"raid5_ra",	  "raid5 (right asymmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
276 	{"raid6_zr",	  "raid6 (zero restart)",		    2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
277 	{"raid6_nr",	  "raid6 (N restart)",			    2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
278 	{"raid6_nc",	  "raid6 (N continue)",			    2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
279 	{"raid6_n_6",	  "raid6 (dedicated parity/Q n/6)",	    2, 4, 6,  ALGORITHM_PARITY_N_6},
280 	{"raid6_ls_6",	  "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
281 	{"raid6_rs_6",	  "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
282 	{"raid6_la_6",	  "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
283 	{"raid6_ra_6",	  "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
284 };
285 
286 /* True, if @v is in inclusive range [@min, @max] */
287 static bool __within_range(long v, long min, long max)
288 {
289 	return v >= min && v <= max;
290 }
291 
292 /* All table line arguments are defined here */
293 static struct arg_name_flag {
294 	const unsigned long flag;
295 	const char *name;
296 } __arg_name_flags[] = {
297 	{ CTR_FLAG_SYNC, "sync"},
298 	{ CTR_FLAG_NOSYNC, "nosync"},
299 	{ CTR_FLAG_REBUILD, "rebuild"},
300 	{ CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
301 	{ CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
302 	{ CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
303 	{ CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
304 	{ CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
305 	{ CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
306 	{ CTR_FLAG_REGION_SIZE, "region_size"},
307 	{ CTR_FLAG_RAID10_COPIES, "raid10_copies"},
308 	{ CTR_FLAG_RAID10_FORMAT, "raid10_format"},
309 	{ CTR_FLAG_DATA_OFFSET, "data_offset"},
310 	{ CTR_FLAG_DELTA_DISKS, "delta_disks"},
311 	{ CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
312 };
313 
314 /* Return argument name string for given @flag */
315 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
316 {
317 	if (hweight32(flag) == 1) {
318 		struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
319 
320 		while (anf-- > __arg_name_flags)
321 			if (flag & anf->flag)
322 				return anf->name;
323 
324 	} else
325 		DMERR("%s called with more than one flag!", __func__);
326 
327 	return NULL;
328 }
329 
330 /*
331  * Bool helpers to test for various raid levels of a raid set.
332  * It's level as reported by the superblock rather than
333  * the requested raid_type passed to the constructor.
334  */
335 /* Return true, if raid set in @rs is raid0 */
336 static bool rs_is_raid0(struct raid_set *rs)
337 {
338 	return !rs->md.level;
339 }
340 
341 /* Return true, if raid set in @rs is raid1 */
342 static bool rs_is_raid1(struct raid_set *rs)
343 {
344 	return rs->md.level == 1;
345 }
346 
347 /* Return true, if raid set in @rs is raid10 */
348 static bool rs_is_raid10(struct raid_set *rs)
349 {
350 	return rs->md.level == 10;
351 }
352 
353 /* Return true, if raid set in @rs is level 6 */
354 static bool rs_is_raid6(struct raid_set *rs)
355 {
356 	return rs->md.level == 6;
357 }
358 
359 /* Return true, if raid set in @rs is level 4, 5 or 6 */
360 static bool rs_is_raid456(struct raid_set *rs)
361 {
362 	return __within_range(rs->md.level, 4, 6);
363 }
364 
365 /* Return true, if raid set in @rs is reshapable */
366 static bool __is_raid10_far(int layout);
367 static bool rs_is_reshapable(struct raid_set *rs)
368 {
369 	return rs_is_raid456(rs) ||
370 	       (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
371 }
372 
373 /* Return true, if raid set in @rs is recovering */
374 static bool rs_is_recovering(struct raid_set *rs)
375 {
376 	return rs->md.recovery_cp < rs->dev[0].rdev.sectors;
377 }
378 
379 /* Return true, if raid set in @rs is reshaping */
380 static bool rs_is_reshaping(struct raid_set *rs)
381 {
382 	return rs->md.reshape_position != MaxSector;
383 }
384 
385 /*
386  * bool helpers to test for various raid levels of a raid type @rt
387  */
388 
389 /* Return true, if raid type in @rt is raid0 */
390 static bool rt_is_raid0(struct raid_type *rt)
391 {
392 	return !rt->level;
393 }
394 
395 /* Return true, if raid type in @rt is raid1 */
396 static bool rt_is_raid1(struct raid_type *rt)
397 {
398 	return rt->level == 1;
399 }
400 
401 /* Return true, if raid type in @rt is raid10 */
402 static bool rt_is_raid10(struct raid_type *rt)
403 {
404 	return rt->level == 10;
405 }
406 
407 /* Return true, if raid type in @rt is raid4/5 */
408 static bool rt_is_raid45(struct raid_type *rt)
409 {
410 	return __within_range(rt->level, 4, 5);
411 }
412 
413 /* Return true, if raid type in @rt is raid6 */
414 static bool rt_is_raid6(struct raid_type *rt)
415 {
416 	return rt->level == 6;
417 }
418 
419 /* Return true, if raid type in @rt is raid4/5/6 */
420 static bool rt_is_raid456(struct raid_type *rt)
421 {
422 	return __within_range(rt->level, 4, 6);
423 }
424 /* END: raid level bools */
425 
426 /* Return valid ctr flags for the raid level of @rs */
427 static unsigned long __valid_flags(struct raid_set *rs)
428 {
429 	if (rt_is_raid0(rs->raid_type))
430 		return RAID0_VALID_FLAGS;
431 	else if (rt_is_raid1(rs->raid_type))
432 		return RAID1_VALID_FLAGS;
433 	else if (rt_is_raid10(rs->raid_type))
434 		return RAID10_VALID_FLAGS;
435 	else if (rt_is_raid45(rs->raid_type))
436 		return RAID45_VALID_FLAGS;
437 	else if (rt_is_raid6(rs->raid_type))
438 		return RAID6_VALID_FLAGS;
439 
440 	return 0;
441 }
442 
443 /*
444  * Check for valid flags set on @rs
445  *
446  * Has to be called after parsing of the ctr flags!
447  */
448 static int rs_check_for_valid_flags(struct raid_set *rs)
449 {
450 	if (rs->ctr_flags & ~__valid_flags(rs)) {
451 		rs->ti->error = "Invalid flags combination";
452 		return -EINVAL;
453 	}
454 
455 	return 0;
456 }
457 
458 /* MD raid10 bit definitions and helpers */
459 #define RAID10_OFFSET			(1 << 16) /* stripes with data copies area adjacent on devices */
460 #define RAID10_BROCKEN_USE_FAR_SETS	(1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
461 #define RAID10_USE_FAR_SETS		(1 << 18) /* Use sets instead of whole stripe rotation */
462 #define RAID10_FAR_COPIES_SHIFT		8	  /* raid10 # far copies shift (2nd byte of layout) */
463 
464 /* Return md raid10 near copies for @layout */
465 static unsigned int __raid10_near_copies(int layout)
466 {
467 	return layout & 0xFF;
468 }
469 
470 /* Return md raid10 far copies for @layout */
471 static unsigned int __raid10_far_copies(int layout)
472 {
473 	return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
474 }
475 
476 /* Return true if md raid10 offset for @layout */
477 static bool __is_raid10_offset(int layout)
478 {
479 	return !!(layout & RAID10_OFFSET);
480 }
481 
482 /* Return true if md raid10 near for @layout */
483 static bool __is_raid10_near(int layout)
484 {
485 	return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
486 }
487 
488 /* Return true if md raid10 far for @layout */
489 static bool __is_raid10_far(int layout)
490 {
491 	return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
492 }
493 
494 /* Return md raid10 layout string for @layout */
495 static const char *raid10_md_layout_to_format(int layout)
496 {
497 	/*
498 	 * Bit 16 stands for "offset"
499 	 * (i.e. adjacent stripes hold copies)
500 	 *
501 	 * Refer to MD's raid10.c for details
502 	 */
503 	if (__is_raid10_offset(layout))
504 		return "offset";
505 
506 	if (__raid10_near_copies(layout) > 1)
507 		return "near";
508 
509 	WARN_ON(__raid10_far_copies(layout) < 2);
510 
511 	return "far";
512 }
513 
514 /* Return md raid10 algorithm for @name */
515 static int raid10_name_to_format(const char *name)
516 {
517 	if (!strcasecmp(name, "near"))
518 		return ALGORITHM_RAID10_NEAR;
519 	else if (!strcasecmp(name, "offset"))
520 		return ALGORITHM_RAID10_OFFSET;
521 	else if (!strcasecmp(name, "far"))
522 		return ALGORITHM_RAID10_FAR;
523 
524 	return -EINVAL;
525 }
526 
527 /* Return md raid10 copies for @layout */
528 static unsigned int raid10_md_layout_to_copies(int layout)
529 {
530 	return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
531 }
532 
533 /* Return md raid10 format id for @format string */
534 static int raid10_format_to_md_layout(struct raid_set *rs,
535 				      unsigned int algorithm,
536 				      unsigned int copies)
537 {
538 	unsigned int n = 1, f = 1, r = 0;
539 
540 	/*
541 	 * MD resilienece flaw:
542 	 *
543 	 * enabling use_far_sets for far/offset formats causes copies
544 	 * to be colocated on the same devs together with their origins!
545 	 *
546 	 * -> disable it for now in the definition above
547 	 */
548 	if (algorithm == ALGORITHM_RAID10_DEFAULT ||
549 	    algorithm == ALGORITHM_RAID10_NEAR)
550 		n = copies;
551 
552 	else if (algorithm == ALGORITHM_RAID10_OFFSET) {
553 		f = copies;
554 		r = RAID10_OFFSET;
555 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556 			r |= RAID10_USE_FAR_SETS;
557 
558 	} else if (algorithm == ALGORITHM_RAID10_FAR) {
559 		f = copies;
560 		r = !RAID10_OFFSET;
561 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
562 			r |= RAID10_USE_FAR_SETS;
563 
564 	} else
565 		return -EINVAL;
566 
567 	return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
568 }
569 /* END: MD raid10 bit definitions and helpers */
570 
571 /* Check for any of the raid10 algorithms */
572 static bool __got_raid10(struct raid_type *rtp, const int layout)
573 {
574 	if (rtp->level == 10) {
575 		switch (rtp->algorithm) {
576 		case ALGORITHM_RAID10_DEFAULT:
577 		case ALGORITHM_RAID10_NEAR:
578 			return __is_raid10_near(layout);
579 		case ALGORITHM_RAID10_OFFSET:
580 			return __is_raid10_offset(layout);
581 		case ALGORITHM_RAID10_FAR:
582 			return __is_raid10_far(layout);
583 		default:
584 			break;
585 		}
586 	}
587 
588 	return false;
589 }
590 
591 /* Return raid_type for @name */
592 static struct raid_type *get_raid_type(const char *name)
593 {
594 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
595 
596 	while (rtp-- > raid_types)
597 		if (!strcasecmp(rtp->name, name))
598 			return rtp;
599 
600 	return NULL;
601 }
602 
603 /* Return raid_type for @name based derived from @level and @layout */
604 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
605 {
606 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
607 
608 	while (rtp-- > raid_types) {
609 		/* RAID10 special checks based on @layout flags/properties */
610 		if (rtp->level == level &&
611 		    (__got_raid10(rtp, layout) || rtp->algorithm == layout))
612 			return rtp;
613 	}
614 
615 	return NULL;
616 }
617 
618 /*
619  * Conditionally change bdev capacity of @rs
620  * in case of a disk add/remove reshape
621  */
622 static void rs_set_capacity(struct raid_set *rs)
623 {
624 	struct mddev *mddev = &rs->md;
625 	struct md_rdev *rdev;
626 	struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
627 
628 	/*
629 	 * raid10 sets rdev->sector to the device size, which
630 	 * is unintended in case of out-of-place reshaping
631 	 */
632 	rdev_for_each(rdev, mddev)
633 		rdev->sectors = mddev->dev_sectors;
634 
635 	set_capacity(gendisk, mddev->array_sectors);
636 	revalidate_disk(gendisk);
637 }
638 
639 /*
640  * Set the mddev properties in @rs to the current
641  * ones retrieved from the freshest superblock
642  */
643 static void rs_set_cur(struct raid_set *rs)
644 {
645 	struct mddev *mddev = &rs->md;
646 
647 	mddev->new_level = mddev->level;
648 	mddev->new_layout = mddev->layout;
649 	mddev->new_chunk_sectors = mddev->chunk_sectors;
650 }
651 
652 /*
653  * Set the mddev properties in @rs to the new
654  * ones requested by the ctr
655  */
656 static void rs_set_new(struct raid_set *rs)
657 {
658 	struct mddev *mddev = &rs->md;
659 
660 	mddev->level = mddev->new_level;
661 	mddev->layout = mddev->new_layout;
662 	mddev->chunk_sectors = mddev->new_chunk_sectors;
663 	mddev->raid_disks = rs->raid_disks;
664 	mddev->delta_disks = 0;
665 }
666 
667 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
668 				       unsigned int raid_devs)
669 {
670 	unsigned int i;
671 	struct raid_set *rs;
672 
673 	if (raid_devs <= raid_type->parity_devs) {
674 		ti->error = "Insufficient number of devices";
675 		return ERR_PTR(-EINVAL);
676 	}
677 
678 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
679 	if (!rs) {
680 		ti->error = "Cannot allocate raid context";
681 		return ERR_PTR(-ENOMEM);
682 	}
683 
684 	mddev_init(&rs->md);
685 
686 	rs->raid_disks = raid_devs;
687 	rs->delta_disks = 0;
688 
689 	rs->ti = ti;
690 	rs->raid_type = raid_type;
691 	rs->stripe_cache_entries = 256;
692 	rs->md.raid_disks = raid_devs;
693 	rs->md.level = raid_type->level;
694 	rs->md.new_level = rs->md.level;
695 	rs->md.layout = raid_type->algorithm;
696 	rs->md.new_layout = rs->md.layout;
697 	rs->md.delta_disks = 0;
698 	rs->md.recovery_cp = MaxSector;
699 
700 	for (i = 0; i < raid_devs; i++)
701 		md_rdev_init(&rs->dev[i].rdev);
702 
703 	/*
704 	 * Remaining items to be initialized by further RAID params:
705 	 *  rs->md.persistent
706 	 *  rs->md.external
707 	 *  rs->md.chunk_sectors
708 	 *  rs->md.new_chunk_sectors
709 	 *  rs->md.dev_sectors
710 	 */
711 
712 	return rs;
713 }
714 
715 static void raid_set_free(struct raid_set *rs)
716 {
717 	int i;
718 
719 	for (i = 0; i < rs->raid_disks; i++) {
720 		if (rs->dev[i].meta_dev)
721 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
722 		md_rdev_clear(&rs->dev[i].rdev);
723 		if (rs->dev[i].data_dev)
724 			dm_put_device(rs->ti, rs->dev[i].data_dev);
725 	}
726 
727 	kfree(rs);
728 }
729 
730 /*
731  * For every device we have two words
732  *  <meta_dev>: meta device name or '-' if missing
733  *  <data_dev>: data device name or '-' if missing
734  *
735  * The following are permitted:
736  *    - -
737  *    - <data_dev>
738  *    <meta_dev> <data_dev>
739  *
740  * The following is not allowed:
741  *    <meta_dev> -
742  *
743  * This code parses those words.  If there is a failure,
744  * the caller must use raid_set_free() to unwind the operations.
