1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "md-bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 21 22 /* 23 * Minimum sectors of free reshape space per raid device 24 */ 25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 26 27 /* 28 * Minimum journal space 4 MiB in sectors. 29 */ 30 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 31 32 static bool devices_handle_discard_safely = false; 33 34 /* 35 * The following flags are used by dm-raid.c to set up the array state. 36 * They must be cleared before md_run is called. 37 */ 38 #define FirstUse 10 /* rdev flag */ 39 40 struct raid_dev { 41 /* 42 * Two DM devices, one to hold metadata and one to hold the 43 * actual data/parity. The reason for this is to not confuse 44 * ti->len and give more flexibility in altering size and 45 * characteristics. 46 * 47 * While it is possible for this device to be associated 48 * with a different physical device than the data_dev, it 49 * is intended for it to be the same. 50 * |--------- Physical Device ---------| 51 * |- meta_dev -|------ data_dev ------| 52 */ 53 struct dm_dev *meta_dev; 54 struct dm_dev *data_dev; 55 struct md_rdev rdev; 56 }; 57 58 /* 59 * Bits for establishing rs->ctr_flags 60 * 61 * 1 = no flag value 62 * 2 = flag with value 63 */ 64 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 65 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 67 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 71 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 73 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 74 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 75 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 76 /* New for v1.9.0 */ 77 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 78 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 80 81 /* New for v1.10.0 */ 82 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 83 84 /* New for v1.11.1 */ 85 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 86 87 /* 88 * Flags for rs->ctr_flags field. 89 */ 90 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 91 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 92 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 93 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 94 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 95 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 97 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 98 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 99 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 100 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 101 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 102 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 103 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 104 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 105 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 106 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 107 108 /* 109 * Definitions of various constructor flags to 110 * be used in checks of valid / invalid flags 111 * per raid level. 112 */ 113 /* Define all any sync flags */ 114 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 115 116 /* Define flags for options without argument (e.g. 'nosync') */ 117 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 118 CTR_FLAG_RAID10_USE_NEAR_SETS) 119 120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 122 CTR_FLAG_WRITE_MOSTLY | \ 123 CTR_FLAG_DAEMON_SLEEP | \ 124 CTR_FLAG_MIN_RECOVERY_RATE | \ 125 CTR_FLAG_MAX_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_WRITE_BEHIND | \ 127 CTR_FLAG_STRIPE_CACHE | \ 128 CTR_FLAG_REGION_SIZE | \ 129 CTR_FLAG_RAID10_COPIES | \ 130 CTR_FLAG_RAID10_FORMAT | \ 131 CTR_FLAG_DELTA_DISKS | \ 132 CTR_FLAG_DATA_OFFSET | \ 133 CTR_FLAG_JOURNAL_DEV | \ 134 CTR_FLAG_JOURNAL_MODE) 135 136 /* Valid options definitions per raid level... */ 137 138 /* "raid0" does only accept data offset */ 139 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 140 141 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 142 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 143 CTR_FLAG_REBUILD | \ 144 CTR_FLAG_WRITE_MOSTLY | \ 145 CTR_FLAG_DAEMON_SLEEP | \ 146 CTR_FLAG_MIN_RECOVERY_RATE | \ 147 CTR_FLAG_MAX_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_WRITE_BEHIND | \ 149 CTR_FLAG_REGION_SIZE | \ 150 CTR_FLAG_DELTA_DISKS | \ 151 CTR_FLAG_DATA_OFFSET) 152 153 /* "raid10" does not accept any raid1 or stripe cache options */ 154 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 155 CTR_FLAG_REBUILD | \ 156 CTR_FLAG_DAEMON_SLEEP | \ 157 CTR_FLAG_MIN_RECOVERY_RATE | \ 158 CTR_FLAG_MAX_RECOVERY_RATE | \ 159 CTR_FLAG_REGION_SIZE | \ 160 CTR_FLAG_RAID10_COPIES | \ 161 CTR_FLAG_RAID10_FORMAT | \ 162 CTR_FLAG_DELTA_DISKS | \ 163 CTR_FLAG_DATA_OFFSET | \ 164 CTR_FLAG_RAID10_USE_NEAR_SETS) 165 166 /* 167 * "raid4/5/6" do not accept any raid1 or raid10 specific options 168 * 169 * "raid6" does not accept "nosync", because it is not guaranteed 170 * that both parity and q-syndrome are being written properly with 171 * any writes 172 */ 173 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 174 CTR_FLAG_REBUILD | \ 175 CTR_FLAG_DAEMON_SLEEP | \ 176 CTR_FLAG_MIN_RECOVERY_RATE | \ 177 CTR_FLAG_MAX_RECOVERY_RATE | \ 178 CTR_FLAG_STRIPE_CACHE | \ 179 CTR_FLAG_REGION_SIZE | \ 180 CTR_FLAG_DELTA_DISKS | \ 181 CTR_FLAG_DATA_OFFSET | \ 182 CTR_FLAG_JOURNAL_DEV | \ 183 CTR_FLAG_JOURNAL_MODE) 184 185 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 186 CTR_FLAG_REBUILD | \ 187 CTR_FLAG_DAEMON_SLEEP | \ 188 CTR_FLAG_MIN_RECOVERY_RATE | \ 189 CTR_FLAG_MAX_RECOVERY_RATE | \ 190 CTR_FLAG_STRIPE_CACHE | \ 191 CTR_FLAG_REGION_SIZE | \ 192 CTR_FLAG_DELTA_DISKS | \ 193 CTR_FLAG_DATA_OFFSET | \ 194 CTR_FLAG_JOURNAL_DEV | \ 195 CTR_FLAG_JOURNAL_MODE) 196 /* ...valid options definitions per raid level */ 197 198 /* 199 * Flags for rs->runtime_flags field 200 * (RT_FLAG prefix meaning "runtime flag") 201 * 202 * These are all internal and used to define runtime state, 203 * e.g. to prevent another resume from preresume processing 204 * the raid set all over again. 205 */ 206 #define RT_FLAG_RS_PRERESUMED 0 207 #define RT_FLAG_RS_RESUMED 1 208 #define RT_FLAG_RS_BITMAP_LOADED 2 209 #define RT_FLAG_UPDATE_SBS 3 210 #define RT_FLAG_RESHAPE_RS 4 211 #define RT_FLAG_RS_SUSPENDED 5 212 #define RT_FLAG_RS_IN_SYNC 6 213 #define RT_FLAG_RS_RESYNCING 7 214 #define RT_FLAG_RS_GROW 8 215 216 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 218 219 /* 220 * raid set level, layout and chunk sectors backup/restore 221 */ 222 struct rs_layout { 223 int new_level; 224 int new_layout; 225 int new_chunk_sectors; 226 }; 227 228 struct raid_set { 229 struct dm_target *ti; 230 231 uint32_t stripe_cache_entries; 232 unsigned long ctr_flags; 233 unsigned long runtime_flags; 234 235 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 236 237 int raid_disks; 238 int delta_disks; 239 int data_offset; 240 int raid10_copies; 241 int requested_bitmap_chunk_sectors; 242 243 struct mddev md; 244 struct raid_type *raid_type; 245 struct dm_target_callbacks callbacks; 246 247 sector_t array_sectors; 248 sector_t dev_sectors; 249 250 /* Optional raid4/5/6 journal device */ 251 struct journal_dev { 252 struct dm_dev *dev; 253 struct md_rdev rdev; 254 int mode; 255 } journal_dev; 256 257 struct raid_dev dev[0]; 258 }; 259 260 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 261 { 262 struct mddev *mddev = &rs->md; 263 264 l->new_level = mddev->new_level; 265 l->new_layout = mddev->new_layout; 266 l->new_chunk_sectors = mddev->new_chunk_sectors; 267 } 268 269 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 270 { 271 struct mddev *mddev = &rs->md; 272 273 mddev->new_level = l->new_level; 274 mddev->new_layout = l->new_layout; 275 mddev->new_chunk_sectors = l->new_chunk_sectors; 276 } 277 278 /* raid10 algorithms (i.e. formats) */ 279 #define ALGORITHM_RAID10_DEFAULT 0 280 #define ALGORITHM_RAID10_NEAR 1 281 #define ALGORITHM_RAID10_OFFSET 2 282 #define ALGORITHM_RAID10_FAR 3 283 284 /* Supported raid types and properties. */ 285 static struct raid_type { 286 const char *name; /* RAID algorithm. */ 287 const char *descr; /* Descriptor text for logging. */ 288 const unsigned int parity_devs; /* # of parity devices. */ 289 const unsigned int minimal_devs;/* minimal # of devices in set. */ 290 const unsigned int level; /* RAID level. */ 291 const unsigned int algorithm; /* RAID algorithm. */ 292 } raid_types[] = { 293 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 294 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 295 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 296 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 297 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 298 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 299 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 300 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 301 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 302 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 303 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 304 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 305 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 306 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 307 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 308 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 309 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 310 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 311 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 312 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 313 }; 314 315 /* True, if @v is in inclusive range [@min, @max] */ 316 static bool __within_range(long v, long min, long max) 317 { 318 return v >= min && v <= max; 319 } 320 321 /* All table line arguments are defined here */ 322 static struct arg_name_flag { 323 const unsigned long flag; 324 const char *name; 325 } __arg_name_flags[] = { 326 { CTR_FLAG_SYNC, "sync"}, 327 { CTR_FLAG_NOSYNC, "nosync"}, 328 { CTR_FLAG_REBUILD, "rebuild"}, 329 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 330 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 331 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 332 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 333 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 334 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 335 { CTR_FLAG_REGION_SIZE, "region_size"}, 336 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 337 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 338 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 339 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 340 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 341 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 342 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 343 }; 344 345 /* Return argument name string for given @flag */ 346 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 347 { 348 if (hweight32(flag) == 1) { 349 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 350 351 while (anf-- > __arg_name_flags) 352 if (flag & anf->flag) 353 return anf->name; 354 355 } else 356 DMERR("%s called with more than one flag!", __func__); 357 358 return NULL; 359 } 360 361 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 362 static struct { 363 const int mode; 364 const char *param; 365 } _raid456_journal_mode[] = { 366 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" }, 367 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" } 368 }; 369 370 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 371 static int dm_raid_journal_mode_to_md(const char *mode) 372 { 373 int m = ARRAY_SIZE(_raid456_journal_mode); 374 375 while (m--) 376 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 377 return _raid456_journal_mode[m].mode; 378 379 return -EINVAL; 380 } 381 382 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 383 static const char *md_journal_mode_to_dm_raid(const int mode) 384 { 385 int m = ARRAY_SIZE(_raid456_journal_mode); 386 387 while (m--) 388 if (mode == _raid456_journal_mode[m].mode) 389 return _raid456_journal_mode[m].param; 390 391 return "unknown"; 392 } 393 394 /* 395 * Bool helpers to test for various raid levels of a raid set. 396 * It's level as reported by the superblock rather than 397 * the requested raid_type passed to the constructor. 