xref: /openbmc/linux/drivers/md/dm-raid.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2015 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* raid4/5/6 limit */
21 
22 static bool devices_handle_discard_safely = false;
23 
24 /*
25  * The following flags are used by dm-raid.c to set up the array state.
26  * They must be cleared before md_run is called.
27  */
28 #define FirstUse 10             /* rdev flag */
29 
30 struct raid_dev {
31 	/*
32 	 * Two DM devices, one to hold metadata and one to hold the
33 	 * actual data/parity.  The reason for this is to not confuse
34 	 * ti->len and give more flexibility in altering size and
35 	 * characteristics.
36 	 *
37 	 * While it is possible for this device to be associated
38 	 * with a different physical device than the data_dev, it
39 	 * is intended for it to be the same.
40 	 *    |--------- Physical Device ---------|
41 	 *    |- meta_dev -|------ data_dev ------|
42 	 */
43 	struct dm_dev *meta_dev;
44 	struct dm_dev *data_dev;
45 	struct md_rdev rdev;
46 };
47 
48 /*
49  * Flags for rs->ctr_flags field.
50  */
51 #define CTR_FLAG_SYNC              0x1
52 #define CTR_FLAG_NOSYNC            0x2
53 #define CTR_FLAG_REBUILD           0x4
54 #define CTR_FLAG_DAEMON_SLEEP      0x8
55 #define CTR_FLAG_MIN_RECOVERY_RATE 0x10
56 #define CTR_FLAG_MAX_RECOVERY_RATE 0x20
57 #define CTR_FLAG_MAX_WRITE_BEHIND  0x40
58 #define CTR_FLAG_STRIPE_CACHE      0x80
59 #define CTR_FLAG_REGION_SIZE       0x100
60 #define CTR_FLAG_RAID10_COPIES     0x200
61 #define CTR_FLAG_RAID10_FORMAT     0x400
62 
63 struct raid_set {
64 	struct dm_target *ti;
65 
66 	uint32_t bitmap_loaded;
67 	uint32_t ctr_flags;
68 
69 	struct mddev md;
70 	struct raid_type *raid_type;
71 	struct dm_target_callbacks callbacks;
72 
73 	struct raid_dev dev[0];
74 };
75 
76 /* Supported raid types and properties. */
77 static struct raid_type {
78 	const char *name;		/* RAID algorithm. */
79 	const char *descr;		/* Descriptor text for logging. */
80 	const unsigned parity_devs;	/* # of parity devices. */
81 	const unsigned minimal_devs;	/* minimal # of devices in set. */
82 	const unsigned level;		/* RAID level. */
83 	const unsigned algorithm;	/* RAID algorithm. */
84 } raid_types[] = {
85 	{"raid0",    "RAID0 (striping)",                0, 2, 0, 0 /* NONE */},
86 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
87 	{"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
88 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
89 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
90 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
91 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
92 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
93 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
94 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
95 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
96 };
97 
98 static char *raid10_md_layout_to_format(int layout)
99 {
100 	/*
101 	 * Bit 16 and 17 stand for "offset" and "use_far_sets"
102 	 * Refer to MD's raid10.c for details
103 	 */
104 	if ((layout & 0x10000) && (layout & 0x20000))
105 		return "offset";
106 
107 	if ((layout & 0xFF) > 1)
108 		return "near";
109 
110 	return "far";
111 }
112 
113 static unsigned raid10_md_layout_to_copies(int layout)
114 {
115 	if ((layout & 0xFF) > 1)
116 		return layout & 0xFF;
117 	return (layout >> 8) & 0xFF;
118 }
119 
120 static int raid10_format_to_md_layout(char *format, unsigned copies)
121 {
122 	unsigned n = 1, f = 1;
123 
124 	if (!strcasecmp("near", format))
125 		n = copies;
126 	else
127 		f = copies;
128 
129 	if (!strcasecmp("offset", format))
130 		return 0x30000 | (f << 8) | n;
131 
132 	if (!strcasecmp("far", format))
133 		return 0x20000 | (f << 8) | n;
134 
135 	return (f << 8) | n;
136 }
137 
138 static struct raid_type *get_raid_type(char *name)
139 {
140 	int i;
141 
142 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
143 		if (!strcmp(raid_types[i].name, name))
144 			return &raid_types[i];
145 
146 	return NULL;
147 }
148 
149 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
150 {
151 	unsigned i;
152 	struct raid_set *rs;
153 
154 	if (raid_devs <= raid_type->parity_devs) {
155 		ti->error = "Insufficient number of devices";
156 		return ERR_PTR(-EINVAL);
157 	}
158 
159 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
160 	if (!rs) {
161 		ti->error = "Cannot allocate raid context";
162 		return ERR_PTR(-ENOMEM);
163 	}
164 
165 	mddev_init(&rs->md);
166 
167 	rs->ti = ti;
168 	rs->raid_type = raid_type;
169 	rs->md.raid_disks = raid_devs;
170 	rs->md.level = raid_type->level;
171 	rs->md.new_level = rs->md.level;
172 	rs->md.layout = raid_type->algorithm;
173 	rs->md.new_layout = rs->md.layout;
174 	rs->md.delta_disks = 0;
175 	rs->md.recovery_cp = 0;
176 
177 	for (i = 0; i < raid_devs; i++)
178 		md_rdev_init(&rs->dev[i].rdev);
179 
180 	/*
181 	 * Remaining items to be initialized by further RAID params:
182 	 *  rs->md.persistent
183 	 *  rs->md.external
184 	 *  rs->md.chunk_sectors
185 	 *  rs->md.new_chunk_sectors
186 	 *  rs->md.dev_sectors
187 	 */
188 
189 	return rs;
190 }
191 
192 static void context_free(struct raid_set *rs)
193 {
194 	int i;
195 
196 	for (i = 0; i < rs->md.raid_disks; i++) {
197 		if (rs->dev[i].meta_dev)
198 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
199 		md_rdev_clear(&rs->dev[i].rdev);
200 		if (rs->dev[i].data_dev)
201 			dm_put_device(rs->ti, rs->dev[i].data_dev);
202 	}
203 
204 	kfree(rs);
205 }
206 
207 /*
208  * For every device we have two words
209  *  <meta_dev>: meta device name or '-' if missing
210  *  <data_dev>: data device name or '-' if missing
211  *
212  * The following are permitted:
213  *    - -
214  *    - <data_dev>
215  *    <meta_dev> <data_dev>
216  *
217  * The following is not allowed:
218  *    <meta_dev> -
219  *
220  * This code parses those words.  If there is a failure,
221  * the caller must use context_free to unwind the operations.
222  */
223 static int dev_parms(struct raid_set *rs, char **argv)
224 {
225 	int i;
226 	int rebuild = 0;
227 	int metadata_available = 0;
228 	int ret = 0;
229 
230 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
231 		rs->dev[i].rdev.raid_disk = i;
232 
233 		rs->dev[i].meta_dev = NULL;
234 		rs->dev[i].data_dev = NULL;
235 
236 		/*
237 		 * There are no offsets, since there is a separate device
238 		 * for data and metadata.