745  */
746 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
747 {
748 	int i;
749 	int rebuild = 0;
750 	int metadata_available = 0;
751 	int r = 0;
752 	const char *arg;
753 
754 	/* Put off the number of raid devices argument to get to dev pairs */
755 	arg = dm_shift_arg(as);
756 	if (!arg)
757 		return -EINVAL;
758 
759 	for (i = 0; i < rs->raid_disks; i++) {
760 		rs->dev[i].rdev.raid_disk = i;
761 
762 		rs->dev[i].meta_dev = NULL;
763 		rs->dev[i].data_dev = NULL;
764 
765 		/*
766 		 * There are no offsets, since there is a separate device
767 		 * for data and metadata.
768 		 */
769 		rs->dev[i].rdev.data_offset = 0;
770 		rs->dev[i].rdev.mddev = &rs->md;
771 
772 		arg = dm_shift_arg(as);
773 		if (!arg)
774 			return -EINVAL;
775 
776 		if (strcmp(arg, "-")) {
777 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
778 					  &rs->dev[i].meta_dev);
779 			if (r) {
780 				rs->ti->error = "RAID metadata device lookup failure";
781 				return r;
782 			}
783 
784 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
785 			if (!rs->dev[i].rdev.sb_page) {
786 				rs->ti->error = "Failed to allocate superblock page";
787 				return -ENOMEM;
788 			}
789 		}
790 
791 		arg = dm_shift_arg(as);
792 		if (!arg)
793 			return -EINVAL;
794 
795 		if (!strcmp(arg, "-")) {
796 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
797 			    (!rs->dev[i].rdev.recovery_offset)) {
798 				rs->ti->error = "Drive designated for rebuild not specified";
799 				return -EINVAL;
800 			}
801 
802 			if (rs->dev[i].meta_dev) {
803 				rs->ti->error = "No data device supplied with metadata device";
804 				return -EINVAL;
805 			}
806 
807 			continue;
808 		}
809 
810 		r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
811 				  &rs->dev[i].data_dev);
812 		if (r) {
813 			rs->ti->error = "RAID device lookup failure";
814 			return r;
815 		}
816 
817 		if (rs->dev[i].meta_dev) {
818 			metadata_available = 1;
819 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
820 		}
821 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
822 		list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
823 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
824 			rebuild++;
825 	}
826 
827 	if (metadata_available) {
828 		rs->md.external = 0;
829 		rs->md.persistent = 1;
830 		rs->md.major_version = 2;
831 	} else if (rebuild && !rs->md.recovery_cp) {
832 		/*
833 		 * Without metadata, we will not be able to tell if the array
834 		 * is in-sync or not - we must assume it is not.  Therefore,
835 		 * it is impossible to rebuild a drive.
836 		 *
837 		 * Even if there is metadata, the on-disk information may
838 		 * indicate that the array is not in-sync and it will then
839 		 * fail at that time.
840 		 *
841 		 * User could specify 'nosync' option if desperate.
842 		 */
843 		rs->ti->error = "Unable to rebuild drive while array is not in-sync";
844 		return -EINVAL;
845 	}
846 
847 	return 0;
848 }
849 
850 /*
851  * validate_region_size
852  * @rs
853  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
854  *
855  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
856  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
857  *
858  * Returns: 0 on success, -EINVAL on failure.
859  */
860 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
861 {
862 	unsigned long min_region_size = rs->ti->len / (1 << 21);
863 
864 	if (!region_size) {
865 		/*
866 		 * Choose a reasonable default.	 All figures in sectors.
867 		 */
868 		if (min_region_size > (1 << 13)) {
869 			/* If not a power of 2, make it the next power of 2 */
870 			region_size = roundup_pow_of_two(min_region_size);
871 			DMINFO("Choosing default region size of %lu sectors",
872 			       region_size);
873 		} else {
874 			DMINFO("Choosing default region size of 4MiB");
875 			region_size = 1 << 13; /* sectors */
876 		}
877 	} else {
878 		/*
879 		 * Validate user-supplied value.
880 		 */
881 		if (region_size > rs->ti->len) {
882 			rs->ti->error = "Supplied region size is too large";
883 			return -EINVAL;
884 		}
885 
886 		if (region_size < min_region_size) {
887 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
888 			      region_size, min_region_size);
889 			rs->ti->error = "Supplied region size is too small";
890 			return -EINVAL;
891 		}
892 
893 		if (!is_power_of_2(region_size)) {
894 			rs->ti->error = "Region size is not a power of 2";
895 			return -EINVAL;
896 		}
897 
898 		if (region_size < rs->md.chunk_sectors) {
899 			rs->ti->error = "Region size is smaller than the chunk size";
900 			return -EINVAL;
901 		}
902 	}
903 
904 	/*
905 	 * Convert sectors to bytes.
906 	 */
907 	rs->md.bitmap_info.chunksize = to_bytes(region_size);
908 
909 	return 0;
910 }
911 
912 /*
913  * validate_raid_redundancy
914  * @rs
915  *
916  * Determine if there are enough devices in the array that haven't
917  * failed (or are being rebuilt) to form a usable array.
918  *
919  * Returns: 0 on success, -EINVAL on failure.
920  */
921 static int validate_raid_redundancy(struct raid_set *rs)
922 {
923 	unsigned int i, rebuild_cnt = 0;
924 	unsigned int rebuilds_per_group = 0, copies;
925 	unsigned int group_size, last_group_start;
926 
927 	for (i = 0; i < rs->md.raid_disks; i++)
928 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
929 		    !rs->dev[i].rdev.sb_page)
930 			rebuild_cnt++;
931 
932 	switch (rs->raid_type->level) {
933 	case 1:
934 		if (rebuild_cnt >= rs->md.raid_disks)
935 			goto too_many;
936 		break;
937 	case 4:
938 	case 5:
939 	case 6:
940 		if (rebuild_cnt > rs->raid_type->parity_devs)
941 			goto too_many;
942 		break;
943 	case 10:
944 		copies = raid10_md_layout_to_copies(rs->md.new_layout);
945 		if (rebuild_cnt < copies)
946 			break;
947 
948 		/*
949 		 * It is possible to have a higher rebuild count for RAID10,
950 		 * as long as the failed devices occur in different mirror
951 		 * groups (i.e. different stripes).
952 		 *
953 		 * When checking "near" format, make sure no adjacent devices
954 		 * have failed beyond what can be handled.  In addition to the
955 		 * simple case where the number of devices is a multiple of the
956 		 * number of copies, we must also handle cases where the number
957 		 * of devices is not a multiple of the number of copies.
958 		 * E.g.	   dev1 dev2 dev3 dev4 dev5
959 		 *	    A	 A    B	   B	C
960 		 *	    C	 D    D	   E	E
961 		 */
962 		if (__is_raid10_near(rs->md.new_layout)) {
963 			for (i = 0; i < rs->md.raid_disks; i++) {
964 				if (!(i % copies))
965 					rebuilds_per_group = 0;
966 				if ((!rs->dev[i].rdev.sb_page ||
967 				    !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
968 				    (++rebuilds_per_group >= copies))
969 					goto too_many;
970 			}
971 			break;
972 		}
973 
974 		/*
975 		 * When checking "far" and "offset" formats, we need to ensure
976 		 * that the device that holds its copy is not also dead or
977 		 * being rebuilt.  (Note that "far" and "offset" formats only
978 		 * support two copies right now.  These formats also only ever
979 		 * use the 'use_far_sets' variant.)
980 		 *
981 		 * This check is somewhat complicated by the need to account
982 		 * for arrays that are not a multiple of (far) copies.	This
983 		 * results in the need to treat the last (potentially larger)
984 		 * set differently.
985 		 */
986 		group_size = (rs->md.raid_disks / copies);
987 		last_group_start = (rs->md.raid_disks / group_size) - 1;
988 		last_group_start *= group_size;
989 		for (i = 0; i < rs->md.raid_disks; i++) {
990 			if (!(i % copies) && !(i > last_group_start))
991 				rebuilds_per_group = 0;
992 			if ((!rs->dev[i].rdev.sb_page ||
993 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
994 			    (++rebuilds_per_group >= copies))
995 					goto too_many;
996 		}
997 		break;
998 	default:
999 		if (rebuild_cnt)
1000 			return -EINVAL;
1001 	}
1002 
1003 	return 0;
1004 
1005 too_many:
1006 	return -EINVAL;
1007 }
1008 
1009 /*
1010  * Possible arguments are...
1011  *	<chunk_size> [optional_args]
1012  *
1013  * Argument definitions
1014  *    <chunk_size>			The number of sectors per disk that
1015  *					will form the "stripe"
1016  *    [[no]sync]			Force or prevent recovery of the
1017  *					entire array
1018  *    [rebuild <idx>]			Rebuild the drive indicated by the index
1019  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
1020  *					clear bits
1021  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1022  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1023  *    [write_mostly <idx>]		Indicate a write mostly drive via index
1024  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
1025  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
1026  *    [region_size <sectors>]		Defines granularity of bitmap
1027  *
1028  * RAID10-only options:
1029  *    [raid10_copies <# copies>]	Number of copies.  (Default: 2)
1030  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1031  */
1032 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1033 			     unsigned int num_raid_params)
1034 {
1035 	int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1036 	unsigned int raid10_copies = 2;
1037 	unsigned int i, write_mostly = 0;
1038 	unsigned int region_size = 0;
1039 	sector_t max_io_len;
1040 	const char *arg, *key;
1041 	struct raid_dev *rd;
1042 	struct raid_type *rt = rs->raid_type;
1043 
1044 	arg = dm_shift_arg(as);
1045 	num_raid_params--; /* Account for chunk_size argument */
1046 
1047 	if (kstrtoint(arg, 10, &value) < 0) {
1048 		rs->ti->error = "Bad numerical argument given for chunk_size";
1049 		return -EINVAL;
1050 	}
1051 
1052 	/*
1053 	 * First, parse the in-order required arguments
1054 	 * "chunk_size" is the only argument of this type.
1055 	 */
1056 	if (rt_is_raid1(rt)) {
1057 		if (value)
1058 			DMERR("Ignoring chunk size parameter for RAID 1");
1059 		value = 0;
1060 	} else if (!is_power_of_2(value)) {
1061 		rs->ti->error = "Chunk size must be a power of 2";
1062 		return -EINVAL;
1063 	} else if (value < 8) {
1064 		rs->ti->error = "Chunk size value is too small";
1065 		return -EINVAL;
1066 	}
1067 
1068 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1069 
1070 	/*
1071 	 * We set each individual device as In_sync with a completed
1072 	 * 'recovery_offset'.  If there has been a device failure or
1073 	 * replacement then one of the following cases applies:
1074 	 *
1075 	 *   1) User specifies 'rebuild'.
1076 	 *	- Device is reset when param is read.
1077 	 *   2) A new device is supplied.
1078 	 *	- No matching superblock found, resets device.
1079 	 *   3) Device failure was transient and returns on reload.
1080 	 *	- Failure noticed, resets device for bitmap replay.
1081 	 *   4) Device hadn't completed recovery after previous failure.
1082 	 *	- Superblock is read and overrides recovery_offset.
1083 	 *
1084 	 * What is found in the superblocks of the devices is always
1085 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1086 	 */
1087 	for (i = 0; i < rs->raid_disks; i++) {
1088 		set_bit(In_sync, &rs->dev[i].rdev.flags);
1089 		rs->dev[i].rdev.recovery_offset = MaxSector;
1090 	}
1091 
1092 	/*
1093 	 * Second, parse the unordered optional arguments
1094 	 */
1095 	for (i = 0; i < num_raid_params; i++) {
1096 		key = dm_shift_arg(as);
1097 		if (!key) {
1098 			rs->ti->error = "Not enough raid parameters given";
1099 			return -EINVAL;
1100 		}
1101 
1102 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1103 			if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1104 				rs->ti->error = "Only one 'nosync' argument allowed";
1105 				return -EINVAL;
1106 			}
1107 			continue;
1108 		}
1109 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1110 			if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1111 				rs->ti->error = "Only one 'sync' argument allowed";
1112 				return -EINVAL;
1113 			}
1114 			continue;
1115 		}
1116 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1117 			if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1118 				rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1119 				return -EINVAL;
1120 			}
1121 			continue;
1122 		}
1123 
1124 		arg = dm_shift_arg(as);
1125 		i++; /* Account for the argument pairs */
1126 		if (!arg) {
1127 			rs->ti->error = "Wrong number of raid parameters given";
1128 			return -EINVAL;
1129 		}
1130 
1131 		/*
1132 		 * Parameters that take a string value are checked here.
