xref: /openbmc/linux/drivers/md/dm-raid.c (revision f20c7d91)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "md-bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* md-raid kernel limit */
21 
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define	MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26 
27 /*
28  * Minimum journal space 4 MiB in sectors.
29  */
30 #define	MIN_RAID456_JOURNAL_SPACE (4*2048)
31 
32 static bool devices_handle_discard_safely = false;
33 
34 /*
35  * The following flags are used by dm-raid.c to set up the array state.
36  * They must be cleared before md_run is called.
37  */
38 #define FirstUse 10		/* rdev flag */
39 
40 struct raid_dev {
41 	/*
42 	 * Two DM devices, one to hold metadata and one to hold the
43 	 * actual data/parity.	The reason for this is to not confuse
44 	 * ti->len and give more flexibility in altering size and
45 	 * characteristics.
46 	 *
47 	 * While it is possible for this device to be associated
48 	 * with a different physical device than the data_dev, it
49 	 * is intended for it to be the same.
50 	 *    |--------- Physical Device ---------|
51 	 *    |- meta_dev -|------ data_dev ------|
52 	 */
53 	struct dm_dev *meta_dev;
54 	struct dm_dev *data_dev;
55 	struct md_rdev rdev;
56 };
57 
58 /*
59  * Bits for establishing rs->ctr_flags
60  *
61  * 1 = no flag value
62  * 2 = flag with value
63  */
64 #define __CTR_FLAG_SYNC			0  /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC		1  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD		2  /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP		3  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE	4  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE	5  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND	6  /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY		7  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE		8  /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE		9  /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES	10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT	11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS		12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET		13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80 
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV		15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
83 
84 /* New for v1.11.1 */
85 #define __CTR_FLAG_JOURNAL_MODE		16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
86 
87 /*
88  * Flags for rs->ctr_flags field.
89  */
90 #define CTR_FLAG_SYNC			(1 << __CTR_FLAG_SYNC)
91 #define CTR_FLAG_NOSYNC			(1 << __CTR_FLAG_NOSYNC)
92 #define CTR_FLAG_REBUILD		(1 << __CTR_FLAG_REBUILD)
93 #define CTR_FLAG_DAEMON_SLEEP		(1 << __CTR_FLAG_DAEMON_SLEEP)
94 #define CTR_FLAG_MIN_RECOVERY_RATE	(1 << __CTR_FLAG_MIN_RECOVERY_RATE)
95 #define CTR_FLAG_MAX_RECOVERY_RATE	(1 << __CTR_FLAG_MAX_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_WRITE_BEHIND	(1 << __CTR_FLAG_MAX_WRITE_BEHIND)
97 #define CTR_FLAG_WRITE_MOSTLY		(1 << __CTR_FLAG_WRITE_MOSTLY)
98 #define CTR_FLAG_STRIPE_CACHE		(1 << __CTR_FLAG_STRIPE_CACHE)
99 #define CTR_FLAG_REGION_SIZE		(1 << __CTR_FLAG_REGION_SIZE)
100 #define CTR_FLAG_RAID10_COPIES		(1 << __CTR_FLAG_RAID10_COPIES)
101 #define CTR_FLAG_RAID10_FORMAT		(1 << __CTR_FLAG_RAID10_FORMAT)
102 #define CTR_FLAG_DELTA_DISKS		(1 << __CTR_FLAG_DELTA_DISKS)
103 #define CTR_FLAG_DATA_OFFSET		(1 << __CTR_FLAG_DATA_OFFSET)
104 #define CTR_FLAG_RAID10_USE_NEAR_SETS	(1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
105 #define CTR_FLAG_JOURNAL_DEV		(1 << __CTR_FLAG_JOURNAL_DEV)
106 #define CTR_FLAG_JOURNAL_MODE		(1 << __CTR_FLAG_JOURNAL_MODE)
107 
108 /*
109  * Definitions of various constructor flags to
110  * be used in checks of valid / invalid flags
111  * per raid level.
112  */
113 /* Define all any sync flags */
114 #define	CTR_FLAGS_ANY_SYNC		(CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
115 
116 /* Define flags for options without argument (e.g. 'nosync') */
117 #define	CTR_FLAG_OPTIONS_NO_ARGS	(CTR_FLAGS_ANY_SYNC | \
118 					 CTR_FLAG_RAID10_USE_NEAR_SETS)
119 
120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
122 				  CTR_FLAG_WRITE_MOSTLY | \
123 				  CTR_FLAG_DAEMON_SLEEP | \
124 				  CTR_FLAG_MIN_RECOVERY_RATE | \
125 				  CTR_FLAG_MAX_RECOVERY_RATE | \
126 				  CTR_FLAG_MAX_WRITE_BEHIND | \
127 				  CTR_FLAG_STRIPE_CACHE | \
128 				  CTR_FLAG_REGION_SIZE | \
129 				  CTR_FLAG_RAID10_COPIES | \
130 				  CTR_FLAG_RAID10_FORMAT | \
131 				  CTR_FLAG_DELTA_DISKS | \
132 				  CTR_FLAG_DATA_OFFSET | \
133 				  CTR_FLAG_JOURNAL_DEV | \
134 				  CTR_FLAG_JOURNAL_MODE)
135 
136 /* Valid options definitions per raid level... */
137 
138 /* "raid0" does only accept data offset */
139 #define RAID0_VALID_FLAGS	(CTR_FLAG_DATA_OFFSET)
140 
141 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
142 #define RAID1_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
143 				 CTR_FLAG_REBUILD | \
144 				 CTR_FLAG_WRITE_MOSTLY | \
145 				 CTR_FLAG_DAEMON_SLEEP | \
146 				 CTR_FLAG_MIN_RECOVERY_RATE | \
147 				 CTR_FLAG_MAX_RECOVERY_RATE | \
148 				 CTR_FLAG_MAX_WRITE_BEHIND | \
149 				 CTR_FLAG_REGION_SIZE | \
150 				 CTR_FLAG_DELTA_DISKS | \
151 				 CTR_FLAG_DATA_OFFSET)
152 
153 /* "raid10" does not accept any raid1 or stripe cache options */
154 #define RAID10_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
155 				 CTR_FLAG_REBUILD | \
156 				 CTR_FLAG_DAEMON_SLEEP | \
157 				 CTR_FLAG_MIN_RECOVERY_RATE | \
158 				 CTR_FLAG_MAX_RECOVERY_RATE | \
159 				 CTR_FLAG_REGION_SIZE | \
160 				 CTR_FLAG_RAID10_COPIES | \
161 				 CTR_FLAG_RAID10_FORMAT | \
162 				 CTR_FLAG_DELTA_DISKS | \
163 				 CTR_FLAG_DATA_OFFSET | \
164 				 CTR_FLAG_RAID10_USE_NEAR_SETS)
165 
166 /*
167  * "raid4/5/6" do not accept any raid1 or raid10 specific options
168  *
169  * "raid6" does not accept "nosync", because it is not guaranteed
170  * that both parity and q-syndrome are being written properly with
171  * any writes
172  */
173 #define RAID45_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
174 				 CTR_FLAG_REBUILD | \
175 				 CTR_FLAG_DAEMON_SLEEP | \
176 				 CTR_FLAG_MIN_RECOVERY_RATE | \
177 				 CTR_FLAG_MAX_RECOVERY_RATE | \
178 				 CTR_FLAG_STRIPE_CACHE | \
179 				 CTR_FLAG_REGION_SIZE | \
180 				 CTR_FLAG_DELTA_DISKS | \
181 				 CTR_FLAG_DATA_OFFSET | \
182 				 CTR_FLAG_JOURNAL_DEV | \
183 				 CTR_FLAG_JOURNAL_MODE)
184 
185 #define RAID6_VALID_FLAGS	(CTR_FLAG_SYNC | \
186 				 CTR_FLAG_REBUILD | \
187 				 CTR_FLAG_DAEMON_SLEEP | \
188 				 CTR_FLAG_MIN_RECOVERY_RATE | \
189 				 CTR_FLAG_MAX_RECOVERY_RATE | \
190 				 CTR_FLAG_STRIPE_CACHE | \
191 				 CTR_FLAG_REGION_SIZE | \
192 				 CTR_FLAG_DELTA_DISKS | \
193 				 CTR_FLAG_DATA_OFFSET | \
194 				 CTR_FLAG_JOURNAL_DEV | \
195 				 CTR_FLAG_JOURNAL_MODE)
196 /* ...valid options definitions per raid level */
197 
198 /*
199  * Flags for rs->runtime_flags field
200  * (RT_FLAG prefix meaning "runtime flag")
201  *
202  * These are all internal and used to define runtime state,
203  * e.g. to prevent another resume from preresume processing
204  * the raid set all over again.
205  */
206 #define RT_FLAG_RS_PRERESUMED		0
207 #define RT_FLAG_RS_RESUMED		1
208 #define RT_FLAG_RS_BITMAP_LOADED	2
209 #define RT_FLAG_UPDATE_SBS		3
210 #define RT_FLAG_RESHAPE_RS		4
211 #define RT_FLAG_RS_SUSPENDED		5
212 #define RT_FLAG_RS_IN_SYNC		6
213 #define RT_FLAG_RS_RESYNCING		7
214 #define RT_FLAG_RS_GROW			8
215 
216 /* Array elements of 64 bit needed for rebuild/failed disk bits */
217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
218 
219 /*
220  * raid set level, layout and chunk sectors backup/restore
221  */
222 struct rs_layout {
223 	int new_level;
224 	int new_layout;
225 	int new_chunk_sectors;
226 };
227 
228 struct raid_set {
229 	struct dm_target *ti;
230 
231 	uint32_t stripe_cache_entries;
232 	unsigned long ctr_flags;
233 	unsigned long runtime_flags;
234 
235 	uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
236 
237 	int raid_disks;
238 	int delta_disks;
239 	int data_offset;
240 	int raid10_copies;
241 	int requested_bitmap_chunk_sectors;
242 
243 	struct mddev md;
244 	struct raid_type *raid_type;
245 	struct dm_target_callbacks callbacks;
246 
247 	sector_t array_sectors;
248 	sector_t dev_sectors;
249 
250 	/* Optional raid4/5/6 journal device */
251 	struct journal_dev {
252 		struct dm_dev *dev;
253 		struct md_rdev rdev;
254 		int mode;
255 	} journal_dev;
256 
257 	struct raid_dev dev[];
258 };
259 
260 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
261 {
262 	struct mddev *mddev = &rs->md;
263 
264 	l->new_level = mddev->new_level;
265 	l->new_layout = mddev->new_layout;
266 	l->new_chunk_sectors = mddev->new_chunk_sectors;
267 }
268 
269 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
270 {
271 	struct mddev *mddev = &rs->md;
272 
273 	mddev->new_level = l->new_level;
274 	mddev->new_layout = l->new_layout;
275 	mddev->new_chunk_sectors = l->new_chunk_sectors;
276 }
277 
278 /* raid10 algorithms (i.e. formats) */
279 #define	ALGORITHM_RAID10_DEFAULT	0
280 #define	ALGORITHM_RAID10_NEAR		1
281 #define	ALGORITHM_RAID10_OFFSET		2
282 #define	ALGORITHM_RAID10_FAR		3
283 
284 /* Supported raid types and properties. */
285 static struct raid_type {
286 	const char *name;		/* RAID algorithm. */
287 	const char *descr;		/* Descriptor text for logging. */
288 	const unsigned int parity_devs;	/* # of parity devices. */
289 	const unsigned int minimal_devs;/* minimal # of devices in set. */
290 	const unsigned int level;	/* RAID level. */
291 	const unsigned int algorithm;	/* RAID algorithm. */
292 } raid_types[] = {
293 	{"raid0",	  "raid0 (striping)",			    0, 2, 0,  0 /* NONE */},
294 	{"raid1",	  "raid1 (mirroring)",			    0, 2, 1,  0 /* NONE */},
295 	{"raid10_far",	  "raid10 far (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_FAR},
296 	{"raid10_offset", "raid10 offset (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_OFFSET},
297 	{"raid10_near",	  "raid10 near (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_NEAR},
298 	{"raid10",	  "raid10 (striped mirrors)",		    0, 2, 10, ALGORITHM_RAID10_DEFAULT},
299 	{"raid4",	  "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
300 	{"raid5_n",	  "raid5 (dedicated last parity disk)",	    1, 2, 5,  ALGORITHM_PARITY_N},
301 	{"raid5_ls",	  "raid5 (left symmetric)",		    1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
302 	{"raid5_rs",	  "raid5 (right symmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
303 	{"raid5_la",	  "raid5 (left asymmetric)",		    1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
304 	{"raid5_ra",	  "raid5 (right asymmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
305 	{"raid6_zr",	  "raid6 (zero restart)",		    2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
306 	{"raid6_nr",	  "raid6 (N restart)",			    2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
307 	{"raid6_nc",	  "raid6 (N continue)",			    2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
308 	{"raid6_n_6",	  "raid6 (dedicated parity/Q n/6)",	    2, 4, 6,  ALGORITHM_PARITY_N_6},
309 	{"raid6_ls_6",	  "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
310 	{"raid6_rs_6",	  "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
311 	{"raid6_la_6",	  "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
312 	{"raid6_ra_6",	  "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
313 };
314 
315 /* True, if @v is in inclusive range [@min, @max] */
316 static bool __within_range(long v, long min, long max)
317 {
318 	return v >= min && v <= max;
319 }
320 
321 /* All table line arguments are defined here */
322 static struct arg_name_flag {
323 	const unsigned long flag;
324 	const char *name;
325 } __arg_name_flags[] = {
326 	{ CTR_FLAG_SYNC, "sync"},
327 	{ CTR_FLAG_NOSYNC, "nosync"},
328 	{ CTR_FLAG_REBUILD, "rebuild"},
329 	{ CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
330 	{ CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
331 	{ CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
332 	{ CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
333 	{ CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
334 	{ CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
335 	{ CTR_FLAG_REGION_SIZE, "region_size"},
336 	{ CTR_FLAG_RAID10_COPIES, "raid10_copies"},
337 	{ CTR_FLAG_RAID10_FORMAT, "raid10_format"},
338 	{ CTR_FLAG_DATA_OFFSET, "data_offset"},
339 	{ CTR_FLAG_DELTA_DISKS, "delta_disks"},
340 	{ CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
341 	{ CTR_FLAG_JOURNAL_DEV, "journal_dev" },
342 	{ CTR_FLAG_JOURNAL_MODE, "journal_mode" },
343 };
344 
345 /* Return argument name string for given @flag */
346 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
347 {
348 	if (hweight32(flag) == 1) {
349 		struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
350 
351 		while (anf-- > __arg_name_flags)
352 			if (flag & anf->flag)
353 				return anf->name;
354 
355 	} else
356 		DMERR("%s called with more than one flag!", __func__);
357 
358 	return NULL;
359 }
360 
361 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
362 static struct {
363 	const int mode;
364 	const char *param;
365 } _raid456_journal_mode[] = {
366 	{ R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
367 	{ R5C_JOURNAL_MODE_WRITE_BACK    , "writeback" }
368 };
369 
370 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
371 static int dm_raid_journal_mode_to_md(const char *mode)
372 {
373 	int m = ARRAY_SIZE(_raid456_journal_mode);
374 
375 	while (m--)
376 		if (!strcasecmp(mode, _raid456_journal_mode[m].param))
377 			return _raid456_journal_mode[m].mode;
378 
379 	return -EINVAL;
380 }
381 
382 /* Return dm-raid raid4/5/6 journal mode string for @mode */
383 static const char *md_journal_mode_to_dm_raid(const int mode)
384 {
385 	int m = ARRAY_SIZE(_raid456_journal_mode);
386 
387 	while (m--)
388 		if (mode == _raid456_journal_mode[m].mode)
389 			return _raid456_journal_mode[m].param;
390 
391 	return "unknown";
392 }
393 
394 /*
395  * Bool helpers to test for various raid levels of a raid set.
396  * It's level as reported by the superblock rather than
397  * the requested raid_type passed to the constructor.