239 		 */
240 		rs->dev[i].rdev.data_offset = 0;
241 		rs->dev[i].rdev.mddev = &rs->md;
242 
243 		if (strcmp(argv[0], "-")) {
244 			ret = dm_get_device(rs->ti, argv[0],
245 					    dm_table_get_mode(rs->ti->table),
246 					    &rs->dev[i].meta_dev);
247 			rs->ti->error = "RAID metadata device lookup failure";
248 			if (ret)
249 				return ret;
250 
251 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
252 			if (!rs->dev[i].rdev.sb_page)
253 				return -ENOMEM;
254 		}
255 
256 		if (!strcmp(argv[1], "-")) {
257 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
258 			    (!rs->dev[i].rdev.recovery_offset)) {
259 				rs->ti->error = "Drive designated for rebuild not specified";
260 				return -EINVAL;
261 			}
262 
263 			rs->ti->error = "No data device supplied with metadata device";
264 			if (rs->dev[i].meta_dev)
265 				return -EINVAL;
266 
267 			continue;
268 		}
269 
270 		ret = dm_get_device(rs->ti, argv[1],
271 				    dm_table_get_mode(rs->ti->table),
272 				    &rs->dev[i].data_dev);
273 		if (ret) {
274 			rs->ti->error = "RAID device lookup failure";
275 			return ret;
276 		}
277 
278 		if (rs->dev[i].meta_dev) {
279 			metadata_available = 1;
280 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
281 		}
282 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
283 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
284 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
285 			rebuild++;
286 	}
287 
288 	if (metadata_available) {
289 		rs->md.external = 0;
290 		rs->md.persistent = 1;
291 		rs->md.major_version = 2;
292 	} else if (rebuild && !rs->md.recovery_cp) {
293 		/*
294 		 * Without metadata, we will not be able to tell if the array
295 		 * is in-sync or not - we must assume it is not.  Therefore,
296 		 * it is impossible to rebuild a drive.
297 		 *
298 		 * Even if there is metadata, the on-disk information may
299 		 * indicate that the array is not in-sync and it will then
300 		 * fail at that time.
301 		 *
302 		 * User could specify 'nosync' option if desperate.
303 		 */
304 		DMERR("Unable to rebuild drive while array is not in-sync");
305 		rs->ti->error = "RAID device lookup failure";
306 		return -EINVAL;
307 	}
308 
309 	return 0;
310 }
311 
312 /*
313  * validate_region_size
314  * @rs
315  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
316  *
317  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
318  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
319  *
320  * Returns: 0 on success, -EINVAL on failure.
321  */
322 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
323 {
324 	unsigned long min_region_size = rs->ti->len / (1 << 21);
325 
326 	if (!region_size) {
327 		/*
328 		 * Choose a reasonable default.  All figures in sectors.
329 		 */
330 		if (min_region_size > (1 << 13)) {
331 			/* If not a power of 2, make it the next power of 2 */
332 			if (min_region_size & (min_region_size - 1))
333 				region_size = 1 << fls(region_size);
334 			DMINFO("Choosing default region size of %lu sectors",
335 			       region_size);
336 		} else {
337 			DMINFO("Choosing default region size of 4MiB");
338 			region_size = 1 << 13; /* sectors */
339 		}
340 	} else {
341 		/*
342 		 * Validate user-supplied value.
343 		 */
344 		if (region_size > rs->ti->len) {
345 			rs->ti->error = "Supplied region size is too large";
346 			return -EINVAL;
347 		}
348 
349 		if (region_size < min_region_size) {
350 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
351 			      region_size, min_region_size);
352 			rs->ti->error = "Supplied region size is too small";
353 			return -EINVAL;
354 		}
355 
356 		if (!is_power_of_2(region_size)) {
357 			rs->ti->error = "Region size is not a power of 2";
358 			return -EINVAL;
359 		}
360 
361 		if (region_size < rs->md.chunk_sectors) {
362 			rs->ti->error = "Region size is smaller than the chunk size";
363 			return -EINVAL;
364 		}
365 	}
366 
367 	/*
368 	 * Convert sectors to bytes.
369 	 */
370 	rs->md.bitmap_info.chunksize = (region_size << 9);
371 
372 	return 0;
373 }
374 
375 /*
376  * validate_raid_redundancy
377  * @rs
378  *
379  * Determine if there are enough devices in the array that haven't
380  * failed (or are being rebuilt) to form a usable array.
381  *
382  * Returns: 0 on success, -EINVAL on failure.
383  */
384 static int validate_raid_redundancy(struct raid_set *rs)
385 {
386 	unsigned i, rebuild_cnt = 0;
387 	unsigned rebuilds_per_group = 0, copies, d;
388 	unsigned group_size, last_group_start;
389 
390 	for (i = 0; i < rs->md.raid_disks; i++)
391 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
392 		    !rs->dev[i].rdev.sb_page)
393 			rebuild_cnt++;
394 
395 	switch (rs->raid_type->level) {
396 	case 1:
397 		if (rebuild_cnt >= rs->md.raid_disks)
398 			goto too_many;
399 		break;
400 	case 4:
401 	case 5:
402 	case 6:
403 		if (rebuild_cnt > rs->raid_type->parity_devs)
404 			goto too_many;
405 		break;
406 	case 10:
407 		copies = raid10_md_layout_to_copies(rs->md.layout);
408 		if (rebuild_cnt < copies)
409 			break;
410 
411 		/*
412 		 * It is possible to have a higher rebuild count for RAID10,
413 		 * as long as the failed devices occur in different mirror
414 		 * groups (i.e. different stripes).
415 		 *
416 		 * When checking "near" format, make sure no adjacent devices
417 		 * have failed beyond what can be handled.  In addition to the
418 		 * simple case where the number of devices is a multiple of the
419 		 * number of copies, we must also handle cases where the number
420 		 * of devices is not a multiple of the number of copies.
421 		 * E.g.    dev1 dev2 dev3 dev4 dev5
422 		 *          A    A    B    B    C
423 		 *          C    D    D    E    E
424 		 */
425 		if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
426 			for (i = 0; i < rs->md.raid_disks * copies; i++) {
427 				if (!(i % copies))
428 					rebuilds_per_group = 0;
429 				d = i % rs->md.raid_disks;
430 				if ((!rs->dev[d].rdev.sb_page ||
431 				     !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
432 				    (++rebuilds_per_group >= copies))
433 					goto too_many;
434 			}
435 			break;
436 		}
437 
438 		/*
439 		 * When checking "far" and "offset" formats, we need to ensure
440 		 * that the device that holds its copy is not also dead or
441 		 * being rebuilt.  (Note that "far" and "offset" formats only
442 		 * support two copies right now.  These formats also only ever
443 		 * use the 'use_far_sets' variant.)
444 		 *
445 		 * This check is somewhat complicated by the need to account
446 		 * for arrays that are not a multiple of (far) copies.  This
447 		 * results in the need to treat the last (potentially larger)
448 		 * set differently.
449 		 */
450 		group_size = (rs->md.raid_disks / copies);
451 		last_group_start = (rs->md.raid_disks / group_size) - 1;
452 		last_group_start *= group_size;
453 		for (i = 0; i < rs->md.raid_disks; i++) {
454 			if (!(i % copies) && !(i > last_group_start))
455 				rebuilds_per_group = 0;
456 			if ((!rs->dev[i].rdev.sb_page ||
457 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
458 			    (++rebuilds_per_group >= copies))
459 					goto too_many;
460 		}
461 		break;
462 	default:
463 		if (rebuild_cnt)
464 			return -EINVAL;
465 	}
466 
467 	return 0;
468 
469 too_many:
470 	return -EINVAL;
471 }
472 
473 /*
474  * Possible arguments are...
