xref: /openbmc/linux/drivers/md/dm-raid.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 
21 /*
22  * The following flags are used by dm-raid.c to set up the array state.
23  * They must be cleared before md_run is called.
24  */
25 #define FirstUse 10             /* rdev flag */
26 
27 struct raid_dev {
28 	/*
29 	 * Two DM devices, one to hold metadata and one to hold the
30 	 * actual data/parity.  The reason for this is to not confuse
31 	 * ti->len and give more flexibility in altering size and
32 	 * characteristics.
33 	 *
34 	 * While it is possible for this device to be associated
35 	 * with a different physical device than the data_dev, it
36 	 * is intended for it to be the same.
37 	 *    |--------- Physical Device ---------|
38 	 *    |- meta_dev -|------ data_dev ------|
39 	 */
40 	struct dm_dev *meta_dev;
41 	struct dm_dev *data_dev;
42 	struct md_rdev rdev;
43 };
44 
45 /*
46  * Flags for rs->print_flags field.
47  */
48 #define DMPF_SYNC              0x1
49 #define DMPF_NOSYNC            0x2
50 #define DMPF_REBUILD           0x4
51 #define DMPF_DAEMON_SLEEP      0x8
52 #define DMPF_MIN_RECOVERY_RATE 0x10
53 #define DMPF_MAX_RECOVERY_RATE 0x20
54 #define DMPF_MAX_WRITE_BEHIND  0x40
55 #define DMPF_STRIPE_CACHE      0x80
56 #define DMPF_REGION_SIZE       0x100
57 #define DMPF_RAID10_COPIES     0x200
58 #define DMPF_RAID10_FORMAT     0x400
59 
60 struct raid_set {
61 	struct dm_target *ti;
62 
63 	uint32_t bitmap_loaded;
64 	uint32_t print_flags;
65 
66 	struct mddev md;
67 	struct raid_type *raid_type;
68 	struct dm_target_callbacks callbacks;
69 
70 	struct raid_dev dev[0];
71 };
72 
73 /* Supported raid types and properties. */
74 static struct raid_type {
75 	const char *name;		/* RAID algorithm. */
76 	const char *descr;		/* Descriptor text for logging. */
77 	const unsigned parity_devs;	/* # of parity devices. */
78 	const unsigned minimal_devs;	/* minimal # of devices in set. */
79 	const unsigned level;		/* RAID level. */
80 	const unsigned algorithm;	/* RAID algorithm. */
81 } raid_types[] = {
82 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
83 	{"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
84 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
85 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
86 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
87 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
88 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
89 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
90 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
91 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
92 };
93 
94 static unsigned raid10_md_layout_to_copies(int layout)
95 {
96 	return layout & 0xFF;
97 }
98 
99 static int raid10_format_to_md_layout(char *format, unsigned copies)
100 {
101 	/* 1 "far" copy, and 'copies' "near" copies */
102 	return (1 << 8) | (copies & 0xFF);
103 }
104 
105 static struct raid_type *get_raid_type(char *name)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
110 		if (!strcmp(raid_types[i].name, name))
111 			return &raid_types[i];
112 
113 	return NULL;
114 }
115 
116 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
117 {
118 	unsigned i;
119 	struct raid_set *rs;
120 
121 	if (raid_devs <= raid_type->parity_devs) {
122 		ti->error = "Insufficient number of devices";
123 		return ERR_PTR(-EINVAL);
124 	}
125 
126 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
127 	if (!rs) {
128 		ti->error = "Cannot allocate raid context";
129 		return ERR_PTR(-ENOMEM);
130 	}
131 
132 	mddev_init(&rs->md);
133 
134 	rs->ti = ti;
135 	rs->raid_type = raid_type;
136 	rs->md.raid_disks = raid_devs;
137 	rs->md.level = raid_type->level;
138 	rs->md.new_level = rs->md.level;
139 	rs->md.layout = raid_type->algorithm;
140 	rs->md.new_layout = rs->md.layout;
141 	rs->md.delta_disks = 0;
142 	rs->md.recovery_cp = 0;
143 
144 	for (i = 0; i < raid_devs; i++)
145 		md_rdev_init(&rs->dev[i].rdev);
146 
147 	/*
148 	 * Remaining items to be initialized by further RAID params:
149 	 *  rs->md.persistent
150 	 *  rs->md.external
151 	 *  rs->md.chunk_sectors
152 	 *  rs->md.new_chunk_sectors
153 	 *  rs->md.dev_sectors
154 	 */
155 
156 	return rs;
157 }
158 
159 static void context_free(struct raid_set *rs)
160 {
161 	int i;
162 
163 	for (i = 0; i < rs->md.raid_disks; i++) {
164 		if (rs->dev[i].meta_dev)
165 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
166 		md_rdev_clear(&rs->dev[i].rdev);
167 		if (rs->dev[i].data_dev)
168 			dm_put_device(rs->ti, rs->dev[i].data_dev);
169 	}
170 
171 	kfree(rs);
172 }
173 
174 /*
175  * For every device we have two words
176  *  <meta_dev>: meta device name or '-' if missing
177  *  <data_dev>: data device name or '-' if missing
178  *
179  * The following are permitted:
180  *    - -
181  *    - <data_dev>
182  *    <meta_dev> <data_dev>
183  *
184  * The following is not allowed:
185  *    <meta_dev> -
186  *
187  * This code parses those words.  If there is a failure,
188  * the caller must use context_free to unwind the operations.
189  */
190 static int dev_parms(struct raid_set *rs, char **argv)
191 {
192 	int i;
193 	int rebuild = 0;
194 	int metadata_available = 0;
195 	int ret = 0;
196 
197 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
198 		rs->dev[i].rdev.raid_disk = i;
199 
200 		rs->dev[i].meta_dev = NULL;
201 		rs->dev[i].data_dev = NULL;
202 
203 		/*
204 		 * There are no offsets, since there is a separate device
205 		 * for data and metadata.