398 */ 399 /* Return true, if raid set in @rs is raid0 */ 400 static bool rs_is_raid0(struct raid_set *rs) 401 { 402 return !rs->md.level; 403 } 404 405 /* Return true, if raid set in @rs is raid1 */ 406 static bool rs_is_raid1(struct raid_set *rs) 407 { 408 return rs->md.level == 1; 409 } 410 411 /* Return true, if raid set in @rs is raid10 */ 412 static bool rs_is_raid10(struct raid_set *rs) 413 { 414 return rs->md.level == 10; 415 } 416 417 /* Return true, if raid set in @rs is level 6 */ 418 static bool rs_is_raid6(struct raid_set *rs) 419 { 420 return rs->md.level == 6; 421 } 422 423 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 424 static bool rs_is_raid456(struct raid_set *rs) 425 { 426 return __within_range(rs->md.level, 4, 6); 427 } 428 429 /* Return true, if raid set in @rs is reshapable */ 430 static bool __is_raid10_far(int layout); 431 static bool rs_is_reshapable(struct raid_set *rs) 432 { 433 return rs_is_raid456(rs) || 434 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 435 } 436 437 /* Return true, if raid set in @rs is recovering */ 438 static bool rs_is_recovering(struct raid_set *rs) 439 { 440 return rs->md.recovery_cp < rs->md.dev_sectors; 441 } 442 443 /* Return true, if raid set in @rs is reshaping */ 444 static bool rs_is_reshaping(struct raid_set *rs) 445 { 446 return rs->md.reshape_position != MaxSector; 447 } 448 449 /* 450 * bool helpers to test for various raid levels of a raid type @rt 451 */ 452 453 /* Return true, if raid type in @rt is raid0 */ 454 static bool rt_is_raid0(struct raid_type *rt) 455 { 456 return !rt->level; 457 } 458 459 /* Return true, if raid type in @rt is raid1 */ 460 static bool rt_is_raid1(struct raid_type *rt) 461 { 462 return rt->level == 1; 463 } 464 465 /* Return true, if raid type in @rt is raid10 */ 466 static bool rt_is_raid10(struct raid_type *rt) 467 { 468 return rt->level == 10; 469 } 470 471 /* Return true, if raid type in @rt is raid4/5 */ 472 static bool rt_is_raid45(struct raid_type *rt) 473 { 474 return __within_range(rt->level, 4, 5); 475 } 476 477 /* Return true, if raid type in @rt is raid6 */ 478 static bool rt_is_raid6(struct raid_type *rt) 479 { 480 return rt->level == 6; 481 } 482 483 /* Return true, if raid type in @rt is raid4/5/6 */ 484 static bool rt_is_raid456(struct raid_type *rt) 485 { 486 return __within_range(rt->level, 4, 6); 487 } 488 /* END: raid level bools */ 489 490 /* Return valid ctr flags for the raid level of @rs */ 491 static unsigned long __valid_flags(struct raid_set *rs) 492 { 493 if (rt_is_raid0(rs->raid_type)) 494 return RAID0_VALID_FLAGS; 495 else if (rt_is_raid1(rs->raid_type)) 496 return RAID1_VALID_FLAGS; 497 else if (rt_is_raid10(rs->raid_type)) 498 return RAID10_VALID_FLAGS; 499 else if (rt_is_raid45(rs->raid_type)) 500 return RAID45_VALID_FLAGS; 501 else if (rt_is_raid6(rs->raid_type)) 502 return RAID6_VALID_FLAGS; 503 504 return 0; 505 } 506 507 /* 508 * Check for valid flags set on @rs 509 * 510 * Has to be called after parsing of the ctr flags! 511 */ 512 static int rs_check_for_valid_flags(struct raid_set *rs) 513 { 514 if (rs->ctr_flags & ~__valid_flags(rs)) { 515 rs->ti->error = "Invalid flags combination"; 516 return -EINVAL; 517 } 518 519 return 0; 520 } 521 522 /* MD raid10 bit definitions and helpers */ 523 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 524 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 525 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 526 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 527 528 /* Return md raid10 near copies for @layout */ 529 static unsigned int __raid10_near_copies(int layout) 530 { 531 return layout & 0xFF; 532 } 533 534 /* Return md raid10 far copies for @layout */ 535 static unsigned int __raid10_far_copies(int layout) 536 { 537 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 538 } 539 540 /* Return true if md raid10 offset for @layout */ 541 static bool __is_raid10_offset(int layout) 542 { 543 return !!(layout & RAID10_OFFSET); 544 } 545 546 /* Return true if md raid10 near for @layout */ 547 static bool __is_raid10_near(int layout) 548 { 549 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 550 } 551 552 /* Return true if md raid10 far for @layout */ 553 static bool __is_raid10_far(int layout) 554 { 555 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 556 } 557 558 /* Return md raid10 layout string for @layout */ 559 static const char *raid10_md_layout_to_format(int layout) 560 { 561 /* 562 * Bit 16 stands for "offset" 563 * (i.e. adjacent stripes hold copies) 564 * 565 * Refer to MD's raid10.c for details 566 */ 567 if (__is_raid10_offset(layout)) 568 return "offset"; 569 570 if (__raid10_near_copies(layout) > 1) 571 return "near"; 572 573 if (__raid10_far_copies(layout) > 1) 574 return "far"; 575 576 return "unknown"; 577 } 578 579 /* Return md raid10 algorithm for @name */ 580 static int raid10_name_to_format(const char *name) 581 { 582 if (!strcasecmp(name, "near")) 583 return ALGORITHM_RAID10_NEAR; 584 else if (!strcasecmp(name, "offset")) 585 return ALGORITHM_RAID10_OFFSET; 586 else if (!strcasecmp(name, "far")) 587 return ALGORITHM_RAID10_FAR; 588 589 return -EINVAL; 590 } 591 592 /* Return md raid10 copies for @layout */ 593 static unsigned int raid10_md_layout_to_copies(int layout) 594 { 595 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 596 } 597 598 /* Return md raid10 format id for @format string */ 599 static int raid10_format_to_md_layout(struct raid_set *rs, 600 unsigned int algorithm, 601 unsigned int copies) 602 { 603 unsigned int n = 1, f = 1, r = 0; 604 605 /* 606 * MD resilienece flaw: 607 * 608 * enabling use_far_sets for far/offset formats causes copies 609 * to be colocated on the same devs together with their origins! 610 * 611 * -> disable it for now in the definition above 612 */ 613 if (algorithm == ALGORITHM_RAID10_DEFAULT || 614 algorithm == ALGORITHM_RAID10_NEAR) 615 n = copies; 616 617 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 618 f = copies; 619 r = RAID10_OFFSET; 620 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 621 r |= RAID10_USE_FAR_SETS; 622 623 } else if (algorithm == ALGORITHM_RAID10_FAR) { 624 f = copies; 625 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 626 r |= RAID10_USE_FAR_SETS; 627 628 } else 629 return -EINVAL; 630 631 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 632 } 633 /* END: MD raid10 bit definitions and helpers */ 634 635 /* Check for any of the raid10 algorithms */ 636 static bool __got_raid10(struct raid_type *rtp, const int layout) 637 { 638 if (rtp->level == 10) { 639 switch (rtp->algorithm) { 640 case ALGORITHM_RAID10_DEFAULT: 641 case ALGORITHM_RAID10_NEAR: 642 return __is_raid10_near(layout); 643 case ALGORITHM_RAID10_OFFSET: 644 return __is_raid10_offset(layout); 645 case ALGORITHM_RAID10_FAR: 646 return __is_raid10_far(layout); 647 default: 648 break; 649 } 650 } 651 652 return false; 653 } 654 655 /* Return raid_type for @name */ 656 static struct raid_type *get_raid_type(const char *name) 657 { 658 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 659 660 while (rtp-- > raid_types) 661 if (!strcasecmp(rtp->name, name)) 662 return rtp; 663 664 return NULL; 665 } 666 667 /* Return raid_type for @name based derived from @level and @layout */ 668 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 669 { 670 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 671 672 while (rtp-- > raid_types) { 673 /* RAID10 special checks based on @layout flags/properties */ 674 if (rtp->level == level && 675 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 676 return rtp; 677 } 678 679 return NULL; 680 } 681 682 /* Adjust rdev sectors */ 683 static void rs_set_rdev_sectors(struct raid_set *rs) 684 { 685 struct mddev *mddev = &rs->md; 686 struct md_rdev *rdev; 687 688 /* 689 * raid10 sets rdev->sector to the device size, which 690 * is unintended in case of out-of-place reshaping 691 */ 692 rdev_for_each(rdev, mddev) 693 if (!test_bit(Journal, &rdev->flags)) 694 rdev->sectors = mddev->dev_sectors; 695 } 696 697 /* 698 * Change bdev capacity of @rs in case of a disk add/remove reshape 699 */ 700 static void rs_set_capacity(struct raid_set *rs) 701 { 702 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 703 704 set_capacity(gendisk, rs->md.array_sectors); 705 revalidate_disk(gendisk); 706 } 707 708 /* 709 * Set the mddev properties in @rs to the current 710 * ones retrieved from the freshest superblock 711 */ 712 static void rs_set_cur(struct raid_set *rs) 713 { 714 struct mddev *mddev = &rs->md; 715 716 mddev->new_level = mddev->level; 717 mddev->new_layout = mddev->layout; 718 mddev->new_chunk_sectors = mddev->chunk_sectors; 719 } 720 721 /* 722 * Set the mddev properties in @rs to the new 723 * ones requested by the ctr 724 */ 725 static void rs_set_new(struct raid_set *rs) 726 { 727 struct mddev *mddev = &rs->md; 728 729 mddev->level = mddev->new_level; 730 mddev->layout = mddev->new_layout; 731 mddev->chunk_sectors = mddev->new_chunk_sectors; 732 mddev->raid_disks = rs->raid_disks; 733 mddev->delta_disks = 0; 734 } 735 736 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 737 unsigned int raid_devs) 738 { 739 unsigned int i; 740 struct raid_set *rs; 741 742 if (raid_devs <= raid_type->parity_devs) { 743 ti->error = "Insufficient number of devices"; 744 return ERR_PTR(-EINVAL); 745 } 746 747 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 748 if (!rs) { 749 ti->error = "Cannot allocate raid context"; 750 return ERR_PTR(-ENOMEM); 751 } 752 753 mddev_init(&rs->md); 754 755 rs->raid_disks = raid_devs; 756 rs->delta_disks = 0; 757 758 rs->ti = ti; 759 rs->raid_type = raid_type; 760 rs->stripe_cache_entries = 256; 761 rs->md.raid_disks = raid_devs; 762 rs->md.level = raid_type->level; 763 rs->md.new_level = rs->md.level; 764 rs->md.layout = raid_type->algorithm; 765 rs->md.new_layout = rs->md.layout; 766 rs->md.delta_disks = 0; 767 rs->md.recovery_cp = MaxSector; 768 769 for (i = 0; i < raid_devs; i++) 770 md_rdev_init(&rs->dev[i].rdev); 771 772 /* 773 * Remaining items to be initialized by further RAID params: 774 * rs->md.persistent 775 * rs->md.external 776 * rs->md.chunk_sectors 777 * rs->md.new_chunk_sectors 778 * rs->md.dev_sectors 779 */ 780 781 return rs; 782 } 783 784 /* Free all @rs allocations */ 785 static void raid_set_free(struct raid_set *rs) 786 { 787 int i; 788 789 if (rs->journal_dev.dev) { 790 md_rdev_clear(&rs->journal_dev.rdev); 791 dm_put_device(rs->ti, rs->journal_dev.dev); 792 } 793 794 for (i = 0; i < rs->raid_disks; i++) { 795 if (rs->dev[i].meta_dev) 796 dm_put_device(rs->ti, rs->dev[i].meta_dev); 797 md_rdev_clear(&rs->dev[i].rdev); 798 if (rs->dev[i].data_dev) 799 dm_put_device(rs->ti, rs->dev[i].data_dev); 800 } 801 802 kfree(rs); 803 } 804 805 /* 806 * For every device we have two words 807 * <meta_dev>: meta device name or '-' if missing 808 * <data_dev>: data device name or '-' if missing 809 * 810 * The following are permitted: 811 * - - 812 * - <data_dev> 813 * <meta_dev> <data_dev> 814 * 815 * The following is not allowed: 816 * <meta_dev> - 817 * 818 * This code parses those words. If there is a failure, 819 * the caller must use raid_set_free() to unwind the operations. 