475  *	<chunk_size> [optional_args]
476  *
477  * Argument definitions
478  *    <chunk_size>			The number of sectors per disk that
479  *                                      will form the "stripe"
480  *    [[no]sync]			Force or prevent recovery of the
481  *                                      entire array
482  *    [rebuild <idx>]			Rebuild the drive indicated by the index
483  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
484  *                                      clear bits
485  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
486  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
487  *    [write_mostly <idx>]		Indicate a write mostly drive via index
488  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
489  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
490  *    [region_size <sectors>]           Defines granularity of bitmap
491  *
492  * RAID10-only options:
493  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
494  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
495  */
496 static int parse_raid_params(struct raid_set *rs, char **argv,
497 			     unsigned num_raid_params)
498 {
499 	char *raid10_format = "near";
500 	unsigned raid10_copies = 2;
501 	unsigned i;
502 	unsigned long value, region_size = 0;
503 	sector_t sectors_per_dev = rs->ti->len;
504 	sector_t max_io_len;
505 	char *key;
506 
507 	/*
508 	 * First, parse the in-order required arguments
509 	 * "chunk_size" is the only argument of this type.
510 	 */
511 	if ((kstrtoul(argv[0], 10, &value) < 0)) {
512 		rs->ti->error = "Bad chunk size";
513 		return -EINVAL;
514 	} else if (rs->raid_type->level == 1) {
515 		if (value)
516 			DMERR("Ignoring chunk size parameter for RAID 1");
517 		value = 0;
518 	} else if (!is_power_of_2(value)) {
519 		rs->ti->error = "Chunk size must be a power of 2";
520 		return -EINVAL;
521 	} else if (value < 8) {
522 		rs->ti->error = "Chunk size value is too small";
523 		return -EINVAL;
524 	}
525 
526 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
527 	argv++;
528 	num_raid_params--;
529 
530 	/*
531 	 * We set each individual device as In_sync with a completed
532 	 * 'recovery_offset'.  If there has been a device failure or
533 	 * replacement then one of the following cases applies:
534 	 *
535 	 *   1) User specifies 'rebuild'.
536 	 *      - Device is reset when param is read.
537 	 *   2) A new device is supplied.
538 	 *      - No matching superblock found, resets device.
539 	 *   3) Device failure was transient and returns on reload.
540 	 *      - Failure noticed, resets device for bitmap replay.
541 	 *   4) Device hadn't completed recovery after previous failure.
542 	 *      - Superblock is read and overrides recovery_offset.
543 	 *
544 	 * What is found in the superblocks of the devices is always
545 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
546 	 */
547 	for (i = 0; i < rs->md.raid_disks; i++) {
548 		set_bit(In_sync, &rs->dev[i].rdev.flags);
549 		rs->dev[i].rdev.recovery_offset = MaxSector;
550 	}
551 
552 	/*
553 	 * Second, parse the unordered optional arguments
554 	 */
555 	for (i = 0; i < num_raid_params; i++) {
556 		if (!strcasecmp(argv[i], "nosync")) {
557 			rs->md.recovery_cp = MaxSector;
558 			rs->ctr_flags |= CTR_FLAG_NOSYNC;
559 			continue;
560 		}
561 		if (!strcasecmp(argv[i], "sync")) {
562 			rs->md.recovery_cp = 0;
563 			rs->ctr_flags |= CTR_FLAG_SYNC;
564 			continue;
565 		}
566 
567 		/* The rest of the optional arguments come in key/value pairs */
568 		if ((i + 1) >= num_raid_params) {
569 			rs->ti->error = "Wrong number of raid parameters given";
570 			return -EINVAL;
571 		}
572 
573 		key = argv[i++];
574 
575 		/* Parameters that take a string value are checked here. */
576 		if (!strcasecmp(key, "raid10_format")) {
577 			if (rs->raid_type->level != 10) {
578 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
579 				return -EINVAL;
580 			}
581 			if (strcmp("near", argv[i]) &&
582 			    strcmp("far", argv[i]) &&
583 			    strcmp("offset", argv[i])) {
584 				rs->ti->error = "Invalid 'raid10_format' value given";
585 				return -EINVAL;
586 			}
587 			raid10_format = argv[i];
588 			rs->ctr_flags |= CTR_FLAG_RAID10_FORMAT;
589 			continue;
590 		}
591 
592 		if (kstrtoul(argv[i], 10, &value) < 0) {
593 			rs->ti->error = "Bad numerical argument given in raid params";
594 			return -EINVAL;
595 		}
596 
597 		/* Parameters that take a numeric value are checked here */
598 		if (!strcasecmp(key, "rebuild")) {
599 			if (value >= rs->md.raid_disks) {
600 				rs->ti->error = "Invalid rebuild index given";
601 				return -EINVAL;
602 			}
603 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
604 			rs->dev[value].rdev.recovery_offset = 0;
605 			rs->ctr_flags |= CTR_FLAG_REBUILD;
606 		} else if (!strcasecmp(key, "write_mostly")) {
607 			if (rs->raid_type->level != 1) {
608 				rs->ti->error = "write_mostly option is only valid for RAID1";
609 				return -EINVAL;
610 			}
611 			if (value >= rs->md.raid_disks) {
612 				rs->ti->error = "Invalid write_mostly drive index given";
613 				return -EINVAL;
614 			}
615 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
616 		} else if (!strcasecmp(key, "max_write_behind")) {
617 			if (rs->raid_type->level != 1) {
618 				rs->ti->error = "max_write_behind option is only valid for RAID1";
619 				return -EINVAL;
620 			}
621 			rs->ctr_flags |= CTR_FLAG_MAX_WRITE_BEHIND;
622 
623 			/*
624 			 * In device-mapper, we specify things in sectors, but
625 			 * MD records this value in kB
626 			 */
627 			value /= 2;
628 			if (value > COUNTER_MAX) {
629 				rs->ti->error = "Max write-behind limit out of range";
630 				return -EINVAL;
631 			}
632 			rs->md.bitmap_info.max_write_behind = value;
633 		} else if (!strcasecmp(key, "daemon_sleep")) {
634 			rs->ctr_flags |= CTR_FLAG_DAEMON_SLEEP;
635 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
636 				rs->ti->error = "daemon sleep period out of range";
637 				return -EINVAL;
638 			}
639 			rs->md.bitmap_info.daemon_sleep = value;
640 		} else if (!strcasecmp(key, "stripe_cache")) {
641 			rs->ctr_flags |= CTR_FLAG_STRIPE_CACHE;
642 
643 			/*
644 			 * In device-mapper, we specify things in sectors, but
645 			 * MD records this value in kB
646 			 */
647 			value /= 2;
648 
649 			if ((rs->raid_type->level != 5) &&
650 			    (rs->raid_type->level != 6)) {
651 				rs->ti->error = "Inappropriate argument: stripe_cache";
652 				return -EINVAL;
653 			}
654 			if (raid5_set_cache_size(&rs->md, (int)value)) {
655 				rs->ti->error = "Bad stripe_cache size";
656 				return -EINVAL;
657 			}
658 		} else if (!strcasecmp(key, "min_recovery_rate")) {
659 			rs->ctr_flags |= CTR_FLAG_MIN_RECOVERY_RATE;
660 			if (value > INT_MAX) {
661 				rs->ti->error = "min_recovery_rate out of range";
662 				return -EINVAL;
663 			}
664 			rs->md.sync_speed_min = (int)value;
665 		} else if (!strcasecmp(key, "max_recovery_rate")) {
666 			rs->ctr_flags |= CTR_FLAG_MAX_RECOVERY_RATE;
667 			if (value > INT_MAX) {
668 				rs->ti->error = "max_recovery_rate out of range";
669 				return -EINVAL;
670 			}
671 			rs->md.sync_speed_max = (int)value;
672 		} else if (!strcasecmp(key, "region_size")) {
673 			rs->ctr_flags |= CTR_FLAG_REGION_SIZE;
674 			region_size = value;
675 		} else if (!strcasecmp(key, "raid10_copies") &&
676 			   (rs->raid_type->level == 10)) {
677 			if ((value < 2) || (value > 0xFF)) {
678 				rs->ti->error = "Bad value for 'raid10_copies'";
679 				return -EINVAL;
680 			}
681 			rs->ctr_flags |= CTR_FLAG_RAID10_COPIES;
682 			raid10_copies = value;
683 		} else {
684 			DMERR("Unable to parse RAID parameter: %s", key);
685 			rs->ti->error = "Unable to parse RAID parameters";
686 			return -EINVAL;
687 		}
688 	}
689 
690 	if (validate_region_size(rs, region_size))
691 		return -EINVAL;
692 
693 	if (rs->md.chunk_sectors)
694 		max_io_len = rs->md.chunk_sectors;
695 	else
696 		max_io_len = region_size;
697 
698 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
699 		return -EINVAL;
700 
701 	if (rs->raid_type->level == 10) {
702 		if (raid10_copies > rs->md.raid_disks) {
703 			rs->ti->error = "Not enough devices to satisfy specification";
704 			return -EINVAL;
705 		}
706 
707 		/*
708 		 * If the format is not "near", we only support
709 		 * two copies at the moment.