1133 		 */
1134 
1135 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1136 			if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1137 				rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1138 				return -EINVAL;
1139 			}
1140 			if (!rt_is_raid10(rt)) {
1141 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1142 				return -EINVAL;
1143 			}
1144 			raid10_format = raid10_name_to_format(arg);
1145 			if (raid10_format < 0) {
1146 				rs->ti->error = "Invalid 'raid10_format' value given";
1147 				return raid10_format;
1148 			}
1149 			continue;
1150 		}
1151 
1152 		if (kstrtoint(arg, 10, &value) < 0) {
1153 			rs->ti->error = "Bad numerical argument given in raid params";
1154 			return -EINVAL;
1155 		}
1156 
1157 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1158 			/*
1159 			 * "rebuild" is being passed in by userspace to provide
1160 			 * indexes of replaced devices and to set up additional
1161 			 * devices on raid level takeover.
1162 			 */
1163 			if (!__within_range(value, 0, rs->raid_disks - 1)) {
1164 				rs->ti->error = "Invalid rebuild index given";
1165 				return -EINVAL;
1166 			}
1167 
1168 			if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1169 				rs->ti->error = "rebuild for this index already given";
1170 				return -EINVAL;
1171 			}
1172 
1173 			rd = rs->dev + value;
1174 			clear_bit(In_sync, &rd->rdev.flags);
1175 			clear_bit(Faulty, &rd->rdev.flags);
1176 			rd->rdev.recovery_offset = 0;
1177 			set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1178 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1179 			if (!rt_is_raid1(rt)) {
1180 				rs->ti->error = "write_mostly option is only valid for RAID1";
1181 				return -EINVAL;
1182 			}
1183 
1184 			if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1185 				rs->ti->error = "Invalid write_mostly index given";
1186 				return -EINVAL;
1187 			}
1188 
1189 			write_mostly++;
1190 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1191 			set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1192 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1193 			if (!rt_is_raid1(rt)) {
1194 				rs->ti->error = "max_write_behind option is only valid for RAID1";
1195 				return -EINVAL;
1196 			}
1197 
1198 			if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1199 				rs->ti->error = "Only one max_write_behind argument pair allowed";
1200 				return -EINVAL;
1201 			}
1202 
1203 			/*
1204 			 * In device-mapper, we specify things in sectors, but
1205 			 * MD records this value in kB
1206 			 */
1207 			value /= 2;
1208 			if (value > COUNTER_MAX) {
1209 				rs->ti->error = "Max write-behind limit out of range";
1210 				return -EINVAL;
1211 			}
1212 
1213 			rs->md.bitmap_info.max_write_behind = value;
1214 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1215 			if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1216 				rs->ti->error = "Only one daemon_sleep argument pair allowed";
1217 				return -EINVAL;
1218 			}
1219 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1220 				rs->ti->error = "daemon sleep period out of range";
1221 				return -EINVAL;
1222 			}
1223 			rs->md.bitmap_info.daemon_sleep = value;
1224 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1225 			/* Userspace passes new data_offset after having extended the the data image LV */
1226 			if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1227 				rs->ti->error = "Only one data_offset argument pair allowed";
1228 				return -EINVAL;
1229 			}
1230 			/* Ensure sensible data offset */
1231 			if (value < 0 ||
1232 			    (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1233 				rs->ti->error = "Bogus data_offset value";
1234 				return -EINVAL;
1235 			}
1236 			rs->data_offset = value;
1237 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1238 			/* Define the +/-# of disks to add to/remove from the given raid set */
1239 			if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1240 				rs->ti->error = "Only one delta_disks argument pair allowed";
1241 				return -EINVAL;
1242 			}
1243 			/* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1244 			if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1245 				rs->ti->error = "Too many delta_disk requested";
1246 				return -EINVAL;
1247 			}
1248 
1249 			rs->delta_disks = value;
1250 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1251 			if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1252 				rs->ti->error = "Only one stripe_cache argument pair allowed";
1253 				return -EINVAL;
1254 			}
1255 
1256 			if (!rt_is_raid456(rt)) {
1257 				rs->ti->error = "Inappropriate argument: stripe_cache";
1258 				return -EINVAL;
1259 			}
1260 
1261 			rs->stripe_cache_entries = value;
1262 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1263 			if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1264 				rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1265 				return -EINVAL;
1266 			}
1267 			if (value > INT_MAX) {
1268 				rs->ti->error = "min_recovery_rate out of range";
1269 				return -EINVAL;
1270 			}
1271 			rs->md.sync_speed_min = (int)value;
1272 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1273 			if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1274 				rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1275 				return -EINVAL;
1276 			}
1277 			if (value > INT_MAX) {
1278 				rs->ti->error = "max_recovery_rate out of range";
1279 				return -EINVAL;
1280 			}
1281 			rs->md.sync_speed_max = (int)value;
1282 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1283 			if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1284 				rs->ti->error = "Only one region_size argument pair allowed";
1285 				return -EINVAL;
1286 			}
1287 
1288 			region_size = value;
1289 			rs->requested_bitmap_chunk_sectors = value;
1290 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1291 			if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1292 				rs->ti->error = "Only one raid10_copies argument pair allowed";
1293 				return -EINVAL;
1294 			}
1295 
1296 			if (!__within_range(value, 2, rs->md.raid_disks)) {
1297 				rs->ti->error = "Bad value for 'raid10_copies'";
1298 				return -EINVAL;
1299 			}
1300 
1301 			raid10_copies = value;
1302 		} else {
1303 			DMERR("Unable to parse RAID parameter: %s", key);
1304 			rs->ti->error = "Unable to parse RAID parameter";
1305 			return -EINVAL;
1306 		}
1307 	}
1308 
1309 	if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1310 	    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1311 		rs->ti->error = "sync and nosync are mutually exclusive";
1312 		return -EINVAL;
1313 	}
1314 
1315 	if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1316 	    (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1317 	     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1318 		rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1319 		return -EINVAL;
1320 	}
1321 
1322 	if (write_mostly >= rs->md.raid_disks) {
1323 		rs->ti->error = "Can't set all raid1 devices to write_mostly";
1324 		return -EINVAL;
1325 	}
1326 
1327 	if (validate_region_size(rs, region_size))
1328 		return -EINVAL;
1329 
1330 	if (rs->md.chunk_sectors)
1331 		max_io_len = rs->md.chunk_sectors;
1332 	else
1333 		max_io_len = region_size;
1334 
1335 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
1336 		return -EINVAL;
1337 
1338 	if (rt_is_raid10(rt)) {
1339 		if (raid10_copies > rs->md.raid_disks) {
1340 			rs->ti->error = "Not enough devices to satisfy specification";
1341 			return -EINVAL;
1342 		}
1343 
1344 		rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1345 		if (rs->md.new_layout < 0) {
1346 			rs->ti->error = "Error getting raid10 format";
1347 			return rs->md.new_layout;
1348 		}
1349 
1350 		rt = get_raid_type_by_ll(10, rs->md.new_layout);
1351 		if (!rt) {
1352 			rs->ti->error = "Failed to recognize new raid10 layout";
1353 			return -EINVAL;
1354 		}
1355 
1356 		if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1357 		     rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1358 		    test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1359 			rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1360 			return -EINVAL;
1361 		}
1362 	}
1363 
1364 	rs->raid10_copies = raid10_copies;
1365 
1366 	/* Assume there are no metadata devices until the drives are parsed */
1367 	rs->md.persistent = 0;
1368 	rs->md.external = 1;
1369 
1370 	/* Check, if any invalid ctr arguments have been passed in for the raid level */
1371 	return rs_check_for_valid_flags(rs);
1372 }
1373 
1374 /* Set raid4/5/6 cache size */
1375 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1376 {
1377 	int r;
1378 	struct r5conf *conf;
1379 	struct mddev *mddev = &rs->md;
1380 	uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1381 	uint32_t nr_stripes = rs->stripe_cache_entries;
1382 
1383 	if (!rt_is_raid456(rs->raid_type)) {
1384 		rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1385 		return -EINVAL;
1386 	}
1387 
1388 	if (nr_stripes < min_stripes) {
1389 		DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1390 		       nr_stripes, min_stripes);
1391 		nr_stripes = min_stripes;
1392 	}
1393 
1394 	conf = mddev->private;
1395 	if (!conf) {
1396 		rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1397 		return -EINVAL;
1398 	}
1399 
1400 	/* Try setting number of stripes in raid456 stripe cache */
1401 	if (conf->min_nr_stripes != nr_stripes) {
1402 		r = raid5_set_cache_size(mddev, nr_stripes);
1403 		if (r) {
1404 			rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1405 			return r;
1406 		}
1407 
1408 		DMINFO("%u stripe cache entries", nr_stripes);
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1415 static unsigned int mddev_data_stripes(struct raid_set *rs)
1416 {
1417 	return rs->md.raid_disks - rs->raid_type->parity_devs;
1418 }
1419 
1420 /* Return # of data stripes of @rs (i.e. as of ctr) */
1421 static unsigned int rs_data_stripes(struct raid_set *rs)
1422 {
1423 	return rs->raid_disks - rs->raid_type->parity_devs;
1424 }
1425 
1426 /* Calculate the sectors per device and per array used for @rs */
1427 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1428 {
1429 	int delta_disks;
1430 	unsigned int data_stripes;
1431 	struct mddev *mddev = &rs->md;
1432 	struct md_rdev *rdev;
1433 	sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1434 
1435 	if (use_mddev) {
1436 		delta_disks = mddev->delta_disks;
1437 		data_stripes = mddev_data_stripes(rs);
1438 	} else {
1439 		delta_disks = rs->delta_disks;
1440 		data_stripes = rs_data_stripes(rs);
1441 	}
1442 
1443 	/* Special raid1 case w/o delta_disks support (yet) */
1444 	if (rt_is_raid1(rs->raid_type))
1445 		;
1446 	else if (rt_is_raid10(rs->raid_type)) {
1447 		if (rs->raid10_copies < 2 ||
1448 		    delta_disks < 0) {
1449 			rs->ti->error = "Bogus raid10 data copies or delta disks";
1450 			return -EINVAL;
1451 		}
1452 
1453 		dev_sectors *= rs->raid10_copies;
1454 		if (sector_div(dev_sectors, data_stripes))
1455 			goto bad;
1456 
1457 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1458 		if (sector_div(array_sectors, rs->raid10_copies))
1459 			goto bad;
1460 
1461 	} else if (sector_div(dev_sectors, data_stripes))
1462 		goto bad;
1463 
1464 	else
1465 		/* Striped layouts */
1466 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1467 
1468 	rdev_for_each(rdev, mddev)
1469 		rdev->sectors = dev_sectors;
1470 
1471 	mddev->array_sectors = array_sectors;
1472 	mddev->dev_sectors = dev_sectors;
1473 
1474 	return 0;
1475 bad:
1476 	rs->ti->error = "Target length not divisible by number of data devices";
1477 	return -EINVAL;
1478 }
1479 
1480 /* Setup recovery on @rs */
1481 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1482 {
1483 	/* raid0 does not recover */
1484 	if (rs_is_raid0(rs))
1485 		rs->md.recovery_cp = MaxSector;
1486 	/*
1487 	 * A raid6 set has to be recovered either
1488 	 * completely or for the grown part to
1489 	 * ensure proper parity and Q-Syndrome
1490 	 */
1491 	else if (rs_is_raid6(rs))
1492 		rs->md.recovery_cp = dev_sectors;
1493 	/*
1494 	 * Other raid set types may skip recovery
1495 	 * depending on the 'nosync' flag.
1496 	 */
1497 	else
1498 		rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1499 				     ? MaxSector : dev_sectors;
1500 }
1501 
1502 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1503 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1504 {
1505 	if (!dev_sectors)
1506 		/* New raid set or 'sync' flag provided */
1507 		__rs_setup_recovery(rs, 0);
1508 	else if (dev_sectors == MaxSector)
1509 		/* Prevent recovery */
1510 		__rs_setup_recovery(rs, MaxSector);
1511 	else if (rs->dev[0].rdev.sectors < dev_sectors)
1512 		/* Grown raid set */
1513 		__rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1514 	else
1515 		__rs_setup_recovery(rs, MaxSector);
1516 }
1517 
1518 static void do_table_event(struct work_struct *ws)
1519 {
1520 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1521 
1522 	smp_rmb(); /* Make sure we access most actual mddev properties */
1523 	if (!rs_is_reshaping(rs))
1524 		rs_set_capacity(rs);
1525 	dm_table_event(rs->ti->table);
1526 }
1527 
1528 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1529 {
1530 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1531 
1532 	return mddev_congested(&rs->md, bits);
1533 }
1534 
1535 /*
1536  * Make sure a valid takover (level switch) is being requested on @rs
1537  *
1538  * Conversions of raid sets from one MD personality to another
1539  * have to conform to restrictions which are enforced here.