398  */
399 /* Return true, if raid set in @rs is raid0 */
400 static bool rs_is_raid0(struct raid_set *rs)
401 {
402 	return !rs->md.level;
403 }
404 
405 /* Return true, if raid set in @rs is raid1 */
406 static bool rs_is_raid1(struct raid_set *rs)
407 {
408 	return rs->md.level == 1;
409 }
410 
411 /* Return true, if raid set in @rs is raid10 */
412 static bool rs_is_raid10(struct raid_set *rs)
413 {
414 	return rs->md.level == 10;
415 }
416 
417 /* Return true, if raid set in @rs is level 6 */
418 static bool rs_is_raid6(struct raid_set *rs)
419 {
420 	return rs->md.level == 6;
421 }
422 
423 /* Return true, if raid set in @rs is level 4, 5 or 6 */
424 static bool rs_is_raid456(struct raid_set *rs)
425 {
426 	return __within_range(rs->md.level, 4, 6);
427 }
428 
429 /* Return true, if raid set in @rs is reshapable */
430 static bool __is_raid10_far(int layout);
431 static bool rs_is_reshapable(struct raid_set *rs)
432 {
433 	return rs_is_raid456(rs) ||
434 	       (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
435 }
436 
437 /* Return true, if raid set in @rs is recovering */
438 static bool rs_is_recovering(struct raid_set *rs)
439 {
440 	return rs->md.recovery_cp < rs->md.dev_sectors;
441 }
442 
443 /* Return true, if raid set in @rs is reshaping */
444 static bool rs_is_reshaping(struct raid_set *rs)
445 {
446 	return rs->md.reshape_position != MaxSector;
447 }
448 
449 /*
450  * bool helpers to test for various raid levels of a raid type @rt
451  */
452 
453 /* Return true, if raid type in @rt is raid0 */
454 static bool rt_is_raid0(struct raid_type *rt)
455 {
456 	return !rt->level;
457 }
458 
459 /* Return true, if raid type in @rt is raid1 */
460 static bool rt_is_raid1(struct raid_type *rt)
461 {
462 	return rt->level == 1;
463 }
464 
465 /* Return true, if raid type in @rt is raid10 */
466 static bool rt_is_raid10(struct raid_type *rt)
467 {
468 	return rt->level == 10;
469 }
470 
471 /* Return true, if raid type in @rt is raid4/5 */
472 static bool rt_is_raid45(struct raid_type *rt)
473 {
474 	return __within_range(rt->level, 4, 5);
475 }
476 
477 /* Return true, if raid type in @rt is raid6 */
478 static bool rt_is_raid6(struct raid_type *rt)
479 {
480 	return rt->level == 6;
481 }
482 
483 /* Return true, if raid type in @rt is raid4/5/6 */
484 static bool rt_is_raid456(struct raid_type *rt)
485 {
486 	return __within_range(rt->level, 4, 6);
487 }
488 /* END: raid level bools */
489 
490 /* Return valid ctr flags for the raid level of @rs */
491 static unsigned long __valid_flags(struct raid_set *rs)
492 {
493 	if (rt_is_raid0(rs->raid_type))
494 		return RAID0_VALID_FLAGS;
495 	else if (rt_is_raid1(rs->raid_type))
496 		return RAID1_VALID_FLAGS;
497 	else if (rt_is_raid10(rs->raid_type))
498 		return RAID10_VALID_FLAGS;
499 	else if (rt_is_raid45(rs->raid_type))
500 		return RAID45_VALID_FLAGS;
501 	else if (rt_is_raid6(rs->raid_type))
502 		return RAID6_VALID_FLAGS;
503 
504 	return 0;
505 }
506 
507 /*
508  * Check for valid flags set on @rs
509  *
510  * Has to be called after parsing of the ctr flags!
511  */
512 static int rs_check_for_valid_flags(struct raid_set *rs)
513 {
514 	if (rs->ctr_flags & ~__valid_flags(rs)) {
515 		rs->ti->error = "Invalid flags combination";
516 		return -EINVAL;
517 	}
518 
519 	return 0;
520 }
521 
522 /* MD raid10 bit definitions and helpers */
523 #define RAID10_OFFSET			(1 << 16) /* stripes with data copies area adjacent on devices */
524 #define RAID10_BROCKEN_USE_FAR_SETS	(1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
525 #define RAID10_USE_FAR_SETS		(1 << 18) /* Use sets instead of whole stripe rotation */
526 #define RAID10_FAR_COPIES_SHIFT		8	  /* raid10 # far copies shift (2nd byte of layout) */
527 
528 /* Return md raid10 near copies for @layout */
529 static unsigned int __raid10_near_copies(int layout)
530 {
531 	return layout & 0xFF;
532 }
533 
534 /* Return md raid10 far copies for @layout */
535 static unsigned int __raid10_far_copies(int layout)
536 {
537 	return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
538 }
539 
540 /* Return true if md raid10 offset for @layout */
541 static bool __is_raid10_offset(int layout)
542 {
543 	return !!(layout & RAID10_OFFSET);
544 }
545 
546 /* Return true if md raid10 near for @layout */
547 static bool __is_raid10_near(int layout)
548 {
549 	return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
550 }
551 
552 /* Return true if md raid10 far for @layout */
553 static bool __is_raid10_far(int layout)
554 {
555 	return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
556 }
557 
558 /* Return md raid10 layout string for @layout */
559 static const char *raid10_md_layout_to_format(int layout)
560 {
561 	/*
562 	 * Bit 16 stands for "offset"
563 	 * (i.e. adjacent stripes hold copies)
564 	 *
565 	 * Refer to MD's raid10.c for details
566 	 */
567 	if (__is_raid10_offset(layout))
568 		return "offset";
569 
570 	if (__raid10_near_copies(layout) > 1)
571 		return "near";
572 
573 	if (__raid10_far_copies(layout) > 1)
574 		return "far";
575 
576 	return "unknown";
577 }
578 
579 /* Return md raid10 algorithm for @name */
580 static int raid10_name_to_format(const char *name)
581 {
582 	if (!strcasecmp(name, "near"))
583 		return ALGORITHM_RAID10_NEAR;
584 	else if (!strcasecmp(name, "offset"))
585 		return ALGORITHM_RAID10_OFFSET;
586 	else if (!strcasecmp(name, "far"))
587 		return ALGORITHM_RAID10_FAR;
588 
589 	return -EINVAL;
590 }
591 
592 /* Return md raid10 copies for @layout */
593 static unsigned int raid10_md_layout_to_copies(int layout)
594 {
595 	return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
596 }
597 
598 /* Return md raid10 format id for @format string */
599 static int raid10_format_to_md_layout(struct raid_set *rs,
600 				      unsigned int algorithm,
601 				      unsigned int copies)
602 {
603 	unsigned int n = 1, f = 1, r = 0;
604 
605 	/*
606 	 * MD resilienece flaw:
607 	 *
608 	 * enabling use_far_sets for far/offset formats causes copies
609 	 * to be colocated on the same devs together with their origins!
610 	 *
611 	 * -> disable it for now in the definition above
612 	 */
613 	if (algorithm == ALGORITHM_RAID10_DEFAULT ||
614 	    algorithm == ALGORITHM_RAID10_NEAR)
615 		n = copies;
616 
617 	else if (algorithm == ALGORITHM_RAID10_OFFSET) {
618 		f = copies;
619 		r = RAID10_OFFSET;
620 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
621 			r |= RAID10_USE_FAR_SETS;
622 
623 	} else if (algorithm == ALGORITHM_RAID10_FAR) {
624 		f = copies;
625 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
626 			r |= RAID10_USE_FAR_SETS;
627 
628 	} else
629 		return -EINVAL;
630 
631 	return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
632 }
633 /* END: MD raid10 bit definitions and helpers */
634 
635 /* Check for any of the raid10 algorithms */
636 static bool __got_raid10(struct raid_type *rtp, const int layout)
637 {
638 	if (rtp->level == 10) {
639 		switch (rtp->algorithm) {
640 		case ALGORITHM_RAID10_DEFAULT:
641 		case ALGORITHM_RAID10_NEAR:
642 			return __is_raid10_near(layout);
643 		case ALGORITHM_RAID10_OFFSET:
644 			return __is_raid10_offset(layout);
645 		case ALGORITHM_RAID10_FAR:
646 			return __is_raid10_far(layout);
647 		default:
648 			break;
649 		}
650 	}
651 
652 	return false;
653 }
654 
655 /* Return raid_type for @name */
656 static struct raid_type *get_raid_type(const char *name)
657 {
658 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
659 
660 	while (rtp-- > raid_types)
661 		if (!strcasecmp(rtp->name, name))
662 			return rtp;
663 
664 	return NULL;
665 }
666 
667 /* Return raid_type for @name based derived from @level and @layout */
668 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
669 {
670 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
671 
672 	while (rtp-- > raid_types) {
673 		/* RAID10 special checks based on @layout flags/properties */
674 		if (rtp->level == level &&
675 		    (__got_raid10(rtp, layout) || rtp->algorithm == layout))
676 			return rtp;
677 	}
678 
679 	return NULL;
680 }
681 
682 /* Adjust rdev sectors */
683 static void rs_set_rdev_sectors(struct raid_set *rs)
684 {
685 	struct mddev *mddev = &rs->md;
686 	struct md_rdev *rdev;
687 
688 	/*
689 	 * raid10 sets rdev->sector to the device size, which
690 	 * is unintended in case of out-of-place reshaping
691 	 */
692 	rdev_for_each(rdev, mddev)
693 		if (!test_bit(Journal, &rdev->flags))
694 			rdev->sectors = mddev->dev_sectors;
695 }
696 
697 /*
698  * Change bdev capacity of @rs in case of a disk add/remove reshape
699  */
700 static void rs_set_capacity(struct raid_set *rs)
701 {
702 	struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
703 
704 	set_capacity(gendisk, rs->md.array_sectors);
705 	revalidate_disk(gendisk);
706 }
707 
708 /*
709  * Set the mddev properties in @rs to the current
710  * ones retrieved from the freshest superblock
711  */
712 static void rs_set_cur(struct raid_set *rs)
713 {
714 	struct mddev *mddev = &rs->md;
715 
716 	mddev->new_level = mddev->level;
717 	mddev->new_layout = mddev->layout;
718 	mddev->new_chunk_sectors = mddev->chunk_sectors;
719 }
720 
721 /*
722  * Set the mddev properties in @rs to the new
723  * ones requested by the ctr
724  */
725 static void rs_set_new(struct raid_set *rs)
726 {
727 	struct mddev *mddev = &rs->md;
728 
729 	mddev->level = mddev->new_level;
730 	mddev->layout = mddev->new_layout;
731 	mddev->chunk_sectors = mddev->new_chunk_sectors;
732 	mddev->raid_disks = rs->raid_disks;
733 	mddev->delta_disks = 0;
734 }
735 
736 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
737 				       unsigned int raid_devs)
738 {
739 	unsigned int i;
740 	struct raid_set *rs;
741 
742 	if (raid_devs <= raid_type->parity_devs) {
743 		ti->error = "Insufficient number of devices";
744 		return ERR_PTR(-EINVAL);
745 	}
746 
747 	rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
748 	if (!rs) {
749 		ti->error = "Cannot allocate raid context";
750 		return ERR_PTR(-ENOMEM);
751 	}
752 
753 	mddev_init(&rs->md);
754 
755 	rs->raid_disks = raid_devs;
756 	rs->delta_disks = 0;
757 
758 	rs->ti = ti;
759 	rs->raid_type = raid_type;
760 	rs->stripe_cache_entries = 256;
761 	rs->md.raid_disks = raid_devs;
762 	rs->md.level = raid_type->level;
763 	rs->md.new_level = rs->md.level;
764 	rs->md.layout = raid_type->algorithm;
765 	rs->md.new_layout = rs->md.layout;
766 	rs->md.delta_disks = 0;
767 	rs->md.recovery_cp = MaxSector;
768 
769 	for (i = 0; i < raid_devs; i++)
770 		md_rdev_init(&rs->dev[i].rdev);
771 
772 	/*
773 	 * Remaining items to be initialized by further RAID params:
774 	 *  rs->md.persistent
775 	 *  rs->md.external
776 	 *  rs->md.chunk_sectors
777 	 *  rs->md.new_chunk_sectors
778 	 *  rs->md.dev_sectors
779 	 */
780 
781 	return rs;
782 }
783 
784 /* Free all @rs allocations */
785 static void raid_set_free(struct raid_set *rs)
786 {
787 	int i;
788 
789 	if (rs->journal_dev.dev) {
790 		md_rdev_clear(&rs->journal_dev.rdev);
791 		dm_put_device(rs->ti, rs->journal_dev.dev);
792 	}
793 
794 	for (i = 0; i < rs->raid_disks; i++) {
795 		if (rs->dev[i].meta_dev)
796 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
797 		md_rdev_clear(&rs->dev[i].rdev);
798 		if (rs->dev[i].data_dev)
799 			dm_put_device(rs->ti, rs->dev[i].data_dev);
800 	}
801 
802 	kfree(rs);
803 }
804 
805 /*
806  * For every device we have two words
807  *  <meta_dev>: meta device name or '-' if missing
808  *  <data_dev>: data device name or '-' if missing
809  *
810  * The following are permitted:
811  *    - -
812  *    - <data_dev>
813  *    <meta_dev> <data_dev>
814  *
815  * The following is not allowed:
816  *    <meta_dev> -
817  *
818  * This code parses those words.  If there is a failure,
819  * the caller must use raid_set_free() to unwind the operations.
820  */
821 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
822 {
823 	int i;
824 	int rebuild = 0;
825 	int metadata_available = 0;
826 	int r = 0;
827 	const char *arg;
828 
829 	/* Put off the number of raid devices argument to get to dev pairs */
830 	arg = dm_shift_arg(as);
831 	if (!arg)
832 		return -EINVAL;
833 
834 	for (i = 0; i < rs->raid_disks; i++) {
835 		rs->dev[i].rdev.raid_disk = i;
836 
837 		rs->dev[i].meta_dev = NULL;
838 		rs->dev[i].data_dev = NULL;
839 
840 		/*
841 		 * There are no offsets initially.
842 		 * Out of place reshape will set them accordingly.
843 		 */
844 		rs->dev[i].rdev.data_offset = 0;
845 		rs->dev[i].rdev.new_data_offset = 0;
846 		rs->dev[i].rdev.mddev = &rs->md;
847 
848 		arg = dm_shift_arg(as);
849 		if (!arg)
850 			return -EINVAL;
851 
852 		if (strcmp(arg, "-")) {
853 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
854 					  &rs->dev[i].meta_dev);
855 			if (r) {
856 				rs->ti->error = "RAID metadata device lookup failure";
857 				return r;
858 			}
859 
860 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
861 			if (!rs->dev[i].rdev.sb_page) {
862 				rs->ti->error = "Failed to allocate superblock page";
863 				return -ENOMEM;
864 			}
865 		}
866 
867 		arg = dm_shift_arg(as);
868 		if (!arg)
869 			return -EINVAL;
870 
871 		if (!strcmp(arg, "-")) {
872 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
873 			    (!rs->dev[i].rdev.recovery_offset)) {
874 				rs->ti->error = "Drive designated for rebuild not specified";
875 				return -EINVAL;
876 			}
877 
878 			if (rs->dev[i].meta_dev) {
879 				rs->ti->error = "No data device supplied with metadata device";
880 				return -EINVAL;
881 			}
882 
883 			continue;
884 		}
885 
886 		r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
887 				  &rs->dev[i].data_dev);
888 		if (r) {
889 			rs->ti->error = "RAID device lookup failure";
890 			return r;
891 		}
892 
893 		if (rs->dev[i].meta_dev) {
894 			metadata_available = 1;
895 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
896 		}
897 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
898 		list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
899 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
900 			rebuild++;
901 	}
902 
903 	if (rs->journal_dev.dev)
904 		list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
905 
906 	if (metadata_available) {
907 		rs->md.external = 0;
908 		rs->md.persistent = 1;
909 		rs->md.major_version = 2;
910 	} else if (rebuild && !rs->md.recovery_cp) {
911 		/*
912 		 * Without metadata, we will not be able to tell if the array
913 		 * is in-sync or not - we must assume it is not.  Therefore,
914 		 * it is impossible to rebuild a drive.
915 		 *
916 		 * Even if there is metadata, the on-disk information may
917 		 * indicate that the array is not in-sync and it will then
918 		 * fail at that time.
919 		 *
920 		 * User could specify 'nosync' option if desperate.
921 		 */
922 		rs->ti->error = "Unable to rebuild drive while array is not in-sync";
923 		return -EINVAL;
924 	}
925 
926 	return 0;
927 }
928 
929 /*
930  * validate_region_size
931  * @rs
932  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
933  *
934  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
935  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
936  *
937  * Returns: 0 on success, -EINVAL on failure.
938  */
939 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
940 {
941 	unsigned long min_region_size = rs->ti->len / (1 << 21);
942 
943 	if (rs_is_raid0(rs))
944 		return 0;
945 
946 	if (!region_size) {
947 		/*
948 		 * Choose a reasonable default.	 All figures in sectors.
949 		 */
950 		if (min_region_size > (1 << 13)) {
951 			/* If not a power of 2, make it the next power of 2 */
952 			region_size = roundup_pow_of_two(min_region_size);
953 			DMINFO("Choosing default region size of %lu sectors",
954 			       region_size);
955 		} else {
956 			DMINFO("Choosing default region size of 4MiB");
957 			region_size = 1 << 13; /* sectors */
958 		}
959 	} else {
960 		/*
961 		 * Validate user-supplied value.