710 		 */
711 		if (strcmp("near", raid10_format) && (raid10_copies > 2)) {
712 			rs->ti->error = "Too many copies for given RAID10 format.";
713 			return -EINVAL;
714 		}
715 
716 		/* (Len * #mirrors) / #devices */
717 		sectors_per_dev = rs->ti->len * raid10_copies;
718 		sector_div(sectors_per_dev, rs->md.raid_disks);
719 
720 		rs->md.layout = raid10_format_to_md_layout(raid10_format,
721 							   raid10_copies);
722 		rs->md.new_layout = rs->md.layout;
723 	} else if ((!rs->raid_type->level || rs->raid_type->level > 1) &&
724 		   sector_div(sectors_per_dev,
725 			      (rs->md.raid_disks - rs->raid_type->parity_devs))) {
726 		rs->ti->error = "Target length not divisible by number of data devices";
727 		return -EINVAL;
728 	}
729 	rs->md.dev_sectors = sectors_per_dev;
730 
731 	/* Assume there are no metadata devices until the drives are parsed */
732 	rs->md.persistent = 0;
733 	rs->md.external = 1;
734 
735 	return 0;
736 }
737 
738 static void do_table_event(struct work_struct *ws)
739 {
740 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
741 
742 	dm_table_event(rs->ti->table);
743 }
744 
745 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
746 {
747 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
748 
749 	return mddev_congested(&rs->md, bits);
750 }
751 
752 /*
753  * This structure is never routinely used by userspace, unlike md superblocks.
754  * Devices with this superblock should only ever be accessed via device-mapper.
755  */
756 #define DM_RAID_MAGIC 0x64526D44
757 struct dm_raid_superblock {
758 	__le32 magic;		/* "DmRd" */
759 	__le32 features;	/* Used to indicate possible future changes */
760 
761 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
762 	__le32 array_position;	/* The position of this drive in the array */
763 
764 	__le64 events;		/* Incremented by md when superblock updated */
765 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
766 
767 	/*
768 	 * This offset tracks the progress of the repair or replacement of
769 	 * an individual drive.
770 	 */
771 	__le64 disk_recovery_offset;
772 
773 	/*
774 	 * This offset tracks the progress of the initial array
775 	 * synchronisation/parity calculation.
776 	 */
777 	__le64 array_resync_offset;
778 
779 	/*
780 	 * RAID characteristics
781 	 */
782 	__le32 level;
783 	__le32 layout;
784 	__le32 stripe_sectors;
785 
786 	/* Remainder of a logical block is zero-filled when writing (see super_sync()). */
787 } __packed;
788 
789 static int read_disk_sb(struct md_rdev *rdev, int size)
790 {
791 	BUG_ON(!rdev->sb_page);
792 
793 	if (rdev->sb_loaded)
794 		return 0;
795 
796 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
797 		DMERR("Failed to read superblock of device at position %d",
798 		      rdev->raid_disk);
799 		md_error(rdev->mddev, rdev);
800 		return -EINVAL;
801 	}
802 
803 	rdev->sb_loaded = 1;
804 
805 	return 0;
806 }
807 
808 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
809 {
810 	int i;
811 	uint64_t failed_devices;
812 	struct dm_raid_superblock *sb;
813 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
814 
815 	sb = page_address(rdev->sb_page);
816 	failed_devices = le64_to_cpu(sb->failed_devices);
817 
818 	for (i = 0; i < mddev->raid_disks; i++)
819 		if (!rs->dev[i].data_dev ||
820 		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
821 			failed_devices |= (1ULL << i);
822 
823 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
824 
825 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
826 	sb->features = cpu_to_le32(0);	/* No features yet */
827 
828 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
829 	sb->array_position = cpu_to_le32(rdev->raid_disk);
830 
831 	sb->events = cpu_to_le64(mddev->events);
832 	sb->failed_devices = cpu_to_le64(failed_devices);
833 
834 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
835 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
836 
837 	sb->level = cpu_to_le32(mddev->level);
838 	sb->layout = cpu_to_le32(mddev->layout);
839 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
840 }
841 
842 /*
843  * super_load
844  *
845  * This function creates a superblock if one is not found on the device
846  * and will decide which superblock to use if there's a choice.
847  *
848  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
849  */
850 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
851 {
852 	int ret;
853 	struct dm_raid_superblock *sb;
854 	struct dm_raid_superblock *refsb;
855 	uint64_t events_sb, events_refsb;
856 
857 	rdev->sb_start = 0;
858 	rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
859 	if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
860 		DMERR("superblock size of a logical block is no longer valid");
861 		return -EINVAL;
862 	}
863 
864 	ret = read_disk_sb(rdev, rdev->sb_size);
865 	if (ret)
866 		return ret;
867 
868 	sb = page_address(rdev->sb_page);
869 
870 	/*
871 	 * Two cases that we want to write new superblocks and rebuild:
872 	 * 1) New device (no matching magic number)
873 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
874 	 */
875 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
876 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
877 		super_sync(rdev->mddev, rdev);
878 
879 		set_bit(FirstUse, &rdev->flags);
880 
881 		/* Force writing of superblocks to disk */
882 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
883 
884 		/* Any superblock is better than none, choose that if given */
885 		return refdev ? 0 : 1;
886 	}
887 
888 	if (!refdev)
889 		return 1;
890 
891 	events_sb = le64_to_cpu(sb->events);
892 
893 	refsb = page_address(refdev->sb_page);
894 	events_refsb = le64_to_cpu(refsb->events);
895 
896 	return (events_sb > events_refsb) ? 1 : 0;
897 }
898 
899 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
900 {
901 	int role;
902 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
903 	uint64_t events_sb;
904 	uint64_t failed_devices;
905 	struct dm_raid_superblock *sb;
906 	uint32_t new_devs = 0;
907 	uint32_t rebuilds = 0;
908 	struct md_rdev *r;
909 	struct dm_raid_superblock *sb2;
910 
911 	sb = page_address(rdev->sb_page);
912 	events_sb = le64_to_cpu(sb->events);
913 	failed_devices = le64_to_cpu(sb->failed_devices);
914 
915 	/*
916 	 * Initialise to 1 if this is a new superblock.