1540  */
1541 static int rs_check_takeover(struct raid_set *rs)
1542 {
1543 	struct mddev *mddev = &rs->md;
1544 	unsigned int near_copies;
1545 
1546 	if (rs->md.degraded) {
1547 		rs->ti->error = "Can't takeover degraded raid set";
1548 		return -EPERM;
1549 	}
1550 
1551 	if (rs_is_reshaping(rs)) {
1552 		rs->ti->error = "Can't takeover reshaping raid set";
1553 		return -EPERM;
1554 	}
1555 
1556 	switch (mddev->level) {
1557 	case 0:
1558 		/* raid0 -> raid1/5 with one disk */
1559 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1560 		    mddev->raid_disks == 1)
1561 			return 0;
1562 
1563 		/* raid0 -> raid10 */
1564 		if (mddev->new_level == 10 &&
1565 		    !(rs->raid_disks % mddev->raid_disks))
1566 			return 0;
1567 
1568 		/* raid0 with multiple disks -> raid4/5/6 */
1569 		if (__within_range(mddev->new_level, 4, 6) &&
1570 		    mddev->new_layout == ALGORITHM_PARITY_N &&
1571 		    mddev->raid_disks > 1)
1572 			return 0;
1573 
1574 		break;
1575 
1576 	case 10:
1577 		/* Can't takeover raid10_offset! */
1578 		if (__is_raid10_offset(mddev->layout))
1579 			break;
1580 
1581 		near_copies = __raid10_near_copies(mddev->layout);
1582 
1583 		/* raid10* -> raid0 */
1584 		if (mddev->new_level == 0) {
1585 			/* Can takeover raid10_near with raid disks divisable by data copies! */
1586 			if (near_copies > 1 &&
1587 			    !(mddev->raid_disks % near_copies)) {
1588 				mddev->raid_disks /= near_copies;
1589 				mddev->delta_disks = mddev->raid_disks;
1590 				return 0;
1591 			}
1592 
1593 			/* Can takeover raid10_far */
1594 			if (near_copies == 1 &&
1595 			    __raid10_far_copies(mddev->layout) > 1)
1596 				return 0;
1597 
1598 			break;
1599 		}
1600 
1601 		/* raid10_{near,far} -> raid1 */
1602 		if (mddev->new_level == 1 &&
1603 		    max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1604 			return 0;
1605 
1606 		/* raid10_{near,far} with 2 disks -> raid4/5 */
1607 		if (__within_range(mddev->new_level, 4, 5) &&
1608 		    mddev->raid_disks == 2)
1609 			return 0;
1610 		break;
1611 
1612 	case 1:
1613 		/* raid1 with 2 disks -> raid4/5 */
1614 		if (__within_range(mddev->new_level, 4, 5) &&
1615 		    mddev->raid_disks == 2) {
1616 			mddev->degraded = 1;
1617 			return 0;
1618 		}
1619 
1620 		/* raid1 -> raid0 */
1621 		if (mddev->new_level == 0 &&
1622 		    mddev->raid_disks == 1)
1623 			return 0;
1624 
1625 		/* raid1 -> raid10 */
1626 		if (mddev->new_level == 10)
1627 			return 0;
1628 		break;
1629 
1630 	case 4:
1631 		/* raid4 -> raid0 */
1632 		if (mddev->new_level == 0)
1633 			return 0;
1634 
1635 		/* raid4 -> raid1/5 with 2 disks */
1636 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1637 		    mddev->raid_disks == 2)
1638 			return 0;
1639 
1640 		/* raid4 -> raid5/6 with parity N */
1641 		if (__within_range(mddev->new_level, 5, 6) &&
1642 		    mddev->layout == ALGORITHM_PARITY_N)
1643 			return 0;
1644 		break;
1645 
1646 	case 5:
1647 		/* raid5 with parity N -> raid0 */
1648 		if (mddev->new_level == 0 &&
1649 		    mddev->layout == ALGORITHM_PARITY_N)
1650 			return 0;
1651 
1652 		/* raid5 with parity N -> raid4 */
1653 		if (mddev->new_level == 4 &&
1654 		    mddev->layout == ALGORITHM_PARITY_N)
1655 			return 0;
1656 
1657 		/* raid5 with 2 disks -> raid1/4/10 */
1658 		if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1659 		    mddev->raid_disks == 2)
1660 			return 0;
1661 
1662 		/* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1663 		if (mddev->new_level == 6 &&
1664 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1665 		      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1666 			return 0;
1667 		break;
1668 
1669 	case 6:
1670 		/* raid6 with parity N -> raid0 */
1671 		if (mddev->new_level == 0 &&
1672 		    mddev->layout == ALGORITHM_PARITY_N)
1673 			return 0;
1674 
1675 		/* raid6 with parity N -> raid4 */
1676 		if (mddev->new_level == 4 &&
1677 		    mddev->layout == ALGORITHM_PARITY_N)
1678 			return 0;
1679 
1680 		/* raid6_*_n with Q-Syndrome N -> raid5_* */
1681 		if (mddev->new_level == 5 &&
1682 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1683 		     __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1684 			return 0;
1685 
1686 	default:
1687 		break;
1688 	}
1689 
1690 	rs->ti->error = "takeover not possible";
1691 	return -EINVAL;
1692 }
1693 
1694 /* True if @rs requested to be taken over */
1695 static bool rs_takeover_requested(struct raid_set *rs)
1696 {
1697 	return rs->md.new_level != rs->md.level;
1698 }
1699 
1700 /* True if @rs is requested to reshape by ctr */
1701 static bool rs_reshape_requested(struct raid_set *rs)
1702 {
1703 	bool change;
1704 	struct mddev *mddev = &rs->md;
1705 
1706 	if (rs_takeover_requested(rs))
1707 		return false;
1708 
1709 	if (!mddev->level)
1710 		return false;
1711 
1712 	change = mddev->new_layout != mddev->layout ||
1713 		 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1714 		 rs->delta_disks;
1715 
1716 	/* Historical case to support raid1 reshape without delta disks */
1717 	if (mddev->level == 1) {
1718 		if (rs->delta_disks)
1719 			return !!rs->delta_disks;
1720 
1721 		return !change &&
1722 		       mddev->raid_disks != rs->raid_disks;
1723 	}
1724 
1725 	if (mddev->level == 10)
1726 		return change &&
1727 		       !__is_raid10_far(mddev->new_layout) &&
1728 		       rs->delta_disks >= 0;
1729 
1730 	return change;
1731 }
1732 
1733 /*  Features */
1734 #define	FEATURE_FLAG_SUPPORTS_V190	0x1 /* Supports extended superblock */
1735 
1736 /* State flags for sb->flags */
1737 #define	SB_FLAG_RESHAPE_ACTIVE		0x1
1738 #define	SB_FLAG_RESHAPE_BACKWARDS	0x2
1739 
1740 /*
1741  * This structure is never routinely used by userspace, unlike md superblocks.
1742  * Devices with this superblock should only ever be accessed via device-mapper.
1743  */
1744 #define DM_RAID_MAGIC 0x64526D44
1745 struct dm_raid_superblock {
1746 	__le32 magic;		/* "DmRd" */
1747 	__le32 compat_features;	/* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1748 
1749 	__le32 num_devices;	/* Number of devices in this raid set. (Max 64) */
1750 	__le32 array_position;	/* The position of this drive in the raid set */
1751 
1752 	__le64 events;		/* Incremented by md when superblock updated */
1753 	__le64 failed_devices;	/* Pre 1.9.0 part of bit field of devices to */
1754 				/* indicate failures (see extension below) */
1755 
1756 	/*
1757 	 * This offset tracks the progress of the repair or replacement of
1758 	 * an individual drive.
1759 	 */
1760 	__le64 disk_recovery_offset;
1761 
1762 	/*
1763 	 * This offset tracks the progress of the initial raid set
1764 	 * synchronisation/parity calculation.
1765 	 */
1766 	__le64 array_resync_offset;
1767 
1768 	/*
1769 	 * raid characteristics
1770 	 */
1771 	__le32 level;
1772 	__le32 layout;
1773 	__le32 stripe_sectors;
1774 
1775 	/********************************************************************
1776 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1777 	 *
1778 	 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1779 	 */
1780 
1781 	__le32 flags; /* Flags defining array states for reshaping */
1782 
1783 	/*
1784 	 * This offset tracks the progress of a raid
1785 	 * set reshape in order to be able to restart it
1786 	 */
1787 	__le64 reshape_position;
1788 
1789 	/*
1790 	 * These define the properties of the array in case of an interrupted reshape
1791 	 */
1792 	__le32 new_level;
1793 	__le32 new_layout;
1794 	__le32 new_stripe_sectors;
1795 	__le32 delta_disks;
1796 
1797 	__le64 array_sectors; /* Array size in sectors */
1798 
1799 	/*
1800 	 * Sector offsets to data on devices (reshaping).
1801 	 * Needed to support out of place reshaping, thus
1802 	 * not writing over any stripes whilst converting
1803 	 * them from old to new layout
1804 	 */
1805 	__le64 data_offset;
1806 	__le64 new_data_offset;
1807 
1808 	__le64 sectors; /* Used device size in sectors */
1809 
1810 	/*
1811 	 * Additonal Bit field of devices indicating failures to support
1812 	 * up to 256 devices with the 1.9.0 on-disk metadata format
1813 	 */
1814 	__le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1815 
1816 	__le32 incompat_features;	/* Used to indicate any incompatible features */
1817 
1818 	/* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1819 } __packed;
1820 
1821 /*
1822  * Check for reshape constraints on raid set @rs:
1823  *
1824  * - reshape function non-existent
1825  * - degraded set
1826  * - ongoing recovery
1827  * - ongoing reshape
1828  *
1829  * Returns 0 if none or -EPERM if given constraint
1830  * and error message reference in @errmsg
1831  */
1832 static int rs_check_reshape(struct raid_set *rs)
1833 {
1834 	struct mddev *mddev = &rs->md;
1835 
1836 	if (!mddev->pers || !mddev->pers->check_reshape)
1837 		rs->ti->error = "Reshape not supported";
1838 	else if (mddev->degraded)
1839 		rs->ti->error = "Can't reshape degraded raid set";
1840 	else if (rs_is_recovering(rs))
1841 		rs->ti->error = "Convert request on recovering raid set prohibited";
1842 	else if (rs_is_reshaping(rs))
1843 		rs->ti->error = "raid set already reshaping!";
1844 	else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1845 		rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1846 	else
1847 		return 0;
1848 
1849 	return -EPERM;
1850 }
1851 
1852 static int read_disk_sb(struct md_rdev *rdev, int size)
1853 {
1854 	BUG_ON(!rdev->sb_page);
1855 
1856 	if (rdev->sb_loaded)
1857 		return 0;
1858 
1859 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1860 		DMERR("Failed to read superblock of device at position %d",
1861 		      rdev->raid_disk);
1862 		md_error(rdev->mddev, rdev);
1863 		return -EINVAL;
1864 	}
1865 
1866 	rdev->sb_loaded = 1;
1867 
1868 	return 0;
1869 }
1870 
1871 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1872 {
1873 	failed_devices[0] = le64_to_cpu(sb->failed_devices);
1874 	memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1875 
1876 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1877 		int i = ARRAY_SIZE(sb->extended_failed_devices);
1878 
1879 		while (i--)
1880 			failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1881 	}
1882 }
1883 
1884 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1885 {
1886 	int i = ARRAY_SIZE(sb->extended_failed_devices);
1887 
1888 	sb->failed_devices = cpu_to_le64(failed_devices[0]);
1889 	while (i--)
1890 		sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1891 }
1892 
1893 /*
1894  * Synchronize the superblock members with the raid set properties
1895  *
1896  * All superblock data is little endian.
1897  */
1898 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1899 {
1900 	bool update_failed_devices = false;
1901 	unsigned int i;
1902 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1903 	struct dm_raid_superblock *sb;
1904 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
1905 
1906 	/* No metadata device, no superblock */
1907 	if (!rdev->meta_bdev)
1908 		return;
1909 
1910 	BUG_ON(!rdev->sb_page);
1911 
1912 	sb = page_address(rdev->sb_page);
1913 
1914 	sb_retrieve_failed_devices(sb, failed_devices);
1915 
1916 	for (i = 0; i < rs->raid_disks; i++)
1917 		if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1918 			update_failed_devices = true;
1919 			set_bit(i, (void *) failed_devices);
1920 		}
1921 
1922 	if (update_failed_devices)
1923 		sb_update_failed_devices(sb, failed_devices);
1924 
1925 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1926 	sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1927 
1928 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
1929 	sb->array_position = cpu_to_le32(rdev->raid_disk);
1930 
1931 	sb->events = cpu_to_le64(mddev->events);
1932 
1933 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1934 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1935 
1936 	sb->level = cpu_to_le32(mddev->level);
1937 	sb->layout = cpu_to_le32(mddev->layout);
1938 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1939 
1940 	sb->new_level = cpu_to_le32(mddev->new_level);
1941 	sb->new_layout = cpu_to_le32(mddev->new_layout);
1942 	sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1943 
1944 	sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1945 
1946 	smp_rmb(); /* Make sure we access most recent reshape position */
1947 	sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1948 	if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1949 		/* Flag ongoing reshape */
1950 		sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1951 
1952 		if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1953 			sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1954 	} else {
1955 		/* Clear reshape flags */
1956 		sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1957 	}
1958 
1959 	sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1960 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1961 	sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1962 	sb->sectors = cpu_to_le64(rdev->sectors);
1963 	sb->incompat_features = cpu_to_le32(0);
1964 
1965 	/* Zero out the rest of the payload after the size of the superblock */
1966 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1967 }
1968 
1969 /*
1970  * super_load
1971  *
1972  * This function creates a superblock if one is not found on the device
1973  * and will decide which superblock to use if there's a choice.