962 		 */
963 		if (region_size > rs->ti->len) {
964 			rs->ti->error = "Supplied region size is too large";
965 			return -EINVAL;
966 		}
967 
968 		if (region_size < min_region_size) {
969 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
970 			      region_size, min_region_size);
971 			rs->ti->error = "Supplied region size is too small";
972 			return -EINVAL;
973 		}
974 
975 		if (!is_power_of_2(region_size)) {
976 			rs->ti->error = "Region size is not a power of 2";
977 			return -EINVAL;
978 		}
979 
980 		if (region_size < rs->md.chunk_sectors) {
981 			rs->ti->error = "Region size is smaller than the chunk size";
982 			return -EINVAL;
983 		}
984 	}
985 
986 	/*
987 	 * Convert sectors to bytes.
988 	 */
989 	rs->md.bitmap_info.chunksize = to_bytes(region_size);
990 
991 	return 0;
992 }
993 
994 /*
995  * validate_raid_redundancy
996  * @rs
997  *
998  * Determine if there are enough devices in the array that haven't
999  * failed (or are being rebuilt) to form a usable array.
1000  *
1001  * Returns: 0 on success, -EINVAL on failure.
1002  */
1003 static int validate_raid_redundancy(struct raid_set *rs)
1004 {
1005 	unsigned int i, rebuild_cnt = 0;
1006 	unsigned int rebuilds_per_group = 0, copies;
1007 	unsigned int group_size, last_group_start;
1008 
1009 	for (i = 0; i < rs->md.raid_disks; i++)
1010 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1011 		    !rs->dev[i].rdev.sb_page)
1012 			rebuild_cnt++;
1013 
1014 	switch (rs->md.level) {
1015 	case 0:
1016 		break;
1017 	case 1:
1018 		if (rebuild_cnt >= rs->md.raid_disks)
1019 			goto too_many;
1020 		break;
1021 	case 4:
1022 	case 5:
1023 	case 6:
1024 		if (rebuild_cnt > rs->raid_type->parity_devs)
1025 			goto too_many;
1026 		break;
1027 	case 10:
1028 		copies = raid10_md_layout_to_copies(rs->md.new_layout);
1029 		if (copies < 2) {
1030 			DMERR("Bogus raid10 data copies < 2!");
1031 			return -EINVAL;
1032 		}
1033 
1034 		if (rebuild_cnt < copies)
1035 			break;
1036 
1037 		/*
1038 		 * It is possible to have a higher rebuild count for RAID10,
1039 		 * as long as the failed devices occur in different mirror
1040 		 * groups (i.e. different stripes).
1041 		 *
1042 		 * When checking "near" format, make sure no adjacent devices
1043 		 * have failed beyond what can be handled.  In addition to the
1044 		 * simple case where the number of devices is a multiple of the
1045 		 * number of copies, we must also handle cases where the number
1046 		 * of devices is not a multiple of the number of copies.
1047 		 * E.g.	   dev1 dev2 dev3 dev4 dev5
1048 		 *	    A	 A    B	   B	C
1049 		 *	    C	 D    D	   E	E
1050 		 */
1051 		if (__is_raid10_near(rs->md.new_layout)) {
1052 			for (i = 0; i < rs->md.raid_disks; i++) {
1053 				if (!(i % copies))
1054 					rebuilds_per_group = 0;
1055 				if ((!rs->dev[i].rdev.sb_page ||
1056 				    !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1057 				    (++rebuilds_per_group >= copies))
1058 					goto too_many;
1059 			}
1060 			break;
1061 		}
1062 
1063 		/*
1064 		 * When checking "far" and "offset" formats, we need to ensure
1065 		 * that the device that holds its copy is not also dead or
1066 		 * being rebuilt.  (Note that "far" and "offset" formats only
1067 		 * support two copies right now.  These formats also only ever
1068 		 * use the 'use_far_sets' variant.)
1069 		 *
1070 		 * This check is somewhat complicated by the need to account
1071 		 * for arrays that are not a multiple of (far) copies.	This
1072 		 * results in the need to treat the last (potentially larger)
1073 		 * set differently.
1074 		 */
1075 		group_size = (rs->md.raid_disks / copies);
1076 		last_group_start = (rs->md.raid_disks / group_size) - 1;
1077 		last_group_start *= group_size;
1078 		for (i = 0; i < rs->md.raid_disks; i++) {
1079 			if (!(i % copies) && !(i > last_group_start))
1080 				rebuilds_per_group = 0;
1081 			if ((!rs->dev[i].rdev.sb_page ||
1082 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1083 			    (++rebuilds_per_group >= copies))
1084 					goto too_many;
1085 		}
1086 		break;
1087 	default:
1088 		if (rebuild_cnt)
1089 			return -EINVAL;
1090 	}
1091 
1092 	return 0;
1093 
1094 too_many:
1095 	return -EINVAL;
1096 }
1097 
1098 /*
1099  * Possible arguments are...
1100  *	<chunk_size> [optional_args]
1101  *
1102  * Argument definitions
1103  *    <chunk_size>			The number of sectors per disk that
1104  *					will form the "stripe"
1105  *    [[no]sync]			Force or prevent recovery of the
1106  *					entire array
1107  *    [rebuild <idx>]			Rebuild the drive indicated by the index
1108  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
1109  *					clear bits
1110  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1111  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1112  *    [write_mostly <idx>]		Indicate a write mostly drive via index
1113  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
1114  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
1115  *    [region_size <sectors>]		Defines granularity of bitmap
1116  *    [journal_dev <dev>]		raid4/5/6 journaling deviice
1117  *    					(i.e. write hole closing log)
1118  *
1119  * RAID10-only options:
1120  *    [raid10_copies <# copies>]	Number of copies.  (Default: 2)
1121  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1122  */
1123 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1124 			     unsigned int num_raid_params)
1125 {
1126 	int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1127 	unsigned int raid10_copies = 2;
1128 	unsigned int i, write_mostly = 0;
1129 	unsigned int region_size = 0;
1130 	sector_t max_io_len;
1131 	const char *arg, *key;
1132 	struct raid_dev *rd;
1133 	struct raid_type *rt = rs->raid_type;
1134 
1135 	arg = dm_shift_arg(as);
1136 	num_raid_params--; /* Account for chunk_size argument */
1137 
1138 	if (kstrtoint(arg, 10, &value) < 0) {
1139 		rs->ti->error = "Bad numerical argument given for chunk_size";
1140 		return -EINVAL;
1141 	}
1142 
1143 	/*
1144 	 * First, parse the in-order required arguments
1145 	 * "chunk_size" is the only argument of this type.
1146 	 */
1147 	if (rt_is_raid1(rt)) {
1148 		if (value)
1149 			DMERR("Ignoring chunk size parameter for RAID 1");
1150 		value = 0;
1151 	} else if (!is_power_of_2(value)) {
1152 		rs->ti->error = "Chunk size must be a power of 2";
1153 		return -EINVAL;
1154 	} else if (value < 8) {
1155 		rs->ti->error = "Chunk size value is too small";
1156 		return -EINVAL;
1157 	}
1158 
1159 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1160 
1161 	/*
1162 	 * We set each individual device as In_sync with a completed
1163 	 * 'recovery_offset'.  If there has been a device failure or
1164 	 * replacement then one of the following cases applies:
1165 	 *
1166 	 *   1) User specifies 'rebuild'.
1167 	 *	- Device is reset when param is read.
1168 	 *   2) A new device is supplied.
1169 	 *	- No matching superblock found, resets device.
1170 	 *   3) Device failure was transient and returns on reload.
1171 	 *	- Failure noticed, resets device for bitmap replay.
1172 	 *   4) Device hadn't completed recovery after previous failure.
1173 	 *	- Superblock is read and overrides recovery_offset.
1174 	 *
1175 	 * What is found in the superblocks of the devices is always
1176 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1177 	 */
1178 	for (i = 0; i < rs->raid_disks; i++) {
1179 		set_bit(In_sync, &rs->dev[i].rdev.flags);
1180 		rs->dev[i].rdev.recovery_offset = MaxSector;
1181 	}
1182 
1183 	/*
1184 	 * Second, parse the unordered optional arguments
1185 	 */
1186 	for (i = 0; i < num_raid_params; i++) {
1187 		key = dm_shift_arg(as);
1188 		if (!key) {
1189 			rs->ti->error = "Not enough raid parameters given";
1190 			return -EINVAL;
1191 		}
1192 
1193 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1194 			if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1195 				rs->ti->error = "Only one 'nosync' argument allowed";
1196 				return -EINVAL;
1197 			}
1198 			continue;
1199 		}
1200 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1201 			if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1202 				rs->ti->error = "Only one 'sync' argument allowed";
1203 				return -EINVAL;
1204 			}
1205 			continue;
1206 		}
1207 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1208 			if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1209 				rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1210 				return -EINVAL;
1211 			}
1212 			continue;
1213 		}
1214 
1215 		arg = dm_shift_arg(as);
1216 		i++; /* Account for the argument pairs */
1217 		if (!arg) {
1218 			rs->ti->error = "Wrong number of raid parameters given";
1219 			return -EINVAL;
1220 		}
1221 
1222 		/*
1223 		 * Parameters that take a string value are checked here.
1224 		 */
1225 		/* "raid10_format {near|offset|far} */
1226 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1227 			if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1228 				rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1229 				return -EINVAL;
1230 			}
1231 			if (!rt_is_raid10(rt)) {
1232 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1233 				return -EINVAL;
1234 			}
1235 			raid10_format = raid10_name_to_format(arg);
1236 			if (raid10_format < 0) {
1237 				rs->ti->error = "Invalid 'raid10_format' value given";
1238 				return raid10_format;
1239 			}
1240 			continue;
1241 		}
1242 
1243 		/* "journal_dev <dev>" */
1244 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1245 			int r;
1246 			struct md_rdev *jdev;
1247 
1248 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1249 				rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1250 				return -EINVAL;
1251 			}
1252 			if (!rt_is_raid456(rt)) {
1253 				rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1254 				return -EINVAL;
1255 			}
1256 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1257 					  &rs->journal_dev.dev);
1258 			if (r) {
1259 				rs->ti->error = "raid4/5/6 journal device lookup failure";
1260 				return r;
1261 			}
1262 			jdev = &rs->journal_dev.rdev;
1263 			md_rdev_init(jdev);
1264 			jdev->mddev = &rs->md;
1265 			jdev->bdev = rs->journal_dev.dev->bdev;
1266 			jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1267 			if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1268 				rs->ti->error = "No space for raid4/5/6 journal";
1269 				return -ENOSPC;
1270 			}
1271 			rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1272 			set_bit(Journal, &jdev->flags);
1273 			continue;
1274 		}
1275 
1276 		/* "journal_mode <mode>" ("journal_dev" mandatory!) */
1277 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1278 			int r;
1279 
1280 			if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1281 				rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1282 				return -EINVAL;
1283 			}
1284 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1285 				rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1286 				return -EINVAL;
1287 			}
1288 			r = dm_raid_journal_mode_to_md(arg);
1289 			if (r < 0) {
1290 				rs->ti->error = "Invalid 'journal_mode' argument";
1291 				return r;
1292 			}
1293 			rs->journal_dev.mode = r;
1294 			continue;
1295 		}
1296 
1297 		/*
1298 		 * Parameters with number values from here on.
1299 		 */
1300 		if (kstrtoint(arg, 10, &value) < 0) {
1301 			rs->ti->error = "Bad numerical argument given in raid params";
1302 			return -EINVAL;
1303 		}
1304 
1305 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1306 			/*
1307 			 * "rebuild" is being passed in by userspace to provide
1308 			 * indexes of replaced devices and to set up additional
1309 			 * devices on raid level takeover.
1310 			 */
1311 			if (!__within_range(value, 0, rs->raid_disks - 1)) {
1312 				rs->ti->error = "Invalid rebuild index given";
1313 				return -EINVAL;
1314 			}
1315 
1316 			if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1317 				rs->ti->error = "rebuild for this index already given";
1318 				return -EINVAL;
1319 			}
1320 
1321 			rd = rs->dev + value;
1322 			clear_bit(In_sync, &rd->rdev.flags);
1323 			clear_bit(Faulty, &rd->rdev.flags);
1324 			rd->rdev.recovery_offset = 0;
1325 			set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1326 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1327 			if (!rt_is_raid1(rt)) {
1328 				rs->ti->error = "write_mostly option is only valid for RAID1";
1329 				return -EINVAL;
1330 			}
1331 
1332 			if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1333 				rs->ti->error = "Invalid write_mostly index given";
1334 				return -EINVAL;
1335 			}
1336 
1337 			write_mostly++;
1338 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1339 			set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1340 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1341 			if (!rt_is_raid1(rt)) {
1342 				rs->ti->error = "max_write_behind option is only valid for RAID1";
1343 				return -EINVAL;
1344 			}
1345 
1346 			if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1347 				rs->ti->error = "Only one max_write_behind argument pair allowed";
1348 				return -EINVAL;
1349 			}
1350 
1351 			/*
1352 			 * In device-mapper, we specify things in sectors, but
1353 			 * MD records this value in kB
1354 			 */
1355 			if (value < 0 || value / 2 > COUNTER_MAX) {
1356 				rs->ti->error = "Max write-behind limit out of range";
1357 				return -EINVAL;
1358 			}
1359 
1360 			rs->md.bitmap_info.max_write_behind = value / 2;
1361 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1362 			if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1363 				rs->ti->error = "Only one daemon_sleep argument pair allowed";
1364 				return -EINVAL;
1365 			}
1366 			if (value < 0) {
1367 				rs->ti->error = "daemon sleep period out of range";
1368 				return -EINVAL;
1369 			}
1370 			rs->md.bitmap_info.daemon_sleep = value;
1371 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1372 			/* Userspace passes new data_offset after having extended the the data image LV */
1373 			if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1374 				rs->ti->error = "Only one data_offset argument pair allowed";
1375 				return -EINVAL;
1376 			}
1377 			/* Ensure sensible data offset */
1378 			if (value < 0 ||
1379 			    (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1380 				rs->ti->error = "Bogus data_offset value";
1381 				return -EINVAL;
1382 			}
1383 			rs->data_offset = value;
1384 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1385 			/* Define the +/-# of disks to add to/remove from the given raid set */
1386 			if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1387 				rs->ti->error = "Only one delta_disks argument pair allowed";
1388 				return -EINVAL;
1389 			}
1390 			/* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1391 			if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1392 				rs->ti->error = "Too many delta_disk requested";
1393 				return -EINVAL;
1394 			}
1395 
1396 			rs->delta_disks = value;
1397 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1398 			if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1399 				rs->ti->error = "Only one stripe_cache argument pair allowed";
1400 				return -EINVAL;
1401 			}
1402 
1403 			if (!rt_is_raid456(rt)) {
1404 				rs->ti->error = "Inappropriate argument: stripe_cache";
1405 				return -EINVAL;
1406 			}
1407 
1408 			if (value < 0) {
1409 				rs->ti->error = "Bogus stripe cache entries value";
1410 				return -EINVAL;
1411 			}
1412 			rs->stripe_cache_entries = value;
1413 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1414 			if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1415 				rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1416 				return -EINVAL;
1417 			}
1418 
1419 			if (value < 0) {
1420 				rs->ti->error = "min_recovery_rate out of range";
1421 				return -EINVAL;
1422 			}
1423 			rs->md.sync_speed_min = value;
1424 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1425 			if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1426 				rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1427 				return -EINVAL;
1428 			}
1429 
1430 			if (value < 0) {
1431 				rs->ti->error = "max_recovery_rate out of range";
1432 				return -EINVAL;
1433 			}
1434 			rs->md.sync_speed_max = value;
1435 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1436 			if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1437 				rs->ti->error = "Only one region_size argument pair allowed";
1438 				return -EINVAL;
1439 			}
1440 
1441 			region_size = value;
1442 			rs->requested_bitmap_chunk_sectors = value;
1443 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1444 			if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1445 				rs->ti->error = "Only one raid10_copies argument pair allowed";
1446 				return -EINVAL;
1447 			}
1448 
1449 			if (!__within_range(value, 2, rs->md.raid_disks)) {
1450 				rs->ti->error = "Bad value for 'raid10_copies'";
1451 				return -EINVAL;
1452 			}
1453 
1454 			raid10_copies = value;
1455 		} else {
1456 			DMERR("Unable to parse RAID parameter: %s", key);
1457 			rs->ti->error = "Unable to parse RAID parameter";
1458 			return -EINVAL;
1459 		}
1460 	}
1461 
1462 	if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1463 	    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1464 		rs->ti->error = "sync and nosync are mutually exclusive";
1465 		return -EINVAL;
1466 	}
1467 
1468 	if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1469 	    (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1470 	     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1471 		rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1472 		return -EINVAL;
1473 	}
1474 
1475 	if (write_mostly >= rs->md.raid_disks) {
1476 		rs->ti->error = "Can't set all raid1 devices to write_mostly";
1477 		return -EINVAL;
1478 	}
1479 
1480 	if (rs->md.sync_speed_max &&
1481 	    rs->md.sync_speed_min > rs->md.sync_speed_max) {
1482 		rs->ti->error = "Bogus recovery rates";
1483 		return -EINVAL;
1484 	}
1485 
1486 	if (validate_region_size(rs, region_size))
1487 		return -EINVAL;
1488 
1489 	if (rs->md.chunk_sectors)
1490 		max_io_len = rs->md.chunk_sectors;
1491 	else
1492 		max_io_len = region_size;
1493 
1494 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
1495 		return -EINVAL;
1496 
1497 	if (rt_is_raid10(rt)) {
1498 		if (raid10_copies > rs->md.raid_disks) {
1499 			rs->ti->error = "Not enough devices to satisfy specification";
1500 			return -EINVAL;
1501 		}
1502 
1503 		rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1504 		if (rs->md.new_layout < 0) {
1505 			rs->ti->error = "Error getting raid10 format";
1506 			return rs->md.new_layout;
1507 		}
1508 
1509 		rt = get_raid_type_by_ll(10, rs->md.new_layout);
1510 		if (!rt) {
1511 			rs->ti->error = "Failed to recognize new raid10 layout";
1512 			return -EINVAL;
1513 		}
1514 
1515 		if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1516 		     rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1517 		    test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1518 			rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1519 			return -EINVAL;
1520 		}
1521 	}
1522 
1523 	rs->raid10_copies = raid10_copies;
1524 
1525 	/* Assume there are no metadata devices until the drives are parsed */
1526 	rs->md.persistent = 0;
1527 	rs->md.external = 1;
1528 
1529 	/* Check, if any invalid ctr arguments have been passed in for the raid level */
1530 	return rs_check_for_valid_flags(rs);
1531 }
1532 
1533 /* Set raid4/5/6 cache size */
1534 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1535 {
1536 	int r;
1537 	struct r5conf *conf;
1538 	struct mddev *mddev = &rs->md;
1539 	uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1540 	uint32_t nr_stripes = rs->stripe_cache_entries;
1541 
1542 	if (!rt_is_raid456(rs->raid_type)) {
1543 		rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1544 		return -EINVAL;
1545 	}
1546 
1547 	if (nr_stripes < min_stripes) {
1548 		DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1549 		       nr_stripes, min_stripes);
1550 		nr_stripes = min_stripes;
1551 	}
1552 
1553 	conf = mddev->private;
1554 	if (!conf) {
1555 		rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1556 		return -EINVAL;
1557 	}
1558 
1559 	/* Try setting number of stripes in raid456 stripe cache */
1560 	if (conf->min_nr_stripes != nr_stripes) {
1561 		r = raid5_set_cache_size(mddev, nr_stripes);
1562 		if (r) {
1563 			rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1564 			return r;
1565 		}
1566 
1567 		DMINFO("%u stripe cache entries", nr_stripes);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1574 static unsigned int mddev_data_stripes(struct raid_set *rs)
1575 {
1576 	return rs->md.raid_disks - rs->raid_type->parity_devs;
1577 }
1578 
1579 /* Return # of data stripes of @rs (i.e. as of ctr) */
1580 static unsigned int rs_data_stripes(struct raid_set *rs)
1581 {
1582 	return rs->raid_disks - rs->raid_type->parity_devs;
1583 }
1584 
1585 /*
1586  * Retrieve rdev->sectors from any valid raid device of @rs
1587  * to allow userpace to pass in arbitray "- -" device tupples.