917 	 */
918 	mddev->events = events_sb ? : 1;
919 
920 	/*
921 	 * Reshaping is not currently allowed
922 	 */
923 	if (le32_to_cpu(sb->level) != mddev->level) {
924 		DMERR("Reshaping arrays not yet supported. (RAID level change)");
925 		return -EINVAL;
926 	}
927 	if (le32_to_cpu(sb->layout) != mddev->layout) {
928 		DMERR("Reshaping arrays not yet supported. (RAID layout change)");
929 		DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
930 		DMERR("  Old layout: %s w/ %d copies",
931 		      raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
932 		      raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
933 		DMERR("  New layout: %s w/ %d copies",
934 		      raid10_md_layout_to_format(mddev->layout),
935 		      raid10_md_layout_to_copies(mddev->layout));
936 		return -EINVAL;
937 	}
938 	if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
939 		DMERR("Reshaping arrays not yet supported. (stripe sectors change)");
940 		return -EINVAL;
941 	}
942 
943 	/* We can only change the number of devices in RAID1 right now */
944 	if ((rs->raid_type->level != 1) &&
945 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
946 		DMERR("Reshaping arrays not yet supported. (device count change)");
947 		return -EINVAL;
948 	}
949 
950 	if (!(rs->ctr_flags & (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)))
951 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
952 
953 	/*
954 	 * During load, we set FirstUse if a new superblock was written.
955 	 * There are two reasons we might not have a superblock:
956 	 * 1) The array is brand new - in which case, all of the
957 	 *    devices must have their In_sync bit set.  Also,
958 	 *    recovery_cp must be 0, unless forced.
959 	 * 2) This is a new device being added to an old array
960 	 *    and the new device needs to be rebuilt - in which
961 	 *    case the In_sync bit will /not/ be set and
962 	 *    recovery_cp must be MaxSector.
963 	 */
964 	rdev_for_each(r, mddev) {
965 		if (!test_bit(In_sync, &r->flags)) {
966 			DMINFO("Device %d specified for rebuild: "
967 			       "Clearing superblock", r->raid_disk);
968 			rebuilds++;
969 		} else if (test_bit(FirstUse, &r->flags))
970 			new_devs++;
971 	}
972 
973 	if (!rebuilds) {
974 		if (new_devs == mddev->raid_disks) {
975 			DMINFO("Superblocks created for new array");
976 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
977 		} else if (new_devs) {
978 			DMERR("New device injected "
979 			      "into existing array without 'rebuild' "
980 			      "parameter specified");
981 			return -EINVAL;
982 		}
983 	} else if (new_devs) {
984 		DMERR("'rebuild' devices cannot be "
985 		      "injected into an array with other first-time devices");
986 		return -EINVAL;
987 	} else if (mddev->recovery_cp != MaxSector) {
988 		DMERR("'rebuild' specified while array is not in-sync");
989 		return -EINVAL;
990 	}
991 
992 	/*
993 	 * Now we set the Faulty bit for those devices that are
994 	 * recorded in the superblock as failed.
995 	 */
996 	rdev_for_each(r, mddev) {
997 		if (!r->sb_page)
998 			continue;
999 		sb2 = page_address(r->sb_page);
1000 		sb2->failed_devices = 0;
1001 
1002 		/*
1003 		 * Check for any device re-ordering.
1004 		 */
1005 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1006 			role = le32_to_cpu(sb2->array_position);
1007 			if (role != r->raid_disk) {
1008 				if (rs->raid_type->level != 1) {
1009 					rs->ti->error = "Cannot change device "
1010 						"positions in RAID array";
1011 					return -EINVAL;
1012 				}
1013 				DMINFO("RAID1 device #%d now at position #%d",
1014 				       role, r->raid_disk);
1015 			}
1016 
1017 			/*
1018 			 * Partial recovery is performed on
1019 			 * returning failed devices.
1020 			 */
1021 			if (failed_devices & (1 << role))
1022 				set_bit(Faulty, &r->flags);
1023 		}
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
1030 {
1031 	struct mddev *mddev = &rs->md;
1032 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
1033 
1034 	/*
1035 	 * If mddev->events is not set, we know we have not yet initialized
1036 	 * the array.
1037 	 */
1038 	if (!mddev->events && super_init_validation(mddev, rdev))
1039 		return -EINVAL;
1040 
1041 	/* Enable bitmap creation for RAID levels != 0 */
1042 	mddev->bitmap_info.offset = (rs->raid_type->level) ? to_sector(4096) : 0;
1043 	rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
1044 
1045 	if (!test_bit(FirstUse, &rdev->flags)) {
1046 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
1047 		if (rdev->recovery_offset != MaxSector)
1048 			clear_bit(In_sync, &rdev->flags);
1049 	}
1050 
1051 	/*
1052 	 * If a device comes back, set it as not In_sync and no longer faulty.
1053 	 */
1054 	if (test_bit(Faulty, &rdev->flags)) {
1055 		clear_bit(Faulty, &rdev->flags);
1056 		clear_bit(In_sync, &rdev->flags);
1057 		rdev->saved_raid_disk = rdev->raid_disk;
1058 		rdev->recovery_offset = 0;
1059 	}
1060 
1061 	clear_bit(FirstUse, &rdev->flags);
1062 
1063 	return 0;
1064 }
1065 
1066 /*
1067  * Analyse superblocks and select the freshest.
1068  */
1069 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
1070 {
1071 	int ret;
1072 	struct raid_dev *dev;
1073 	struct md_rdev *rdev, *tmp, *freshest;
1074 	struct mddev *mddev = &rs->md;
1075 
1076 	freshest = NULL;
1077 	rdev_for_each_safe(rdev, tmp, mddev) {
1078 		/*
1079 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
1080 		 * the array to undergo initialization again as
1081 		 * though it were new.  This is the intended effect
1082 		 * of the "sync" directive.
1083 		 *
1084 		 * When reshaping capability is added, we must ensure
1085 		 * that the "sync" directive is disallowed during the
1086 		 * reshape.
1087 		 */
1088 		rdev->sectors = to_sector(i_size_read(rdev->bdev->bd_inode));
1089 
1090 		if (rs->ctr_flags & CTR_FLAG_SYNC)
1091 			continue;
1092 
1093 		if (!rdev->meta_bdev)
1094 			continue;
1095 
1096 		ret = super_load(rdev, freshest);
1097 
1098 		switch (ret) {
1099 		case 1:
1100 			freshest = rdev;
1101 			break;
1102 		case 0:
1103 			break;
1104 		default:
1105 			dev = container_of(rdev, struct raid_dev, rdev);
1106 			if (dev->meta_dev)
1107 				dm_put_device(ti, dev->meta_dev);
1108 
1109 			dev->meta_dev = NULL;
1110 			rdev->meta_bdev = NULL;
1111 
1112 			if (rdev->sb_page)
1113 				put_page(rdev->sb_page);
1114 
1115 			rdev->sb_page = NULL;
1116 
1117 			rdev->sb_loaded = 0;
1118 
1119 			/*
1120 			 * We might be able to salvage the data device
1121 			 * even though the meta device has failed.  For
1122 			 * now, we behave as though '- -' had been
1123 			 * set for this device in the table.