820 */ 821 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 822 { 823 int i; 824 int rebuild = 0; 825 int metadata_available = 0; 826 int r = 0; 827 const char *arg; 828 829 /* Put off the number of raid devices argument to get to dev pairs */ 830 arg = dm_shift_arg(as); 831 if (!arg) 832 return -EINVAL; 833 834 for (i = 0; i < rs->raid_disks; i++) { 835 rs->dev[i].rdev.raid_disk = i; 836 837 rs->dev[i].meta_dev = NULL; 838 rs->dev[i].data_dev = NULL; 839 840 /* 841 * There are no offsets initially. 842 * Out of place reshape will set them accordingly. 843 */ 844 rs->dev[i].rdev.data_offset = 0; 845 rs->dev[i].rdev.new_data_offset = 0; 846 rs->dev[i].rdev.mddev = &rs->md; 847 848 arg = dm_shift_arg(as); 849 if (!arg) 850 return -EINVAL; 851 852 if (strcmp(arg, "-")) { 853 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 854 &rs->dev[i].meta_dev); 855 if (r) { 856 rs->ti->error = "RAID metadata device lookup failure"; 857 return r; 858 } 859 860 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 861 if (!rs->dev[i].rdev.sb_page) { 862 rs->ti->error = "Failed to allocate superblock page"; 863 return -ENOMEM; 864 } 865 } 866 867 arg = dm_shift_arg(as); 868 if (!arg) 869 return -EINVAL; 870 871 if (!strcmp(arg, "-")) { 872 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 873 (!rs->dev[i].rdev.recovery_offset)) { 874 rs->ti->error = "Drive designated for rebuild not specified"; 875 return -EINVAL; 876 } 877 878 if (rs->dev[i].meta_dev) { 879 rs->ti->error = "No data device supplied with metadata device"; 880 return -EINVAL; 881 } 882 883 continue; 884 } 885 886 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 887 &rs->dev[i].data_dev); 888 if (r) { 889 rs->ti->error = "RAID device lookup failure"; 890 return r; 891 } 892 893 if (rs->dev[i].meta_dev) { 894 metadata_available = 1; 895 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 896 } 897 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 898 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 899 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 900 rebuild++; 901 } 902 903 if (rs->journal_dev.dev) 904 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 905 906 if (metadata_available) { 907 rs->md.external = 0; 908 rs->md.persistent = 1; 909 rs->md.major_version = 2; 910 } else if (rebuild && !rs->md.recovery_cp) { 911 /* 912 * Without metadata, we will not be able to tell if the array 913 * is in-sync or not - we must assume it is not. Therefore, 914 * it is impossible to rebuild a drive. 915 * 916 * Even if there is metadata, the on-disk information may 917 * indicate that the array is not in-sync and it will then 918 * fail at that time. 919 * 920 * User could specify 'nosync' option if desperate. 921 */ 922 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 923 return -EINVAL; 924 } 925 926 return 0; 927 } 928 929 /* 930 * validate_region_size 931 * @rs 932 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 933 * 934 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 935 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 936 * 937 * Returns: 0 on success, -EINVAL on failure. 938 */ 939 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 940 { 941 unsigned long min_region_size = rs->ti->len / (1 << 21); 942 943 if (rs_is_raid0(rs)) 944 return 0; 945 946 if (!region_size) { 947 /* 948 * Choose a reasonable default. All figures in sectors. 949 */ 950 if (min_region_size > (1 << 13)) { 951 /* If not a power of 2, make it the next power of 2 */ 952 region_size = roundup_pow_of_two(min_region_size); 953 DMINFO("Choosing default region size of %lu sectors", 954 region_size); 955 } else { 956 DMINFO("Choosing default region size of 4MiB"); 957 region_size = 1 << 13; /* sectors */ 958 } 959 } else { 960 /* 961 * Validate user-supplied value. 962 */ 963 if (region_size > rs->ti->len) { 964 rs->ti->error = "Supplied region size is too large"; 965 return -EINVAL; 966 } 967 968 if (region_size < min_region_size) { 969 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 970 region_size, min_region_size); 971 rs->ti->error = "Supplied region size is too small"; 972 return -EINVAL; 973 } 974 975 if (!is_power_of_2(region_size)) { 976 rs->ti->error = "Region size is not a power of 2"; 977 return -EINVAL; 978 } 979 980 if (region_size < rs->md.chunk_sectors) { 981 rs->ti->error = "Region size is smaller than the chunk size"; 982 return -EINVAL; 983 } 984 } 985 986 /* 987 * Convert sectors to bytes. 988 */ 989 rs->md.bitmap_info.chunksize = to_bytes(region_size); 990 991 return 0; 992 } 993 994 /* 995 * validate_raid_redundancy 996 * @rs 997 * 998 * Determine if there are enough devices in the array that haven't 999 * failed (or are being rebuilt) to form a usable array. 1000 * 1001 * Returns: 0 on success, -EINVAL on failure. 1002 */ 1003 static int validate_raid_redundancy(struct raid_set *rs) 1004 { 1005 unsigned int i, rebuild_cnt = 0; 1006 unsigned int rebuilds_per_group = 0, copies; 1007 unsigned int group_size, last_group_start; 1008 1009 for (i = 0; i < rs->md.raid_disks; i++) 1010 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1011 !rs->dev[i].rdev.sb_page) 1012 rebuild_cnt++; 1013 1014 switch (rs->md.level) { 1015 case 0: 1016 break; 1017 case 1: 1018 if (rebuild_cnt >= rs->md.raid_disks) 1019 goto too_many; 1020 break; 1021 case 4: 1022 case 5: 1023 case 6: 1024 if (rebuild_cnt > rs->raid_type->parity_devs) 1025 goto too_many; 1026 break; 1027 case 10: 1028 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1029 if (copies < 2) { 1030 DMERR("Bogus raid10 data copies < 2!"); 1031 return -EINVAL; 1032 } 1033 1034 if (rebuild_cnt < copies) 1035 break; 1036 1037 /* 1038 * It is possible to have a higher rebuild count for RAID10, 1039 * as long as the failed devices occur in different mirror 1040 * groups (i.e. different stripes). 1041 * 1042 * When checking "near" format, make sure no adjacent devices 1043 * have failed beyond what can be handled. In addition to the 1044 * simple case where the number of devices is a multiple of the 1045 * number of copies, we must also handle cases where the number 1046 * of devices is not a multiple of the number of copies. 1047 * E.g. dev1 dev2 dev3 dev4 dev5 1048 * A A B B C 1049 * C D D E E 1050 */ 1051 if (__is_raid10_near(rs->md.new_layout)) { 1052 for (i = 0; i < rs->md.raid_disks; i++) { 1053 if (!(i % copies)) 1054 rebuilds_per_group = 0; 1055 if ((!rs->dev[i].rdev.sb_page || 1056 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1057 (++rebuilds_per_group >= copies)) 1058 goto too_many; 1059 } 1060 break; 1061 } 1062 1063 /* 1064 * When checking "far" and "offset" formats, we need to ensure 1065 * that the device that holds its copy is not also dead or 1066 * being rebuilt. (Note that "far" and "offset" formats only 1067 * support two copies right now. These formats also only ever 1068 * use the 'use_far_sets' variant.) 1069 * 1070 * This check is somewhat complicated by the need to account 1071 * for arrays that are not a multiple of (far) copies. This 1072 * results in the need to treat the last (potentially larger) 1073 * set differently. 1074 */ 1075 group_size = (rs->md.raid_disks / copies); 1076 last_group_start = (rs->md.raid_disks / group_size) - 1; 1077 last_group_start *= group_size; 1078 for (i = 0; i < rs->md.raid_disks; i++) { 1079 if (!(i % copies) && !(i > last_group_start)) 1080 rebuilds_per_group = 0; 1081 if ((!rs->dev[i].rdev.sb_page || 1082 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1083 (++rebuilds_per_group >= copies)) 1084 goto too_many; 1085 } 1086 break; 1087 default: 1088 if (rebuild_cnt) 1089 return -EINVAL; 1090 } 1091 1092 return 0; 1093 1094 too_many: 1095 return -EINVAL; 1096 } 1097 1098 /* 1099 * Possible arguments are... 1100 * <chunk_size> [optional_args] 1101 * 1102 * Argument definitions 1103 * <chunk_size> The number of sectors per disk that 1104 * will form the "stripe" 1105 * [[no]sync] Force or prevent recovery of the 1106 * entire array 1107 * [rebuild <idx>] Rebuild the drive indicated by the index 1108 * [daemon_sleep <ms>] Time between bitmap daemon work to 1109 * clear bits 1110 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1111 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1112 * [write_mostly <idx>] Indicate a write mostly drive via index 1113 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1114 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1115 * [region_size <sectors>] Defines granularity of bitmap 1116 * [journal_dev <dev>] raid4/5/6 journaling deviice 1117 * (i.e. write hole closing log) 1118 * 1119 * RAID10-only options: 1120 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1121 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1122 */ 1123 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1124 unsigned int num_raid_params) 1125 { 1126 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1127 unsigned int raid10_copies = 2; 1128 unsigned int i, write_mostly = 0; 1129 unsigned int region_size = 0; 1130 sector_t max_io_len; 1131 const char *arg, *key; 1132 struct raid_dev *rd; 1133 struct raid_type *rt = rs->raid_type; 1134 1135 arg = dm_shift_arg(as); 1136 num_raid_params--; /* Account for chunk_size argument */ 1137 1138 if (kstrtoint(arg, 10, &value) < 0) { 1139 rs->ti->error = "Bad numerical argument given for chunk_size"; 1140 return -EINVAL; 1141 } 1142 1143 /* 1144 * First, parse the in-order required arguments 1145 * "chunk_size" is the only argument of this type. 1146 */ 1147 if (rt_is_raid1(rt)) { 1148 if (value) 1149 DMERR("Ignoring chunk size parameter for RAID 1"); 1150 value = 0; 1151 } else if (!is_power_of_2(value)) { 1152 rs->ti->error = "Chunk size must be a power of 2"; 1153 return -EINVAL; 1154 } else if (value < 8) { 1155 rs->ti->error = "Chunk size value is too small"; 1156 return -EINVAL; 1157 } 1158 1159 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1160 1161 /* 1162 * We set each individual device as In_sync with a completed 1163 * 'recovery_offset'. If there has been a device failure or 1164 * replacement then one of the following cases applies: 1165 * 1166 * 1) User specifies 'rebuild'. 1167 * - Device is reset when param is read. 1168 * 2) A new device is supplied. 1169 * - No matching superblock found, resets device. 1170 * 3) Device failure was transient and returns on reload. 1171 * - Failure noticed, resets device for bitmap replay. 