1974  *
1975  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1976  */
1977 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1978 {
1979 	int r;
1980 	struct dm_raid_superblock *sb;
1981 	struct dm_raid_superblock *refsb;
1982 	uint64_t events_sb, events_refsb;
1983 
1984 	rdev->sb_start = 0;
1985 	rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1986 	if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1987 		DMERR("superblock size of a logical block is no longer valid");
1988 		return -EINVAL;
1989 	}
1990 
1991 	r = read_disk_sb(rdev, rdev->sb_size);
1992 	if (r)
1993 		return r;
1994 
1995 	sb = page_address(rdev->sb_page);
1996 
1997 	/*
1998 	 * Two cases that we want to write new superblocks and rebuild:
1999 	 * 1) New device (no matching magic number)
2000 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2001 	 */
2002 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2003 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2004 		super_sync(rdev->mddev, rdev);
2005 
2006 		set_bit(FirstUse, &rdev->flags);
2007 		sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2008 
2009 		/* Force writing of superblocks to disk */
2010 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
2011 
2012 		/* Any superblock is better than none, choose that if given */
2013 		return refdev ? 0 : 1;
2014 	}
2015 
2016 	if (!refdev)
2017 		return 1;
2018 
2019 	events_sb = le64_to_cpu(sb->events);
2020 
2021 	refsb = page_address(refdev->sb_page);
2022 	events_refsb = le64_to_cpu(refsb->events);
2023 
2024 	return (events_sb > events_refsb) ? 1 : 0;
2025 }
2026 
2027 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2028 {
2029 	int role;
2030 	unsigned int d;
2031 	struct mddev *mddev = &rs->md;
2032 	uint64_t events_sb;
2033 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2034 	struct dm_raid_superblock *sb;
2035 	uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2036 	struct md_rdev *r;
2037 	struct dm_raid_superblock *sb2;
2038 
2039 	sb = page_address(rdev->sb_page);
2040 	events_sb = le64_to_cpu(sb->events);
2041 
2042 	/*
2043 	 * Initialise to 1 if this is a new superblock.
2044 	 */
2045 	mddev->events = events_sb ? : 1;
2046 
2047 	mddev->reshape_position = MaxSector;
2048 
2049 	/*
2050 	 * Reshaping is supported, e.g. reshape_position is valid
2051 	 * in superblock and superblock content is authoritative.
2052 	 */
2053 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2054 		/* Superblock is authoritative wrt given raid set layout! */
2055 		mddev->raid_disks = le32_to_cpu(sb->num_devices);
2056 		mddev->level = le32_to_cpu(sb->level);
2057 		mddev->layout = le32_to_cpu(sb->layout);
2058 		mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2059 		mddev->new_level = le32_to_cpu(sb->new_level);
2060 		mddev->new_layout = le32_to_cpu(sb->new_layout);
2061 		mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2062 		mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2063 		mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2064 
2065 		/* raid was reshaping and got interrupted */
2066 		if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2067 			if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2068 				DMERR("Reshape requested but raid set is still reshaping");
2069 				return -EINVAL;
2070 			}
2071 
2072 			if (mddev->delta_disks < 0 ||
2073 			    (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2074 				mddev->reshape_backwards = 1;
2075 			else
2076 				mddev->reshape_backwards = 0;
2077 
2078 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2079 			rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2080 		}
2081 
2082 	} else {
2083 		/*
2084 		 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2085 		 */
2086 		if (le32_to_cpu(sb->level) != mddev->level) {
2087 			DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2088 			return -EINVAL;
2089 		}
2090 		if (le32_to_cpu(sb->layout) != mddev->layout) {
2091 			DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2092 			DMERR("	 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2093 			DMERR("	 Old layout: %s w/ %d copies",
2094 			      raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2095 			      raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2096 			DMERR("	 New layout: %s w/ %d copies",
2097 			      raid10_md_layout_to_format(mddev->layout),
2098 			      raid10_md_layout_to_copies(mddev->layout));
2099 			return -EINVAL;
2100 		}
2101 		if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2102 			DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2103 			return -EINVAL;
2104 		}
2105 
2106 		/* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2107 		if (!rt_is_raid1(rs->raid_type) &&
2108 		    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2109 			DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2110 			      sb->num_devices, mddev->raid_disks);
2111 			return -EINVAL;
2112 		}
2113 
2114 		/* Table line is checked vs. authoritative superblock */
2115 		rs_set_new(rs);
2116 	}
2117 
2118 	if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2119 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2120 
2121 	/*
2122 	 * During load, we set FirstUse if a new superblock was written.
2123 	 * There are two reasons we might not have a superblock:
2124 	 * 1) The raid set is brand new - in which case, all of the
2125 	 *    devices must have their In_sync bit set.	Also,
2126 	 *    recovery_cp must be 0, unless forced.
2127 	 * 2) This is a new device being added to an old raid set
2128 	 *    and the new device needs to be rebuilt - in which
2129 	 *    case the In_sync bit will /not/ be set and
2130 	 *    recovery_cp must be MaxSector.
2131 	 * 3) This is/are a new device(s) being added to an old
2132 	 *    raid set during takeover to a higher raid level
2133 	 *    to provide capacity for redundancy or during reshape
2134 	 *    to add capacity to grow the raid set.
2135 	 */
2136 	d = 0;
2137 	rdev_for_each(r, mddev) {
2138 		if (test_bit(FirstUse, &r->flags))
2139 			new_devs++;
2140 
2141 		if (!test_bit(In_sync, &r->flags)) {
2142 			DMINFO("Device %d specified for rebuild; clearing superblock",
2143 				r->raid_disk);
2144 			rebuilds++;
2145 
2146 			if (test_bit(FirstUse, &r->flags))
2147 				rebuild_and_new++;
2148 		}
2149 
2150 		d++;
2151 	}
2152 
2153 	if (new_devs == rs->raid_disks || !rebuilds) {
2154 		/* Replace a broken device */
2155 		if (new_devs == 1 && !rs->delta_disks)
2156 			;
2157 		if (new_devs == rs->raid_disks) {
2158 			DMINFO("Superblocks created for new raid set");
2159 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2160 		} else if (new_devs != rebuilds &&
2161 			   new_devs != rs->delta_disks) {
2162 			DMERR("New device injected into existing raid set without "
2163 			      "'delta_disks' or 'rebuild' parameter specified");
2164 			return -EINVAL;
2165 		}
2166 	} else if (new_devs && new_devs != rebuilds) {
2167 		DMERR("%u 'rebuild' devices cannot be injected into"
2168 		      " a raid set with %u other first-time devices",
2169 		      rebuilds, new_devs);
2170 		return -EINVAL;
2171 	} else if (rebuilds) {
2172 		if (rebuild_and_new && rebuilds != rebuild_and_new) {
2173 			DMERR("new device%s provided without 'rebuild'",
2174 			      new_devs > 1 ? "s" : "");
2175 			return -EINVAL;
2176 		} else if (rs_is_recovering(rs)) {
2177 			DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2178 			      (unsigned long long) mddev->recovery_cp);
2179 			return -EINVAL;
2180 		} else if (rs_is_reshaping(rs)) {
2181 			DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2182 			      (unsigned long long) mddev->reshape_position);
2183 			return -EINVAL;
2184 		}
2185 	}
2186 
2187 	/*
2188 	 * Now we set the Faulty bit for those devices that are
2189 	 * recorded in the superblock as failed.
2190 	 */
2191 	sb_retrieve_failed_devices(sb, failed_devices);
2192 	rdev_for_each(r, mddev) {
2193 		if (!r->sb_page)
2194 			continue;
2195 		sb2 = page_address(r->sb_page);
2196 		sb2->failed_devices = 0;
2197 		memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2198 
2199 		/*
2200 		 * Check for any device re-ordering.
2201 		 */
2202 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2203 			role = le32_to_cpu(sb2->array_position);
2204 			if (role < 0)
2205 				continue;
2206 
2207 			if (role != r->raid_disk) {
2208 				if (__is_raid10_near(mddev->layout)) {
2209 					if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2210 					    rs->raid_disks % rs->raid10_copies) {
2211 						rs->ti->error =
2212 							"Cannot change raid10 near set to odd # of devices!";
2213 						return -EINVAL;
2214 					}
2215 
2216 					sb2->array_position = cpu_to_le32(r->raid_disk);
2217 
2218 				} else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2219 					   !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2220 					   !rt_is_raid1(rs->raid_type)) {
2221 					rs->ti->error = "Cannot change device positions in raid set";
2222 					return -EINVAL;
2223 				}
2224 
2225 				DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2226 			}
2227 
2228 			/*
2229 			 * Partial recovery is performed on
2230 			 * returning failed devices.
2231 			 */
2232 			if (test_bit(role, (void *) failed_devices))
2233 				set_bit(Faulty, &r->flags);
2234 		}
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2241 {
2242 	struct mddev *mddev = &rs->md;
2243 	struct dm_raid_superblock *sb;
2244 
2245 	if (rs_is_raid0(rs) || !rdev->sb_page)
2246 		return 0;
2247 
2248 	sb = page_address(rdev->sb_page);
2249 
2250 	/*
2251 	 * If mddev->events is not set, we know we have not yet initialized
2252 	 * the array.
2253 	 */
2254 	if (!mddev->events && super_init_validation(rs, rdev))
2255 		return -EINVAL;
2256 
2257 	if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2258 		rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2259 		return -EINVAL;
2260 	}
2261 
2262 	if (sb->incompat_features) {
2263 		rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2264 		return -EINVAL;
2265 	}
2266 
2267 	/* Enable bitmap creation for RAID levels != 0 */
2268 	mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2269 	rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2270 
2271 	if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2272 		/* Retrieve device size stored in superblock to be prepared for shrink */
2273 		rdev->sectors = le64_to_cpu(sb->sectors);
2274 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2275 		if (rdev->recovery_offset == MaxSector)
2276 			set_bit(In_sync, &rdev->flags);
2277 		/*
2278 		 * If no reshape in progress -> we're recovering single
2279 		 * disk(s) and have to set the device(s) to out-of-sync
2280 		 */
2281 		else if (!rs_is_reshaping(rs))
2282 			clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2283 	}
2284 
2285 	/*
2286 	 * If a device comes back, set it as not In_sync and no longer faulty.
2287 	 */
2288 	if (test_and_clear_bit(Faulty, &rdev->flags)) {
2289 		rdev->recovery_offset = 0;
2290 		clear_bit(In_sync, &rdev->flags);
2291 		rdev->saved_raid_disk = rdev->raid_disk;
2292 	}
2293 
2294 	/* Reshape support -> restore repective data offsets */
2295 	rdev->data_offset = le64_to_cpu(sb->data_offset);
2296 	rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2297 
2298 	return 0;
2299 }
2300 
2301 /*
2302  * Analyse superblocks and select the freshest.
2303  */
2304 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2305 {
2306 	int r;
2307 	struct raid_dev *dev;
2308 	struct md_rdev *rdev, *tmp, *freshest;
2309 	struct mddev *mddev = &rs->md;
2310 
2311 	freshest = NULL;
2312 	rdev_for_each_safe(rdev, tmp, mddev) {
2313 		/*
2314 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
2315 		 * the array to undergo initialization again as
2316 		 * though it were new.	This is the intended effect
2317 		 * of the "sync" directive.
2318 		 *
2319 		 * When reshaping capability is added, we must ensure
2320 		 * that the "sync" directive is disallowed during the
2321 		 * reshape.
2322 		 */
2323 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2324 			continue;
2325 
2326 		if (!rdev->meta_bdev)
2327 			continue;
2328 
2329 		r = super_load(rdev, freshest);
2330 
2331 		switch (r) {
2332 		case 1:
2333 			freshest = rdev;
2334 			break;
2335 		case 0:
2336 			break;
2337 		default:
2338 			dev = container_of(rdev, struct raid_dev, rdev);
2339 			if (dev->meta_dev)
2340 				dm_put_device(ti, dev->meta_dev);
2341 
2342 			dev->meta_dev = NULL;
2343 			rdev->meta_bdev = NULL;
2344 
2345 			if (rdev->sb_page)
2346 				put_page(rdev->sb_page);
2347 
2348 			rdev->sb_page = NULL;
2349 
2350 			rdev->sb_loaded = 0;
2351 
2352 			/*
2353 			 * We might be able to salvage the data device
2354 			 * even though the meta device has failed.  For
2355 			 * now, we behave as though '- -' had been
2356 			 * set for this device in the table.
2357 			 */
2358 			if (dev->data_dev)
2359 				dm_put_device(ti, dev->data_dev);
2360 
2361 			dev->data_dev = NULL;
2362 			rdev->bdev = NULL;
2363 
2364 			list_del(&rdev->same_set);
2365 		}
2366 	}
2367 
2368 	if (!freshest)
2369 		return 0;
2370 
2371 	if (validate_raid_redundancy(rs)) {
2372 		rs->ti->error = "Insufficient redundancy to activate array";
2373 		return -EINVAL;
2374 	}
2375 
2376 	/*
2377 	 * Validation of the freshest device provides the source of
2378 	 * validation for the remaining devices.
2379 	 */
2380 	rs->ti->error = "Unable to assemble array: Invalid superblocks";
2381 	if (super_validate(rs, freshest))
2382 		return -EINVAL;
2383 
2384 	rdev_for_each(rdev, mddev)
2385 		if ((rdev != freshest) && super_validate(rs, rdev))
2386 			return -EINVAL;
2387 	return 0;
2388 }
2389 
2390 /*
2391  * Adjust data_offset and new_data_offset on all disk members of @rs
2392  * for out of place reshaping if requested by contructor
2393  *
2394  * We need free space at the beginning of each raid disk for forward
2395  * and at the end for backward reshapes which userspace has to provide
2396  * via remapping/reordering of space.