1124 			 */
1125 			if (dev->data_dev)
1126 				dm_put_device(ti, dev->data_dev);
1127 
1128 			dev->data_dev = NULL;
1129 			rdev->bdev = NULL;
1130 
1131 			list_del(&rdev->same_set);
1132 		}
1133 	}
1134 
1135 	if (!freshest)
1136 		return 0;
1137 
1138 	if (validate_raid_redundancy(rs)) {
1139 		rs->ti->error = "Insufficient redundancy to activate array";
1140 		return -EINVAL;
1141 	}
1142 
1143 	/*
1144 	 * Validation of the freshest device provides the source of
1145 	 * validation for the remaining devices.
1146 	 */
1147 	ti->error = "Unable to assemble array: Invalid superblocks";
1148 	if (super_validate(rs, freshest))
1149 		return -EINVAL;
1150 
1151 	rdev_for_each(rdev, mddev)
1152 		if ((rdev != freshest) && super_validate(rs, rdev))
1153 			return -EINVAL;
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * Enable/disable discard support on RAID set depending on
1160  * RAID level and discard properties of underlying RAID members.
1161  */
1162 static void configure_discard_support(struct dm_target *ti, struct raid_set *rs)
1163 {
1164 	int i;
1165 	bool raid456;
1166 
1167 	/* Assume discards not supported until after checks below. */
1168 	ti->discards_supported = false;
1169 
1170 	/* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
1171 	raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
1172 
1173 	for (i = 0; i < rs->md.raid_disks; i++) {
1174 		struct request_queue *q;
1175 
1176 		if (!rs->dev[i].rdev.bdev)
1177 			continue;
1178 
1179 		q = bdev_get_queue(rs->dev[i].rdev.bdev);
1180 		if (!q || !blk_queue_discard(q))
1181 			return;
1182 
1183 		if (raid456) {
1184 			if (!q->limits.discard_zeroes_data)
1185 				return;
1186 			if (!devices_handle_discard_safely) {
1187 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
1188 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
1189 				return;
1190 			}
1191 		}
1192 	}
1193 
1194 	/* All RAID members properly support discards */
1195 	ti->discards_supported = true;
1196 
1197 	/*
1198 	 * RAID1 and RAID10 personalities require bio splitting,
1199 	 * RAID0/4/5/6 don't and process large discard bios properly.
1200 	 */
1201 	ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
1202 	ti->num_discard_bios = 1;
1203 }
1204 
1205 /*
1206  * Construct a RAID4/5/6 mapping:
1207  * Args:
1208  *	<raid_type> <#raid_params> <raid_params>		\
1209  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1210  *
1211  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1212  * details on possible <raid_params>.
1213  */
1214 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1215 {
1216 	int ret;
1217 	struct raid_type *rt;
1218 	unsigned long num_raid_params, num_raid_devs;
1219 	struct raid_set *rs = NULL;
1220 
1221 	/* Must have at least <raid_type> <#raid_params> */
1222 	if (argc < 2) {
1223 		ti->error = "Too few arguments";
1224 		return -EINVAL;
1225 	}
1226 
1227 	/* raid type */
1228 	rt = get_raid_type(argv[0]);
1229 	if (!rt) {
1230 		ti->error = "Unrecognised raid_type";
1231 		return -EINVAL;
1232 	}
1233 	argc--;
1234 	argv++;
1235 
1236 	/* number of RAID parameters */
1237 	if (kstrtoul(argv[0], 10, &num_raid_params) < 0) {
1238 		ti->error = "Cannot understand number of RAID parameters";
1239 		return -EINVAL;
1240 	}
1241 	argc--;
1242 	argv++;
1243 
1244 	/* Skip over RAID params for now and find out # of devices */
1245 	if (num_raid_params >= argc) {
1246 		ti->error = "Arguments do not agree with counts given";
1247 		return -EINVAL;
1248 	}
1249 
1250 	if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1251 	    (num_raid_devs > MAX_RAID_DEVICES)) {
1252 		ti->error = "Cannot understand number of raid devices";
1253 		return -EINVAL;
1254 	}
1255 
1256 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1257 	if (argc != (num_raid_devs * 2)) {
1258 		ti->error = "Supplied RAID devices does not match the count given";
1259 		return -EINVAL;
1260 	}
1261 
1262 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1263 	if (IS_ERR(rs))
1264 		return PTR_ERR(rs);
1265 
1266 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1267 	if (ret)
1268 		goto bad;
1269 
1270 	argv += num_raid_params + 1;
1271 
1272 	ret = dev_parms(rs, argv);
1273 	if (ret)
1274 		goto bad;
1275 
1276 	rs->md.sync_super = super_sync;
1277 	ret = analyse_superblocks(ti, rs);
1278 	if (ret)
1279 		goto bad;
1280 
1281 	INIT_WORK(&rs->md.event_work, do_table_event);
1282 	ti->private = rs;
1283 	ti->num_flush_bios = 1;
1284 
1285 	/*
1286 	 * Disable/enable discard support on RAID set.
1287 	 */
1288 	configure_discard_support(ti, rs);
1289 
1290 	/* Has to be held on running the array */
1291 	mddev_lock_nointr(&rs->md);
1292 	ret = md_run(&rs->md);
1293 	rs->md.in_sync = 0; /* Assume already marked dirty */
1294 	mddev_unlock(&rs->md);
1295 
1296 	if (ret) {
1297 		ti->error = "Fail to run raid array";
1298 		goto bad;
1299 	}
1300 
1301 	if (ti->len != rs->md.array_sectors) {
1302 		ti->error = "Array size does not match requested target length";
1303 		ret = -EINVAL;
1304 		goto size_mismatch;
1305 	}
1306 	rs->callbacks.congested_fn = raid_is_congested;
1307 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1308 
1309 	mddev_suspend(&rs->md);
1310 	return 0;
1311 
1312 size_mismatch:
1313 	md_stop(&rs->md);
1314 bad:
1315 	context_free(rs);
1316 
1317 	return ret;
1318 }
1319 
1320 static void raid_dtr(struct dm_target *ti)
1321 {
1322 	struct raid_set *rs = ti->private;
1323 
1324 	list_del_init(&rs->callbacks.list);
1325 	md_stop(&rs->md);
1326 	context_free(rs);
1327 }
1328 
1329 static int raid_map(struct dm_target *ti, struct bio *bio)
1330 {
1331 	struct raid_set *rs = ti->private;
1332 	struct mddev *mddev = &rs->md;
1333 
1334 	mddev->pers->make_request(mddev, bio);
1335 
1336 	return DM_MAPIO_SUBMITTED;
1337 }
1338 
1339 static const char *decipher_sync_action(struct mddev *mddev)
1340 {
1341 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
1342 		return "frozen";
1343 
1344 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1345 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
1346 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1347 			return "reshape";
1348 
1349 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1350 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1351 				return "resync";
1352 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1353 				return "check";
1354 			return "repair";
1355 		}
1356 
1357 		if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
1358 			return "recover";
1359 	}
1360 
1361 	return "idle";
1362 }
1363 
1364 static void raid_status(struct dm_target *ti, status_type_t type,
1365 			unsigned status_flags, char *result, unsigned maxlen)
1366 {
1367 	struct raid_set *rs = ti->private;
1368 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1369 	unsigned sz = 0;
1370 	int i, array_in_sync = 0;
1371 	sector_t sync;
1372 
1373 	switch (type) {
1374 	case STATUSTYPE_INFO:
1375 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1376 
1377 		if (rs->raid_type->level) {
1378 			if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1379 				sync = rs->md.curr_resync_completed;
1380 			else
1381 				sync = rs->md.recovery_cp;
1382 
1383 			if (sync >= rs->md.resync_max_sectors) {
1384 				/*
1385 				 * Sync complete.