1172 * 4) Device hadn't completed recovery after previous failure. 1173 * - Superblock is read and overrides recovery_offset. 1174 * 1175 * What is found in the superblocks of the devices is always 1176 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1177 */ 1178 for (i = 0; i < rs->raid_disks; i++) { 1179 set_bit(In_sync, &rs->dev[i].rdev.flags); 1180 rs->dev[i].rdev.recovery_offset = MaxSector; 1181 } 1182 1183 /* 1184 * Second, parse the unordered optional arguments 1185 */ 1186 for (i = 0; i < num_raid_params; i++) { 1187 key = dm_shift_arg(as); 1188 if (!key) { 1189 rs->ti->error = "Not enough raid parameters given"; 1190 return -EINVAL; 1191 } 1192 1193 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1194 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1195 rs->ti->error = "Only one 'nosync' argument allowed"; 1196 return -EINVAL; 1197 } 1198 continue; 1199 } 1200 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1201 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1202 rs->ti->error = "Only one 'sync' argument allowed"; 1203 return -EINVAL; 1204 } 1205 continue; 1206 } 1207 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1208 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1209 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1210 return -EINVAL; 1211 } 1212 continue; 1213 } 1214 1215 arg = dm_shift_arg(as); 1216 i++; /* Account for the argument pairs */ 1217 if (!arg) { 1218 rs->ti->error = "Wrong number of raid parameters given"; 1219 return -EINVAL; 1220 } 1221 1222 /* 1223 * Parameters that take a string value are checked here. 1224 */ 1225 /* "raid10_format {near|offset|far} */ 1226 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1227 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1228 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1229 return -EINVAL; 1230 } 1231 if (!rt_is_raid10(rt)) { 1232 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1233 return -EINVAL; 1234 } 1235 raid10_format = raid10_name_to_format(arg); 1236 if (raid10_format < 0) { 1237 rs->ti->error = "Invalid 'raid10_format' value given"; 1238 return raid10_format; 1239 } 1240 continue; 1241 } 1242 1243 /* "journal_dev <dev>" */ 1244 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1245 int r; 1246 struct md_rdev *jdev; 1247 1248 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1249 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1250 return -EINVAL; 1251 } 1252 if (!rt_is_raid456(rt)) { 1253 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1254 return -EINVAL; 1255 } 1256 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1257 &rs->journal_dev.dev); 1258 if (r) { 1259 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1260 return r; 1261 } 1262 jdev = &rs->journal_dev.rdev; 1263 md_rdev_init(jdev); 1264 jdev->mddev = &rs->md; 1265 jdev->bdev = rs->journal_dev.dev->bdev; 1266 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode)); 1267 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1268 rs->ti->error = "No space for raid4/5/6 journal"; 1269 return -ENOSPC; 1270 } 1271 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1272 set_bit(Journal, &jdev->flags); 1273 continue; 1274 } 1275 1276 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1277 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1278 int r; 1279 1280 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1281 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1282 return -EINVAL; 1283 } 1284 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1285 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1286 return -EINVAL; 1287 } 1288 r = dm_raid_journal_mode_to_md(arg); 1289 if (r < 0) { 1290 rs->ti->error = "Invalid 'journal_mode' argument"; 1291 return r; 1292 } 1293 rs->journal_dev.mode = r; 1294 continue; 1295 } 1296 1297 /* 1298 * Parameters with number values from here on. 1299 */ 1300 if (kstrtoint(arg, 10, &value) < 0) { 1301 rs->ti->error = "Bad numerical argument given in raid params"; 1302 return -EINVAL; 1303 } 1304 1305 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1306 /* 1307 * "rebuild" is being passed in by userspace to provide 1308 * indexes of replaced devices and to set up additional 1309 * devices on raid level takeover. 1310 */ 1311 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1312 rs->ti->error = "Invalid rebuild index given"; 1313 return -EINVAL; 1314 } 1315 1316 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1317 rs->ti->error = "rebuild for this index already given"; 1318 return -EINVAL; 1319 } 1320 1321 rd = rs->dev + value; 1322 clear_bit(In_sync, &rd->rdev.flags); 1323 clear_bit(Faulty, &rd->rdev.flags); 1324 rd->rdev.recovery_offset = 0; 1325 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1326 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1327 if (!rt_is_raid1(rt)) { 1328 rs->ti->error = "write_mostly option is only valid for RAID1"; 1329 return -EINVAL; 1330 } 1331 1332 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1333 rs->ti->error = "Invalid write_mostly index given"; 1334 return -EINVAL; 1335 } 1336 1337 write_mostly++; 1338 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1339 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1340 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1341 if (!rt_is_raid1(rt)) { 1342 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1343 return -EINVAL; 1344 } 1345 1346 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1347 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1348 return -EINVAL; 1349 } 1350 1351 /* 1352 * In device-mapper, we specify things in sectors, but 1353 * MD records this value in kB 1354 */ 1355 if (value < 0 || value / 2 > COUNTER_MAX) { 1356 rs->ti->error = "Max write-behind limit out of range"; 1357 return -EINVAL; 1358 } 1359 1360 rs->md.bitmap_info.max_write_behind = value / 2; 1361 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1362 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1363 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1364 return -EINVAL; 1365 } 1366 if (value < 0) { 1367 rs->ti->error = "daemon sleep period out of range"; 1368 return -EINVAL; 1369 } 1370 rs->md.bitmap_info.daemon_sleep = value; 1371 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1372 /* Userspace passes new data_offset after having extended the the data image LV */ 1373 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1374 rs->ti->error = "Only one data_offset argument pair allowed"; 1375 return -EINVAL; 1376 } 1377 /* Ensure sensible data offset */ 1378 if (value < 0 || 1379 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1380 rs->ti->error = "Bogus data_offset value"; 1381 return -EINVAL; 1382 } 1383 rs->data_offset = value; 1384 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1385 /* Define the +/-# of disks to add to/remove from the given raid set */ 1386 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1387 rs->ti->error = "Only one delta_disks argument pair allowed"; 1388 return -EINVAL; 1389 } 1390 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1391 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1392 rs->ti->error = "Too many delta_disk requested"; 1393 return -EINVAL; 1394 } 1395 1396 rs->delta_disks = value; 1397 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1398 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1399 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1400 return -EINVAL; 1401 } 1402 1403 if (!rt_is_raid456(rt)) { 1404 rs->ti->error = "Inappropriate argument: stripe_cache"; 1405 return -EINVAL; 1406 } 1407 1408 if (value < 0) { 1409 rs->ti->error = "Bogus stripe cache entries value"; 1410 return -EINVAL; 1411 } 1412 rs->stripe_cache_entries = value; 1413 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1414 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1415 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1416 return -EINVAL; 1417 } 1418 1419 if (value < 0) { 1420 rs->ti->error = "min_recovery_rate out of range"; 1421 return -EINVAL; 1422 } 1423 rs->md.sync_speed_min = value; 1424 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1425 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1426 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1427 return -EINVAL; 1428 } 1429 1430 if (value < 0) { 1431 rs->ti->error = "max_recovery_rate out of range"; 1432 return -EINVAL; 1433 } 1434 rs->md.sync_speed_max = value; 1435 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1436 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1437 rs->ti->error = "Only one region_size argument pair allowed"; 1438 return -EINVAL; 1439 } 1440 1441 region_size = value; 1442 rs->requested_bitmap_chunk_sectors = value; 1443 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1444 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1445 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1446 return -EINVAL; 1447 } 1448 1449 if (!__within_range(value, 2, rs->md.raid_disks)) { 1450 rs->ti->error = "Bad value for 'raid10_copies'"; 1451 return -EINVAL; 1452 } 1453 1454 raid10_copies = value; 1455 } else { 1456 DMERR("Unable to parse RAID parameter: %s", key); 1457 rs->ti->error = "Unable to parse RAID parameter"; 1458 return -EINVAL; 1459 } 1460 } 1461 1462 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1463 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1464 rs->ti->error = "sync and nosync are mutually exclusive"; 1465 return -EINVAL; 1466 } 1467 1468 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1469 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1470 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1471 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1472 return -EINVAL; 1473 } 1474 1475 if (write_mostly >= rs->md.raid_disks) { 1476 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1477 return -EINVAL; 1478 } 1479 1480 if (rs->md.sync_speed_max && 1481 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1482 rs->ti->error = "Bogus recovery rates"; 1483 return -EINVAL; 1484 } 1485 1486 if (validate_region_size(rs, region_size)) 1487 return -EINVAL; 1488 1489 if (rs->md.chunk_sectors) 1490 max_io_len = rs->md.chunk_sectors; 1491 else 1492 max_io_len = region_size; 1493 1494 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1495 return -EINVAL; 1496 1497 if (rt_is_raid10(rt)) { 1498 if (raid10_copies > rs->md.raid_disks) { 1499 rs->ti->error = "Not enough devices to satisfy specification"; 1500 return -EINVAL; 1501 } 1502 1503 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1504 if (rs->md.new_layout < 0) { 1505 rs->ti->error = "Error getting raid10 format"; 1506 return rs->md.new_layout; 1507 } 1508 1509 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1510 if (!rt) { 1511 rs->ti->error = "Failed to recognize new raid10 layout"; 1512 return -EINVAL; 1513 } 1514 1515 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1516 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1517 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1518 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1519 return -EINVAL; 1520 } 1521 } 1522 1523 rs->raid10_copies = raid10_copies; 1524 1525 /* Assume there are no metadata devices until the drives are parsed */ 1526 rs->md.persistent = 0; 1527 rs->md.external = 1; 1528 1529 