2397  */
2398 static int rs_adjust_data_offsets(struct raid_set *rs)
2399 {
2400 	sector_t data_offset = 0, new_data_offset = 0;
2401 	struct md_rdev *rdev;
2402 
2403 	/* Constructor did not request data offset change */
2404 	if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2405 		if (!rs_is_reshapable(rs))
2406 			goto out;
2407 
2408 		return 0;
2409 	}
2410 
2411 	/* HM FIXME: get InSync raid_dev? */
2412 	rdev = &rs->dev[0].rdev;
2413 
2414 	if (rs->delta_disks < 0) {
2415 		/*
2416 		 * Removing disks (reshaping backwards):
2417 		 *
2418 		 * - before reshape: data is at offset 0 and free space
2419 		 *		     is at end of each component LV
2420 		 *
2421 		 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2422 		 */
2423 		data_offset = 0;
2424 		new_data_offset = rs->data_offset;
2425 
2426 	} else if (rs->delta_disks > 0) {
2427 		/*
2428 		 * Adding disks (reshaping forwards):
2429 		 *
2430 		 * - before reshape: data is at offset rs->data_offset != 0 and
2431 		 *		     free space is at begin of each component LV
2432 		 *
2433 		 * - after reshape: data is at offset 0 on each component LV
2434 		 */
2435 		data_offset = rs->data_offset;
2436 		new_data_offset = 0;
2437 
2438 	} else {
2439 		/*
2440 		 * User space passes in 0 for data offset after having removed reshape space
2441 		 *
2442 		 * - or - (data offset != 0)
2443 		 *
2444 		 * Changing RAID layout or chunk size -> toggle offsets
2445 		 *
2446 		 * - before reshape: data is at offset rs->data_offset 0 and
2447 		 *		     free space is at end of each component LV
2448 		 *		     -or-
2449 		 *                   data is at offset rs->data_offset != 0 and
2450 		 *		     free space is at begin of each component LV
2451 		 *
2452 		 * - after reshape: data is at offset 0 if it was at offset != 0
2453 		 *                  or at offset != 0 if it was at offset 0
2454 		 *                  on each component LV
2455 		 *
2456 		 */
2457 		data_offset = rs->data_offset ? rdev->data_offset : 0;
2458 		new_data_offset = data_offset ? 0 : rs->data_offset;
2459 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2460 	}
2461 
2462 	/*
2463 	 * Make sure we got a minimum amount of free sectors per device
2464 	 */
2465 	if (rs->data_offset &&
2466 	    to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2467 		rs->ti->error = data_offset ? "No space for forward reshape" :
2468 					      "No space for backward reshape";
2469 		return -ENOSPC;
2470 	}
2471 out:
2472 	/* Adjust data offsets on all rdevs */
2473 	rdev_for_each(rdev, &rs->md) {
2474 		rdev->data_offset = data_offset;
2475 		rdev->new_data_offset = new_data_offset;
2476 	}
2477 
2478 	return 0;
2479 }
2480 
2481 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2482 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2483 {
2484 	int i = 0;
2485 	struct md_rdev *rdev;
2486 
2487 	rdev_for_each(rdev, &rs->md) {
2488 		rdev->raid_disk = i++;
2489 		rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2490 	}
2491 }
2492 
2493 /*
2494  * Setup @rs for takeover by a different raid level
2495  */
2496 static int rs_setup_takeover(struct raid_set *rs)
2497 {
2498 	struct mddev *mddev = &rs->md;
2499 	struct md_rdev *rdev;
2500 	unsigned int d = mddev->raid_disks = rs->raid_disks;
2501 	sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2502 
2503 	if (rt_is_raid10(rs->raid_type)) {
2504 		if (mddev->level == 0) {
2505 			/* Userpace reordered disks -> adjust raid_disk indexes */
2506 			__reorder_raid_disk_indexes(rs);
2507 
2508 			/* raid0 -> raid10_far layout */
2509 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2510 								   rs->raid10_copies);
2511 		} else if (mddev->level == 1)
2512 			/* raid1 -> raid10_near layout */
2513 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2514 								   rs->raid_disks);
2515 		else
2516 			return -EINVAL;
2517 
2518 	}
2519 
2520 	clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2521 	mddev->recovery_cp = MaxSector;
2522 
2523 	while (d--) {
2524 		rdev = &rs->dev[d].rdev;
2525 
2526 		if (test_bit(d, (void *) rs->rebuild_disks)) {
2527 			clear_bit(In_sync, &rdev->flags);
2528 			clear_bit(Faulty, &rdev->flags);
2529 			mddev->recovery_cp = rdev->recovery_offset = 0;
2530 			/* Bitmap has to be created when we do an "up" takeover */
2531 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2532 		}
2533 
2534 		rdev->new_data_offset = new_data_offset;
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 /* Prepare @rs for reshape */
2541 static int rs_prepare_reshape(struct raid_set *rs)
2542 {
2543 	bool reshape;
2544 	struct mddev *mddev = &rs->md;
2545 
2546 	if (rs_is_raid10(rs)) {
2547 		if (rs->raid_disks != mddev->raid_disks &&
2548 		    __is_raid10_near(mddev->layout) &&
2549 		    rs->raid10_copies &&
2550 		    rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2551 			/*
2552 			 * raid disk have to be multiple of data copies to allow this conversion,
2553 			 *
2554 			 * This is actually not a reshape it is a
2555 			 * rebuild of any additional mirrors per group
2556 			 */
2557 			if (rs->raid_disks % rs->raid10_copies) {
2558 				rs->ti->error = "Can't reshape raid10 mirror groups";
2559 				return -EINVAL;
2560 			}
2561 
2562 			/* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2563 			__reorder_raid_disk_indexes(rs);
2564 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2565 								   rs->raid10_copies);
2566 			mddev->new_layout = mddev->layout;
2567 			reshape = false;
2568 		} else
2569 			reshape = true;
2570 
2571 	} else if (rs_is_raid456(rs))
2572 		reshape = true;
2573 
2574 	else if (rs_is_raid1(rs)) {
2575 		if (rs->delta_disks) {
2576 			/* Process raid1 via delta_disks */
2577 			mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2578 			reshape = true;
2579 		} else {
2580 			/* Process raid1 without delta_disks */
2581 			mddev->raid_disks = rs->raid_disks;
2582 			set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2583 			reshape = false;
2584 		}
2585 	} else {
2586 		rs->ti->error = "Called with bogus raid type";
2587 		return -EINVAL;
2588 	}
2589 
2590 	if (reshape) {
2591 		set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2592 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2593 		set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2594 	} else if (mddev->raid_disks < rs->raid_disks)
2595 		/* Create new superblocks and bitmaps, if any new disks */
2596 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2597 
2598 	return 0;
2599 }
2600 
2601 /*
2602  *
2603  * - change raid layout
2604  * - change chunk size
2605  * - add disks
2606  * - remove disks
2607  */
2608 static int rs_setup_reshape(struct raid_set *rs)
2609 {
2610 	int r = 0;
2611 	unsigned int cur_raid_devs, d;
2612 	struct mddev *mddev = &rs->md;
2613 	struct md_rdev *rdev;
2614 
2615 	mddev->delta_disks = rs->delta_disks;
2616 	cur_raid_devs = mddev->raid_disks;
2617 
2618 	/* Ignore impossible layout change whilst adding/removing disks */
2619 	if (mddev->delta_disks &&
2620 	    mddev->layout != mddev->new_layout) {
2621 		DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2622 		mddev->new_layout = mddev->layout;
2623 	}
2624 
2625 	/*
2626 	 * Adjust array size:
2627 	 *
2628 	 * - in case of adding disks, array size has
2629 	 *   to grow after the disk adding reshape,
2630 	 *   which'll hapen in the event handler;
2631 	 *   reshape will happen forward, so space has to
2632 	 *   be available at the beginning of each disk
2633 	 *
2634 	 * - in case of removing disks, array size
2635 	 *   has to shrink before starting the reshape,
2636 	 *   which'll happen here;
2637 	 *   reshape will happen backward, so space has to
2638 	 *   be available at the end of each disk
2639 	 *
2640 	 * - data_offset and new_data_offset are
2641 	 *   adjusted for aforementioned out of place
2642 	 *   reshaping based on userspace passing in
2643 	 *   the "data_offset <sectors>" key/value
2644 	 *   pair via the constructor
2645 	 */
2646 
2647 	/* Add disk(s) */
2648 	if (rs->delta_disks > 0) {
2649 		/* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2650 		for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2651 			rdev = &rs->dev[d].rdev;
2652 			clear_bit(In_sync, &rdev->flags);
2653 
2654 			/*
2655 			 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2656 			 * by md, which'll store that erroneously in the superblock on reshape
2657 			 */
2658 			rdev->saved_raid_disk = -1;
2659 			rdev->raid_disk = d;
2660 
2661 			rdev->sectors = mddev->dev_sectors;
2662 			rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2663 		}
2664 
2665 		mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2666 
2667 	/* Remove disk(s) */
2668 	} else if (rs->delta_disks < 0) {
2669 		r = rs_set_dev_and_array_sectors(rs, true);
2670 		mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2671 
2672 	/* Change layout and/or chunk size */
2673 	} else {
2674 		/*
2675 		 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2676 		 *
2677 		 * keeping number of disks and do layout change ->
2678 		 *
2679 		 * toggle reshape_backward depending on data_offset:
2680 		 *
2681 		 * - free space upfront -> reshape forward
2682 		 *
2683 		 * - free space at the end -> reshape backward
2684 		 *
2685 		 *
2686 		 * This utilizes free reshape space avoiding the need
2687 		 * for userspace to move (parts of) LV segments in
2688 		 * case of layout/chunksize change  (for disk
2689 		 * adding/removing reshape space has to be at
2690 		 * the proper address (see above with delta_disks):
2691 		 *
2692 		 * add disk(s)   -> begin
2693 		 * remove disk(s)-> end
2694 		 */
2695 		mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2696 	}
2697 
2698 	return r;
2699 }
2700 
2701 /*
2702  * Enable/disable discard support on RAID set depending on
2703  * RAID level and discard properties of underlying RAID members.
2704  */
2705 static void configure_discard_support(struct raid_set *rs)
2706 {
2707 	int i;
2708 	bool raid456;
2709 	struct dm_target *ti = rs->ti;
2710 
2711 	/* Assume discards not supported until after checks below. */
2712 	ti->discards_supported = false;
2713 
2714 	/* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2715 	raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2716 
2717 	for (i = 0; i < rs->raid_disks; i++) {
2718 		struct request_queue *q;
2719 
2720 		if (!rs->dev[i].rdev.bdev)
2721 			continue;
2722 
2723 		q = bdev_get_queue(rs->dev[i].rdev.bdev);
2724 		if (!q || !blk_queue_discard(q))
2725 			return;
2726 
2727 		if (raid456) {
2728 			if (!q->limits.discard_zeroes_data)
2729 				return;
2730 			if (!devices_handle_discard_safely) {
2731 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2732 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2733 				return;
2734 			}
2735 		}
2736 	}
2737 
2738 	/* All RAID members properly support discards */
2739 	ti->discards_supported = true;
2740 
2741 	/*
2742 	 * RAID1 and RAID10 personalities require bio splitting,
2743 	 * RAID0/4/5/6 don't and process large discard bios properly.
2744 	 */
2745 	ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2746 	ti->num_discard_bios = 1;
2747 }
2748 
2749 /*
2750  * Construct a RAID0/1/10/4/5/6 mapping:
2751  * Args:
2752  *	<raid_type> <#raid_params> <raid_params>{0,}	\
2753  *	<#raid_devs> [<meta_dev1> <dev1>]{1,}
2754  *
2755  * <raid_params> varies by <raid_type>.	 See 'parse_raid_params' for
2756  * details on possible <raid_params>.
2757  *
2758  * Userspace is free to initialize the metadata devices, hence the superblocks to
2759  * enforce recreation based on the passed in table parameters.
2760  *
2761  */
2762 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2763 {
2764 	int r;
2765 	bool resize;
2766 	struct raid_type *rt;
2767 	unsigned int num_raid_params, num_raid_devs;
2768 	sector_t calculated_dev_sectors;
2769 	struct raid_set *rs = NULL;
2770 	const char *arg;
2771 	struct rs_layout rs_layout;
2772 	struct dm_arg_set as = { argc, argv }, as_nrd;
2773 	struct dm_arg _args[] = {
2774 		{ 0, as.argc, "Cannot understand number of raid parameters" },
2775 		{ 1, 254, "Cannot understand number of raid devices parameters" }
2776 	};
2777 
2778 	/* Must have <raid_type> */
2779 	arg = dm_shift_arg(&as);
2780 	if (!arg) {
2781 		ti->error = "No arguments";
2782 		return -EINVAL;
2783 	}
2784 
2785 	rt = get_raid_type(arg);
2786 	if (!rt) {
2787 		ti->error = "Unrecognised raid_type";
2788 		return -EINVAL;
2789 	}
2790 
2791 	/* Must have <#raid_params> */
2792 	if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2793 		return -EINVAL;
2794 
2795 	/* number of raid device tupples <meta_dev data_dev> */
2796 	as_nrd = as;
2797 	dm_consume_args(&as_nrd, num_raid_params);
2798 	_args[1].max = (as_nrd.argc - 1) / 2;
2799 	if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2800 		return -EINVAL;
2801 
2802 	if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2803 		ti->error = "Invalid number of supplied raid devices";
2804 		return -EINVAL;
2805 	}
2806 
2807 	rs = raid_set_alloc(ti, rt, num_raid_devs);
2808 	if (IS_ERR(rs))
2809 		return PTR_ERR(rs);
2810 
2811 	r = parse_raid_params(rs, &as, num_raid_params);
2812 	if (r)
2813 		goto bad;
2814 
2815 	r = parse_dev_params(rs, &as);
2816 	if (r)
2817 		goto bad;
2818 
2819 	rs->md.sync_super = super_sync;
2820 
2821 	/*
2822 	 * Calculate ctr requested array and device sizes to allow
2823 	 * for superblock analysis needing device sizes defined.
2824 	 *
2825 	 * Any existing superblock will overwrite the array and device sizes
2826 	 */
2827 	r = rs_set_dev_and_array_sectors(rs, false);
2828 	if (r)
2829 		goto bad;
2830 
2831 	calculated_dev_sectors = rs->dev[0].rdev.sectors;
2832 
2833 	/*
2834 	 * Backup any new raid set level, layout, ...