1588  */
1589 static sector_t __rdev_sectors(struct raid_set *rs)
1590 {
1591 	int i;
1592 
1593 	for (i = 0; i < rs->md.raid_disks; i++) {
1594 		struct md_rdev *rdev = &rs->dev[i].rdev;
1595 
1596 		if (!test_bit(Journal, &rdev->flags) &&
1597 		    rdev->bdev && rdev->sectors)
1598 			return rdev->sectors;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 /* Check that calculated dev_sectors fits all component devices. */
1605 static int _check_data_dev_sectors(struct raid_set *rs)
1606 {
1607 	sector_t ds = ~0;
1608 	struct md_rdev *rdev;
1609 
1610 	rdev_for_each(rdev, &rs->md)
1611 		if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1612 			ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1613 			if (ds < rs->md.dev_sectors) {
1614 				rs->ti->error = "Component device(s) too small";
1615 				return -EINVAL;
1616 			}
1617 		}
1618 
1619 	return 0;
1620 }
1621 
1622 /* Calculate the sectors per device and per array used for @rs */
1623 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1624 {
1625 	int delta_disks;
1626 	unsigned int data_stripes;
1627 	sector_t array_sectors = sectors, dev_sectors = sectors;
1628 	struct mddev *mddev = &rs->md;
1629 
1630 	if (use_mddev) {
1631 		delta_disks = mddev->delta_disks;
1632 		data_stripes = mddev_data_stripes(rs);
1633 	} else {
1634 		delta_disks = rs->delta_disks;
1635 		data_stripes = rs_data_stripes(rs);
1636 	}
1637 
1638 	/* Special raid1 case w/o delta_disks support (yet) */
1639 	if (rt_is_raid1(rs->raid_type))
1640 		;
1641 	else if (rt_is_raid10(rs->raid_type)) {
1642 		if (rs->raid10_copies < 2 ||
1643 		    delta_disks < 0) {
1644 			rs->ti->error = "Bogus raid10 data copies or delta disks";
1645 			return -EINVAL;
1646 		}
1647 
1648 		dev_sectors *= rs->raid10_copies;
1649 		if (sector_div(dev_sectors, data_stripes))
1650 			goto bad;
1651 
1652 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1653 		if (sector_div(array_sectors, rs->raid10_copies))
1654 			goto bad;
1655 
1656 	} else if (sector_div(dev_sectors, data_stripes))
1657 		goto bad;
1658 
1659 	else
1660 		/* Striped layouts */
1661 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1662 
1663 	mddev->array_sectors = array_sectors;
1664 	mddev->dev_sectors = dev_sectors;
1665 	rs_set_rdev_sectors(rs);
1666 
1667 	return _check_data_dev_sectors(rs);
1668 bad:
1669 	rs->ti->error = "Target length not divisible by number of data devices";
1670 	return -EINVAL;
1671 }
1672 
1673 /* Setup recovery on @rs */
1674 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1675 {
1676 	/* raid0 does not recover */
1677 	if (rs_is_raid0(rs))
1678 		rs->md.recovery_cp = MaxSector;
1679 	/*
1680 	 * A raid6 set has to be recovered either
1681 	 * completely or for the grown part to
1682 	 * ensure proper parity and Q-Syndrome
1683 	 */
1684 	else if (rs_is_raid6(rs))
1685 		rs->md.recovery_cp = dev_sectors;
1686 	/*
1687 	 * Other raid set types may skip recovery
1688 	 * depending on the 'nosync' flag.
1689 	 */
1690 	else
1691 		rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1692 				     ? MaxSector : dev_sectors;
1693 }
1694 
1695 static void do_table_event(struct work_struct *ws)
1696 {
1697 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1698 
1699 	smp_rmb(); /* Make sure we access most actual mddev properties */
1700 	if (!rs_is_reshaping(rs)) {
1701 		if (rs_is_raid10(rs))
1702 			rs_set_rdev_sectors(rs);
1703 		rs_set_capacity(rs);
1704 	}
1705 	dm_table_event(rs->ti->table);
1706 }
1707 
1708 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1709 {
1710 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1711 
1712 	return mddev_congested(&rs->md, bits);
1713 }
1714 
1715 /*
1716  * Make sure a valid takover (level switch) is being requested on @rs
1717  *
1718  * Conversions of raid sets from one MD personality to another
1719  * have to conform to restrictions which are enforced here.
1720  */
1721 static int rs_check_takeover(struct raid_set *rs)
1722 {
1723 	struct mddev *mddev = &rs->md;
1724 	unsigned int near_copies;
1725 
1726 	if (rs->md.degraded) {
1727 		rs->ti->error = "Can't takeover degraded raid set";
1728 		return -EPERM;
1729 	}
1730 
1731 	if (rs_is_reshaping(rs)) {
1732 		rs->ti->error = "Can't takeover reshaping raid set";
1733 		return -EPERM;
1734 	}
1735 
1736 	switch (mddev->level) {
1737 	case 0:
1738 		/* raid0 -> raid1/5 with one disk */
1739 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1740 		    mddev->raid_disks == 1)
1741 			return 0;
1742 
1743 		/* raid0 -> raid10 */
1744 		if (mddev->new_level == 10 &&
1745 		    !(rs->raid_disks % mddev->raid_disks))
1746 			return 0;
1747 
1748 		/* raid0 with multiple disks -> raid4/5/6 */
1749 		if (__within_range(mddev->new_level, 4, 6) &&
1750 		    mddev->new_layout == ALGORITHM_PARITY_N &&
1751 		    mddev->raid_disks > 1)
1752 			return 0;
1753 
1754 		break;
1755 
1756 	case 10:
1757 		/* Can't takeover raid10_offset! */
1758 		if (__is_raid10_offset(mddev->layout))
1759 			break;
1760 
1761 		near_copies = __raid10_near_copies(mddev->layout);
1762 
1763 		/* raid10* -> raid0 */
1764 		if (mddev->new_level == 0) {
1765 			/* Can takeover raid10_near with raid disks divisable by data copies! */
1766 			if (near_copies > 1 &&
1767 			    !(mddev->raid_disks % near_copies)) {
1768 				mddev->raid_disks /= near_copies;
1769 				mddev->delta_disks = mddev->raid_disks;
1770 				return 0;
1771 			}
1772 
1773 			/* Can takeover raid10_far */
1774 			if (near_copies == 1 &&
1775 			    __raid10_far_copies(mddev->layout) > 1)
1776 				return 0;
1777 
1778 			break;
1779 		}
1780 
1781 		/* raid10_{near,far} -> raid1 */
1782 		if (mddev->new_level == 1 &&
1783 		    max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1784 			return 0;
1785 
1786 		/* raid10_{near,far} with 2 disks -> raid4/5 */
1787 		if (__within_range(mddev->new_level, 4, 5) &&
1788 		    mddev->raid_disks == 2)
1789 			return 0;
1790 		break;
1791 
1792 	case 1:
1793 		/* raid1 with 2 disks -> raid4/5 */
1794 		if (__within_range(mddev->new_level, 4, 5) &&
1795 		    mddev->raid_disks == 2) {
1796 			mddev->degraded = 1;
1797 			return 0;
1798 		}
1799 
1800 		/* raid1 -> raid0 */
1801 		if (mddev->new_level == 0 &&
1802 		    mddev->raid_disks == 1)
1803 			return 0;
1804 
1805 		/* raid1 -> raid10 */
1806 		if (mddev->new_level == 10)
1807 			return 0;
1808 		break;
1809 
1810 	case 4:
1811 		/* raid4 -> raid0 */
1812 		if (mddev->new_level == 0)
1813 			return 0;
1814 
1815 		/* raid4 -> raid1/5 with 2 disks */
1816 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1817 		    mddev->raid_disks == 2)
1818 			return 0;
1819 
1820 		/* raid4 -> raid5/6 with parity N */
1821 		if (__within_range(mddev->new_level, 5, 6) &&
1822 		    mddev->layout == ALGORITHM_PARITY_N)
1823 			return 0;
1824 		break;
1825 
1826 	case 5:
1827 		/* raid5 with parity N -> raid0 */
1828 		if (mddev->new_level == 0 &&
1829 		    mddev->layout == ALGORITHM_PARITY_N)
1830 			return 0;
1831 
1832 		/* raid5 with parity N -> raid4 */
1833 		if (mddev->new_level == 4 &&
1834 		    mddev->layout == ALGORITHM_PARITY_N)
1835 			return 0;
1836 
1837 		/* raid5 with 2 disks -> raid1/4/10 */
1838 		if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1839 		    mddev->raid_disks == 2)
1840 			return 0;
1841 
1842 		/* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1843 		if (mddev->new_level == 6 &&
1844 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1845 		      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1846 			return 0;
1847 		break;
1848 
1849 	case 6:
1850 		/* raid6 with parity N -> raid0 */
1851 		if (mddev->new_level == 0 &&
1852 		    mddev->layout == ALGORITHM_PARITY_N)
1853 			return 0;
1854 
1855 		/* raid6 with parity N -> raid4 */
1856 		if (mddev->new_level == 4 &&
1857 		    mddev->layout == ALGORITHM_PARITY_N)
1858 			return 0;
1859 
1860 		/* raid6_*_n with Q-Syndrome N -> raid5_* */
1861 		if (mddev->new_level == 5 &&
1862 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1863 		     __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1864 			return 0;
1865 
1866 	default:
1867 		break;
1868 	}
1869 
1870 	rs->ti->error = "takeover not possible";
1871 	return -EINVAL;
1872 }
1873 
1874 /* True if @rs requested to be taken over */
1875 static bool rs_takeover_requested(struct raid_set *rs)
1876 {
1877 	return rs->md.new_level != rs->md.level;
1878 }
1879 
1880 /* True if @rs is requested to reshape by ctr */
1881 static bool rs_reshape_requested(struct raid_set *rs)
1882 {
1883 	bool change;
1884 	struct mddev *mddev = &rs->md;
1885 
1886 	if (rs_takeover_requested(rs))
1887 		return false;
1888 
1889 	if (rs_is_raid0(rs))
1890 		return false;
1891 
1892 	change = mddev->new_layout != mddev->layout ||
1893 		 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1894 		 rs->delta_disks;
1895 
1896 	/* Historical case to support raid1 reshape without delta disks */
1897 	if (rs_is_raid1(rs)) {
1898 		if (rs->delta_disks)
1899 			return !!rs->delta_disks;
1900 
1901 		return !change &&
1902 		       mddev->raid_disks != rs->raid_disks;
1903 	}
1904 
1905 	if (rs_is_raid10(rs))
1906 		return change &&
1907 		       !__is_raid10_far(mddev->new_layout) &&
1908 		       rs->delta_disks >= 0;
1909 
1910 	return change;
1911 }
1912 
1913 /*  Features */
1914 #define	FEATURE_FLAG_SUPPORTS_V190	0x1 /* Supports extended superblock */
1915 
1916 /* State flags for sb->flags */
1917 #define	SB_FLAG_RESHAPE_ACTIVE		0x1
1918 #define	SB_FLAG_RESHAPE_BACKWARDS	0x2
1919 
1920 /*
1921  * This structure is never routinely used by userspace, unlike md superblocks.
1922  * Devices with this superblock should only ever be accessed via device-mapper.
1923  */
1924 #define DM_RAID_MAGIC 0x64526D44
1925 struct dm_raid_superblock {
1926 	__le32 magic;		/* "DmRd" */
1927 	__le32 compat_features;	/* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1928 
1929 	__le32 num_devices;	/* Number of devices in this raid set. (Max 64) */
1930 	__le32 array_position;	/* The position of this drive in the raid set */
1931 
1932 	__le64 events;		/* Incremented by md when superblock updated */
1933 	__le64 failed_devices;	/* Pre 1.9.0 part of bit field of devices to */
1934 				/* indicate failures (see extension below) */
1935 
1936 	/*
1937 	 * This offset tracks the progress of the repair or replacement of
1938 	 * an individual drive.
1939 	 */
1940 	__le64 disk_recovery_offset;
1941 
1942 	/*
1943 	 * This offset tracks the progress of the initial raid set
1944 	 * synchronisation/parity calculation.
1945 	 */
1946 	__le64 array_resync_offset;
1947 
1948 	/*
1949 	 * raid characteristics
1950 	 */
1951 	__le32 level;
1952 	__le32 layout;
1953 	__le32 stripe_sectors;
1954 
1955 	/********************************************************************
1956 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1957 	 *
1958 	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1959 	 */
1960 
1961 	__le32 flags; /* Flags defining array states for reshaping */
1962 
1963 	/*
1964 	 * This offset tracks the progress of a raid
1965 	 * set reshape in order to be able to restart it
1966 	 */
1967 	__le64 reshape_position;
1968 
1969 	/*
1970 	 * These define the properties of the array in case of an interrupted reshape
1971 	 */
1972 	__le32 new_level;
1973 	__le32 new_layout;
1974 	__le32 new_stripe_sectors;
1975 	__le32 delta_disks;
1976 
1977 	__le64 array_sectors; /* Array size in sectors */
1978 
1979 	/*
1980 	 * Sector offsets to data on devices (reshaping).