206 		 */
207 		rs->dev[i].rdev.data_offset = 0;
208 		rs->dev[i].rdev.mddev = &rs->md;
209 
210 		if (strcmp(argv[0], "-")) {
211 			ret = dm_get_device(rs->ti, argv[0],
212 					    dm_table_get_mode(rs->ti->table),
213 					    &rs->dev[i].meta_dev);
214 			rs->ti->error = "RAID metadata device lookup failure";
215 			if (ret)
216 				return ret;
217 
218 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
219 			if (!rs->dev[i].rdev.sb_page)
220 				return -ENOMEM;
221 		}
222 
223 		if (!strcmp(argv[1], "-")) {
224 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
225 			    (!rs->dev[i].rdev.recovery_offset)) {
226 				rs->ti->error = "Drive designated for rebuild not specified";
227 				return -EINVAL;
228 			}
229 
230 			rs->ti->error = "No data device supplied with metadata device";
231 			if (rs->dev[i].meta_dev)
232 				return -EINVAL;
233 
234 			continue;
235 		}
236 
237 		ret = dm_get_device(rs->ti, argv[1],
238 				    dm_table_get_mode(rs->ti->table),
239 				    &rs->dev[i].data_dev);
240 		if (ret) {
241 			rs->ti->error = "RAID device lookup failure";
242 			return ret;
243 		}
244 
245 		if (rs->dev[i].meta_dev) {
246 			metadata_available = 1;
247 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
248 		}
249 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
250 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
251 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
252 			rebuild++;
253 	}
254 
255 	if (metadata_available) {
256 		rs->md.external = 0;
257 		rs->md.persistent = 1;
258 		rs->md.major_version = 2;
259 	} else if (rebuild && !rs->md.recovery_cp) {
260 		/*
261 		 * Without metadata, we will not be able to tell if the array
262 		 * is in-sync or not - we must assume it is not.  Therefore,
263 		 * it is impossible to rebuild a drive.
264 		 *
265 		 * Even if there is metadata, the on-disk information may
266 		 * indicate that the array is not in-sync and it will then
267 		 * fail at that time.
268 		 *
269 		 * User could specify 'nosync' option if desperate.
270 		 */
271 		DMERR("Unable to rebuild drive while array is not in-sync");
272 		rs->ti->error = "RAID device lookup failure";
273 		return -EINVAL;
274 	}
275 
276 	return 0;
277 }
278 
279 /*
280  * validate_region_size
281  * @rs
282  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
283  *
284  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
285  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
286  *
287  * Returns: 0 on success, -EINVAL on failure.
288  */
289 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
290 {
291 	unsigned long min_region_size = rs->ti->len / (1 << 21);
292 
293 	if (!region_size) {
294 		/*
295 		 * Choose a reasonable default.  All figures in sectors.
296 		 */
297 		if (min_region_size > (1 << 13)) {
298 			/* If not a power of 2, make it the next power of 2 */
299 			if (min_region_size & (min_region_size - 1))
300 				region_size = 1 << fls(region_size);
301 			DMINFO("Choosing default region size of %lu sectors",
302 			       region_size);
303 		} else {
304 			DMINFO("Choosing default region size of 4MiB");
305 			region_size = 1 << 13; /* sectors */
306 		}
307 	} else {
308 		/*
309 		 * Validate user-supplied value.
310 		 */
311 		if (region_size > rs->ti->len) {
312 			rs->ti->error = "Supplied region size is too large";
313 			return -EINVAL;
314 		}
315 
316 		if (region_size < min_region_size) {
317 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
318 			      region_size, min_region_size);
319 			rs->ti->error = "Supplied region size is too small";
320 			return -EINVAL;
321 		}
322 
323 		if (!is_power_of_2(region_size)) {
324 			rs->ti->error = "Region size is not a power of 2";
325 			return -EINVAL;
326 		}
327 
328 		if (region_size < rs->md.chunk_sectors) {
329 			rs->ti->error = "Region size is smaller than the chunk size";
330 			return -EINVAL;
331 		}
332 	}
333 
334 	/*
335 	 * Convert sectors to bytes.
336 	 */
337 	rs->md.bitmap_info.chunksize = (region_size << 9);
338 
339 	return 0;
340 }
341 
342 /*
343  * validate_raid_redundancy
344  * @rs
345  *
346  * Determine if there are enough devices in the array that haven't
347  * failed (or are being rebuilt) to form a usable array.
348  *
349  * Returns: 0 on success, -EINVAL on failure.
350  */
351 static int validate_raid_redundancy(struct raid_set *rs)
352 {
353 	unsigned i, rebuild_cnt = 0;
354 	unsigned rebuilds_per_group, copies, d;
355 
356 	for (i = 0; i < rs->md.raid_disks; i++)
357 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
358 		    !rs->dev[i].rdev.sb_page)
359 			rebuild_cnt++;
360 
361 	switch (rs->raid_type->level) {
362 	case 1:
363 		if (rebuild_cnt >= rs->md.raid_disks)
364 			goto too_many;
365 		break;
366 	case 4:
367 	case 5:
368 	case 6:
369 		if (rebuild_cnt > rs->raid_type->parity_devs)
370 			goto too_many;
371 		break;
372 	case 10:
373 		copies = raid10_md_layout_to_copies(rs->md.layout);
374 		if (rebuild_cnt < copies)
375 			break;
376 
377 		/*
378 		 * It is possible to have a higher rebuild count for RAID10,
379 		 * as long as the failed devices occur in different mirror
380 		 * groups (i.e. different stripes).
381 		 *
382 		 * Right now, we only allow for "near" copies.  When other
383 		 * formats are added, we will have to check those too.