1386 				 */
1387 				array_in_sync = 1;
1388 				sync = rs->md.resync_max_sectors;
1389 			} else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) {
1390 				/*
1391 				 * If "check" or "repair" is occurring, the array has
1392 				 * undergone and initial sync and the health characters
1393 				 * should not be 'a' anymore.
1394 				 */
1395 				array_in_sync = 1;
1396 			} else {
1397 				/*
1398 				 * The array may be doing an initial sync, or it may
1399 				 * be rebuilding individual components.  If all the
1400 				 * devices are In_sync, then it is the array that is
1401 				 * being initialized.
1402 				 */
1403 				for (i = 0; i < rs->md.raid_disks; i++)
1404 					if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1405 						array_in_sync = 1;
1406 			}
1407 		} else {
1408 			/* RAID0 */
1409 			array_in_sync = 1;
1410 			sync = rs->md.resync_max_sectors;
1411 		}
1412 
1413 		/*
1414 		 * Status characters:
1415 		 *  'D' = Dead/Failed device
1416 		 *  'a' = Alive but not in-sync
1417 		 *  'A' = Alive and in-sync
1418 		 */
1419 		for (i = 0; i < rs->md.raid_disks; i++) {
1420 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1421 				DMEMIT("D");
1422 			else if (!array_in_sync ||
1423 				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1424 				DMEMIT("a");
1425 			else
1426 				DMEMIT("A");
1427 		}
1428 
1429 		/*
1430 		 * In-sync ratio:
1431 		 *  The in-sync ratio shows the progress of:
1432 		 *   - Initializing the array
1433 		 *   - Rebuilding a subset of devices of the array
1434 		 *  The user can distinguish between the two by referring
1435 		 *  to the status characters.
1436 		 */
1437 		DMEMIT(" %llu/%llu",
1438 		       (unsigned long long) sync,
1439 		       (unsigned long long) rs->md.resync_max_sectors);
1440 
1441 		/*
1442 		 * Sync action:
1443 		 *   See Documentation/device-mapper/dm-raid.c for
1444 		 *   information on each of these states.
1445 		 */
1446 		DMEMIT(" %s", decipher_sync_action(&rs->md));
1447 
1448 		/*
1449 		 * resync_mismatches/mismatch_cnt
1450 		 *   This field shows the number of discrepancies found when
1451 		 *   performing a "check" of the array.
1452 		 */
1453 		DMEMIT(" %llu",
1454 		       (strcmp(rs->md.last_sync_action, "check")) ? 0 :
1455 		       (unsigned long long)
1456 		       atomic64_read(&rs->md.resync_mismatches));
1457 		break;
1458 	case STATUSTYPE_TABLE:
1459 		/* The string you would use to construct this array */
1460 		for (i = 0; i < rs->md.raid_disks; i++) {
1461 			if ((rs->ctr_flags & CTR_FLAG_REBUILD) &&
1462 			    rs->dev[i].data_dev &&
1463 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1464 				raid_param_cnt += 2; /* for rebuilds */
1465 			if (rs->dev[i].data_dev &&
1466 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1467 				raid_param_cnt += 2;
1468 		}
1469 
1470 		raid_param_cnt += (hweight32(rs->ctr_flags & ~CTR_FLAG_REBUILD) * 2);
1471 		if (rs->ctr_flags & (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC))
1472 			raid_param_cnt--;
1473 
1474 		DMEMIT("%s %u %u", rs->raid_type->name,
1475 		       raid_param_cnt, rs->md.chunk_sectors);
1476 
1477 		if ((rs->ctr_flags & CTR_FLAG_SYNC) &&
1478 		    (rs->md.recovery_cp == MaxSector))
1479 			DMEMIT(" sync");
1480 		if (rs->ctr_flags & CTR_FLAG_NOSYNC)
1481 			DMEMIT(" nosync");
1482 
1483 		for (i = 0; i < rs->md.raid_disks; i++)
1484 			if ((rs->ctr_flags & CTR_FLAG_REBUILD) &&
1485 			    rs->dev[i].data_dev &&
1486 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1487 				DMEMIT(" rebuild %u", i);
1488 
1489 		if (rs->ctr_flags & CTR_FLAG_DAEMON_SLEEP)
1490 			DMEMIT(" daemon_sleep %lu",
1491 			       rs->md.bitmap_info.daemon_sleep);
1492 
1493 		if (rs->ctr_flags & CTR_FLAG_MIN_RECOVERY_RATE)
1494 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1495 
1496 		if (rs->ctr_flags & CTR_FLAG_MAX_RECOVERY_RATE)
1497 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1498 
1499 		for (i = 0; i < rs->md.raid_disks; i++)
1500 			if (rs->dev[i].data_dev &&
1501 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1502 				DMEMIT(" write_mostly %u", i);
1503 
1504 		if (rs->ctr_flags & CTR_FLAG_MAX_WRITE_BEHIND)
1505 			DMEMIT(" max_write_behind %lu",
1506 			       rs->md.bitmap_info.max_write_behind);
1507 
1508 		if (rs->ctr_flags & CTR_FLAG_STRIPE_CACHE) {
1509 			struct r5conf *conf = rs->md.private;
1510 
1511 			/* convert from kiB to sectors */
1512 			DMEMIT(" stripe_cache %d",
1513 			       conf ? conf->max_nr_stripes * 2 : 0);
1514 		}
1515 
1516 		if (rs->ctr_flags & CTR_FLAG_REGION_SIZE)
1517 			DMEMIT(" region_size %lu",
1518 			       rs->md.bitmap_info.chunksize >> 9);
1519 
1520 		if (rs->ctr_flags & CTR_FLAG_RAID10_COPIES)
1521 			DMEMIT(" raid10_copies %u",
1522 			       raid10_md_layout_to_copies(rs->md.layout));
1523 
1524 		if (rs->ctr_flags & CTR_FLAG_RAID10_FORMAT)
1525 			DMEMIT(" raid10_format %s",
1526 			       raid10_md_layout_to_format(rs->md.layout));
1527 
1528 		DMEMIT(" %d", rs->md.raid_disks);
1529 		for (i = 0; i < rs->md.raid_disks; i++) {
1530 			if (rs->dev[i].meta_dev)
1531 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1532 			else
1533 				DMEMIT(" -");
1534 
1535 			if (rs->dev[i].data_dev)
1536 				DMEMIT(" %s", rs->dev[i].data_dev->name);
1537 			else
1538 				DMEMIT(" -");
1539 		}
1540 	}
1541 }
1542 
1543 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
1544 {
1545 	struct raid_set *rs = ti->private;
1546 	struct mddev *mddev = &rs->md;
1547 
1548 	if (!strcasecmp(argv[0], "reshape")) {
1549 		DMERR("Reshape not supported.");
1550 		return -EINVAL;
1551 	}
1552 
1553 	if (!mddev->pers || !mddev->pers->sync_request)
1554 		return -EINVAL;
1555 
1556 	if (!strcasecmp(argv[0], "frozen"))
1557 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1558 	else
1559 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1560 
1561 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
1562 		if (mddev->sync_thread) {
1563 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1564 			md_reap_sync_thread(mddev);
1565 		}
1566 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1567 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1568 		return -EBUSY;