1981 	 * Needed to support out of place reshaping, thus
1982 	 * not writing over any stripes whilst converting
1983 	 * them from old to new layout
1984 	 */
1985 	__le64 data_offset;
1986 	__le64 new_data_offset;
1987 
1988 	__le64 sectors; /* Used device size in sectors */
1989 
1990 	/*
1991 	 * Additonal Bit field of devices indicating failures to support
1992 	 * up to 256 devices with the 1.9.0 on-disk metadata format
1993 	 */
1994 	__le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1995 
1996 	__le32 incompat_features;	/* Used to indicate any incompatible features */
1997 
1998 	/* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1999 } __packed;
2000 
2001 /*
2002  * Check for reshape constraints on raid set @rs:
2003  *
2004  * - reshape function non-existent
2005  * - degraded set
2006  * - ongoing recovery
2007  * - ongoing reshape
2008  *
2009  * Returns 0 if none or -EPERM if given constraint
2010  * and error message reference in @errmsg
2011  */
2012 static int rs_check_reshape(struct raid_set *rs)
2013 {
2014 	struct mddev *mddev = &rs->md;
2015 
2016 	if (!mddev->pers || !mddev->pers->check_reshape)
2017 		rs->ti->error = "Reshape not supported";
2018 	else if (mddev->degraded)
2019 		rs->ti->error = "Can't reshape degraded raid set";
2020 	else if (rs_is_recovering(rs))
2021 		rs->ti->error = "Convert request on recovering raid set prohibited";
2022 	else if (rs_is_reshaping(rs))
2023 		rs->ti->error = "raid set already reshaping!";
2024 	else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2025 		rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2026 	else
2027 		return 0;
2028 
2029 	return -EPERM;
2030 }
2031 
2032 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2033 {
2034 	BUG_ON(!rdev->sb_page);
2035 
2036 	if (rdev->sb_loaded && !force_reload)
2037 		return 0;
2038 
2039 	rdev->sb_loaded = 0;
2040 
2041 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2042 		DMERR("Failed to read superblock of device at position %d",
2043 		      rdev->raid_disk);
2044 		md_error(rdev->mddev, rdev);
2045 		set_bit(Faulty, &rdev->flags);
2046 		return -EIO;
2047 	}
2048 
2049 	rdev->sb_loaded = 1;
2050 
2051 	return 0;
2052 }
2053 
2054 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2055 {
2056 	failed_devices[0] = le64_to_cpu(sb->failed_devices);
2057 	memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2058 
2059 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2060 		int i = ARRAY_SIZE(sb->extended_failed_devices);
2061 
2062 		while (i--)
2063 			failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2064 	}
2065 }
2066 
2067 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2068 {
2069 	int i = ARRAY_SIZE(sb->extended_failed_devices);
2070 
2071 	sb->failed_devices = cpu_to_le64(failed_devices[0]);
2072 	while (i--)
2073 		sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2074 }
2075 
2076 /*
2077  * Synchronize the superblock members with the raid set properties
2078  *
2079  * All superblock data is little endian.
2080  */
2081 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2082 {
2083 	bool update_failed_devices = false;
2084 	unsigned int i;
2085 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2086 	struct dm_raid_superblock *sb;
2087 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
2088 
2089 	/* No metadata device, no superblock */
2090 	if (!rdev->meta_bdev)
2091 		return;
2092 
2093 	BUG_ON(!rdev->sb_page);
2094 
2095 	sb = page_address(rdev->sb_page);
2096 
2097 	sb_retrieve_failed_devices(sb, failed_devices);
2098 
2099 	for (i = 0; i < rs->raid_disks; i++)
2100 		if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2101 			update_failed_devices = true;
2102 			set_bit(i, (void *) failed_devices);
2103 		}
2104 
2105 	if (update_failed_devices)
2106 		sb_update_failed_devices(sb, failed_devices);
2107 
2108 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2109 	sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2110 
2111 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
2112 	sb->array_position = cpu_to_le32(rdev->raid_disk);
2113 
2114 	sb->events = cpu_to_le64(mddev->events);
2115 
2116 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2117 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2118 
2119 	sb->level = cpu_to_le32(mddev->level);
2120 	sb->layout = cpu_to_le32(mddev->layout);
2121 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2122 
2123 	/********************************************************************
2124 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2125 	 *
2126 	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2127 	 */
2128 	sb->new_level = cpu_to_le32(mddev->new_level);
2129 	sb->new_layout = cpu_to_le32(mddev->new_layout);
2130 	sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2131 
2132 	sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2133 
2134 	smp_rmb(); /* Make sure we access most recent reshape position */
2135 	sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2136 	if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2137 		/* Flag ongoing reshape */
2138 		sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2139 
2140 		if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2141 			sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2142 	} else {
2143 		/* Clear reshape flags */
2144 		sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2145 	}
2146 
2147 	sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2148 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2149 	sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2150 	sb->sectors = cpu_to_le64(rdev->sectors);
2151 	sb->incompat_features = cpu_to_le32(0);
2152 
2153 	/* Zero out the rest of the payload after the size of the superblock */
2154 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2155 }
2156 
2157 /*
2158  * super_load
2159  *
2160  * This function creates a superblock if one is not found on the device
2161  * and will decide which superblock to use if there's a choice.
2162  *
2163  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2164  */
2165 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2166 {
2167 	int r;
2168 	struct dm_raid_superblock *sb;
2169 	struct dm_raid_superblock *refsb;
2170 	uint64_t events_sb, events_refsb;
2171 
2172 	r = read_disk_sb(rdev, rdev->sb_size, false);
2173 	if (r)
2174 		return r;
2175 
2176 	sb = page_address(rdev->sb_page);
2177 
2178 	/*
2179 	 * Two cases that we want to write new superblocks and rebuild:
2180 	 * 1) New device (no matching magic number)
2181 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2182 	 */
2183 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2184 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2185 		super_sync(rdev->mddev, rdev);
2186 
2187 		set_bit(FirstUse, &rdev->flags);
2188 		sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2189 
2190 		/* Force writing of superblocks to disk */
2191 		set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2192 
2193 		/* Any superblock is better than none, choose that if given */
2194 		return refdev ? 0 : 1;
2195 	}
2196 
2197 	if (!refdev)
2198 		return 1;
2199 
2200 	events_sb = le64_to_cpu(sb->events);
2201 
2202 	refsb = page_address(refdev->sb_page);
2203 	events_refsb = le64_to_cpu(refsb->events);
2204 
2205 	return (events_sb > events_refsb) ? 1 : 0;
2206 }
2207 
2208 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2209 {
2210 	int role;
2211 	unsigned int d;
2212 	struct mddev *mddev = &rs->md;
2213 	uint64_t events_sb;
2214 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2215 	struct dm_raid_superblock *sb;
2216 	uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2217 	struct md_rdev *r;
2218 	struct dm_raid_superblock *sb2;
2219 
2220 	sb = page_address(rdev->sb_page);
2221 	events_sb = le64_to_cpu(sb->events);
2222 
2223 	/*
2224 	 * Initialise to 1 if this is a new superblock.
2225 	 */
2226 	mddev->events = events_sb ? : 1;
2227 
2228 	mddev->reshape_position = MaxSector;
2229 
2230 	mddev->raid_disks = le32_to_cpu(sb->num_devices);
2231 	mddev->level = le32_to_cpu(sb->level);
2232 	mddev->layout = le32_to_cpu(sb->layout);
2233 	mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2234 
2235 	/*
2236 	 * Reshaping is supported, e.g. reshape_position is valid
2237 	 * in superblock and superblock content is authoritative.
2238 	 */
2239 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2240 		/* Superblock is authoritative wrt given raid set layout! */
2241 		mddev->new_level = le32_to_cpu(sb->new_level);
2242 		mddev->new_layout = le32_to_cpu(sb->new_layout);
2243 		mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2244 		mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2245 		mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2246 
2247 		/* raid was reshaping and got interrupted */
2248 		if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2249 			if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2250 				DMERR("Reshape requested but raid set is still reshaping");
2251 				return -EINVAL;
2252 			}
2253 
2254 			if (mddev->delta_disks < 0 ||
2255 			    (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2256 				mddev->reshape_backwards = 1;
2257 			else
2258 				mddev->reshape_backwards = 0;
2259 
2260 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2261 			rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2262 		}
2263 
2264 	} else {
2265 		/*
2266 		 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2267 		 */
2268 		struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2269 		struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2270 
2271 		if (rs_takeover_requested(rs)) {
2272 			if (rt_cur && rt_new)
2273 				DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2274 				      rt_cur->name, rt_new->name);
2275 			else
2276 				DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2277 			return -EINVAL;
2278 		} else if (rs_reshape_requested(rs)) {
2279 			DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2280 			if (mddev->layout != mddev->new_layout) {
2281 				if (rt_cur && rt_new)
2282 					DMERR("	 current layout %s vs new layout %s",
2283 					      rt_cur->name, rt_new->name);
2284 				else
2285 					DMERR("	 current layout 0x%X vs new layout 0x%X",
2286 					      le32_to_cpu(sb->layout), mddev->new_layout);
2287 			}
2288 			if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2289 				DMERR("	 current stripe sectors %u vs new stripe sectors %u",
2290 				      mddev->chunk_sectors, mddev->new_chunk_sectors);
2291 			if (rs->delta_disks)
2292 				DMERR("	 current %u disks vs new %u disks",
2293 				      mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2294 			if (rs_is_raid10(rs)) {
2295 				DMERR("	 Old layout: %s w/ %u copies",
2296 				      raid10_md_layout_to_format(mddev->layout),
2297 				      raid10_md_layout_to_copies(mddev->layout));
2298 				DMERR("	 New layout: %s w/ %u copies",
2299 				      raid10_md_layout_to_format(mddev->new_layout),
2300 				      raid10_md_layout_to_copies(mddev->new_layout));
2301 			}
2302 			return -EINVAL;
2303 		}
2304 
2305 		DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2306 	}
2307 
2308 	if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2309 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2310 
2311 	/*
2312 	 * During load, we set FirstUse if a new superblock was written.
2313 	 * There are two reasons we might not have a superblock:
2314 	 * 1) The raid set is brand new - in which case, all of the
2315 	 *    devices must have their In_sync bit set.	Also,
2316 	 *    recovery_cp must be 0, unless forced.
2317 	 * 2) This is a new device being added to an old raid set
2318 	 *    and the new device needs to be rebuilt - in which
2319 	 *    case the In_sync bit will /not/ be set and
2320 	 *    recovery_cp must be MaxSector.
2321 	 * 3) This is/are a new device(s) being added to an old
2322 	 *    raid set during takeover to a higher raid level
2323 	 *    to provide capacity for redundancy or during reshape
2324 	 *    to add capacity to grow the raid set.
2325 	 */
2326 	d = 0;
2327 	rdev_for_each(r, mddev) {
2328 		if (test_bit(Journal, &rdev->flags))
2329 			continue;
2330 
2331 		if (test_bit(FirstUse, &r->flags))
2332 			new_devs++;
2333 
2334 		if (!test_bit(In_sync, &r->flags)) {
2335 			DMINFO("Device %d specified for rebuild; clearing superblock",
2336 				r->raid_disk);
2337 			rebuilds++;
2338 
2339 			if (test_bit(FirstUse, &r->flags))
2340 				rebuild_and_new++;
2341 		}
2342 
2343 		d++;
2344 	}
2345 
2346 	if (new_devs == rs->raid_disks || !rebuilds) {
2347 		/* Replace a broken device */
2348 		if (new_devs == 1 && !rs->delta_disks)
2349 			;
2350 		if (new_devs == rs->raid_disks) {
2351 			DMINFO("Superblocks created for new raid set");
2352 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2353 		} else if (new_devs != rebuilds &&
2354 			   new_devs != rs->delta_disks) {
2355 			DMERR("New device injected into existing raid set without "
2356 			      "'delta_disks' or 'rebuild' parameter specified");
2357 			return -EINVAL;
2358 		}
2359 	} else if (new_devs && new_devs != rebuilds) {
2360 		DMERR("%u 'rebuild' devices cannot be injected into"
2361 		      " a raid set with %u other first-time devices",
2362 		      rebuilds, new_devs);
2363 		return -EINVAL;
2364 	} else if (rebuilds) {
2365 		if (rebuild_and_new && rebuilds != rebuild_and_new) {
2366 			DMERR("new device%s provided without 'rebuild'",
2367 			      new_devs > 1 ? "s" : "");
2368 			return -EINVAL;
2369 		} else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2370 			DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2371 			      (unsigned long long) mddev->recovery_cp);
2372 			return -EINVAL;
2373 		} else if (rs_is_reshaping(rs)) {
2374 			DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2375 			      (unsigned long long) mddev->reshape_position);
2376 			return -EINVAL;
2377 		}
2378 	}
2379 
2380 	/*
2381 	 * Now we set the Faulty bit for those devices that are
2382 	 * recorded in the superblock as failed.
2383 	 */
2384 	sb_retrieve_failed_devices(sb, failed_devices);
2385 	rdev_for_each(r, mddev) {
2386 		if (test_bit(Journal, &rdev->flags) ||
2387 		    !r->sb_page)
2388 			continue;
2389 		sb2 = page_address(r->sb_page);
2390 		sb2->failed_devices = 0;
2391 		memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2392 
2393 		/*
2394 		 * Check for any device re-ordering.
2395 		 */
2396 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2397 			role = le32_to_cpu(sb2->array_position);
2398 			if (role < 0)
2399 				continue;
2400 
2401 			if (role != r->raid_disk) {
2402 				if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2403 					if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2404 					    rs->raid_disks % rs->raid10_copies) {
2405 						rs->ti->error =
2406 							"Cannot change raid10 near set to odd # of devices!";
2407 						return -EINVAL;
2408 					}
2409 
2410 					sb2->array_position = cpu_to_le32(r->raid_disk);
2411 
2412 				} else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2413 					   !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2414 					   !rt_is_raid1(rs->raid_type)) {
2415 					rs->ti->error = "Cannot change device positions in raid set";
2416 					return -EINVAL;
2417 				}
2418 
2419 				DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2420 			}
2421 
2422 			/*
2423 			 * Partial recovery is performed on
2424 			 * returning failed devices.
2425 			 */
2426 			if (test_bit(role, (void *) failed_devices))
2427 				set_bit(Faulty, &r->flags);
2428 		}
2429 	}
2430 
2431 	return 0;
2432 }
2433 
2434 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2435 {
2436 	struct mddev *mddev = &rs->md;
2437 	struct dm_raid_superblock *sb;
2438 
2439 	if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2440 		return 0;
2441 
2442 	sb = page_address(rdev->sb_page);
2443 
2444 	/*
2445 	 * If mddev->events is not set, we know we have not yet initialized
2446 	 * the array.
2447 	 */
2448 	if (!mddev->events && super_init_validation(rs, rdev))
2449 		return -EINVAL;
2450 
2451 	if (le32_to_cpu(sb->compat_features) &&
2452 	    le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2453 		rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2454 		return -EINVAL;
2455 	}
2456 
2457 	if (sb->incompat_features) {
2458 		rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2459 		return -EINVAL;
2460 	}
2461 
2462 	/* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2463 	mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2464 	mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2465 
2466 	if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2467 		/*
2468 		 * Retrieve rdev size stored in superblock to be prepared for shrink.
2469 		 * Check extended superblock members are present otherwise the size
2470 		 * will not be set!
2471 		 */
2472 		if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2473 			rdev->sectors = le64_to_cpu(sb->sectors);
2474 
2475 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2476 		if (rdev->recovery_offset == MaxSector)
2477 			set_bit(In_sync, &rdev->flags);
2478 		/*
2479 		 * If no reshape in progress -> we're recovering single
2480 		 * disk(s) and have to set the device(s) to out-of-sync
2481 		 */
2482 		else if (!rs_is_reshaping(rs))
2483 			clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2484 	}
2485 
2486 	/*
2487 	 * If a device comes back, set it as not In_sync and no longer faulty.
2488 	 */
2489 	if (test_and_clear_bit(Faulty, &rdev->flags)) {
2490 		rdev->recovery_offset = 0;
2491 		clear_bit(In_sync, &rdev->flags);
2492 		rdev->saved_raid_disk = rdev->raid_disk;
2493 	}
2494 
2495 	/* Reshape support -> restore repective data offsets */
2496 	rdev->data_offset = le64_to_cpu(sb->data_offset);
2497 	rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2498 
2499 	return 0;
2500 }
2501 
2502 /*
2503  * Analyse superblocks and select the freshest.