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1530 return rs_check_for_valid_flags(rs); 1531 } 1532 1533 /* Set raid4/5/6 cache size */ 1534 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1535 { 1536 int r; 1537 struct r5conf *conf; 1538 struct mddev *mddev = &rs->md; 1539 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1540 uint32_t nr_stripes = rs->stripe_cache_entries; 1541 1542 if (!rt_is_raid456(rs->raid_type)) { 1543 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1544 return -EINVAL; 1545 } 1546 1547 if (nr_stripes < min_stripes) { 1548 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1549 nr_stripes, min_stripes); 1550 nr_stripes = min_stripes; 1551 } 1552 1553 conf = mddev->private; 1554 if (!conf) { 1555 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1556 return -EINVAL; 1557 } 1558 1559 /* Try setting number of stripes in raid456 stripe cache */ 1560 if (conf->min_nr_stripes != nr_stripes) { 1561 r = raid5_set_cache_size(mddev, nr_stripes); 1562 if (r) { 1563 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1564 return r; 1565 } 1566 1567 DMINFO("%u stripe cache entries", nr_stripes); 1568 } 1569 1570 return 0; 1571 } 1572 1573 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1574 static unsigned int mddev_data_stripes(struct raid_set *rs) 1575 { 1576 return rs->md.raid_disks - rs->raid_type->parity_devs; 1577 } 1578 1579 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1580 static unsigned int rs_data_stripes(struct raid_set *rs) 1581 { 1582 return rs->raid_disks - rs->raid_type->parity_devs; 1583 } 1584 1585 /* 1586 * Retrieve rdev->sectors from any valid raid device of @rs 1587 * to allow userpace to pass in arbitray "- -" device tupples. 1588 */ 1589 static sector_t __rdev_sectors(struct raid_set *rs) 1590 { 1591 int i; 1592 1593 for (i = 0; i < rs->md.raid_disks; i++) { 1594 struct md_rdev *rdev = &rs->dev[i].rdev; 1595 1596 if (!test_bit(Journal, &rdev->flags) && 1597 rdev->bdev && rdev->sectors) 1598 return rdev->sectors; 1599 } 1600 1601 return 0; 1602 } 1603 1604 /* Check that calculated dev_sectors fits all component devices. */ 1605 static int _check_data_dev_sectors(struct raid_set *rs) 1606 { 1607 sector_t ds = ~0; 1608 struct md_rdev *rdev; 1609 1610 rdev_for_each(rdev, &rs->md) 1611 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1612 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode))); 1613 if (ds < rs->md.dev_sectors) { 1614 rs->ti->error = "Component device(s) too small"; 1615 return -EINVAL; 1616 } 1617 } 1618 1619 return 0; 1620 } 1621 1622 /* Calculate the sectors per device and per array used for @rs */ 1623 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1624 { 1625 int delta_disks; 1626 unsigned int data_stripes; 1627 sector_t array_sectors = sectors, dev_sectors = sectors; 1628 struct mddev *mddev = &rs->md; 1629 1630 if (use_mddev) { 1631 delta_disks = mddev->delta_disks; 1632 data_stripes = mddev_data_stripes(rs); 1633 } else { 1634 delta_disks = rs->delta_disks; 1635 data_stripes = rs_data_stripes(rs); 1636 } 1637 1638 /* Special raid1 case w/o delta_disks support (yet) */ 1639 if (rt_is_raid1(rs->raid_type)) 1640 ; 1641 else if (rt_is_raid10(rs->raid_type)) { 1642 if (rs->raid10_copies < 2 || 1643 delta_disks < 0) { 1644 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1645 return -EINVAL; 1646 } 1647 1648 dev_sectors *= rs->raid10_copies; 1649 if (sector_div(dev_sectors, data_stripes)) 1650 goto bad; 1651 1652 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1653 if (sector_div(array_sectors, rs->raid10_copies)) 1654 goto bad; 1655 1656 } else if (sector_div(dev_sectors, data_stripes)) 1657 goto bad; 1658 1659 else 1660 /* Striped layouts */ 1661 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1662 1663 mddev->array_sectors = array_sectors; 1664 mddev->dev_sectors = dev_sectors; 1665 rs_set_rdev_sectors(rs); 1666 1667 return _check_data_dev_sectors(rs); 1668 bad: 1669 rs->ti->error = "Target length not divisible by number of data devices"; 1670 return -EINVAL; 1671 } 1672 1673 /* Setup recovery on @rs */ 1674 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1675 { 1676 /* raid0 does not recover */ 1677 if (rs_is_raid0(rs)) 1678 rs->md.recovery_cp = MaxSector; 1679 /* 1680 * A raid6 set has to be recovered either 1681 * completely or for the grown part to 1682 * ensure proper parity and Q-Syndrome 1683 */ 1684 else if (rs_is_raid6(rs)) 1685 rs->md.recovery_cp = dev_sectors; 1686 /* 1687 * Other raid set types may skip recovery 1688 * depending on the 'nosync' flag. 1689 */ 1690 else 1691 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1692 ? MaxSector : dev_sectors; 1693 } 1694 1695 static void do_table_event(struct work_struct *ws) 1696 { 1697 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1698 1699 smp_rmb(); /* Make sure we access most actual mddev properties */ 1700 if (!rs_is_reshaping(rs)) { 1701 if (rs_is_raid10(rs)) 1702 rs_set_rdev_sectors(rs); 1703 rs_set_capacity(rs); 1704 } 1705 dm_table_event(rs->ti->table); 1706 } 1707 1708 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 1709 { 1710 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 1711 1712 return mddev_congested(&rs->md, bits); 1713 } 1714 1715 /* 1716 * Make sure a valid takover (level switch) is being requested on @rs 1717 * 1718 * Conversions of raid sets from one MD personality to another 1719 * have to conform to restrictions which are enforced here. 1720 */ 1721 static int rs_check_takeover(struct raid_set *rs) 1722 { 1723 struct mddev *mddev = &rs->md; 1724 unsigned int near_copies; 1725 1726 if (rs->md.degraded) { 1727 rs->ti->error = "Can't takeover degraded raid set"; 1728 return -EPERM; 1729 } 1730 1731 if (rs_is_reshaping(rs)) { 1732 rs->ti->error = "Can't takeover reshaping raid set"; 1733 return -EPERM; 1734 } 1735 1736 switch (mddev->level) { 1737 case 0: 1738 /* raid0 -> raid1/5 with one disk */ 1739 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1740 mddev->raid_disks == 1) 1741 return 0; 1742 1743 /* raid0 -> raid10 */ 1744 if (mddev->new_level == 10 && 1745 !(rs->raid_disks % mddev->raid_disks)) 1746 return 0; 1747 1748 /* raid0 with multiple disks -> raid4/5/6 */ 1749 if (__within_range(mddev->new_level, 4, 6) && 1750 mddev->new_layout == ALGORITHM_PARITY_N && 1751 mddev->raid_disks > 1) 1752 return 0; 1753 1754 break; 1755 1756 case 10: 1757 /* Can't takeover raid10_offset! */ 1758 if (__is_raid10_offset(mddev->layout)) 1759 break; 1760 1761 near_copies = __raid10_near_copies(mddev->layout); 1762 1763 /* raid10* -> raid0 */ 1764 if (mddev->new_level == 0) { 1765 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1766 if (near_copies > 1 && 1767 !(mddev->raid_disks % near_copies)) { 1768 mddev->raid_disks /= near_copies; 1769 mddev->delta_disks = mddev->raid_disks; 1770 return 0; 1771 } 1772 1773 /* Can takeover raid10_far */ 1774 if (near_copies == 1 && 1775 __raid10_far_copies(mddev->layout) > 1) 1776 return 0; 1777 1778 break; 1779 } 1780 1781 /* raid10_{near,far} -> raid1 */ 1782 if (mddev->new_level == 1 && 1783 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1784 return 0; 1785 1786 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1787 if (__within_range(mddev->new_level, 4, 5) && 1788 mddev->raid_disks == 2) 1789 return 0; 1790 break; 1791 1792 case 1: 1793 /* raid1 with 2 disks -> raid4/5 */ 1794 if (__within_range(mddev->new_level, 4, 5) && 1795 mddev->raid_disks == 2) { 1796 mddev->degraded = 1; 1797 return 0; 1798 } 1799 1800 /* raid1 -> raid0 */ 1801 if (mddev->new_level == 0 && 1802 mddev->raid_disks == 1) 1803 return 0; 1804 1805 /* raid1 -> raid10 */ 1806 if (mddev->new_level == 10) 1807 return 0; 1808 break; 1809 1810 case 4: 1811 /* raid4 -> raid0 */ 1812 if (mddev->new_level == 0) 1813 return 0; 1814 1815 /* raid4 -> raid1/5 with 2 disks */ 1816 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1817 mddev->raid_disks == 2) 1818 return 0; 1819 1820 /* raid4 -> raid5/6 with parity N */ 1821 if (__within_range(mddev->new_level, 5, 6) && 1822 mddev->layout == ALGORITHM_PARITY_N) 1823 return 0; 1824 break; 1825 1826 case 5: 1827 /* raid5 with parity N -> raid0 */ 1828 if (mddev->new_level == 0 && 1829 mddev->layout == ALGORITHM_PARITY_N) 1830 return 0; 1831 1832 /* raid5 with parity N -> raid4 */ 1833 if (mddev->new_level == 4 && 1834 mddev->layout == ALGORITHM_PARITY_N) 1835 return 0; 1836 1837 /* raid5 with 2 disks -> raid1/4/10 */ 1838 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1839 mddev->raid_disks == 2) 1840 return 0; 1841 1842 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1843 if (mddev->new_level == 6 && 1844 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1845 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1846 return 0; 1847 break; 1848 1849 case 6: 1850 /* raid6 with parity N -> raid0 */ 1851 if (mddev->new_level == 0 && 1852 mddev->layout == ALGORITHM_PARITY_N) 1853 return 0; 1854 1855 /* raid6 with parity N -> raid4 */ 1856 if (mddev->new_level == 4 && 1857 mddev->layout == ALGORITHM_PARITY_N) 1858 return 0; 1859 1860 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1861 if (mddev->new_level == 5 && 1862 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1863 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1864 return 0; 1865 1866 default: 1867 break; 1868 } 1869 1870 rs->ti->error = "takeover not possible"; 1871 return -EINVAL; 1872 } 1873 1874 /* True if @rs requested to be taken over */ 1875 static bool rs_takeover_requested(struct raid_set *rs) 1876 { 1877 return rs->md.new_level != rs->md.level; 1878 } 1879 1880 /* True if @rs is requested to reshape by ctr */ 1881 static bool rs_reshape_requested(struct raid_set *rs) 1882 { 1883 bool change; 1884 struct mddev *mddev = &rs->md; 1885 1886 if (rs_takeover_requested(rs)) 1887 return false; 1888 1889 if (rs_is_raid0(rs)) 1890 return false; 1891 1892 change = mddev->new_layout != mddev->layout || 1893 mddev->new_chunk_sectors != mddev->chunk_sectors || 1894 rs->delta_disks; 1895 1896 /* Historical case to support raid1 reshape without delta disks */ 1897 if (rs_is_raid1(rs)) { 1898 if (rs->delta_disks) 1899 return !!rs->delta_disks; 1900 1901 return !change && 1902 mddev->raid_disks != rs->raid_disks; 1903 } 1904 1905 if (rs_is_raid10(rs)) 1906 return change && 1907 !__is_raid10_far(mddev->new_layout) && 1908 rs->delta_disks >= 0; 1909 1910 return change; 1911 } 1912 1913 /* Features */ 1914 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1915 1916 /* State flags for sb->flags */ 1917 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1918 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1919 1920 /* 1921 * This structure is never routinely used by userspace, unlike md superblocks. 1922 * Devices with this superblock should only ever be accessed via device-mapper. 1923 */ 1924 #define DM_RAID_MAGIC 0x64526D44 1925 struct dm_raid_superblock { 1926 __le32 magic; /* "DmRd" */ 1927 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1928 1929 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1930 __le32 array_position; /* The position of this drive in the raid set */ 1931 1932 __le64 events; /* Incremented by md when superblock updated */ 1933 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1934 /* indicate failures (see extension below) */ 1935 1936 /* 1937 * This offset tracks the progress of the repair or replacement of 1938 * an individual drive. 