2835 	 * requested to be able to compare to superblock
2836 	 * members for conversion decisions.
2837 	 */
2838 	rs_config_backup(rs, &rs_layout);
2839 
2840 	r = analyse_superblocks(ti, rs);
2841 	if (r)
2842 		goto bad;
2843 
2844 	resize = calculated_dev_sectors != rs->dev[0].rdev.sectors;
2845 
2846 	INIT_WORK(&rs->md.event_work, do_table_event);
2847 	ti->private = rs;
2848 	ti->num_flush_bios = 1;
2849 
2850 	/* Restore any requested new layout for conversion decision */
2851 	rs_config_restore(rs, &rs_layout);
2852 
2853 	/*
2854 	 * Now that we have any superblock metadata available,
2855 	 * check for new, recovering, reshaping, to be taken over,
2856 	 * to be reshaped or an existing, unchanged raid set to
2857 	 * run in sequence.
2858 	 */
2859 	if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2860 		/* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2861 		if (rs_is_raid6(rs) &&
2862 		    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2863 			ti->error = "'nosync' not allowed for new raid6 set";
2864 			r = -EINVAL;
2865 			goto bad;
2866 		}
2867 		rs_setup_recovery(rs, 0);
2868 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2869 		rs_set_new(rs);
2870 	} else if (rs_is_recovering(rs)) {
2871 		/* A recovering raid set may be resized */
2872 		; /* skip setup rs */
2873 	} else if (rs_is_reshaping(rs)) {
2874 		/* Have to reject size change request during reshape */
2875 		if (resize) {
2876 			ti->error = "Can't resize a reshaping raid set";
2877 			r = -EPERM;
2878 			goto bad;
2879 		}
2880 		/* skip setup rs */
2881 	} else if (rs_takeover_requested(rs)) {
2882 		if (rs_is_reshaping(rs)) {
2883 			ti->error = "Can't takeover a reshaping raid set";
2884 			r = -EPERM;
2885 			goto bad;
2886 		}
2887 
2888 		/*
2889 		 * If a takeover is needed, userspace sets any additional
2890 		 * devices to rebuild and we can check for a valid request here.
2891 		 *
2892 		 * If acceptible, set the level to the new requested
2893 		 * one, prohibit requesting recovery, allow the raid
2894 		 * set to run and store superblocks during resume.
2895 		 */
2896 		r = rs_check_takeover(rs);
2897 		if (r)
2898 			goto bad;
2899 
2900 		r = rs_setup_takeover(rs);
2901 		if (r)
2902 			goto bad;
2903 
2904 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2905 		set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2906 		/* Takeover ain't recovery, so disable recovery */
2907 		rs_setup_recovery(rs, MaxSector);
2908 		rs_set_new(rs);
2909 	} else if (rs_reshape_requested(rs)) {
2910 		/*
2911 		  * We can only prepare for a reshape here, because the
2912 		  * raid set needs to run to provide the repective reshape
2913 		  * check functions via its MD personality instance.
2914 		  *
2915 		  * So do the reshape check after md_run() succeeded.
2916 		  */
2917 		r = rs_prepare_reshape(rs);
2918 		if (r)
2919 			return r;
2920 
2921 		/* Reshaping ain't recovery, so disable recovery */
2922 		rs_setup_recovery(rs, MaxSector);
2923 		rs_set_cur(rs);
2924 	} else {
2925 		/* May not set recovery when a device rebuild is requested */
2926 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
2927 			rs_setup_recovery(rs, MaxSector);
2928 			set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2929 		} else
2930 			rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2931 					      0 : (resize ? calculated_dev_sectors : MaxSector));
2932 		rs_set_cur(rs);
2933 	}
2934 
2935 	/* If constructor requested it, change data and new_data offsets */
2936 	r = rs_adjust_data_offsets(rs);
2937 	if (r)
2938 		goto bad;
2939 
2940 	/* Start raid set read-only and assumed clean to change in raid_resume() */
2941 	rs->md.ro = 1;
2942 	rs->md.in_sync = 1;
2943 	set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2944 
2945 	/* Has to be held on running the array */
2946 	mddev_lock_nointr(&rs->md);
2947 	r = md_run(&rs->md);
2948 	rs->md.in_sync = 0; /* Assume already marked dirty */
2949 
2950 	if (r) {
2951 		ti->error = "Failed to run raid array";
2952 		mddev_unlock(&rs->md);
2953 		goto bad;
2954 	}
2955 
2956 	rs->callbacks.congested_fn = raid_is_congested;
2957 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2958 
2959 	mddev_suspend(&rs->md);
2960 
2961 	/* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2962 	if (rs_is_raid456(rs)) {
2963 		r = rs_set_raid456_stripe_cache(rs);
2964 		if (r)
2965 			goto bad_stripe_cache;
2966 	}
2967 
2968 	/* Now do an early reshape check */
2969 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2970 		r = rs_check_reshape(rs);
2971 		if (r)
2972 			goto bad_check_reshape;
2973 
2974 		/* Restore new, ctr requested layout to perform check */
2975 		rs_config_restore(rs, &rs_layout);
2976 
2977 		if (rs->md.pers->start_reshape) {
2978 			r = rs->md.pers->check_reshape(&rs->md);
2979 			if (r) {
2980 				ti->error = "Reshape check failed";
2981 				goto bad_check_reshape;
2982 			}
2983 		}
2984 	}
2985 
2986 	mddev_unlock(&rs->md);
2987 	return 0;
2988 
2989 bad_stripe_cache:
2990 bad_check_reshape:
2991 	md_stop(&rs->md);
2992 bad:
2993 	raid_set_free(rs);
2994 
2995 	return r;
2996 }
2997 
2998 static void raid_dtr(struct dm_target *ti)
2999 {
3000 	struct raid_set *rs = ti->private;
3001 
3002 	list_del_init(&rs->callbacks.list);
3003 	md_stop(&rs->md);
3004 	raid_set_free(rs);
3005 }
3006 
3007 static int raid_map(struct dm_target *ti, struct bio *bio)
3008 {
3009 	struct raid_set *rs = ti->private;
3010 	struct mddev *mddev = &rs->md;
3011 
3012 	/*
3013 	 * If we're reshaping to add disk(s)), ti->len and
3014 	 * mddev->array_sectors will differ during the process
3015 	 * (ti->len > mddev->array_sectors), so we have to requeue
3016 	 * bios with addresses > mddev->array_sectors here or
3017 	 * there will occur accesses past EOD of the component
3018 	 * data images thus erroring the raid set.
3019 	 */
3020 	if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3021 		return DM_MAPIO_REQUEUE;
3022 
3023 	mddev->pers->make_request(mddev, bio);
3024 
3025 	return DM_MAPIO_SUBMITTED;
3026 }
3027 
3028 /* Return string describing the current sync action of @mddev */
3029 static const char *decipher_sync_action(struct mddev *mddev)
3030 {
3031 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3032 		return "frozen";
3033 
3034 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3035 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3036 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3037 			return "reshape";
3038 
3039 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3041 				return "resync";
3042 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3043 				return "check";
3044 			return "repair";
3045 		}
3046 
3047 		if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3048 			return "recover";
3049 	}
3050 
3051 	return "idle";
3052 }
3053 
3054 /*
3055  * Return status string @rdev
3056  *
3057  * Status characters:
3058  *
3059  *  'D' = Dead/Failed device
3060  *  'a' = Alive but not in-sync
3061  *  'A' = Alive and in-sync
3062  */
3063 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3064 {
3065 	if (test_bit(Faulty, &rdev->flags))
3066 		return "D";
3067 	else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3068 		return "a";
3069 	else
3070 		return "A";
3071 }
3072 
3073 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3074 static sector_t rs_get_progress(struct raid_set *rs,
3075 				sector_t resync_max_sectors, bool *array_in_sync)
3076 {
3077 	sector_t r, recovery_cp, curr_resync_completed;
3078 	struct mddev *mddev = &rs->md;
3079 
3080 	curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3081 	recovery_cp = mddev->recovery_cp;
3082 	*array_in_sync = false;
3083 
3084 	if (rs_is_raid0(rs)) {
3085 		r = resync_max_sectors;
3086 		*array_in_sync = true;
3087 
3088 	} else {
3089 		r = mddev->reshape_position;
3090 
3091 		/* Reshape is relative to the array size */
3092 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3093 		    r != MaxSector) {
3094 			if (r == MaxSector) {
3095 				*array_in_sync = true;
3096 				r = resync_max_sectors;
3097 			} else {
3098 				/* Got to reverse on backward reshape */
3099 				if (mddev->reshape_backwards)
3100 					r = mddev->array_sectors - r;
3101 
3102 				/* Devide by # of data stripes */
3103 				sector_div(r, mddev_data_stripes(rs));
3104 			}
3105 
3106 		/* Sync is relative to the component device size */
3107 		} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3108 			r = curr_resync_completed;
3109 		else
3110 			r = recovery_cp;
3111 
3112 		if (r == MaxSector) {
3113 			/*
3114 			 * Sync complete.
3115 			 */
3116 			*array_in_sync = true;
3117 			r = resync_max_sectors;
3118 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3119 			/*
3120 			 * If "check" or "repair" is occurring, the raid set has
3121 			 * undergone an initial sync and the health characters
3122 			 * should not be 'a' anymore.
3123 			 */
3124 			*array_in_sync = true;
3125 		} else {
3126 			struct md_rdev *rdev;
3127 
3128 			/*
3129 			 * The raid set may be doing an initial sync, or it may
3130 			 * be rebuilding individual components.	 If all the
3131 			 * devices are In_sync, then it is the raid set that is
3132 			 * being initialized.
3133 			 */
3134 			rdev_for_each(rdev, mddev)
3135 				if (!test_bit(In_sync, &rdev->flags))
3136 					*array_in_sync = true;
3137 #if 0
3138 			r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3139 #endif
3140 		}
3141 	}
3142 
3143 	return r;
3144 }
3145 
3146 /* Helper to return @dev name or "-" if !@dev */
3147 static const char *__get_dev_name(struct dm_dev *dev)
3148 {
3149 	return dev ? dev->name : "-";
3150 }
3151 
3152 static void raid_status(struct dm_target *ti, status_type_t type,
3153 			unsigned int status_flags, char *result, unsigned int maxlen)
3154 {
3155 	struct raid_set *rs = ti->private;
3156 	struct mddev *mddev = &rs->md;
3157 	struct r5conf *conf = mddev->private;
3158 	int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3159 	bool array_in_sync;
3160 	unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3161 	unsigned int sz = 0;
3162 	unsigned int rebuild_disks;
3163 	unsigned int write_mostly_params = 0;
3164 	sector_t progress, resync_max_sectors, resync_mismatches;
3165 	const char *sync_action;
3166 	struct raid_type *rt;
3167 	struct md_rdev *rdev;
3168 
3169 	switch (type) {
3170 	case STATUSTYPE_INFO:
3171 		/* *Should* always succeed */
3172 		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3173 		if (!rt)
3174 			return;
3175 
3176 		DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3177 
3178 		/* Access most recent mddev properties for status output */
3179 		smp_rmb();
3180 		/* Get sensible max sectors even if raid set not yet started */
3181 		resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3182 				      mddev->resync_max_sectors : mddev->dev_sectors;
3183 		progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3184 		resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3185 				    atomic64_read(&mddev->resync_mismatches) : 0;
3186 		sync_action = decipher_sync_action(&rs->md);
3187 
3188 		/* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3189 		rdev_for_each(rdev, mddev)
3190 			DMEMIT(__raid_dev_status(rdev, array_in_sync));
3191 
3192 		/*
3193 		 * In-sync/Reshape ratio:
3194 		 *  The in-sync ratio shows the progress of:
3195 		 *   - Initializing the raid set
3196 		 *   - Rebuilding a subset of devices of the raid set
3197 		 *  The user can distinguish between the two by referring
3198 		 *  to the status characters.
3199 		 *
3200 		 *  The reshape ratio shows the progress of
3201 		 *  changing the raid layout or the number of
3202 		 *  disks of a raid set
3203 		 */
3204 		DMEMIT(" %llu/%llu", (unsigned long long) progress,
3205 				     (unsigned long long) resync_max_sectors);
3206 
3207 		/*
3208 		 * v1.5.0+:
3209 		 *
3210 		 * Sync action:
3211 		 *   See Documentation/device-mapper/dm-raid.txt for
3212 		 *   information on each of these states.
3213 		 */
3214 		DMEMIT(" %s", sync_action);
3215 
3216 		/*
3217 		 * v1.5.0+:
3218 		 *
3219 		 * resync_mismatches/mismatch_cnt
3220 		 *   This field shows the number of discrepancies found when
3221 		 *   performing a "check" of the raid set.
3222 		 */
3223 		DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3224 
3225 		/*
3226 		 * v1.9.0+:
3227 		 *
3228 		 * data_offset (needed for out of space reshaping)
3229 		 *   This field shows the data offset into the data
3230 		 *   image LV where the first stripes data starts.
3231 		 *
3232 		 * We keep data_offset equal on all raid disks of the set,
3233 		 * so retrieving it from the first raid disk is sufficient.