2504  */
2505 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2506 {
2507 	int r;
2508 	struct md_rdev *rdev, *freshest;
2509 	struct mddev *mddev = &rs->md;
2510 
2511 	freshest = NULL;
2512 	rdev_for_each(rdev, mddev) {
2513 		if (test_bit(Journal, &rdev->flags))
2514 			continue;
2515 
2516 		if (!rdev->meta_bdev)
2517 			continue;
2518 
2519 		/* Set superblock offset/size for metadata device. */
2520 		rdev->sb_start = 0;
2521 		rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2522 		if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2523 			DMERR("superblock size of a logical block is no longer valid");
2524 			return -EINVAL;
2525 		}
2526 
2527 		/*
2528 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
2529 		 * the array to undergo initialization again as
2530 		 * though it were new.	This is the intended effect
2531 		 * of the "sync" directive.
2532 		 *
2533 		 * With reshaping capability added, we must ensure that
2534 		 * that the "sync" directive is disallowed during the reshape.
2535 		 */
2536 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2537 			continue;
2538 
2539 		r = super_load(rdev, freshest);
2540 
2541 		switch (r) {
2542 		case 1:
2543 			freshest = rdev;
2544 			break;
2545 		case 0:
2546 			break;
2547 		default:
2548 			/* This is a failure to read the superblock from the metadata device. */
2549 			/*
2550 			 * We have to keep any raid0 data/metadata device pairs or
2551 			 * the MD raid0 personality will fail to start the array.
2552 			 */
2553 			if (rs_is_raid0(rs))
2554 				continue;
2555 
2556 			/*
2557 			 * We keep the dm_devs to be able to emit the device tuple
2558 			 * properly on the table line in raid_status() (rather than
2559 			 * mistakenly acting as if '- -' got passed into the constructor).
2560 			 *
2561 			 * The rdev has to stay on the same_set list to allow for
2562 			 * the attempt to restore faulty devices on second resume.
2563 			 */
2564 			rdev->raid_disk = rdev->saved_raid_disk = -1;
2565 			break;
2566 		}
2567 	}
2568 
2569 	if (!freshest)
2570 		return 0;
2571 
2572 	/*
2573 	 * Validation of the freshest device provides the source of
2574 	 * validation for the remaining devices.
2575 	 */
2576 	rs->ti->error = "Unable to assemble array: Invalid superblocks";
2577 	if (super_validate(rs, freshest))
2578 		return -EINVAL;
2579 
2580 	if (validate_raid_redundancy(rs)) {
2581 		rs->ti->error = "Insufficient redundancy to activate array";
2582 		return -EINVAL;
2583 	}
2584 
2585 	rdev_for_each(rdev, mddev)
2586 		if (!test_bit(Journal, &rdev->flags) &&
2587 		    rdev != freshest &&
2588 		    super_validate(rs, rdev))
2589 			return -EINVAL;
2590 	return 0;
2591 }
2592 
2593 /*
2594  * Adjust data_offset and new_data_offset on all disk members of @rs
2595  * for out of place reshaping if requested by contructor
2596  *
2597  * We need free space at the beginning of each raid disk for forward
2598  * and at the end for backward reshapes which userspace has to provide
2599  * via remapping/reordering of space.
2600  */
2601 static int rs_adjust_data_offsets(struct raid_set *rs)
2602 {
2603 	sector_t data_offset = 0, new_data_offset = 0;
2604 	struct md_rdev *rdev;
2605 
2606 	/* Constructor did not request data offset change */
2607 	if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2608 		if (!rs_is_reshapable(rs))
2609 			goto out;
2610 
2611 		return 0;
2612 	}
2613 
2614 	/* HM FIXME: get In_Sync raid_dev? */
2615 	rdev = &rs->dev[0].rdev;
2616 
2617 	if (rs->delta_disks < 0) {
2618 		/*
2619 		 * Removing disks (reshaping backwards):
2620 		 *
2621 		 * - before reshape: data is at offset 0 and free space
2622 		 *		     is at end of each component LV
2623 		 *
2624 		 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2625 		 */
2626 		data_offset = 0;
2627 		new_data_offset = rs->data_offset;
2628 
2629 	} else if (rs->delta_disks > 0) {
2630 		/*
2631 		 * Adding disks (reshaping forwards):
2632 		 *
2633 		 * - before reshape: data is at offset rs->data_offset != 0 and
2634 		 *		     free space is at begin of each component LV
2635 		 *
2636 		 * - after reshape: data is at offset 0 on each component LV
2637 		 */
2638 		data_offset = rs->data_offset;
2639 		new_data_offset = 0;
2640 
2641 	} else {
2642 		/*
2643 		 * User space passes in 0 for data offset after having removed reshape space
2644 		 *
2645 		 * - or - (data offset != 0)
2646 		 *
2647 		 * Changing RAID layout or chunk size -> toggle offsets
2648 		 *
2649 		 * - before reshape: data is at offset rs->data_offset 0 and
2650 		 *		     free space is at end of each component LV
2651 		 *		     -or-
2652 		 *                   data is at offset rs->data_offset != 0 and
2653 		 *		     free space is at begin of each component LV
2654 		 *
2655 		 * - after reshape: data is at offset 0 if it was at offset != 0
2656 		 *                  or at offset != 0 if it was at offset 0
2657 		 *                  on each component LV
2658 		 *
2659 		 */
2660 		data_offset = rs->data_offset ? rdev->data_offset : 0;
2661 		new_data_offset = data_offset ? 0 : rs->data_offset;
2662 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2663 	}
2664 
2665 	/*
2666 	 * Make sure we got a minimum amount of free sectors per device
2667 	 */
2668 	if (rs->data_offset &&
2669 	    to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2670 		rs->ti->error = data_offset ? "No space for forward reshape" :
2671 					      "No space for backward reshape";
2672 		return -ENOSPC;
2673 	}
2674 out:
2675 	/*
2676 	 * Raise recovery_cp in case data_offset != 0 to
2677 	 * avoid false recovery positives in the constructor.
2678 	 */
2679 	if (rs->md.recovery_cp < rs->md.dev_sectors)
2680 		rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2681 
2682 	/* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2683 	rdev_for_each(rdev, &rs->md) {
2684 		if (!test_bit(Journal, &rdev->flags)) {
2685 			rdev->data_offset = data_offset;
2686 			rdev->new_data_offset = new_data_offset;
2687 		}
2688 	}
2689 
2690 	return 0;
2691 }
2692 
2693 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2694 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2695 {
2696 	int i = 0;
2697 	struct md_rdev *rdev;
2698 
2699 	rdev_for_each(rdev, &rs->md) {
2700 		if (!test_bit(Journal, &rdev->flags)) {
2701 			rdev->raid_disk = i++;
2702 			rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2703 		}
2704 	}
2705 }
2706 
2707 /*
2708  * Setup @rs for takeover by a different raid level
2709  */
2710 static int rs_setup_takeover(struct raid_set *rs)
2711 {
2712 	struct mddev *mddev = &rs->md;
2713 	struct md_rdev *rdev;
2714 	unsigned int d = mddev->raid_disks = rs->raid_disks;
2715 	sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2716 
2717 	if (rt_is_raid10(rs->raid_type)) {
2718 		if (rs_is_raid0(rs)) {
2719 			/* Userpace reordered disks -> adjust raid_disk indexes */
2720 			__reorder_raid_disk_indexes(rs);
2721 
2722 			/* raid0 -> raid10_far layout */
2723 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2724 								   rs->raid10_copies);
2725 		} else if (rs_is_raid1(rs))
2726 			/* raid1 -> raid10_near layout */
2727 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2728 								   rs->raid_disks);
2729 		else
2730 			return -EINVAL;
2731 
2732 	}
2733 
2734 	clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2735 	mddev->recovery_cp = MaxSector;
2736 
2737 	while (d--) {
2738 		rdev = &rs->dev[d].rdev;
2739 
2740 		if (test_bit(d, (void *) rs->rebuild_disks)) {
2741 			clear_bit(In_sync, &rdev->flags);
2742 			clear_bit(Faulty, &rdev->flags);
2743 			mddev->recovery_cp = rdev->recovery_offset = 0;
2744 			/* Bitmap has to be created when we do an "up" takeover */
2745 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2746 		}
2747 
2748 		rdev->new_data_offset = new_data_offset;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 /* Prepare @rs for reshape */
2755 static int rs_prepare_reshape(struct raid_set *rs)
2756 {
2757 	bool reshape;
2758 	struct mddev *mddev = &rs->md;
2759 
2760 	if (rs_is_raid10(rs)) {
2761 		if (rs->raid_disks != mddev->raid_disks &&
2762 		    __is_raid10_near(mddev->layout) &&
2763 		    rs->raid10_copies &&
2764 		    rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2765 			/*
2766 			 * raid disk have to be multiple of data copies to allow this conversion,
2767 			 *
2768 			 * This is actually not a reshape it is a
2769 			 * rebuild of any additional mirrors per group
2770 			 */
2771 			if (rs->raid_disks % rs->raid10_copies) {
2772 				rs->ti->error = "Can't reshape raid10 mirror groups";
2773 				return -EINVAL;
2774 			}
2775 
2776 			/* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2777 			__reorder_raid_disk_indexes(rs);
2778 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2779 								   rs->raid10_copies);
2780 			mddev->new_layout = mddev->layout;
2781 			reshape = false;
2782 		} else
2783 			reshape = true;
2784 
2785 	} else if (rs_is_raid456(rs))
2786 		reshape = true;
2787 
2788 	else if (rs_is_raid1(rs)) {
2789 		if (rs->delta_disks) {
2790 			/* Process raid1 via delta_disks */
2791 			mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2792 			reshape = true;
2793 		} else {
2794 			/* Process raid1 without delta_disks */
2795 			mddev->raid_disks = rs->raid_disks;
2796 			reshape = false;
2797 		}
2798 	} else {
2799 		rs->ti->error = "Called with bogus raid type";
2800 		return -EINVAL;
2801 	}
2802 
2803 	if (reshape) {
2804 		set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2805 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2806 	} else if (mddev->raid_disks < rs->raid_disks)
2807 		/* Create new superblocks and bitmaps, if any new disks */
2808 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2809 
2810 	return 0;
2811 }
2812 
2813 /* Get reshape sectors from data_offsets or raid set */
2814 static sector_t _get_reshape_sectors(struct raid_set *rs)
2815 {
2816 	struct md_rdev *rdev;
2817 	sector_t reshape_sectors = 0;
2818 
2819 	rdev_for_each(rdev, &rs->md)
2820 		if (!test_bit(Journal, &rdev->flags)) {
2821 			reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2822 					rdev->data_offset - rdev->new_data_offset :
2823 					rdev->new_data_offset - rdev->data_offset;
2824 			break;
2825 		}
2826 
2827 	return max(reshape_sectors, (sector_t) rs->data_offset);
2828 }
2829 
2830 /*
2831  *
2832  * - change raid layout
2833  * - change chunk size
2834  * - add disks
2835  * - remove disks
2836  */
2837 static int rs_setup_reshape(struct raid_set *rs)
2838 {
2839 	int r = 0;
2840 	unsigned int cur_raid_devs, d;
2841 	sector_t reshape_sectors = _get_reshape_sectors(rs);
2842 	struct mddev *mddev = &rs->md;
2843 	struct md_rdev *rdev;
2844 
2845 	mddev->delta_disks = rs->delta_disks;
2846 	cur_raid_devs = mddev->raid_disks;
2847 
2848 	/* Ignore impossible layout change whilst adding/removing disks */
2849 	if (mddev->delta_disks &&
2850 	    mddev->layout != mddev->new_layout) {
2851 		DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2852 		mddev->new_layout = mddev->layout;
2853 	}
2854 
2855 	/*
2856 	 * Adjust array size:
2857 	 *
2858 	 * - in case of adding disk(s), array size has
2859 	 *   to grow after the disk adding reshape,
2860 	 *   which'll hapen in the event handler;
2861 	 *   reshape will happen forward, so space has to
2862 	 *   be available at the beginning of each disk
2863 	 *
2864 	 * - in case of removing disk(s), array size
2865 	 *   has to shrink before starting the reshape,
2866 	 *   which'll happen here;
2867 	 *   reshape will happen backward, so space has to
2868 	 *   be available at the end of each disk
2869 	 *
2870 	 * - data_offset and new_data_offset are
2871 	 *   adjusted for aforementioned out of place
2872 	 *   reshaping based on userspace passing in
2873 	 *   the "data_offset <sectors>" key/value
2874 	 *   pair via the constructor
2875 	 */
2876 
2877 	/* Add disk(s) */
2878 	if (rs->delta_disks > 0) {
2879 		/* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2880 		for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2881 			rdev = &rs->dev[d].rdev;
2882 			clear_bit(In_sync, &rdev->flags);
2883 
2884 			/*
2885 			 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2886 			 * by md, which'll store that erroneously in the superblock on reshape
2887 			 */
2888 			rdev->saved_raid_disk = -1;
2889 			rdev->raid_disk = d;
2890 
2891 			rdev->sectors = mddev->dev_sectors;
2892 			rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2893 		}
2894 
2895 		mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2896 
2897 	/* Remove disk(s) */
2898 	} else if (rs->delta_disks < 0) {
2899 		r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2900 		mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2901 
2902 	/* Change layout and/or chunk size */
2903 	} else {
2904 		/*
2905 		 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2906 		 *
2907 		 * keeping number of disks and do layout change ->
2908 		 *
2909 		 * toggle reshape_backward depending on data_offset:
2910 		 *
2911 		 * - free space upfront -> reshape forward
2912 		 *
2913 		 * - free space at the end -> reshape backward
2914 		 *
2915 		 *
2916 		 * This utilizes free reshape space avoiding the need
2917 		 * for userspace to move (parts of) LV segments in
2918 		 * case of layout/chunksize change  (for disk
2919 		 * adding/removing reshape space has to be at
2920 		 * the proper address (see above with delta_disks):
2921 		 *
2922 		 * add disk(s)   -> begin
2923 		 * remove disk(s)-> end
2924 		 */
2925 		mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2926 	}
2927 
2928 	/*
2929 	 * Adjust device size for forward reshape
2930 	 * because md_finish_reshape() reduces it.
2931 	 */
2932 	if (!mddev->reshape_backwards)
2933 		rdev_for_each(rdev, &rs->md)
2934 			if (!test_bit(Journal, &rdev->flags))
2935 				rdev->sectors += reshape_sectors;
2936 
2937 	return r;
2938 }
2939 
2940 /*
2941  * Enable/disable discard support on RAID set depending on
2942  * RAID level and discard properties of underlying RAID members.
2943  */
2944 static void configure_discard_support(struct raid_set *rs)
2945 {
2946 	int i;
2947 	bool raid456;
2948 	struct dm_target *ti = rs->ti;
2949 
2950 	/*
2951 	 * XXX: RAID level 4,5,6 require zeroing for safety.
2952 	 */
2953 	raid456 = rs_is_raid456(rs);
2954 
2955 	for (i = 0; i < rs->raid_disks; i++) {
2956 		struct request_queue *q;
2957 
2958 		if (!rs->dev[i].rdev.bdev)
2959 			continue;
2960 
2961 		q = bdev_get_queue(rs->dev[i].rdev.bdev);
2962 		if (!q || !blk_queue_discard(q))
2963 			return;
2964 
2965 		if (raid456) {
2966 			if (!devices_handle_discard_safely) {
2967 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2968 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2969 				return;
2970 			}
2971 		}
2972 	}
2973 
2974 	ti->num_discard_bios = 1;
2975 }
2976 
2977 /*
2978  * Construct a RAID0/1/10/4/5/6 mapping:
2979  * Args:
2980  *	<raid_type> <#raid_params> <raid_params>{0,}	\
2981  *	<#raid_devs> [<meta_dev1> <dev1>]{1,}
2982  *
2983  * <raid_params> varies by <raid_type>.	 See 'parse_raid_params' for
2984  * details on possible <raid_params>.
2985  *
2986  * Userspace is free to initialize the metadata devices, hence the superblocks to
2987  * enforce recreation based on the passed in table parameters.