1569 	else if (!strcasecmp(argv[0], "resync"))
1570 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1571 	else if (!strcasecmp(argv[0], "recover")) {
1572 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1573 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1574 	} else {
1575 		if (!strcasecmp(argv[0], "check"))
1576 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1577 		else if (!!strcasecmp(argv[0], "repair"))
1578 			return -EINVAL;
1579 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1580 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1581 	}
1582 	if (mddev->ro == 2) {
1583 		/* A write to sync_action is enough to justify
1584 		 * canceling read-auto mode
1585 		 */
1586 		mddev->ro = 0;
1587 		if (!mddev->suspended)
1588 			md_wakeup_thread(mddev->sync_thread);
1589 	}
1590 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1591 	if (!mddev->suspended)
1592 		md_wakeup_thread(mddev->thread);
1593 
1594 	return 0;
1595 }
1596 
1597 static int raid_iterate_devices(struct dm_target *ti,
1598 				iterate_devices_callout_fn fn, void *data)
1599 {
1600 	struct raid_set *rs = ti->private;
1601 	unsigned i;
1602 	int ret = 0;
1603 
1604 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1605 		if (rs->dev[i].data_dev)
1606 			ret = fn(ti,
1607 				 rs->dev[i].data_dev,
1608 				 0, /* No offset on data devs */
1609 				 rs->md.dev_sectors,
1610 				 data);
1611 
1612 	return ret;
1613 }
1614 
1615 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1616 {
1617 	struct raid_set *rs = ti->private;
1618 	unsigned chunk_size = rs->md.chunk_sectors << 9;
1619 	struct r5conf *conf = rs->md.private;
1620 
1621 	blk_limits_io_min(limits, chunk_size);
1622 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1623 }
1624 
1625 static void raid_presuspend(struct dm_target *ti)
1626 {
1627 	struct raid_set *rs = ti->private;
1628 
1629 	md_stop_writes(&rs->md);
1630 }
1631 
1632 static void raid_postsuspend(struct dm_target *ti)
1633 {
1634 	struct raid_set *rs = ti->private;
1635 
1636 	mddev_suspend(&rs->md);
1637 }
1638 
1639 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
1640 {
1641 	int i;
1642 	uint64_t failed_devices, cleared_failed_devices = 0;
1643 	unsigned long flags;
1644 	struct dm_raid_superblock *sb;
1645 	struct md_rdev *r;
1646 
1647 	for (i = 0; i < rs->md.raid_disks; i++) {
1648 		r = &rs->dev[i].rdev;
1649 		if (test_bit(Faulty, &r->flags) && r->sb_page &&
1650 		    sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) {
1651 			DMINFO("Faulty %s device #%d has readable super block."
1652 			       "  Attempting to revive it.",
1653 			       rs->raid_type->name, i);
1654 
1655 			/*
1656 			 * Faulty bit may be set, but sometimes the array can
1657 			 * be suspended before the personalities can respond
1658 			 * by removing the device from the array (i.e. calling
1659 			 * 'hot_remove_disk').  If they haven't yet removed
1660 			 * the failed device, its 'raid_disk' number will be
1661 			 * '>= 0' - meaning we must call this function
1662 			 * ourselves.
1663 			 */
1664 			if ((r->raid_disk >= 0) &&
1665 			    (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
1666 				/* Failed to revive this device, try next */
1667 				continue;
1668 
1669 			r->raid_disk = i;
1670 			r->saved_raid_disk = i;
1671 			flags = r->flags;
1672 			clear_bit(Faulty, &r->flags);
1673 			clear_bit(WriteErrorSeen, &r->flags);
1674 			clear_bit(In_sync, &r->flags);
1675 			if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
1676 				r->raid_disk = -1;
1677 				r->saved_raid_disk = -1;
1678 				r->flags = flags;
1679 			} else {
1680 				r->recovery_offset = 0;
1681 				cleared_failed_devices |= 1 << i;
1682 			}
1683 		}
1684 	}
1685 	if (cleared_failed_devices) {
1686 		rdev_for_each(r, &rs->md) {
1687 			sb = page_address(r->sb_page);
1688 			failed_devices = le64_to_cpu(sb->failed_devices);
1689 			failed_devices &= ~cleared_failed_devices;
1690 			sb->failed_devices = cpu_to_le64(failed_devices);
1691 		}
1692 	}
1693 }
1694 
1695 static void raid_resume(struct dm_target *ti)
1696 {
1697 	struct raid_set *rs = ti->private;
1698 
1699 	if (rs->raid_type->level) {
1700 		set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1701 
1702 		if (!rs->bitmap_loaded) {
1703 			bitmap_load(&rs->md);
1704 			rs->bitmap_loaded = 1;
1705 		} else {
1706 			/*
1707 			 * A secondary resume while the device is active.
1708 			 * Take this opportunity to check whether any failed
1709 			 * devices are reachable again.
1710 			 */
1711 			attempt_restore_of_faulty_devices(rs);
1712 		}
1713 
1714 		clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1715 	}
1716 
1717 	mddev_resume(&rs->md);
1718 }
1719 
1720 static struct target_type raid_target = {
1721 	.name = "raid",
1722 	.version = {1, 7, 0},
1723 	.module = THIS_MODULE,
1724 	.ctr = raid_ctr,
1725 	.dtr = raid_dtr,
1726 	.map = raid_map,
1727 	.status = raid_status,
1728 	.message = raid_message,
1729 	.iterate_devices = raid_iterate_devices,
1730 	.io_hints = raid_io_hints,
1731 	.presuspend = raid_presuspend,
1732 	.postsuspend = raid_postsuspend,
1733 	.resume = raid_resume,
1734 };
1735 
1736 static int __init dm_raid_init(void)
1737 {
1738 	DMINFO("Loading target version %u.%u.%u",
1739 	       raid_target.version[0],
1740 	       raid_target.version[1],
1741 	       raid_target.version[2]);
1742 	return dm_register_target(&raid_target);
1743 }
1744 
1745 static void __exit dm_raid_exit(void)
1746 {
1747 	dm_unregister_target(&raid_target);
1748 }
1749 
1750 module_init(dm_raid_init);
1751 module_exit(dm_raid_exit);
1752 
1753 module_param(devices_handle_discard_safely, bool, 0644);
1754 MODULE_PARM_DESC(devices_handle_discard_safely,
1755 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
1756 
1757 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1758 MODULE_ALIAS("dm-raid1");
1759 MODULE_ALIAS("dm-raid10");
1760 MODULE_ALIAS("dm-raid4");
1761 MODULE_ALIAS("dm-raid5");
1762 MODULE_ALIAS("dm-raid6");
1763 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1764 MODULE_LICENSE("GPL");
1765