384 		 *
385 		 * When checking "near" format, make sure no adjacent devices
386 		 * have failed beyond what can be handled.  In addition to the
387 		 * simple case where the number of devices is a multiple of the
388 		 * number of copies, we must also handle cases where the number
389 		 * of devices is not a multiple of the number of copies.
390 		 * E.g.    dev1 dev2 dev3 dev4 dev5
391 		 *          A    A    B    B    C
392 		 *          C    D    D    E    E
393 		 */
394 		for (i = 0; i < rs->md.raid_disks * copies; i++) {
395 			if (!(i % copies))
396 				rebuilds_per_group = 0;
397 			d = i % rs->md.raid_disks;
398 			if ((!rs->dev[d].rdev.sb_page ||
399 			     !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
400 			    (++rebuilds_per_group >= copies))
401 				goto too_many;
402 		}
403 		break;
404 	default:
405 		if (rebuild_cnt)
406 			return -EINVAL;
407 	}
408 
409 	return 0;
410 
411 too_many:
412 	return -EINVAL;
413 }
414 
415 /*
416  * Possible arguments are...
417  *	<chunk_size> [optional_args]
418  *
419  * Argument definitions
420  *    <chunk_size>			The number of sectors per disk that
421  *                                      will form the "stripe"
422  *    [[no]sync]			Force or prevent recovery of the
423  *                                      entire array
424  *    [rebuild <idx>]			Rebuild the drive indicated by the index
425  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
426  *                                      clear bits
427  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
428  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
429  *    [write_mostly <idx>]		Indicate a write mostly drive via index
430  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
431  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
432  *    [region_size <sectors>]           Defines granularity of bitmap
433  *
434  * RAID10-only options:
435  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
436  *    [raid10_format <near>]            Layout algorithm.  (Default: near)
437  */
438 static int parse_raid_params(struct raid_set *rs, char **argv,
439 			     unsigned num_raid_params)
440 {
441 	char *raid10_format = "near";
442 	unsigned raid10_copies = 2;
443 	unsigned i;
444 	unsigned long value, region_size = 0;
445 	sector_t sectors_per_dev = rs->ti->len;
446 	sector_t max_io_len;
447 	char *key;
448 
449 	/*
450 	 * First, parse the in-order required arguments
451 	 * "chunk_size" is the only argument of this type.
452 	 */
453 	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
454 		rs->ti->error = "Bad chunk size";
455 		return -EINVAL;
456 	} else if (rs->raid_type->level == 1) {
457 		if (value)
458 			DMERR("Ignoring chunk size parameter for RAID 1");
459 		value = 0;
460 	} else if (!is_power_of_2(value)) {
461 		rs->ti->error = "Chunk size must be a power of 2";
462 		return -EINVAL;
463 	} else if (value < 8) {
464 		rs->ti->error = "Chunk size value is too small";
465 		return -EINVAL;
466 	}
467 
468 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
469 	argv++;
470 	num_raid_params--;
471 
472 	/*
473 	 * We set each individual device as In_sync with a completed
474 	 * 'recovery_offset'.  If there has been a device failure or
475 	 * replacement then one of the following cases applies:
476 	 *
477 	 *   1) User specifies 'rebuild'.
478 	 *      - Device is reset when param is read.
479 	 *   2) A new device is supplied.
480 	 *      - No matching superblock found, resets device.
481 	 *   3) Device failure was transient and returns on reload.
482 	 *      - Failure noticed, resets device for bitmap replay.
483 	 *   4) Device hadn't completed recovery after previous failure.
484 	 *      - Superblock is read and overrides recovery_offset.
485 	 *
486 	 * What is found in the superblocks of the devices is always
487 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
488 	 */
489 	for (i = 0; i < rs->md.raid_disks; i++) {
490 		set_bit(In_sync, &rs->dev[i].rdev.flags);
491 		rs->dev[i].rdev.recovery_offset = MaxSector;
492 	}
493 
494 	/*
495 	 * Second, parse the unordered optional arguments
496 	 */
497 	for (i = 0; i < num_raid_params; i++) {
498 		if (!strcasecmp(argv[i], "nosync")) {
499 			rs->md.recovery_cp = MaxSector;
500 			rs->print_flags |= DMPF_NOSYNC;
501 			continue;
502 		}
503 		if (!strcasecmp(argv[i], "sync")) {
504 			rs->md.recovery_cp = 0;
505 			rs->print_flags |= DMPF_SYNC;
506 			continue;
507 		}
508 
509 		/* The rest of the optional arguments come in key/value pairs */
510 		if ((i + 1) >= num_raid_params) {
511 			rs->ti->error = "Wrong number of raid parameters given";
512 			return -EINVAL;
513 		}
514 
515 		key = argv[i++];
516 
517 		/* Parameters that take a string value are checked here. */
518 		if (!strcasecmp(key, "raid10_format")) {
519 			if (rs->raid_type->level != 10) {
520 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
521 				return -EINVAL;
522 			}
523 			if (strcmp("near", argv[i])) {
524 				rs->ti->error = "Invalid 'raid10_format' value given";
525 				return -EINVAL;
526 			}
527 			raid10_format = argv[i];
528 			rs->print_flags |= DMPF_RAID10_FORMAT;
529 			continue;
530 		}
531 
532 		if (strict_strtoul(argv[i], 10, &value) < 0) {
533 			rs->ti->error = "Bad numerical argument given in raid params";
534 			return -EINVAL;
535 		}
536 
537 		/* Parameters that take a numeric value are checked here */
538 		if (!strcasecmp(key, "rebuild")) {
539 			if (value >= rs->md.raid_disks) {
540 				rs->ti->error = "Invalid rebuild index given";
541 				return -EINVAL;
542 			}
543 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