2988  *
2989  */
2990 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2991 {
2992 	int r;
2993 	bool resize = false;
2994 	struct raid_type *rt;
2995 	unsigned int num_raid_params, num_raid_devs;
2996 	sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
2997 	struct raid_set *rs = NULL;
2998 	const char *arg;
2999 	struct rs_layout rs_layout;
3000 	struct dm_arg_set as = { argc, argv }, as_nrd;
3001 	struct dm_arg _args[] = {
3002 		{ 0, as.argc, "Cannot understand number of raid parameters" },
3003 		{ 1, 254, "Cannot understand number of raid devices parameters" }
3004 	};
3005 
3006 	arg = dm_shift_arg(&as);
3007 	if (!arg) {
3008 		ti->error = "No arguments";
3009 		return -EINVAL;
3010 	}
3011 
3012 	rt = get_raid_type(arg);
3013 	if (!rt) {
3014 		ti->error = "Unrecognised raid_type";
3015 		return -EINVAL;
3016 	}
3017 
3018 	/* Must have <#raid_params> */
3019 	if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3020 		return -EINVAL;
3021 
3022 	/* number of raid device tupples <meta_dev data_dev> */
3023 	as_nrd = as;
3024 	dm_consume_args(&as_nrd, num_raid_params);
3025 	_args[1].max = (as_nrd.argc - 1) / 2;
3026 	if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3027 		return -EINVAL;
3028 
3029 	if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3030 		ti->error = "Invalid number of supplied raid devices";
3031 		return -EINVAL;
3032 	}
3033 
3034 	rs = raid_set_alloc(ti, rt, num_raid_devs);
3035 	if (IS_ERR(rs))
3036 		return PTR_ERR(rs);
3037 
3038 	r = parse_raid_params(rs, &as, num_raid_params);
3039 	if (r)
3040 		goto bad;
3041 
3042 	r = parse_dev_params(rs, &as);
3043 	if (r)
3044 		goto bad;
3045 
3046 	rs->md.sync_super = super_sync;
3047 
3048 	/*
3049 	 * Calculate ctr requested array and device sizes to allow
3050 	 * for superblock analysis needing device sizes defined.
3051 	 *
3052 	 * Any existing superblock will overwrite the array and device sizes
3053 	 */
3054 	r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3055 	if (r)
3056 		goto bad;
3057 
3058 	/* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3059 	rs->array_sectors = rs->md.array_sectors;
3060 	rs->dev_sectors = rs->md.dev_sectors;
3061 
3062 	/*
3063 	 * Backup any new raid set level, layout, ...
3064 	 * requested to be able to compare to superblock
3065 	 * members for conversion decisions.
3066 	 */
3067 	rs_config_backup(rs, &rs_layout);
3068 
3069 	r = analyse_superblocks(ti, rs);
3070 	if (r)
3071 		goto bad;
3072 
3073 	/* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3074 	sb_array_sectors = rs->md.array_sectors;
3075 	rdev_sectors = __rdev_sectors(rs);
3076 	if (!rdev_sectors) {
3077 		ti->error = "Invalid rdev size";
3078 		r = -EINVAL;
3079 		goto bad;
3080 	}
3081 
3082 
3083 	reshape_sectors = _get_reshape_sectors(rs);
3084 	if (rs->dev_sectors != rdev_sectors) {
3085 		resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3086 		if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3087 			set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3088 	}
3089 
3090 	INIT_WORK(&rs->md.event_work, do_table_event);
3091 	ti->private = rs;
3092 	ti->num_flush_bios = 1;
3093 
3094 	/* Restore any requested new layout for conversion decision */
3095 	rs_config_restore(rs, &rs_layout);
3096 
3097 	/*
3098 	 * Now that we have any superblock metadata available,
3099 	 * check for new, recovering, reshaping, to be taken over,
3100 	 * to be reshaped or an existing, unchanged raid set to
3101 	 * run in sequence.
3102 	 */
3103 	if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3104 		/* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3105 		if (rs_is_raid6(rs) &&
3106 		    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3107 			ti->error = "'nosync' not allowed for new raid6 set";
3108 			r = -EINVAL;
3109 			goto bad;
3110 		}
3111 		rs_setup_recovery(rs, 0);
3112 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3113 		rs_set_new(rs);
3114 	} else if (rs_is_recovering(rs)) {
3115 		/* A recovering raid set may be resized */
3116 		goto size_check;
3117 	} else if (rs_is_reshaping(rs)) {
3118 		/* Have to reject size change request during reshape */
3119 		if (resize) {
3120 			ti->error = "Can't resize a reshaping raid set";
3121 			r = -EPERM;
3122 			goto bad;
3123 		}
3124 		/* skip setup rs */
3125 	} else if (rs_takeover_requested(rs)) {
3126 		if (rs_is_reshaping(rs)) {
3127 			ti->error = "Can't takeover a reshaping raid set";
3128 			r = -EPERM;
3129 			goto bad;
3130 		}
3131 
3132 		/* We can't takeover a journaled raid4/5/6 */
3133 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3134 			ti->error = "Can't takeover a journaled raid4/5/6 set";
3135 			r = -EPERM;
3136 			goto bad;
3137 		}
3138 
3139 		/*
3140 		 * If a takeover is needed, userspace sets any additional
3141 		 * devices to rebuild and we can check for a valid request here.
3142 		 *
3143 		 * If acceptible, set the level to the new requested
3144 		 * one, prohibit requesting recovery, allow the raid
3145 		 * set to run and store superblocks during resume.
3146 		 */
3147 		r = rs_check_takeover(rs);
3148 		if (r)
3149 			goto bad;
3150 
3151 		r = rs_setup_takeover(rs);
3152 		if (r)
3153 			goto bad;
3154 
3155 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3156 		/* Takeover ain't recovery, so disable recovery */
3157 		rs_setup_recovery(rs, MaxSector);
3158 		rs_set_new(rs);
3159 	} else if (rs_reshape_requested(rs)) {
3160 		/* Only request grow on raid set size extensions, not on reshapes. */
3161 		clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3162 
3163 		/*
3164 		 * No need to check for 'ongoing' takeover here, because takeover
3165 		 * is an instant operation as oposed to an ongoing reshape.
3166 		 */
3167 
3168 		/* We can't reshape a journaled raid4/5/6 */
3169 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3170 			ti->error = "Can't reshape a journaled raid4/5/6 set";
3171 			r = -EPERM;
3172 			goto bad;
3173 		}
3174 
3175 		/* Out-of-place space has to be available to allow for a reshape unless raid1! */
3176 		if (reshape_sectors || rs_is_raid1(rs)) {
3177 			/*
3178 			  * We can only prepare for a reshape here, because the
3179 			  * raid set needs to run to provide the repective reshape
3180 			  * check functions via its MD personality instance.
3181 			  *
3182 			  * So do the reshape check after md_run() succeeded.
3183 			  */
3184 			r = rs_prepare_reshape(rs);
3185 			if (r)
3186 				goto bad;
3187 
3188 			/* Reshaping ain't recovery, so disable recovery */
3189 			rs_setup_recovery(rs, MaxSector);
3190 		}
3191 		rs_set_cur(rs);
3192 	} else {
3193 size_check:
3194 		/* May not set recovery when a device rebuild is requested */
3195 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3196 			clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3197 			set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3198 			rs_setup_recovery(rs, MaxSector);
3199 		} else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3200 			/*
3201 			 * Set raid set to current size, i.e. size as of
3202 			 * superblocks to grow to larger size in preresume.
3203 			 */
3204 			r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3205 			if (r)
3206 				goto bad;
3207 
3208 			rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3209 		} else {
3210 			/* This is no size change or it is shrinking, update size and record in superblocks */
3211 			r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3212 			if (r)
3213 				goto bad;
3214 
3215 			if (sb_array_sectors > rs->array_sectors)
3216 				set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3217 		}
3218 		rs_set_cur(rs);
3219 	}
3220 
3221 	/* If constructor requested it, change data and new_data offsets */
3222 	r = rs_adjust_data_offsets(rs);
3223 	if (r)
3224 		goto bad;
3225 
3226 	/* Start raid set read-only and assumed clean to change in raid_resume() */
3227 	rs->md.ro = 1;
3228 	rs->md.in_sync = 1;
3229 
3230 	/* Keep array frozen */
3231 	set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3232 
3233 	/* Has to be held on running the array */
3234 	mddev_lock_nointr(&rs->md);
3235 	r = md_run(&rs->md);
3236 	rs->md.in_sync = 0; /* Assume already marked dirty */
3237 	if (r) {
3238 		ti->error = "Failed to run raid array";
3239 		mddev_unlock(&rs->md);
3240 		goto bad;
3241 	}
3242 
3243 	r = md_start(&rs->md);
3244 
3245 	if (r) {
3246 		ti->error = "Failed to start raid array";
3247 		mddev_unlock(&rs->md);
3248 		goto bad_md_start;
3249 	}
3250 
3251 	rs->callbacks.congested_fn = raid_is_congested;
3252 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3253 
3254 	/* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3255 	if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3256 		r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3257 		if (r) {
3258 			ti->error = "Failed to set raid4/5/6 journal mode";
3259 			mddev_unlock(&rs->md);
3260 			goto bad_journal_mode_set;
3261 		}
3262 	}
3263 
3264 	mddev_suspend(&rs->md);
3265 	set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3266 
3267 	/* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3268 	if (rs_is_raid456(rs)) {
3269 		r = rs_set_raid456_stripe_cache(rs);
3270 		if (r)
3271 			goto bad_stripe_cache;
3272 	}
3273 
3274 	/* Now do an early reshape check */
3275 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3276 		r = rs_check_reshape(rs);
3277 		if (r)
3278 			goto bad_check_reshape;
3279 
3280 		/* Restore new, ctr requested layout to perform check */
3281 		rs_config_restore(rs, &rs_layout);
3282 
3283 		if (rs->md.pers->start_reshape) {
3284 			r = rs->md.pers->check_reshape(&rs->md);
3285 			if (r) {
3286 				ti->error = "Reshape check failed";
3287 				goto bad_check_reshape;
3288 			}
3289 		}
3290 	}
3291 
3292 	/* Disable/enable discard support on raid set. */
3293 	configure_discard_support(rs);
3294 
3295 	mddev_unlock(&rs->md);
3296 	return 0;
3297 
3298 bad_md_start:
3299 bad_journal_mode_set:
3300 bad_stripe_cache:
3301 bad_check_reshape:
3302 	md_stop(&rs->md);
3303 bad:
3304 	raid_set_free(rs);
3305 
3306 	return r;
3307 }
3308 
3309 static void raid_dtr(struct dm_target *ti)
3310 {
3311 	struct raid_set *rs = ti->private;
3312 
3313 	list_del_init(&rs->callbacks.list);
3314 	md_stop(&rs->md);
3315 	raid_set_free(rs);
3316 }
3317 
3318 static int raid_map(struct dm_target *ti, struct bio *bio)
3319 {
3320 	struct raid_set *rs = ti->private;
3321 	struct mddev *mddev = &rs->md;
3322 
3323 	/*
3324 	 * If we're reshaping to add disk(s)), ti->len and
3325 	 * mddev->array_sectors will differ during the process
3326 	 * (ti->len > mddev->array_sectors), so we have to requeue
3327 	 * bios with addresses > mddev->array_sectors here or
3328 	 * there will occur accesses past EOD of the component
3329 	 * data images thus erroring the raid set.
3330 	 */
3331 	if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3332 		return DM_MAPIO_REQUEUE;
3333 
3334 	md_handle_request(mddev, bio);
3335 
3336 	return DM_MAPIO_SUBMITTED;
3337 }
3338 
3339 /* Return sync state string for @state */
3340 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3341 static const char *sync_str(enum sync_state state)
3342 {
3343 	/* Has to be in above sync_state order! */
3344 	static const char *sync_strs[] = {
3345 		"frozen",
3346 		"reshape",
3347 		"resync",
3348 		"check",
3349 		"repair",
3350 		"recover",
3351 		"idle"
3352 	};
3353 
3354 	return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3355 };
3356 
3357 /* Return enum sync_state for @mddev derived from @recovery flags */
3358 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3359 {
3360 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3361 		return st_frozen;
3362 
3363 	/* The MD sync thread can be done with io or be interrupted but still be running */
3364 	if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3365 	    (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3366 	     (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3367 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3368 			return st_reshape;
3369 
3370 		if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3371 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3372 				return st_resync;
3373 			if (test_bit(MD_RECOVERY_CHECK, &recovery))
3374 				return st_check;
3375 			return st_repair;
3376 		}
3377 
3378 		if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3379 			return st_recover;
3380 
3381 		if (mddev->reshape_position != MaxSector)
3382 			return st_reshape;
3383 	}
3384 
3385 	return st_idle;
3386 }
3387 
3388 /*
3389  * Return status string for @rdev
3390  *
3391  * Status characters:
3392  *
3393  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3394  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3395  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3396  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3397  */
3398 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3399 {
3400 	if (!rdev->bdev)
3401 		return "-";
3402 	else if (test_bit(Faulty, &rdev->flags))
3403 		return "D";
3404 	else if (test_bit(Journal, &rdev->flags))
3405 		return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3406 	else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3407 		 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3408 		  !test_bit(In_sync, &rdev->flags)))
3409 		return "a";
3410 	else
3411 		return "A";
3412 }
3413 
3414 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3415 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3416 				enum sync_state state, sector_t resync_max_sectors)
3417 {
3418 	sector_t r;
3419 	struct mddev *mddev = &rs->md;
3420 
3421 	clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3422 	clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3423 
3424 	if (rs_is_raid0(rs)) {
3425 		r = resync_max_sectors;
3426 		set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3427 
3428 	} else {
3429 		if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3430 			r = mddev->recovery_cp;
3431 		else
3432 			r = mddev->curr_resync_completed;
3433 
3434 		if (state == st_idle && r >= resync_max_sectors) {
3435 			/*
3436 			 * Sync complete.
3437 			 */
3438 			/* In case we have finished recovering, the array is in sync. */
3439 			if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3440 				set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3441 
3442 		} else if (state == st_recover)
3443 			/*
3444 			 * In case we are recovering, the array is not in sync
3445 			 * and health chars should show the recovering legs.
3446 			 *
3447 			 * Already retrieved recovery offset from curr_resync_completed above.
3448 			 */
3449 			;
3450 
3451 		else if (state == st_resync || state == st_reshape)
3452 			/*
3453 			 * If "resync/reshape" is occurring, the raid set
3454 			 * is or may be out of sync hence the health
3455 			 * characters shall be 'a'.
3456 			 */
3457 			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3458 
3459 		else if (state == st_check || state == st_repair)
3460 			/*
3461 			 * If "check" or "repair" is occurring, the raid set has
3462 			 * undergone an initial sync and the health characters
3463 			 * should not be 'a' anymore.
3464 			 */
3465 			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3466 
3467 		else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3468 			/*
3469 			 * We are idle and recovery is needed, prevent 'A' chars race
3470 			 * caused by components still set to in-sync by constructor.
3471 			 */
3472 			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3473 
3474 		else {
3475 			/*
3476 			 * We are idle and the raid set may be doing an initial
3477 			 * sync, or it may be rebuilding individual components.
3478 			 * If all the devices are In_sync, then it is the raid set
3479 			 * that is being initialized.
3480 			 */
3481 			struct md_rdev *rdev;
3482 
3483 			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3484 			rdev_for_each(rdev, mddev)
3485 				if (!test_bit(Journal, &rdev->flags) &&
3486 				    !test_bit(In_sync, &rdev->flags)) {
3487 					clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3488 					break;
3489 				}
3490 		}
3491 	}
3492 
3493 	return min(r, resync_max_sectors);
3494 }
3495 
3496 /* Helper to return @dev name or "-" if !@dev */
3497 static const char *__get_dev_name(struct dm_dev *dev)
3498 {
3499 	return dev ? dev->name : "-";
3500 }
3501 
3502 static void raid_status(struct dm_target *ti, status_type_t type,
3503 			unsigned int status_flags, char *result, unsigned int maxlen)
3504 {
3505 	struct raid_set *rs = ti->private;
3506 	struct mddev *mddev = &rs->md;
3507 	struct r5conf *conf = mddev->private;
3508 	int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3509 	unsigned long recovery;
3510 	unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3511 	unsigned int sz = 0;
3512 	unsigned int rebuild_writemostly_count = 0;
3513 	sector_t progress, resync_max_sectors, resync_mismatches;
3514 	enum sync_state state;
3515 	struct raid_type *rt;
3516 
3517 	switch (type) {
3518 	case STATUSTYPE_INFO:
3519 		/* *Should* always succeed */
3520 		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3521 		if (!rt)
3522 			return;
3523 
3524 		DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3525 
3526 		/* Access most recent mddev properties for status output */
3527 		smp_rmb();
3528 		/* Get sensible max sectors even if raid set not yet started */
3529 		resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3530 				      mddev->resync_max_sectors : mddev->dev_sectors;
3531 		recovery = rs->md.recovery;
3532 		state = decipher_sync_action(mddev, recovery);
3533 		progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3534 		resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3535 				    atomic64_read(&mddev->resync_mismatches) : 0;
3536 
3537 		/* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3538 		for (i = 0; i < rs->raid_disks; i++)
3539 			DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3540 
3541 		/*
3542 		 * In-sync/Reshape ratio:
3543 		 *  The in-sync ratio shows the progress of:
3544 		 *   - Initializing the raid set
3545 		 *   - Rebuilding a subset of devices of the raid set
3546 		 *  The user can distinguish between the two by referring
3547 		 *  to the status characters.