3234 		 */
3235 		DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3236 		break;
3237 
3238 	case STATUSTYPE_TABLE:
3239 		/* Report the table line string you would use to construct this raid set */
3240 
3241 		/* Calculate raid parameter count */
3242 		for (i = 0; i < rs->raid_disks; i++)
3243 			if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3244 				write_mostly_params += 2;
3245 		rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3246 		raid_param_cnt += rebuild_disks * 2 +
3247 				  write_mostly_params +
3248 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3249 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3250 		/* Emit table line */
3251 		DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3252 		if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3253 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3254 					 raid10_md_layout_to_format(mddev->layout));
3255 		if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3256 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3257 					 raid10_md_layout_to_copies(mddev->layout));
3258 		if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3259 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3260 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3261 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3262 		if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3263 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3264 					   (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3265 		if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3266 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3267 					   (unsigned long long) rs->data_offset);
3268 		if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3269 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3270 					  mddev->bitmap_info.daemon_sleep);
3271 		if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3272 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3273 					 max(rs->delta_disks, mddev->delta_disks));
3274 		if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3275 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3276 					 max_nr_stripes);
3277 		if (rebuild_disks)
3278 			for (i = 0; i < rs->raid_disks; i++)
3279 				if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3280 					DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3281 							 rs->dev[i].rdev.raid_disk);
3282 		if (write_mostly_params)
3283 			for (i = 0; i < rs->raid_disks; i++)
3284 				if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3285 					DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3286 					       rs->dev[i].rdev.raid_disk);
3287 		if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3288 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3289 					  mddev->bitmap_info.max_write_behind);
3290 		if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3291 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3292 					 mddev->sync_speed_max);
3293 		if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3294 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3295 					 mddev->sync_speed_min);
3296 		DMEMIT(" %d", rs->raid_disks);
3297 		for (i = 0; i < rs->raid_disks; i++)
3298 			DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3299 					 __get_dev_name(rs->dev[i].data_dev));
3300 	}
3301 }
3302 
3303 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3304 {
3305 	struct raid_set *rs = ti->private;
3306 	struct mddev *mddev = &rs->md;
3307 
3308 	if (!mddev->pers || !mddev->pers->sync_request)
3309 		return -EINVAL;
3310 
3311 	if (!strcasecmp(argv[0], "frozen"))
3312 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3313 	else
3314 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3315 
3316 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3317 		if (mddev->sync_thread) {
3318 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3319 			md_reap_sync_thread(mddev);
3320 		}
3321 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3322 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3323 		return -EBUSY;
3324 	else if (!strcasecmp(argv[0], "resync"))
3325 		; /* MD_RECOVERY_NEEDED set below */
3326 	else if (!strcasecmp(argv[0], "recover"))
3327 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3328 	else {
3329 		if (!strcasecmp(argv[0], "check"))
3330 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3331 		else if (!!strcasecmp(argv[0], "repair"))
3332 			return -EINVAL;
3333 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3334 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3335 	}
3336 	if (mddev->ro == 2) {
3337 		/* A write to sync_action is enough to justify
3338 		 * canceling read-auto mode
3339 		 */
3340 		mddev->ro = 0;
3341 		if (!mddev->suspended && mddev->sync_thread)
3342 			md_wakeup_thread(mddev->sync_thread);
3343 	}
3344 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3345 	if (!mddev->suspended && mddev->thread)
3346 		md_wakeup_thread(mddev->thread);
3347 
3348 	return 0;
3349 }
3350 
3351 static int raid_iterate_devices(struct dm_target *ti,
3352 				iterate_devices_callout_fn fn, void *data)
3353 {
3354 	struct raid_set *rs = ti->private;
3355 	unsigned int i;
3356 	int r = 0;
3357 
3358 	for (i = 0; !r && i < rs->md.raid_disks; i++)
3359 		if (rs->dev[i].data_dev)
3360 			r = fn(ti,
3361 				 rs->dev[i].data_dev,
3362 				 0, /* No offset on data devs */
3363 				 rs->md.dev_sectors,
3364 				 data);
3365 
3366 	return r;
3367 }
3368 
3369 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3370 {
3371 	struct raid_set *rs = ti->private;
3372 	unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3373 
3374 	blk_limits_io_min(limits, chunk_size);
3375 	blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3376 }
3377 
3378 static void raid_presuspend(struct dm_target *ti)
3379 {
3380 	struct raid_set *rs = ti->private;
3381 
3382 	md_stop_writes(&rs->md);
3383 }
3384 
3385 static void raid_postsuspend(struct dm_target *ti)
3386 {
3387 	struct raid_set *rs = ti->private;
3388 
3389 	if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3390 		if (!rs->md.suspended)
3391 			mddev_suspend(&rs->md);
3392 		rs->md.ro = 1;
3393 	}
3394 }
3395 
3396 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3397 {
3398 	int i;
3399 	uint64_t failed_devices, cleared_failed_devices = 0;
3400 	unsigned long flags;
3401 	struct dm_raid_superblock *sb;
3402 	struct md_rdev *r;
3403 
3404 	for (i = 0; i < rs->md.raid_disks; i++) {
3405 		r = &rs->dev[i].rdev;
3406 		if (test_bit(Faulty, &r->flags) && r->sb_page &&
3407 		    sync_page_io(r, 0, r->sb_size, r->sb_page,
3408 				 REQ_OP_READ, 0, true)) {
3409 			DMINFO("Faulty %s device #%d has readable super block."
3410 			       "  Attempting to revive it.",
3411 			       rs->raid_type->name, i);
3412 
3413 			/*
3414 			 * Faulty bit may be set, but sometimes the array can
3415 			 * be suspended before the personalities can respond
3416 			 * by removing the device from the array (i.e. calling
3417 			 * 'hot_remove_disk').	If they haven't yet removed
3418 			 * the failed device, its 'raid_disk' number will be
3419 			 * '>= 0' - meaning we must call this function
3420 			 * ourselves.
3421 			 */
3422 			if ((r->raid_disk >= 0) &&
3423 			    (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3424 				/* Failed to revive this device, try next */
3425 				continue;
3426 
3427 			r->raid_disk = i;
3428 			r->saved_raid_disk = i;
3429 			flags = r->flags;
3430 			clear_bit(Faulty, &r->flags);
3431 			clear_bit(WriteErrorSeen, &r->flags);
3432 			clear_bit(In_sync, &r->flags);
3433 			if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3434 				r->raid_disk = -1;
3435 				r->saved_raid_disk = -1;
3436 				r->flags = flags;
3437 			} else {
3438 				r->recovery_offset = 0;
3439 				cleared_failed_devices |= 1 << i;
3440 			}
3441 		}
3442 	}
3443 	if (cleared_failed_devices) {
3444 		rdev_for_each(r, &rs->md) {
3445 			sb = page_address(r->sb_page);
3446 			failed_devices = le64_to_cpu(sb->failed_devices);
3447 			failed_devices &= ~cleared_failed_devices;
3448 			sb->failed_devices = cpu_to_le64(failed_devices);
3449 		}
3450 	}
3451 }
3452 
3453 static int __load_dirty_region_bitmap(struct raid_set *rs)
3454 {
3455 	int r = 0;
3456 
3457 	/* Try loading the bitmap unless "raid0", which does not have one */
3458 	if (!rs_is_raid0(rs) &&
3459 	    !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3460 		r = bitmap_load(&rs->md);
3461 		if (r)
3462 			DMERR("Failed to load bitmap");
3463 	}
3464 
3465 	return r;
3466 }
3467 
3468 /* Enforce updating all superblocks */
3469 static void rs_update_sbs(struct raid_set *rs)
3470 {
3471 	struct mddev *mddev = &rs->md;
3472 	int ro = mddev->ro;
3473 
3474 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3475 	mddev->ro = 0;
3476 	md_update_sb(mddev, 1);
3477 	mddev->ro = ro;
3478 }
3479 
3480 /*
3481  * Reshape changes raid algorithm of @rs to new one within personality
3482  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3483  * disks from a raid set thus growing/shrinking it or resizes the set
3484  *
3485  * Call mddev_lock_nointr() before!
3486  */
3487 static int rs_start_reshape(struct raid_set *rs)
3488 {
3489 	int r;
3490 	struct mddev *mddev = &rs->md;
3491 	struct md_personality *pers = mddev->pers;
3492 
3493 	r = rs_setup_reshape(rs);
3494 	if (r)
3495 		return r;
3496 
3497 	/* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3498 	if (mddev->suspended)
3499 		mddev_resume(mddev);
3500 
3501 	/*
3502 	 * Check any reshape constraints enforced by the personalility
3503 	 *
3504 	 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3505 	 */
3506 	r = pers->check_reshape(mddev);
3507 	if (r) {
3508 		rs->ti->error = "pers->check_reshape() failed";
3509 		return r;
3510 	}
3511 
3512 	/*
3513 	 * Personality may not provide start reshape method in which
3514 	 * case check_reshape above has already covered everything
3515 	 */
3516 	if (pers->start_reshape) {
3517 		r = pers->start_reshape(mddev);
3518 		if (r) {
3519 			rs->ti->error = "pers->start_reshape() failed";
3520 			return r;
3521 		}
3522 	}
3523 
3524 	/* Suspend because a resume will happen in raid_resume() */
3525 	if (!mddev->suspended)
3526 		mddev_suspend(mddev);
3527 
3528 	/*
3529 	 * Now reshape got set up, update superblocks to
3530 	 * reflect the fact so that a table reload will
3531 	 * access proper superblock content in the ctr.
3532 	 */
3533 	rs_update_sbs(rs);
3534 
3535 	return 0;
3536 }
3537 
3538 static int raid_preresume(struct dm_target *ti)
3539 {
3540 	int r;
3541 	struct raid_set *rs = ti->private;
3542 	struct mddev *mddev = &rs->md;
3543 
3544 	/* This is a resume after a suspend of the set -> it's already started */
3545 	if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3546 		return 0;
3547 
3548 	/*
3549 	 * The superblocks need to be updated on disk if the
3550 	 * array is new or new devices got added (thus zeroed
3551 	 * out by userspace) or __load_dirty_region_bitmap
3552 	 * will overwrite them in core with old data or fail.
3553 	 */
3554 	if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3555 		rs_update_sbs(rs);
3556 
3557 	/*
3558 	 * Disable/enable discard support on raid set after any
3559 	 * conversion, because devices can have been added
3560 	 */
3561 	configure_discard_support(rs);
3562 
3563 	/* Load the bitmap from disk unless raid0 */
3564 	r = __load_dirty_region_bitmap(rs);
3565 	if (r)
3566 		return r;
3567 
3568 	/* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3569 	if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3570 	    mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3571 		r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3572 				  to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3573 		if (r)
3574 			DMERR("Failed to resize bitmap");
3575 	}
3576 
3577 	/* Check for any resize/reshape on @rs and adjust/initiate */
3578 	/* Be prepared for mddev_resume() in raid_resume() */
3579 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3580 	if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3581 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3582 		mddev->resync_min = mddev->recovery_cp;
3583 	}
3584 
3585 	rs_set_capacity(rs);
3586 
3587 	/* Check for any reshape request unless new raid set */
3588 	if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3589 		/* Initiate a reshape. */
3590 		mddev_lock_nointr(mddev);
3591 		r = rs_start_reshape(rs);
3592 		mddev_unlock(mddev);
3593 		if (r)
3594 			DMWARN("Failed to check/start reshape, continuing without change");
3595 		r = 0;
3596 	}
3597 
3598 	return r;
3599 }
3600 
3601 static void raid_resume(struct dm_target *ti)
3602 {
3603 	struct raid_set *rs = ti->private;
3604 	struct mddev *mddev = &rs->md;
3605 
3606 	if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3607 		/*
3608 		 * A secondary resume while the device is active.
3609 		 * Take this opportunity to check whether any failed
3610 		 * devices are reachable again.
3611 		 */
3612 		attempt_restore_of_faulty_devices(rs);
3613 	} else {
3614 		mddev->ro = 0;
3615 		mddev->in_sync = 0;
3616 
3617 		/*
3618 		 * When passing in flags to the ctr, we expect userspace
3619 		 * to reset them because they made it to the superblocks
3620 		 * and reload the mapping anyway.
3621 		 *
3622 		 * -> only unfreeze recovery in case of a table reload or
3623 		 *    we'll have a bogus recovery/reshape position
3624 		 *    retrieved from the superblock by the ctr because
3625 		 *    the ongoing recovery/reshape will change it after read.
3626 		 */
3627 		if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3628 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3629 
3630 		if (mddev->suspended)
3631 			mddev_resume(mddev);
3632 	}
3633 }
3634 
3635 static struct target_type raid_target = {
3636 	.name = "raid",
3637 	.version = {1, 9, 0},
3638 	.module = THIS_MODULE,
3639 	.ctr = raid_ctr,
3640 	.dtr = raid_dtr,
3641 	.map = raid_map,
3642 	.status = raid_status,
3643 	.message = raid_message,
3644 	.iterate_devices = raid_iterate_devices,
3645 	.io_hints = raid_io_hints,
3646 	.presuspend = raid_presuspend,
3647 	.postsuspend = raid_postsuspend,
3648 	.preresume = raid_preresume,
3649 	.resume = raid_resume,
3650 };
3651 
3652 static int __init dm_raid_init(void)
3653 {
3654 	DMINFO("Loading target version %u.%u.%u",
3655 	       raid_target.version[0],
3656 	       raid_target.version[1],
3657 	       raid_target.version[2]);
3658 	return dm_register_target(&raid_target);
3659 }
3660 
3661 static void __exit dm_raid_exit(void)
3662 {
3663 	dm_unregister_target(&raid_target);
3664 }
3665 
3666 module_init(dm_raid_init);
3667 module_exit(dm_raid_exit);
3668 
3669 module_param(devices_handle_discard_safely, bool, 0644);
3670 MODULE_PARM_DESC(devices_handle_discard_safely,
3671 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3672 
3673 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3674 MODULE_ALIAS("dm-raid0");
3675 MODULE_ALIAS("dm-raid1");
3676 MODULE_ALIAS("dm-raid10");
3677 MODULE_ALIAS("dm-raid4");
3678 MODULE_ALIAS("dm-raid5");
3679 MODULE_ALIAS("dm-raid6");
3680 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3681 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3682 MODULE_LICENSE("GPL");
3683