1939 */ 1940 __le64 disk_recovery_offset; 1941 1942 /* 1943 * This offset tracks the progress of the initial raid set 1944 * synchronisation/parity calculation. 1945 */ 1946 __le64 array_resync_offset; 1947 1948 /* 1949 * raid characteristics 1950 */ 1951 __le32 level; 1952 __le32 layout; 1953 __le32 stripe_sectors; 1954 1955 /******************************************************************** 1956 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1957 * 1958 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1959 */ 1960 1961 __le32 flags; /* Flags defining array states for reshaping */ 1962 1963 /* 1964 * This offset tracks the progress of a raid 1965 * set reshape in order to be able to restart it 1966 */ 1967 __le64 reshape_position; 1968 1969 /* 1970 * These define the properties of the array in case of an interrupted reshape 1971 */ 1972 __le32 new_level; 1973 __le32 new_layout; 1974 __le32 new_stripe_sectors; 1975 __le32 delta_disks; 1976 1977 __le64 array_sectors; /* Array size in sectors */ 1978 1979 /* 1980 * Sector offsets to data on devices (reshaping). 1981 * Needed to support out of place reshaping, thus 1982 * not writing over any stripes whilst converting 1983 * them from old to new layout 1984 */ 1985 __le64 data_offset; 1986 __le64 new_data_offset; 1987 1988 __le64 sectors; /* Used device size in sectors */ 1989 1990 /* 1991 * Additonal Bit field of devices indicating failures to support 1992 * up to 256 devices with the 1.9.0 on-disk metadata format 1993 */ 1994 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 1995 1996 __le32 incompat_features; /* Used to indicate any incompatible features */ 1997 1998 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 1999 } __packed; 2000 2001 /* 2002 * Check for reshape constraints on raid set @rs: 2003 * 2004 * - reshape function non-existent 2005 * - degraded set 2006 * - ongoing recovery 2007 * - ongoing reshape 2008 * 2009 * Returns 0 if none or -EPERM if given constraint 2010 * and error message reference in @errmsg 2011 */ 2012 static int rs_check_reshape(struct raid_set *rs) 2013 { 2014 struct mddev *mddev = &rs->md; 2015 2016 if (!mddev->pers || !mddev->pers->check_reshape) 2017 rs->ti->error = "Reshape not supported"; 2018 else if (mddev->degraded) 2019 rs->ti->error = "Can't reshape degraded raid set"; 2020 else if (rs_is_recovering(rs)) 2021 rs->ti->error = "Convert request on recovering raid set prohibited"; 2022 else if (rs_is_reshaping(rs)) 2023 rs->ti->error = "raid set already reshaping!"; 2024 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2025 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2026 else 2027 return 0; 2028 2029 return -EPERM; 2030 } 2031 2032 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2033 { 2034 BUG_ON(!rdev->sb_page); 2035 2036 if (rdev->sb_loaded && !force_reload) 2037 return 0; 2038 2039 rdev->sb_loaded = 0; 2040 2041 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) { 2042 DMERR("Failed to read superblock of device at position %d", 2043 rdev->raid_disk); 2044 md_error(rdev->mddev, rdev); 2045 set_bit(Faulty, &rdev->flags); 2046 return -EIO; 2047 } 2048 2049 rdev->sb_loaded = 1; 2050 2051 return 0; 2052 } 2053 2054 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2055 { 2056 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2057 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2058 2059 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2060 int i = ARRAY_SIZE(sb->extended_failed_devices); 2061 2062 while (i--) 2063 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2064 } 2065 } 2066 2067 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2068 { 2069 int i = ARRAY_SIZE(sb->extended_failed_devices); 2070 2071 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2072 while (i--) 2073 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2074 } 2075 2076 /* 2077 * Synchronize the superblock members with the raid set properties 2078 * 2079 * All superblock data is little endian. 2080 */ 2081 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2082 { 2083 bool update_failed_devices = false; 2084 unsigned int i; 2085 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2086 struct dm_raid_superblock *sb; 2087 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2088 2089 /* No metadata device, no superblock */ 2090 if (!rdev->meta_bdev) 2091 return; 2092 2093 BUG_ON(!rdev->sb_page); 2094 2095 sb = page_address(rdev->sb_page); 2096 2097 sb_retrieve_failed_devices(sb, failed_devices); 2098 2099 for (i = 0; i < rs->raid_disks; i++) 2100 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2101 update_failed_devices = true; 2102 set_bit(i, (void *) failed_devices); 2103 } 2104 2105 if (update_failed_devices) 2106 sb_update_failed_devices(sb, failed_devices); 2107 2108 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2109 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2110 2111 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2112 sb->array_position = cpu_to_le32(rdev->raid_disk); 2113 2114 sb->events = cpu_to_le64(mddev->events); 2115 2116 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2117 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2118 2119 sb->level = cpu_to_le32(mddev->level); 2120 sb->layout = cpu_to_le32(mddev->layout); 2121 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2122 2123 /******************************************************************** 2124 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2125 * 2126 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2127 */ 2128 sb->new_level = cpu_to_le32(mddev->new_level); 2129 sb->new_layout = cpu_to_le32(mddev->new_layout); 2130 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2131 2132 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2133 2134 smp_rmb(); /* Make sure we access most recent reshape position */ 2135 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2136 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2137 /* Flag ongoing reshape */ 2138 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2139 2140 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2141 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2142 } else { 2143 /* Clear reshape flags */ 2144 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2145 } 2146 2147 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2148 sb->data_offset = cpu_to_le64(rdev->data_offset); 2149 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2150 sb->sectors = cpu_to_le64(rdev->sectors); 2151 sb->incompat_features = cpu_to_le32(0); 2152 2153 /* Zero out the rest of the payload after the size of the superblock */ 2154 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2155 } 2156 2157 /* 2158 * super_load 2159 * 2160 * This function creates a superblock if one is not found on the device 2161 * and will decide which superblock to use if there's a choice. 2162 * 2163 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2164 */ 2165 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2166 { 2167 int r; 2168 struct dm_raid_superblock *sb; 2169 struct dm_raid_superblock *refsb; 2170 uint64_t events_sb, events_refsb; 2171 2172 r = read_disk_sb(rdev, rdev->sb_size, false); 2173 if (r) 2174 return r; 2175 2176 sb = page_address(rdev->sb_page); 2177 2178 /* 2179 * Two cases that we want to write new superblocks and rebuild: 2180 * 1) New device (no matching magic number) 2181 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2182 */ 2183 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2184 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2185 super_sync(rdev->mddev, rdev); 2186 2187 set_bit(FirstUse, &rdev->flags); 2188 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2189 2190 /* Force writing of superblocks to disk */ 2191 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2192 2193 /* Any superblock is better than none, choose that if given */ 2194 return refdev ? 0 : 1; 2195 } 2196 2197 if (!refdev) 2198 return 1; 2199 2200 events_sb = le64_to_cpu(sb->events); 2201 2202 refsb = page_address(refdev->sb_page); 2203 events_refsb = le64_to_cpu(refsb->events); 2204 2205 return (events_sb > events_refsb) ? 1 : 0; 2206 } 2207 2208 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2209 { 2210 int role; 2211 unsigned int d; 2212 struct mddev *mddev = &rs->md; 2213 uint64_t events_sb; 2214 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2215 struct dm_raid_superblock *sb; 2216 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2217 struct md_rdev *r; 2218 struct dm_raid_superblock *sb2; 2219 2220 sb = page_address(rdev->sb_page); 2221 events_sb = le64_to_cpu(sb->events); 2222 2223 /* 2224 * Initialise to 1 if this is a new superblock. 2225 */ 2226 mddev->events = events_sb ? : 1; 2227 2228 mddev->reshape_position = MaxSector; 2229 2230 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2231 mddev->level = le32_to_cpu(sb->level); 2232 mddev->layout = le32_to_cpu(sb->layout); 2233 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2234 2235 /* 2236 * Reshaping is supported, e.g. reshape_position is valid 2237 * in superblock and superblock content is authoritative. 2238 */ 2239 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2240 /* Superblock is authoritative wrt given raid set layout! */ 2241 mddev->new_level = le32_to_cpu(sb->new_level); 2242 mddev->new_layout = le32_to_cpu(sb->new_layout); 2243 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2244 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2245 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2246 2247 /* raid was reshaping and got interrupted */ 2248 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2249 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2250 DMERR("Reshape requested but raid set is still reshaping"); 2251 return -EINVAL; 2252 } 2253 2254 if (mddev->delta_disks < 0 || 2255 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2256 mddev->reshape_backwards = 1; 2257 else 2258 mddev->reshape_backwards = 0; 2259 2260 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2261 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2262 } 2263 2264 } else { 2265 /* 2266 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2267 */ 2268 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2269 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2270 2271 if (rs_takeover_requested(rs)) { 2272 if (rt_cur && rt_new) 2273 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2274 rt_cur->name, rt_new->name); 2275 else 2276 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2277 return -EINVAL; 2278 } else if (rs_reshape_requested(rs)) { 2279 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2280 if (mddev->layout != mddev->new_layout) { 2281 if (rt_cur && rt_new) 2282 DMERR(" current layout %s vs new layout %s", 2283 rt_cur->name, rt_new->name); 2284 else 2285 DMERR(" current layout 0x%X vs new layout 0x%X", 2286 le32_to_cpu(sb->layout), mddev->new_layout); 2287 } 2288 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2289 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2290 mddev->chunk_sectors, mddev->new_chunk_sectors); 2291 if (rs->delta_disks) 2292 DMERR(" current %u disks vs new %u disks", 2293 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2294 if (rs_is_raid10(rs)) { 2295 DMERR(" Old layout: %s w/ %u copies", 2296 raid10_md_layout_to_format(mddev->layout), 2297 raid10_md_layout_to_copies(mddev->layout)); 2298 DMERR(" New layout: %s w/ %u copies", 2299 raid10_md_layout_to_format(mddev->new_layout), 2300 raid10_md_layout_to_copies(mddev->new_layout)); 2301 } 2302 return -EINVAL; 2303 } 2304 2305 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2306 } 2307 2308 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2309 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2310 2311 /* 2312 * During load, we set FirstUse if a new superblock was written. 