544 			rs->dev[value].rdev.recovery_offset = 0;
545 			rs->print_flags |= DMPF_REBUILD;
546 		} else if (!strcasecmp(key, "write_mostly")) {
547 			if (rs->raid_type->level != 1) {
548 				rs->ti->error = "write_mostly option is only valid for RAID1";
549 				return -EINVAL;
550 			}
551 			if (value >= rs->md.raid_disks) {
552 				rs->ti->error = "Invalid write_mostly drive index given";
553 				return -EINVAL;
554 			}
555 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
556 		} else if (!strcasecmp(key, "max_write_behind")) {
557 			if (rs->raid_type->level != 1) {
558 				rs->ti->error = "max_write_behind option is only valid for RAID1";
559 				return -EINVAL;
560 			}
561 			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
562 
563 			/*
564 			 * In device-mapper, we specify things in sectors, but
565 			 * MD records this value in kB
566 			 */
567 			value /= 2;
568 			if (value > COUNTER_MAX) {
569 				rs->ti->error = "Max write-behind limit out of range";
570 				return -EINVAL;
571 			}
572 			rs->md.bitmap_info.max_write_behind = value;
573 		} else if (!strcasecmp(key, "daemon_sleep")) {
574 			rs->print_flags |= DMPF_DAEMON_SLEEP;
575 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
576 				rs->ti->error = "daemon sleep period out of range";
577 				return -EINVAL;
578 			}
579 			rs->md.bitmap_info.daemon_sleep = value;
580 		} else if (!strcasecmp(key, "stripe_cache")) {
581 			rs->print_flags |= DMPF_STRIPE_CACHE;
582 
583 			/*
584 			 * In device-mapper, we specify things in sectors, but
585 			 * MD records this value in kB
586 			 */
587 			value /= 2;
588 
589 			if ((rs->raid_type->level != 5) &&
590 			    (rs->raid_type->level != 6)) {
591 				rs->ti->error = "Inappropriate argument: stripe_cache";
592 				return -EINVAL;
593 			}
594 			if (raid5_set_cache_size(&rs->md, (int)value)) {
595 				rs->ti->error = "Bad stripe_cache size";
596 				return -EINVAL;
597 			}
598 		} else if (!strcasecmp(key, "min_recovery_rate")) {
599 			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
600 			if (value > INT_MAX) {
601 				rs->ti->error = "min_recovery_rate out of range";
602 				return -EINVAL;
603 			}
604 			rs->md.sync_speed_min = (int)value;
605 		} else if (!strcasecmp(key, "max_recovery_rate")) {
606 			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
607 			if (value > INT_MAX) {
608 				rs->ti->error = "max_recovery_rate out of range";
609 				return -EINVAL;
610 			}
611 			rs->md.sync_speed_max = (int)value;
612 		} else if (!strcasecmp(key, "region_size")) {
613 			rs->print_flags |= DMPF_REGION_SIZE;
614 			region_size = value;
615 		} else if (!strcasecmp(key, "raid10_copies") &&
616 			   (rs->raid_type->level == 10)) {
617 			if ((value < 2) || (value > 0xFF)) {
618 				rs->ti->error = "Bad value for 'raid10_copies'";
619 				return -EINVAL;
620 			}
621 			rs->print_flags |= DMPF_RAID10_COPIES;
622 			raid10_copies = value;
623 		} else {
624 			DMERR("Unable to parse RAID parameter: %s", key);
625 			rs->ti->error = "Unable to parse RAID parameters";
626 			return -EINVAL;
627 		}
628 	}
629 
630 	if (validate_region_size(rs, region_size))
631 		return -EINVAL;
632 
633 	if (rs->md.chunk_sectors)
634 		max_io_len = rs->md.chunk_sectors;
635 	else
636 		max_io_len = region_size;
637 
638 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
639 		return -EINVAL;
640 
641 	if (rs->raid_type->level == 10) {
642 		if (raid10_copies > rs->md.raid_disks) {
643 			rs->ti->error = "Not enough devices to satisfy specification";
644 			return -EINVAL;
645 		}
646 
647 		/* (Len * #mirrors) / #devices */
648 		sectors_per_dev = rs->ti->len * raid10_copies;
649 		sector_div(sectors_per_dev, rs->md.raid_disks);
650 
651 		rs->md.layout = raid10_format_to_md_layout(raid10_format,
652 							   raid10_copies);
653 		rs->md.new_layout = rs->md.layout;
654 	} else if ((rs->raid_type->level > 1) &&
655 		   sector_div(sectors_per_dev,
656 			      (rs->md.raid_disks - rs->raid_type->parity_devs))) {
657 		rs->ti->error = "Target length not divisible by number of data devices";
658 		return -EINVAL;
659 	}
660 	rs->md.dev_sectors = sectors_per_dev;
661 
662 	/* Assume there are no metadata devices until the drives are parsed */
663 	rs->md.persistent = 0;
664 	rs->md.external = 1;
665 
666 	return 0;
667 }
668 
669 static void do_table_event(struct work_struct *ws)
670 {
671 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
672 
673 	dm_table_event(rs->ti->table);
674 }
675 
676 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
677 {
678 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
679 
680 	if (rs->raid_type->level == 1)
681 		return md_raid1_congested(&rs->md, bits);
682 
683 	if (rs->raid_type->level == 10)
684 		return md_raid10_congested(&rs->md, bits);
685 
686 	return md_raid5_congested(&rs->md, bits);
687 }
688 
689 /*
690  * This structure is never routinely used by userspace, unlike md superblocks.
691  * Devices with this superblock should only ever be accessed via device-mapper.
692  */
693 #define DM_RAID_MAGIC 0x64526D44
694 struct dm_raid_superblock {
695 	__le32 magic;		/* "DmRd" */
696 	__le32 features;	/* Used to indicate possible future changes */
697 
698 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
699 	__le32 array_position;	/* The position of this drive in the array */
700 
701 	__le64 events;		/* Incremented by md when superblock updated */
702 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
703 
704 	/*
705 	 * This offset tracks the progress of the repair or replacement of
706 	 * an individual drive.