3548 		 *
3549 		 *  The reshape ratio shows the progress of
3550 		 *  changing the raid layout or the number of
3551 		 *  disks of a raid set
3552 		 */
3553 		DMEMIT(" %llu/%llu", (unsigned long long) progress,
3554 				     (unsigned long long) resync_max_sectors);
3555 
3556 		/*
3557 		 * v1.5.0+:
3558 		 *
3559 		 * Sync action:
3560 		 *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3561 		 *   information on each of these states.
3562 		 */
3563 		DMEMIT(" %s", sync_str(state));
3564 
3565 		/*
3566 		 * v1.5.0+:
3567 		 *
3568 		 * resync_mismatches/mismatch_cnt
3569 		 *   This field shows the number of discrepancies found when
3570 		 *   performing a "check" of the raid set.
3571 		 */
3572 		DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3573 
3574 		/*
3575 		 * v1.9.0+:
3576 		 *
3577 		 * data_offset (needed for out of space reshaping)
3578 		 *   This field shows the data offset into the data
3579 		 *   image LV where the first stripes data starts.
3580 		 *
3581 		 * We keep data_offset equal on all raid disks of the set,
3582 		 * so retrieving it from the first raid disk is sufficient.
3583 		 */
3584 		DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3585 
3586 		/*
3587 		 * v1.10.0+:
3588 		 */
3589 		DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3590 			      __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3591 		break;
3592 
3593 	case STATUSTYPE_TABLE:
3594 		/* Report the table line string you would use to construct this raid set */
3595 
3596 		/*
3597 		 * Count any rebuild or writemostly argument pairs and subtract the
3598 		 * hweight count being added below of any rebuild and writemostly ctr flags.
3599 		 */
3600 		for (i = 0; i < rs->raid_disks; i++) {
3601 			rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3602 						     (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3603 		}
3604 		rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3605 					     (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3606 		/* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3607 		raid_param_cnt += rebuild_writemostly_count +
3608 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3609 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3610 		/* Emit table line */
3611 		/* This has to be in the documented order for userspace! */
3612 		DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3613 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3614 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3615 		if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3616 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3617 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3618 			for (i = 0; i < rs->raid_disks; i++)
3619 				if (test_bit(i, (void *) rs->rebuild_disks))
3620 					DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3621 		if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3622 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3623 					  mddev->bitmap_info.daemon_sleep);
3624 		if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3625 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3626 					 mddev->sync_speed_min);
3627 		if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3628 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3629 					 mddev->sync_speed_max);
3630 		if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3631 			for (i = 0; i < rs->raid_disks; i++)
3632 				if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3633 					DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3634 					       rs->dev[i].rdev.raid_disk);
3635 		if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3636 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3637 					  mddev->bitmap_info.max_write_behind);
3638 		if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3639 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3640 					 max_nr_stripes);
3641 		if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3642 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3643 					   (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3644 		if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3645 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3646 					 raid10_md_layout_to_copies(mddev->layout));
3647 		if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3648 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3649 					 raid10_md_layout_to_format(mddev->layout));
3650 		if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3651 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3652 					 max(rs->delta_disks, mddev->delta_disks));
3653 		if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3654 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3655 					   (unsigned long long) rs->data_offset);
3656 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3657 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3658 					__get_dev_name(rs->journal_dev.dev));
3659 		if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3660 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3661 					 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3662 		DMEMIT(" %d", rs->raid_disks);
3663 		for (i = 0; i < rs->raid_disks; i++)
3664 			DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3665 					 __get_dev_name(rs->dev[i].data_dev));
3666 	}
3667 }
3668 
3669 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3670 			char *result, unsigned maxlen)
3671 {
3672 	struct raid_set *rs = ti->private;
3673 	struct mddev *mddev = &rs->md;
3674 
3675 	if (!mddev->pers || !mddev->pers->sync_request)
3676 		return -EINVAL;
3677 
3678 	if (!strcasecmp(argv[0], "frozen"))
3679 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3680 	else
3681 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3682 
3683 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3684 		if (mddev->sync_thread) {
3685 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3686 			md_reap_sync_thread(mddev);
3687 		}
3688 	} else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3689 		return -EBUSY;
3690 	else if (!strcasecmp(argv[0], "resync"))
3691 		; /* MD_RECOVERY_NEEDED set below */
3692 	else if (!strcasecmp(argv[0], "recover"))
3693 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3694 	else {
3695 		if (!strcasecmp(argv[0], "check")) {
3696 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3697 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3698 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3699 		} else if (!strcasecmp(argv[0], "repair")) {
3700 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3701 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3702 		} else
3703 			return -EINVAL;
3704 	}
3705 	if (mddev->ro == 2) {
3706 		/* A write to sync_action is enough to justify
3707 		 * canceling read-auto mode
3708 		 */
3709 		mddev->ro = 0;
3710 		if (!mddev->suspended && mddev->sync_thread)
3711 			md_wakeup_thread(mddev->sync_thread);
3712 	}
3713 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3714 	if (!mddev->suspended && mddev->thread)
3715 		md_wakeup_thread(mddev->thread);
3716 
3717 	return 0;
3718 }
3719 
3720 static int raid_iterate_devices(struct dm_target *ti,
3721 				iterate_devices_callout_fn fn, void *data)
3722 {
3723 	struct raid_set *rs = ti->private;
3724 	unsigned int i;
3725 	int r = 0;
3726 
3727 	for (i = 0; !r && i < rs->md.raid_disks; i++)
3728 		if (rs->dev[i].data_dev)
3729 			r = fn(ti,
3730 				 rs->dev[i].data_dev,
3731 				 0, /* No offset on data devs */
3732 				 rs->md.dev_sectors,
3733 				 data);
3734 
3735 	return r;
3736 }
3737 
3738 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3739 {
3740 	struct raid_set *rs = ti->private;
3741 	unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3742 
3743 	blk_limits_io_min(limits, chunk_size_bytes);
3744 	blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3745 
3746 	/*
3747 	 * RAID1 and RAID10 personalities require bio splitting,
3748 	 * RAID0/4/5/6 don't and process large discard bios properly.
3749 	 */
3750 	if (rs_is_raid1(rs) || rs_is_raid10(rs)) {
3751 		limits->discard_granularity = chunk_size_bytes;
3752 		limits->max_discard_sectors = rs->md.chunk_sectors;
3753 	}
3754 }
3755 
3756 static void raid_postsuspend(struct dm_target *ti)
3757 {
3758 	struct raid_set *rs = ti->private;
3759 
3760 	if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3761 		/* Writes have to be stopped before suspending to avoid deadlocks. */
3762 		if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3763 			md_stop_writes(&rs->md);
3764 
3765 		mddev_lock_nointr(&rs->md);
3766 		mddev_suspend(&rs->md);
3767 		mddev_unlock(&rs->md);
3768 	}
3769 }
3770 
3771 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3772 {
3773 	int i;
3774 	uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3775 	unsigned long flags;
3776 	bool cleared = false;
3777 	struct dm_raid_superblock *sb;
3778 	struct mddev *mddev = &rs->md;
3779 	struct md_rdev *r;
3780 
3781 	/* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3782 	if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3783 		return;
3784 
3785 	memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3786 
3787 	for (i = 0; i < mddev->raid_disks; i++) {
3788 		r = &rs->dev[i].rdev;
3789 		/* HM FIXME: enhance journal device recovery processing */
3790 		if (test_bit(Journal, &r->flags))
3791 			continue;
3792 
3793 		if (test_bit(Faulty, &r->flags) &&
3794 		    r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3795 			DMINFO("Faulty %s device #%d has readable super block."
3796 			       "  Attempting to revive it.",
3797 			       rs->raid_type->name, i);
3798 
3799 			/*
3800 			 * Faulty bit may be set, but sometimes the array can
3801 			 * be suspended before the personalities can respond
3802 			 * by removing the device from the array (i.e. calling
3803 			 * 'hot_remove_disk').	If they haven't yet removed
3804 			 * the failed device, its 'raid_disk' number will be
3805 			 * '>= 0' - meaning we must call this function
3806 			 * ourselves.
3807 			 */
3808 			flags = r->flags;
3809 			clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3810 			if (r->raid_disk >= 0) {
3811 				if (mddev->pers->hot_remove_disk(mddev, r)) {
3812 					/* Failed to revive this device, try next */
3813 					r->flags = flags;
3814 					continue;
3815 				}
3816 			} else
3817 				r->raid_disk = r->saved_raid_disk = i;
3818 
3819 			clear_bit(Faulty, &r->flags);
3820 			clear_bit(WriteErrorSeen, &r->flags);
3821 
3822 			if (mddev->pers->hot_add_disk(mddev, r)) {
3823 				/* Failed to revive this device, try next */
3824 				r->raid_disk = r->saved_raid_disk = -1;
3825 				r->flags = flags;
3826 			} else {
3827 				clear_bit(In_sync, &r->flags);
3828 				r->recovery_offset = 0;
3829 				set_bit(i, (void *) cleared_failed_devices);
3830 				cleared = true;
3831 			}
3832 		}
3833 	}
3834 
3835 	/* If any failed devices could be cleared, update all sbs failed_devices bits */
3836 	if (cleared) {
3837 		uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3838 
3839 		rdev_for_each(r, &rs->md) {
3840 			if (test_bit(Journal, &r->flags))
3841 				continue;
3842 
3843 			sb = page_address(r->sb_page);
3844 			sb_retrieve_failed_devices(sb, failed_devices);
3845 
3846 			for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3847 				failed_devices[i] &= ~cleared_failed_devices[i];
3848 
3849 			sb_update_failed_devices(sb, failed_devices);
3850 		}
3851 	}
3852 }
3853 
3854 static int __load_dirty_region_bitmap(struct raid_set *rs)
3855 {
3856 	int r = 0;
3857 
3858 	/* Try loading the bitmap unless "raid0", which does not have one */
3859 	if (!rs_is_raid0(rs) &&
3860 	    !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3861 		r = md_bitmap_load(&rs->md);
3862 		if (r)
3863 			DMERR("Failed to load bitmap");
3864 	}
3865 
3866 	return r;
3867 }
3868 
3869 /* Enforce updating all superblocks */
3870 static void rs_update_sbs(struct raid_set *rs)
3871 {
3872 	struct mddev *mddev = &rs->md;
3873 	int ro = mddev->ro;
3874 
3875 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3876 	mddev->ro = 0;
3877 	md_update_sb(mddev, 1);
3878 	mddev->ro = ro;
3879 }
3880 
3881 /*
3882  * Reshape changes raid algorithm of @rs to new one within personality
3883  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3884  * disks from a raid set thus growing/shrinking it or resizes the set
3885  *
3886  * Call mddev_lock_nointr() before!
3887  */
3888 static int rs_start_reshape(struct raid_set *rs)
3889 {
3890 	int r;
3891 	struct mddev *mddev = &rs->md;
3892 	struct md_personality *pers = mddev->pers;
3893 
3894 	/* Don't allow the sync thread to work until the table gets reloaded. */
3895 	set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3896 
3897 	r = rs_setup_reshape(rs);
3898 	if (r)
3899 		return r;
3900 
3901 	/*
3902 	 * Check any reshape constraints enforced by the personalility
3903 	 *
3904 	 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3905 	 */
3906 	r = pers->check_reshape(mddev);
3907 	if (r) {
3908 		rs->ti->error = "pers->check_reshape() failed";
3909 		return r;
3910 	}
3911 
3912 	/*
3913 	 * Personality may not provide start reshape method in which
3914 	 * case check_reshape above has already covered everything
3915 	 */
3916 	if (pers->start_reshape) {
3917 		r = pers->start_reshape(mddev);
3918 		if (r) {
3919 			rs->ti->error = "pers->start_reshape() failed";
3920 			return r;
3921 		}
3922 	}
3923 
3924 	/*
3925 	 * Now reshape got set up, update superblocks to
3926 	 * reflect the fact so that a table reload will
3927 	 * access proper superblock content in the ctr.
3928 	 */
3929 	rs_update_sbs(rs);
3930 
3931 	return 0;
3932 }
3933 
3934 static int raid_preresume(struct dm_target *ti)
3935 {
3936 	int r;
3937 	struct raid_set *rs = ti->private;
3938 	struct mddev *mddev = &rs->md;
3939 
3940 	/* This is a resume after a suspend of the set -> it's already started. */
3941 	if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3942 		return 0;
3943 
3944 	/*
3945 	 * The superblocks need to be updated on disk if the
3946 	 * array is new or new devices got added (thus zeroed
3947 	 * out by userspace) or __load_dirty_region_bitmap
3948 	 * will overwrite them in core with old data or fail.
3949 	 */
3950 	if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3951 		rs_update_sbs(rs);
3952 
3953 	/* Load the bitmap from disk unless raid0 */
3954 	r = __load_dirty_region_bitmap(rs);
3955 	if (r)
3956 		return r;
3957 
3958 	/* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3959 	if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3960 		mddev->array_sectors = rs->array_sectors;
3961 		mddev->dev_sectors = rs->dev_sectors;
3962 		rs_set_rdev_sectors(rs);
3963 		rs_set_capacity(rs);
3964 	}
3965 
3966 	/* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
3967         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3968 	    (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
3969 	     (rs->requested_bitmap_chunk_sectors &&
3970 	       mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
3971 		int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
3972 
3973 		r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
3974 		if (r)
3975 			DMERR("Failed to resize bitmap");
3976 	}
3977 
3978 	/* Check for any resize/reshape on @rs and adjust/initiate */
3979 	/* Be prepared for mddev_resume() in raid_resume() */
3980 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3981 	if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3982 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3983 		mddev->resync_min = mddev->recovery_cp;
3984 		if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
3985 			mddev->resync_max_sectors = mddev->dev_sectors;
3986 	}
3987 
3988 	/* Check for any reshape request unless new raid set */
3989 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3990 		/* Initiate a reshape. */
3991 		rs_set_rdev_sectors(rs);
3992 		mddev_lock_nointr(mddev);
3993 		r = rs_start_reshape(rs);
3994 		mddev_unlock(mddev);
3995 		if (r)
3996 			DMWARN("Failed to check/start reshape, continuing without change");
3997 		r = 0;
3998 	}
3999 
4000 	return r;
4001 }
4002 
4003 static void raid_resume(struct dm_target *ti)
4004 {
4005 	struct raid_set *rs = ti->private;
4006 	struct mddev *mddev = &rs->md;
4007 
4008 	if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4009 		/*
4010 		 * A secondary resume while the device is active.
4011 		 * Take this opportunity to check whether any failed
4012 		 * devices are reachable again.
4013 		 */
4014 		attempt_restore_of_faulty_devices(rs);
4015 	}
4016 
4017 	if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4018 		/* Only reduce raid set size before running a disk removing reshape. */
4019 		if (mddev->delta_disks < 0)
4020 			rs_set_capacity(rs);
4021 
4022 		mddev_lock_nointr(mddev);
4023 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4024 		mddev->ro = 0;
4025 		mddev->in_sync = 0;
4026 		mddev_resume(mddev);
4027 		mddev_unlock(mddev);
4028 	}
4029 }
4030 
4031 static struct target_type raid_target = {
4032 	.name = "raid",
4033 	.version = {1, 15, 1},
4034 	.module = THIS_MODULE,
4035 	.ctr = raid_ctr,
4036 	.dtr = raid_dtr,
4037 	.map = raid_map,
4038 	.status = raid_status,
4039 	.message = raid_message,
4040 	.iterate_devices = raid_iterate_devices,
4041 	.io_hints = raid_io_hints,
4042 	.postsuspend = raid_postsuspend,
4043 	.preresume = raid_preresume,
4044 	.resume = raid_resume,
4045 };
4046 
4047 static int __init dm_raid_init(void)
4048 {
4049 	DMINFO("Loading target version %u.%u.%u",
4050 	       raid_target.version[0],
4051 	       raid_target.version[1],
4052 	       raid_target.version[2]);
4053 	return dm_register_target(&raid_target);
4054 }
4055 
4056 static void __exit dm_raid_exit(void)
4057 {
4058 	dm_unregister_target(&raid_target);
4059 }
4060 
4061 module_init(dm_raid_init);
4062 module_exit(dm_raid_exit);
4063 
4064 module_param(devices_handle_discard_safely, bool, 0644);
4065 MODULE_PARM_DESC(devices_handle_discard_safely,
4066 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4067 
4068 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4069 MODULE_ALIAS("dm-raid0");
4070 MODULE_ALIAS("dm-raid1");
4071 MODULE_ALIAS("dm-raid10");
4072 MODULE_ALIAS("dm-raid4");
4073 MODULE_ALIAS("dm-raid5");
4074 MODULE_ALIAS("dm-raid6");
4075 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4076 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4077 MODULE_LICENSE("GPL");
4078