2313 * There are two reasons we might not have a superblock: 2314 * 1) The raid set is brand new - in which case, all of the 2315 * devices must have their In_sync bit set. Also, 2316 * recovery_cp must be 0, unless forced. 2317 * 2) This is a new device being added to an old raid set 2318 * and the new device needs to be rebuilt - in which 2319 * case the In_sync bit will /not/ be set and 2320 * recovery_cp must be MaxSector. 2321 * 3) This is/are a new device(s) being added to an old 2322 * raid set during takeover to a higher raid level 2323 * to provide capacity for redundancy or during reshape 2324 * to add capacity to grow the raid set. 2325 */ 2326 d = 0; 2327 rdev_for_each(r, mddev) { 2328 if (test_bit(Journal, &rdev->flags)) 2329 continue; 2330 2331 if (test_bit(FirstUse, &r->flags)) 2332 new_devs++; 2333 2334 if (!test_bit(In_sync, &r->flags)) { 2335 DMINFO("Device %d specified for rebuild; clearing superblock", 2336 r->raid_disk); 2337 rebuilds++; 2338 2339 if (test_bit(FirstUse, &r->flags)) 2340 rebuild_and_new++; 2341 } 2342 2343 d++; 2344 } 2345 2346 if (new_devs == rs->raid_disks || !rebuilds) { 2347 /* Replace a broken device */ 2348 if (new_devs == 1 && !rs->delta_disks) 2349 ; 2350 if (new_devs == rs->raid_disks) { 2351 DMINFO("Superblocks created for new raid set"); 2352 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2353 } else if (new_devs != rebuilds && 2354 new_devs != rs->delta_disks) { 2355 DMERR("New device injected into existing raid set without " 2356 "'delta_disks' or 'rebuild' parameter specified"); 2357 return -EINVAL; 2358 } 2359 } else if (new_devs && new_devs != rebuilds) { 2360 DMERR("%u 'rebuild' devices cannot be injected into" 2361 " a raid set with %u other first-time devices", 2362 rebuilds, new_devs); 2363 return -EINVAL; 2364 } else if (rebuilds) { 2365 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2366 DMERR("new device%s provided without 'rebuild'", 2367 new_devs > 1 ? "s" : ""); 2368 return -EINVAL; 2369 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2370 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2371 (unsigned long long) mddev->recovery_cp); 2372 return -EINVAL; 2373 } else if (rs_is_reshaping(rs)) { 2374 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2375 (unsigned long long) mddev->reshape_position); 2376 return -EINVAL; 2377 } 2378 } 2379 2380 /* 2381 * Now we set the Faulty bit for those devices that are 2382 * recorded in the superblock as failed. 2383 */ 2384 sb_retrieve_failed_devices(sb, failed_devices); 2385 rdev_for_each(r, mddev) { 2386 if (test_bit(Journal, &rdev->flags) || 2387 !r->sb_page) 2388 continue; 2389 sb2 = page_address(r->sb_page); 2390 sb2->failed_devices = 0; 2391 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2392 2393 /* 2394 * Check for any device re-ordering. 2395 */ 2396 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2397 role = le32_to_cpu(sb2->array_position); 2398 if (role < 0) 2399 continue; 2400 2401 if (role != r->raid_disk) { 2402 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2403 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2404 rs->raid_disks % rs->raid10_copies) { 2405 rs->ti->error = 2406 "Cannot change raid10 near set to odd # of devices!"; 2407 return -EINVAL; 2408 } 2409 2410 sb2->array_position = cpu_to_le32(r->raid_disk); 2411 2412 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2413 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2414 !rt_is_raid1(rs->raid_type)) { 2415 rs->ti->error = "Cannot change device positions in raid set"; 2416 return -EINVAL; 2417 } 2418 2419 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2420 } 2421 2422 /* 2423 * Partial recovery is performed on 2424 * returning failed devices. 2425 */ 2426 if (test_bit(role, (void *) failed_devices)) 2427 set_bit(Faulty, &r->flags); 2428 } 2429 } 2430 2431 return 0; 2432 } 2433 2434 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2435 { 2436 struct mddev *mddev = &rs->md; 2437 struct dm_raid_superblock *sb; 2438 2439 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2440 return 0; 2441 2442 sb = page_address(rdev->sb_page); 2443 2444 /* 2445 * If mddev->events is not set, we know we have not yet initialized 2446 * the array. 2447 */ 2448 if (!mddev->events && super_init_validation(rs, rdev)) 2449 return -EINVAL; 2450 2451 if (le32_to_cpu(sb->compat_features) && 2452 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2453 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2454 return -EINVAL; 2455 } 2456 2457 if (sb->incompat_features) { 2458 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2459 return -EINVAL; 2460 } 2461 2462 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2463 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2464 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2465 2466 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2467 /* 2468 * Retrieve rdev size stored in superblock to be prepared for shrink. 2469 * Check extended superblock members are present otherwise the size 2470 * will not be set! 2471 */ 2472 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2473 rdev->sectors = le64_to_cpu(sb->sectors); 2474 2475 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2476 if (rdev->recovery_offset == MaxSector) 2477 set_bit(In_sync, &rdev->flags); 2478 /* 2479 * If no reshape in progress -> we're recovering single 2480 * disk(s) and have to set the device(s) to out-of-sync 2481 */ 2482 else if (!rs_is_reshaping(rs)) 2483 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2484 } 2485 2486 /* 2487 * If a device comes back, set it as not In_sync and no longer faulty. 2488 */ 2489 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2490 rdev->recovery_offset = 0; 2491 clear_bit(In_sync, &rdev->flags); 2492 rdev->saved_raid_disk = rdev->raid_disk; 2493 } 2494 2495 /* Reshape support -> restore repective data offsets */ 2496 rdev->data_offset = le64_to_cpu(sb->data_offset); 2497 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2498 2499 return 0; 2500 } 2501 2502 /* 2503 * Analyse superblocks and select the freshest. 2504 */ 2505 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2506 { 2507 int r; 2508 struct md_rdev *rdev, *freshest; 2509 struct mddev *mddev = &rs->md; 2510 2511 freshest = NULL; 2512 rdev_for_each(rdev, mddev) { 2513 if (test_bit(Journal, &rdev->flags)) 2514 continue; 2515 2516 if (!rdev->meta_bdev) 2517 continue; 2518 2519 /* Set superblock offset/size for metadata device. */ 2520 rdev->sb_start = 0; 2521 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2522 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2523 DMERR("superblock size of a logical block is no longer valid"); 2524 return -EINVAL; 2525 } 2526 2527 /* 2528 * Skipping super_load due to CTR_FLAG_SYNC will cause 2529 * the array to undergo initialization again as 2530 * though it were new. This is the intended effect 2531 * of the "sync" directive. 2532 * 2533 * With reshaping capability added, we must ensure that 2534 * that the "sync" directive is disallowed during the reshape. 2535 */ 2536 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2537 continue; 2538 2539 r = super_load(rdev, freshest); 2540 2541 switch (r) { 2542 case 1: 2543 freshest = rdev; 2544 break; 2545 case 0: 2546 break; 2547 default: 2548 /* This is a failure to read the superblock from the metadata device. */ 2549 /* 2550 * We have to keep any raid0 data/metadata device pairs or 2551 * the MD raid0 personality will fail to start the array. 2552 */ 2553 if (rs_is_raid0(rs)) 2554 continue; 2555 2556 /* 2557 * We keep the dm_devs to be able to emit the device tuple 2558 * properly on the table line in raid_status() (rather than 2559 * mistakenly acting as if '- -' got passed into the constructor). 2560 * 2561 * The rdev has to stay on the same_set list to allow for 2562 * the attempt to restore faulty devices on second resume. 2563 */ 2564 rdev->raid_disk = rdev->saved_raid_disk = -1; 2565 break; 2566 } 2567 } 2568 2569 if (!freshest) 2570 return 0; 2571 2572 /* 2573 * Validation of the freshest device provides the source of 2574 * validation for the remaining devices. 2575 */ 2576 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2577 if (super_validate(rs, freshest)) 2578 return -EINVAL; 2579 2580 if (validate_raid_redundancy(rs)) { 2581 rs->ti->error = "Insufficient redundancy to activate array"; 2582 return -EINVAL; 2583 } 2584 2585 rdev_for_each(rdev, mddev) 2586 if (!test_bit(Journal, &rdev->flags) && 2587 rdev != freshest && 2588 super_validate(rs, rdev)) 2589 return -EINVAL; 2590 return 0; 2591 } 2592 2593 /* 2594 * Adjust data_offset and new_data_offset on all disk members of @rs 2595 * for out of place reshaping if requested by contructor 2596 * 2597 * We need free space at the beginning of each raid disk for forward 2598 * and at the end for backward reshapes which userspace has to provide 2599 * via remapping/reordering of space. 2600 */ 2601 static int rs_adjust_data_offsets(struct raid_set *rs) 2602 { 2603 sector_t data_offset = 0, new_data_offset = 0; 2604 struct md_rdev *rdev; 2605 2606 /* Constructor did not request data offset change */ 2607 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2608 if (!rs_is_reshapable(rs)) 2609 goto out; 2610 2611 return 0; 2612 } 2613 2614 /* HM FIXME: get In_Sync raid_dev? */ 2615 rdev = &rs->dev[0].rdev; 2616 2617 if (rs->delta_disks < 0) { 2618 /* 2619 * Removing disks (reshaping backwards): 2620 * 2621 * - before reshape: data is at offset 0 and free space 2622 * is at end of each component LV 2623 * 2624 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2625 */ 2626 data_offset = 0; 2627 new_data_offset = rs->data_offset; 2628 2629 } else if (rs->delta_disks > 0) { 2630 /* 2631 * Adding disks (reshaping forwards): 2632 * 2633 * - before reshape: data is at offset rs->data_offset != 0 and 2634 * free space is at begin of each component LV 2635 * 2636 * - after reshape: data is at offset 0 on each component LV 2637 */ 2638 data_offset = rs->data_offset; 2639 new_data_offset = 0; 2640 2641 } else { 2642 /* 2643 * User space passes in 0 for data offset after having removed reshape space 2644 * 2645 * - or - (data offset != 0) 2646 * 2647 * Changing RAID layout or chunk size -> toggle offsets 2648 * 2649 * - before reshape: data is at offset rs->data_offset 0 and 2650 * free space is at end of each component LV 2651 * -or- 2652 * data is at offset rs->data_offset != 0 and 2653 * free space is at begin of each component LV 2654 * 2655 * - after reshape: data is at offset 0 if it was at offset != 0 2656 * or at offset != 0 if it was at offset 0 2657 * on each component LV 2658 * 2659 */ 2660 data_offset = rs->data_offset ? rdev->data_offset : 0; 2661 new_data_offset = data_offset ? 