707 	 */
708 	__le64 disk_recovery_offset;
709 
710 	/*
711 	 * This offset tracks the progress of the initial array
712 	 * synchronisation/parity calculation.
713 	 */
714 	__le64 array_resync_offset;
715 
716 	/*
717 	 * RAID characteristics
718 	 */
719 	__le32 level;
720 	__le32 layout;
721 	__le32 stripe_sectors;
722 
723 	__u8 pad[452];		/* Round struct to 512 bytes. */
724 				/* Always set to 0 when writing. */
725 } __packed;
726 
727 static int read_disk_sb(struct md_rdev *rdev, int size)
728 {
729 	BUG_ON(!rdev->sb_page);
730 
731 	if (rdev->sb_loaded)
732 		return 0;
733 
734 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
735 		DMERR("Failed to read superblock of device at position %d",
736 		      rdev->raid_disk);
737 		md_error(rdev->mddev, rdev);
738 		return -EINVAL;
739 	}
740 
741 	rdev->sb_loaded = 1;
742 
743 	return 0;
744 }
745 
746 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
747 {
748 	int i;
749 	uint64_t failed_devices;
750 	struct dm_raid_superblock *sb;
751 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
752 
753 	sb = page_address(rdev->sb_page);
754 	failed_devices = le64_to_cpu(sb->failed_devices);
755 
756 	for (i = 0; i < mddev->raid_disks; i++)
757 		if (!rs->dev[i].data_dev ||
758 		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
759 			failed_devices |= (1ULL << i);
760 
761 	memset(sb, 0, sizeof(*sb));
762 
763 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
764 	sb->features = cpu_to_le32(0);	/* No features yet */
765 
766 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
767 	sb->array_position = cpu_to_le32(rdev->raid_disk);
768 
769 	sb->events = cpu_to_le64(mddev->events);
770 	sb->failed_devices = cpu_to_le64(failed_devices);
771 
772 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
773 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
774 
775 	sb->level = cpu_to_le32(mddev->level);
776 	sb->layout = cpu_to_le32(mddev->layout);
777 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
778 }
779 
780 /*
781  * super_load
782  *
783  * This function creates a superblock if one is not found on the device
784  * and will decide which superblock to use if there's a choice.
785  *
786  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
787  */
788 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
789 {
790 	int ret;
791 	struct dm_raid_superblock *sb;
792 	struct dm_raid_superblock *refsb;
793 	uint64_t events_sb, events_refsb;
794 
795 	rdev->sb_start = 0;
796 	rdev->sb_size = sizeof(*sb);
797 
798 	ret = read_disk_sb(rdev, rdev->sb_size);
799 	if (ret)
800 		return ret;
801 
802 	sb = page_address(rdev->sb_page);
803 
804 	/*
805 	 * Two cases that we want to write new superblocks and rebuild:
806 	 * 1) New device (no matching magic number)
807 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
808 	 */
809 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
810 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
811 		super_sync(rdev->mddev, rdev);
812 
813 		set_bit(FirstUse, &rdev->flags);
814 
815 		/* Force writing of superblocks to disk */
816 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
817 
818 		/* Any superblock is better than none, choose that if given */
819 		return refdev ? 0 : 1;
820 	}
821 
822 	if (!refdev)
823 		return 1;
824 
825 	events_sb = le64_to_cpu(sb->events);
826 
827 	refsb = page_address(refdev->sb_page);
828 	events_refsb = le64_to_cpu(refsb->events);
829 
830 	return (events_sb > events_refsb) ? 1 : 0;
831 }
832 
833 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
834 {
835 	int role;
836 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
837 	uint64_t events_sb;
838 	uint64_t failed_devices;
839 	struct dm_raid_superblock *sb;
840 	uint32_t new_devs = 0;
841 	uint32_t rebuilds = 0;
842 	struct md_rdev *r;
843 	struct dm_raid_superblock *sb2;
844 
845 	sb = page_address(rdev->sb_page);
846 	events_sb = le64_to_cpu(sb->events);
847 	failed_devices = le64_to_cpu(sb->failed_devices);
848 
849 	/*
850 	 * Initialise to 1 if this is a new superblock.
851 	 */
852 	mddev->events = events_sb ? : 1;
853 
854 	/*
855 	 * Reshaping is not currently allowed
856 	 */
857 	if ((le32_to_cpu(sb->level) != mddev->level) ||
858 	    (le32_to_cpu(sb->layout) != mddev->layout) ||
859 	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
860 		DMERR("Reshaping arrays not yet supported.");
861 		return -EINVAL;
862 	}
863 
864 	/* We can only change the number of devices in RAID1 right now */
865 	if ((rs->raid_type->level != 1) &&
866 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
867 		DMERR("Reshaping arrays not yet supported.");
868 		return -EINVAL;
869 	}
870 
871 	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
872 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
873 
874 	/*
875 	 * During load, we set FirstUse if a new superblock was written.
876 	 * There are two reasons we might not have a superblock:
877 	 * 1) The array is brand new - in which case, all of the
878 	 *    devices must have their In_sync bit set.  Also,
879 	 *    recovery_cp must be 0, unless forced.
880 	 * 2) This is a new device being added to an old array
881 	 *    and the new device needs to be rebuilt - in which
882 	 *    case the In_sync bit will /not/ be set and
883 	 *    recovery_cp must be MaxSector.
884 	 */
885 	rdev_for_each(r, mddev) {
886 		if (!test_bit(In_sync, &r->flags)) {
887 			DMINFO("Device %d specified for rebuild: "
888 			       "Clearing superblock", r->raid_disk);
889 			rebuilds++;
890 		} else if (test_bit(FirstUse, &r->flags))
891 			new_devs++;
892 	}
893 
894 	if (!rebuilds) {
895 		if (new_devs == mddev->raid_disks) {
896 			DMINFO("Superblocks created for new array");
897 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
898 		} else if (new_devs) {
899 			DMERR("New device injected "
900 			      "into existing array without 'rebuild' "
901 			      "parameter specified");
902 			return -EINVAL;
903 		}
904 	} else if (new_devs) {
905 		DMERR("'rebuild' devices cannot be "
906 		      "injected into an array with other first-time devices");
907 		return -EINVAL;
908 	} else if (mddev->recovery_cp != MaxSector) {
909 		DMERR("'rebuild' specified while array is not in-sync");
910 		return -EINVAL;
911 	}
912 
913 	/*
914 	 * Now we set the Faulty bit for those devices that are
915 	 * recorded in the superblock as failed.
916 	 */
917 	rdev_for_each(r, mddev) {
918 		if (!r->sb_page)
919 			continue;
920 		sb2 = page_address(r->sb_page);
921 		sb2->failed_devices = 0;
922 
923 		/*
924 		 * Check for any device re-ordering.
925 		 */
926 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
927 			role = le32_to_cpu(sb2->array_position);
928 			if (role != r->raid_disk) {
929 				if (rs->raid_type->level != 1) {
930 					rs->ti->error = "Cannot change device "
931 						"positions in RAID array";
932 					return -EINVAL;
933 				}
934 				DMINFO("RAID1 device #%d now at position #%d",
935 				       role, r->raid_disk);
936 			}
937 
938 			/*
939 			 * Partial recovery is performed on
940 			 * returning failed devices.
941 			 */
942 			if (failed_devices & (1 << role))
943 				set_bit(Faulty, &r->flags);
944 		}
945 	}
946 
947 	return 0;
948 }
949 
950 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
951 {
952 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
953 
954 	/*
955 	 * If mddev->events is not set, we know we have not yet initialized
956 	 * the array.
957 	 */
958 	if (!mddev->events && super_init_validation(mddev, rdev))
959 		return -EINVAL;
960 
961 	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
962 	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
963 	if (!test_bit(FirstUse, &rdev->flags)) {
964 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
965 		if (rdev->recovery_offset != MaxSector)
966 			clear_bit(In_sync, &rdev->flags);
967 	}
968 
969 	/*
970 	 * If a device comes back, set it as not In_sync and no longer faulty.
971 	 */
972 	if (test_bit(Faulty, &rdev->flags)) {
973 		clear_bit(Faulty, &rdev->flags);
974 		clear_bit(In_sync, &rdev->flags);
975 		rdev->saved_raid_disk = rdev->raid_disk;
976 		rdev->recovery_offset = 0;
977 	}
978 
979 	clear_bit(FirstUse, &rdev->flags);
980 
981 	return 0;
982 }
983 
984 /*
985  * Analyse superblocks and select the freshest.
986  */
987 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
988 {
989 	int ret;
990 	struct raid_dev *dev;
991 	struct md_rdev *rdev, *tmp, *freshest;
992 	struct mddev *mddev = &rs->md;
993 
994 	freshest = NULL;
995 	rdev_for_each_safe(rdev, tmp, mddev) {
996 		/*
997 		 * Skipping super_load due to DMPF_SYNC will cause
998 		 * the array to undergo initialization again as
999 		 * though it were new.  This is the intended effect
1000 		 * of the "sync" directive.
1001 		 *
1002 		 * When reshaping capability is added, we must ensure
1003 		 * that the "sync" directive is disallowed during the
1004 		 * reshape.
1005 		 */
1006 		if (rs->print_flags & DMPF_SYNC)
1007 			continue;
1008 
1009 		if (!rdev->meta_bdev)
1010 			continue;
1011 
1012 		ret = super_load(rdev, freshest);
1013 
1014 		switch (ret) {
1015 		case 1:
1016 			freshest = rdev;
1017 			break;
1018 		case 0:
1019 			break;
1020 		default:
1021 			dev = container_of(rdev, struct raid_dev, rdev);
1022 			if (dev->meta_dev)
1023 				dm_put_device(ti, dev->meta_dev);
1024 
1025 			dev->meta_dev = NULL;
1026 			rdev->meta_bdev = NULL;
1027 
1028 			if (rdev->sb_page)
1029 				put_page(rdev->sb_page);
1030 
1031 			rdev->sb_page = NULL;
1032 
1033 			rdev->sb_loaded = 0;
1034 
1035 			/*
1036 			 * We might be able to salvage the data device
1037 			 * even though the meta device has failed.  For
1038 			 * now, we behave as though '- -' had been
1039 			 * set for this device in the table.
1040 			 */
1041 			if (dev->data_dev)
1042 				dm_put_device(ti, dev->data_dev);
1043 
1044 			dev->data_dev = NULL;
1045 			rdev->bdev = NULL;
1046 
1047 			list_del(&rdev->same_set);
1048 		}
1049 	}
1050 
1051 	if (!freshest)
1052 		return 0;
1053 
1054 	if (validate_raid_redundancy(rs)) {
1055 		rs->ti->error = "Insufficient redundancy to activate array";
1056 		return -EINVAL;
1057 	}
1058 
1059 	/*
1060 	 * Validation of the freshest device provides the source of
1061 	 * validation for the remaining devices.
1062 	 */
1063 	ti->error = "Unable to assemble array: Invalid superblocks";
1064 	if (super_validate(mddev, freshest))
1065 		return -EINVAL;
1066 
1067 	rdev_for_each(rdev, mddev)
1068 		if ((rdev != freshest) && super_validate(mddev, rdev))
1069 			return -EINVAL;
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Construct a RAID4/5/6 mapping:
1076  * Args:
1077  *	<raid_type> <#raid_params> <raid_params>		\
1078  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1079  *
1080  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1081  * details on possible <raid_params>.
1082  */
1083 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1084 {
1085 	int ret;
1086 	struct raid_type *rt;
1087 	unsigned long num_raid_params, num_raid_devs;
1088 	struct raid_set *rs = NULL;
1089 
1090 	/* Must have at least <raid_type> <#raid_params> */
1091 	if (argc < 2) {
1092 		ti->error = "Too few arguments";
1093 		return -EINVAL;
1094 	}
1095 
1096 	/* raid type */
1097 	rt = get_raid_type(argv[0]);
1098 	if (!rt) {
1099 		ti->error = "Unrecognised raid_type";
1100 		return -EINVAL;
1101 	}
1102 	argc--;
1103 	argv++;
1104 
1105 	/* number of RAID parameters */
1106 	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
1107 		ti->error = "Cannot understand number of RAID parameters";
1108 		return -EINVAL;
1109 	}
1110 	argc--;
1111 	argv++;
1112 
1113 	/* Skip over RAID params for now and find out # of devices */
1114 	if (num_raid_params + 1 > argc) {
1115 		ti->error = "Arguments do not agree with counts given";
1116 		return -EINVAL;
1117 	}
1118 
1119 	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1120 	    (num_raid_devs >= INT_MAX)) {
1121 		ti->error = "Cannot understand number of raid devices";
1122 		return -EINVAL;
1123 	}
1124 
1125 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1126 	if (IS_ERR(rs))
1127 		return PTR_ERR(rs);
1128 
1129 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1130 	if (ret)
1131 		goto bad;
1132 
1133 	ret = -EINVAL;
1134 
1135 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1136 	argv += num_raid_params + 1;
1137 
1138 	if (argc != (num_raid_devs * 2)) {
1139 		ti->error = "Supplied RAID devices does not match the count given";
1140 		goto bad;
1141 	}
1142 
1143 	ret = dev_parms(rs, argv);
1144 	if (ret)
1145 		goto bad;
1146 
1147 	rs->md.sync_super = super_sync;
1148 	ret = analyse_superblocks(ti, rs);
1149 	if (ret)
1150 		goto bad;
1151 
1152 	INIT_WORK(&rs->md.event_work, do_table_event);
1153 	ti->private = rs;
1154 	ti->num_flush_requests = 1;
1155 
1156 	mutex_lock(&rs->md.reconfig_mutex);
1157 	ret = md_run(&rs->md);
1158 	rs->md.in_sync = 0; /* Assume already marked dirty */
1159 	mutex_unlock(&rs->md.reconfig_mutex);
1160 
1161 	if (ret) {
1162 		ti->error = "Fail to run raid array";
1163 		goto bad;
1164 	}
1165 
1166 	if (ti->len != rs->md.array_sectors) {
1167 		ti->error = "Array size does not match requested target length";
1168 		ret = -EINVAL;
1169 		goto size_mismatch;
1170 	}
1171 	rs->callbacks.congested_fn = raid_is_congested;
1172 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1173 
1174 	mddev_suspend(&rs->md);
1175 	return 0;
1176 
1177 size_mismatch:
1178 	md_stop(&rs->md);
1179 bad:
1180 	context_free(rs);
1181 
1182 	return ret;
1183 }
1184 
1185 static void raid_dtr(struct dm_target *ti)
1186 {
1187 	struct raid_set *rs = ti->private;
1188 
1189 	list_del_init(&rs->callbacks.list);
1190 	md_stop(&rs->md);
1191 	context_free(rs);
1192 }
1193 
1194 static int raid_map(struct dm_target *ti, struct bio *bio)
1195 {
1196 	struct raid_set *rs = ti->private;
1197 	struct mddev *mddev = &rs->md;
1198 
1199 	mddev->pers->make_request(mddev, bio);
1200 
1201 	return DM_MAPIO_SUBMITTED;
1202 }
1203 
1204 static int raid_status(struct dm_target *ti, status_type_t type,
1205 		       unsigned status_flags, char *result, unsigned maxlen)
1206 {
1207 	struct raid_set *rs = ti->private;
1208 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1209 	unsigned sz = 0;
1210 	int i, array_in_sync = 0;
1211 	sector_t sync;
1212 
1213 	switch (type) {
1214 	case STATUSTYPE_INFO:
1215 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1216 
1217 		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1218 			sync = rs->md.curr_resync_completed;
1219 		else
1220 			sync = rs->md.recovery_cp;
1221 
1222 		if (sync >= rs->md.resync_max_sectors) {
1223 			array_in_sync = 1;
1224 			sync = rs->md.resync_max_sectors;
1225 		} else {
1226 			/*
1227 			 * The array may be doing an initial sync, or it may
1228 			 * be rebuilding individual components.  If all the
1229 			 * devices are In_sync, then it is the array that is
1230 			 * being initialized.
1231 			 */
1232 			for (i = 0; i < rs->md.raid_disks; i++)
1233 				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1234 					array_in_sync = 1;
1235 		}
1236 		/*
1237 		 * Status characters:
1238 		 *  'D' = Dead/Failed device
1239 		 *  'a' = Alive but not in-sync
1240 		 *  'A' = Alive and in-sync
1241 		 */
1242 		for (i = 0; i < rs->md.raid_disks; i++) {
1243 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1244 				DMEMIT("D");
1245 			else if (!array_in_sync ||
1246 				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1247 				DMEMIT("a");
1248 			else
1249 				DMEMIT("A");
1250 		}
1251 
1252 		/*
1253 		 * In-sync ratio:
1254 		 *  The in-sync ratio shows the progress of:
1255 		 *   - Initializing the array
1256 		 *   - Rebuilding a subset of devices of the array
1257 		 *  The user can distinguish between the two by referring
1258 		 *  to the status characters.
1259 		 */
1260 		DMEMIT(" %llu/%llu",
1261 		       (unsigned long long) sync,
1262 		       (unsigned long long) rs->md.resync_max_sectors);
1263 
1264 		break;
1265 	case STATUSTYPE_TABLE:
1266 		/* The string you would use to construct this array */
1267 		for (i = 0; i < rs->md.raid_disks; i++) {
1268 			if ((rs->print_flags & DMPF_REBUILD) &&
1269 			    rs->dev[i].data_dev &&
1270 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1271 				raid_param_cnt += 2; /* for rebuilds */
1272 			if (rs->dev[i].data_dev &&
1273 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1274 				raid_param_cnt += 2;
1275 		}
1276 
1277 		raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1278 		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1279 			raid_param_cnt--;
1280 
1281 		DMEMIT("%s %u %u", rs->raid_type->name,
1282 		       raid_param_cnt, rs->md.chunk_sectors);
1283 
1284 		if ((rs->print_flags & DMPF_SYNC) &&
1285 		    (rs->md.recovery_cp == MaxSector))
1286 			DMEMIT(" sync");
1287 		if (rs->print_flags & DMPF_NOSYNC)
1288 			DMEMIT(" nosync");
1289 
1290 		for (i = 0; i < rs->md.raid_disks; i++)
1291 			if ((rs->print_flags & DMPF_REBUILD) &&
1292 			    rs->dev[i].data_dev &&
1293 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1294 				DMEMIT(" rebuild %u", i);
1295 
1296 		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1297 			DMEMIT(" daemon_sleep %lu",
1298 			       rs->md.bitmap_info.daemon_sleep);
1299 
1300 		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1301 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1302 
1303 		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1304 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1305 
1306 		for (i = 0; i < rs->md.raid_disks; i++)
1307 			if (rs->dev[i].data_dev &&
1308 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1309 				DMEMIT(" write_mostly %u", i);
1310 
1311 		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1312 			DMEMIT(" max_write_behind %lu",
1313 			       rs->md.bitmap_info.max_write_behind);
1314 
1315 		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1316 			struct r5conf *conf = rs->md.private;
1317 
1318 			/* convert from kiB to sectors */
1319 			DMEMIT(" stripe_cache %d",
1320 			       conf ? conf->max_nr_stripes * 2 : 0);
1321 		}
1322 
1323 		if (rs->print_flags & DMPF_REGION_SIZE)
1324 			DMEMIT(" region_size %lu",
1325 			       rs->md.bitmap_info.chunksize >> 9);
1326 
1327 		if (rs->print_flags & DMPF_RAID10_COPIES)
1328 			DMEMIT(" raid10_copies %u",
1329 			       raid10_md_layout_to_copies(rs->md.layout));
1330 
1331 		if (rs->print_flags & DMPF_RAID10_FORMAT)
1332 			DMEMIT(" raid10_format near");
1333 
1334 		DMEMIT(" %d", rs->md.raid_disks);
1335 		for (i = 0; i < rs->md.raid_disks; i++) {
1336 			if (rs->dev[i].meta_dev)
1337 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1338 			else
1339 				DMEMIT(" -");
1340 
1341 			if (rs->dev[i].data_dev)
1342 				DMEMIT(" %s", rs->dev[i].data_dev->name);
1343 			else
1344 				DMEMIT(" -");
1345 		}
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1352 {
1353 	struct raid_set *rs = ti->private;
1354 	unsigned i;
1355 	int ret = 0;
1356 
1357 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1358 		if (rs->dev[i].data_dev)
1359 			ret = fn(ti,
1360 				 rs->dev[i].data_dev,
1361 				 0, /* No offset on data devs */
1362 				 rs->md.dev_sectors,
1363 				 data);
1364 
1365 	return ret;
1366 }
1367 
1368 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1369 {
1370 	struct raid_set *rs = ti->private;
1371 	unsigned chunk_size = rs->md.chunk_sectors << 9;
1372 	struct r5conf *conf = rs->md.private;
1373 
1374 	blk_limits_io_min(limits, chunk_size);
1375 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1376 }
1377 
1378 static void raid_presuspend(struct dm_target *ti)
1379 {
1380 	struct raid_set *rs = ti->private;
1381 
1382 	md_stop_writes(&rs->md);
1383 }
1384 
1385 static void raid_postsuspend(struct dm_target *ti)
1386 {
1387 	struct raid_set *rs = ti->private;
1388 
1389 	mddev_suspend(&rs->md);
1390 }
1391 
1392 static void raid_resume(struct dm_target *ti)
1393 {
1394 	struct raid_set *rs = ti->private;
1395 
1396 	set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1397 	if (!rs->bitmap_loaded) {
1398 		bitmap_load(&rs->md);
1399 		rs->bitmap_loaded = 1;
1400 	}
1401 
1402 	clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1403 	mddev_resume(&rs->md);
1404 }
1405 
1406 static struct target_type raid_target = {
1407 	.name = "raid",
1408 	.version = {1, 4, 1},
1409 	.module = THIS_MODULE,
1410 	.ctr = raid_ctr,
1411 	.dtr = raid_dtr,
1412 	.map = raid_map,
1413 	.status = raid_status,
1414 	.iterate_devices = raid_iterate_devices,
1415 	.io_hints = raid_io_hints,
1416 	.presuspend = raid_presuspend,
1417 	.postsuspend = raid_postsuspend,
1418 	.resume = raid_resume,
1419 };
1420 
1421 static int __init dm_raid_init(void)
1422 {
1423 	return dm_register_target(&raid_target);
1424 }
1425 
1426 static void __exit dm_raid_exit(void)
1427 {
1428 	dm_unregister_target(&raid_target);
1429 }
1430 
1431 module_init(dm_raid_init);
1432 module_exit(dm_raid_exit);
1433 
1434 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1435 MODULE_ALIAS("dm-raid1");
1436 MODULE_ALIAS("dm-raid10");
1437 MODULE_ALIAS("dm-raid4");
1438 MODULE_ALIAS("dm-raid5");
1439 MODULE_ALIAS("dm-raid6");
1440 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1441 MODULE_LICENSE("GPL");
1442