0 : rs->data_offset; 2662 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2663 } 2664 2665 /* 2666 * Make sure we got a minimum amount of free sectors per device 2667 */ 2668 if (rs->data_offset && 2669 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2670 rs->ti->error = data_offset ? "No space for forward reshape" : 2671 "No space for backward reshape"; 2672 return -ENOSPC; 2673 } 2674 out: 2675 /* 2676 * Raise recovery_cp in case data_offset != 0 to 2677 * avoid false recovery positives in the constructor. 2678 */ 2679 if (rs->md.recovery_cp < rs->md.dev_sectors) 2680 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2681 2682 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2683 rdev_for_each(rdev, &rs->md) { 2684 if (!test_bit(Journal, &rdev->flags)) { 2685 rdev->data_offset = data_offset; 2686 rdev->new_data_offset = new_data_offset; 2687 } 2688 } 2689 2690 return 0; 2691 } 2692 2693 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2694 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2695 { 2696 int i = 0; 2697 struct md_rdev *rdev; 2698 2699 rdev_for_each(rdev, &rs->md) { 2700 if (!test_bit(Journal, &rdev->flags)) { 2701 rdev->raid_disk = i++; 2702 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2703 } 2704 } 2705 } 2706 2707 /* 2708 * Setup @rs for takeover by a different raid level 2709 */ 2710 static int rs_setup_takeover(struct raid_set *rs) 2711 { 2712 struct mddev *mddev = &rs->md; 2713 struct md_rdev *rdev; 2714 unsigned int d = mddev->raid_disks = rs->raid_disks; 2715 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2716 2717 if (rt_is_raid10(rs->raid_type)) { 2718 if (rs_is_raid0(rs)) { 2719 /* Userpace reordered disks -> adjust raid_disk indexes */ 2720 __reorder_raid_disk_indexes(rs); 2721 2722 /* raid0 -> raid10_far layout */ 2723 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2724 rs->raid10_copies); 2725 } else if (rs_is_raid1(rs)) 2726 /* raid1 -> raid10_near layout */ 2727 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2728 rs->raid_disks); 2729 else 2730 return -EINVAL; 2731 2732 } 2733 2734 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2735 mddev->recovery_cp = MaxSector; 2736 2737 while (d--) { 2738 rdev = &rs->dev[d].rdev; 2739 2740 if (test_bit(d, (void *) rs->rebuild_disks)) { 2741 clear_bit(In_sync, &rdev->flags); 2742 clear_bit(Faulty, &rdev->flags); 2743 mddev->recovery_cp = rdev->recovery_offset = 0; 2744 /* Bitmap has to be created when we do an "up" takeover */ 2745 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2746 } 2747 2748 rdev->new_data_offset = new_data_offset; 2749 } 2750 2751 return 0; 2752 } 2753 2754 /* Prepare @rs for reshape */ 2755 static int rs_prepare_reshape(struct raid_set *rs) 2756 { 2757 bool reshape; 2758 struct mddev *mddev = &rs->md; 2759 2760 if (rs_is_raid10(rs)) { 2761 if (rs->raid_disks != mddev->raid_disks && 2762 __is_raid10_near(mddev->layout) && 2763 rs->raid10_copies && 2764 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2765 /* 2766 * raid disk have to be multiple of data copies to allow this conversion, 2767 * 2768 * This is actually not a reshape it is a 2769 * rebuild of any additional mirrors per group 2770 */ 2771 if (rs->raid_disks % rs->raid10_copies) { 2772 rs->ti->error = "Can't reshape raid10 mirror groups"; 2773 return -EINVAL; 2774 } 2775 2776 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2777 __reorder_raid_disk_indexes(rs); 2778 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2779 rs->raid10_copies); 2780 mddev->new_layout = mddev->layout; 2781 reshape = false; 2782 } else 2783 reshape = true; 2784 2785 } else if (rs_is_raid456(rs)) 2786 reshape = true; 2787 2788 else if (rs_is_raid1(rs)) { 2789 if (rs->delta_disks) { 2790 /* Process raid1 via delta_disks */ 2791 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2792 reshape = true; 2793 } else { 2794 /* Process raid1 without delta_disks */ 2795 mddev->raid_disks = rs->raid_disks; 2796 reshape = false; 2797 } 2798 } else { 2799 rs->ti->error = "Called with bogus raid type"; 2800 return -EINVAL; 2801 } 2802 2803 if (reshape) { 2804 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2805 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2806 } else if (mddev->raid_disks < rs->raid_disks) 2807 /* Create new superblocks and bitmaps, if any new disks */ 2808 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2809 2810 return 0; 2811 } 2812 2813 /* Get reshape sectors from data_offsets or raid set */ 2814 static sector_t _get_reshape_sectors(struct raid_set *rs) 2815 { 2816 struct md_rdev *rdev; 2817 sector_t reshape_sectors = 0; 2818 2819 rdev_for_each(rdev, &rs->md) 2820 if (!test_bit(Journal, &rdev->flags)) { 2821 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2822 rdev->data_offset - rdev->new_data_offset : 2823 rdev->new_data_offset - rdev->data_offset; 2824 break; 2825 } 2826 2827 return max(reshape_sectors, (sector_t) rs->data_offset); 2828 } 2829 2830 /* 2831 * 2832 * - change raid layout 2833 * - change chunk size 2834 * - add disks 2835 * - remove disks 2836 */ 2837 static int rs_setup_reshape(struct raid_set *rs) 2838 { 2839 int r = 0; 2840 unsigned int cur_raid_devs, d; 2841 sector_t reshape_sectors = _get_reshape_sectors(rs); 2842 struct mddev *mddev = &rs->md; 2843 struct md_rdev *rdev; 2844 2845 mddev->delta_disks = rs->delta_disks; 2846 cur_raid_devs = mddev->raid_disks; 2847 2848 /* Ignore impossible layout change whilst adding/removing disks */ 2849 if (mddev->delta_disks && 2850 mddev->layout != mddev->new_layout) { 2851 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2852 mddev->new_layout = mddev->layout; 2853 } 2854 2855 /* 2856 * Adjust array size: 2857 * 2858 * - in case of adding disk(s), array size has 2859 * to grow after the disk adding reshape, 2860 * which'll hapen in the event handler; 2861 * reshape will happen forward, so space has to 2862 * be available at the beginning of each disk 2863 * 2864 * - in case of removing disk(s), array size 2865 * has to shrink before starting the reshape, 2866 * which'll happen here; 2867 * reshape will happen backward, so space has to 2868 * be available at the end of each disk 2869 * 2870 * - data_offset and new_data_offset are 2871 * adjusted for aforementioned out of place 2872 * reshaping based on userspace passing in 2873 * the "data_offset <sectors>" key/value 2874 * pair via the constructor 2875 */ 2876 2877 /* Add disk(s) */ 2878 if (rs->delta_disks > 0) { 2879 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2880 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2881 rdev = &rs->dev[d].rdev; 2882 clear_bit(In_sync, &rdev->flags); 2883 2884 /* 2885 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2886 * by md, which'll store that erroneously in the superblock on reshape 2887 */ 2888 rdev->saved_raid_disk = -1; 2889 rdev->raid_disk = d; 2890 2891 rdev->sectors = mddev->dev_sectors; 2892 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2893 } 2894 2895 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2896 2897 /* Remove disk(s) */ 2898 } else if (rs->delta_disks < 0) { 2899 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2900 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2901 2902 /* Change layout and/or chunk size */ 2903 } else { 2904 /* 2905 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2906 * 2907 * keeping number of disks and do layout change -> 2908 * 2909 * toggle reshape_backward depending on data_offset: 2910 * 2911 * - free space upfront -> reshape forward 2912 * 2913 * - free space at the end -> reshape backward 2914 * 2915 * 2916 * This utilizes free reshape space avoiding the need 2917 * for userspace to move (parts of) LV segments in 2918 * case of layout/chunksize change (for disk 2919 * adding/removing reshape space has to be at 2920 * the proper address (see above with delta_disks): 2921 * 2922 * add disk(s) -> begin 2923 * remove disk(s)-> end 2924 */ 2925 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2926 } 2927 2928 /* 2929 * Adjust device size for forward reshape 2930 * because md_finish_reshape() reduces it. 2931 */ 2932 if (!mddev->reshape_backwards) 2933 rdev_for_each(rdev, &rs->md) 2934 if (!test_bit(Journal, &rdev->flags)) 2935 rdev->sectors += reshape_sectors; 2936 2937 return r; 2938 } 2939 2940 /* 2941 * Enable/disable discard support on RAID set depending on 2942 * RAID level and discard properties of underlying RAID members. 2943 */ 2944 static void configure_discard_support(struct raid_set *rs) 2945 { 2946 int i; 2947 bool raid456; 2948 struct dm_target *ti = rs->ti; 2949 2950 /* 2951 * XXX: RAID level 4,5,6 require zeroing for safety. 2952 */ 2953 raid456 = rs_is_raid456(rs); 2954 2955 for (i = 0; i < rs->raid_disks; i++) { 2956 struct request_queue *q; 2957 2958 if (!rs->dev[i].rdev.bdev) 2959 continue; 2960 2961 q = bdev_get_queue(rs->dev[i].rdev.bdev); 2962 if (!q || !blk_queue_discard(q)) 2963 return; 2964 2965 if (raid456) { 2966 if (!devices_handle_discard_safely) { 2967 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2968 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2969 return; 2970 } 2971 } 2972 } 2973 2974 ti->num_discard_bios = 1; 2975 } 2976 2977 /* 2978 * Construct a RAID0/1/10/4/5/6 mapping: 2979 * Args: 2980 * <raid_type> <#raid_params> <raid_params>{0,} \ 2981 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2982 * 2983 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2984 * details on possible <raid_params>. 2985 * 2986 * Userspace is free to initialize the metadata devices, hence the superblocks to 2987 * enforce recreation based on the passed in table parameters. 2988 * 2989 */ 2990 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2991 { 2992 int r; 2993 bool resize = false; 2994 struct raid_type *rt; 2995 unsigned int num_raid_params, num_raid_devs; 2996 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 2997 struct raid_set *rs = NULL; 2998 const char *arg; 2999 struct rs_layout rs_layout; 3000 struct dm_arg_set as = { argc, argv }, as_nrd; 3001 struct dm_arg _args[] = { 3002 { 0, as.argc, "Cannot understand number of raid parameters" }, 3003 { 1, 254, "Cannot understand number of raid devices parameters" } 3004 }; 3005 3006 arg = dm_shift_arg(&as); 3007 if (!arg) { 3008 ti->error = "No arguments"; 3009 return -EINVAL; 3010 } 3011 3012 rt = get_raid_type(arg); 3013 if (!rt) { 3014 ti->error = "Unrecognised raid_type"; 3015 return -EINVAL; 3016 } 3017 3018 /* Must have <#raid_params> */ 3019 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3020 return -EINVAL; 3021 3022 /* number of raid device tupples <meta_dev data_dev> */ 3023 as_nrd = as; 3024 dm_consume_args(&as_nrd, num_raid_params); 3025 _args[1].max = (as_nrd.argc - 1) / 2; 3026 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3027 return -EINVAL; 3028 3029 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3030 ti->error = "Invalid number of supplied raid devices"; 3031 return -EINVAL; 3032 } 3033 3034 rs = raid_set_alloc(ti, rt, num_raid_devs); 3035 if (IS_ERR(rs)) 3036 return PTR_ERR(rs); 3037 3038 r = parse_raid_params(rs, &as, num_raid_params); 3039 if (r) 3040 goto bad; 3041 3042 r = parse_dev_params(rs, &as); 3043 if (r) 3044 goto bad; 3045 3046 rs->md.sync_super = super_sync; 3047 3048 /* 3049 * Calculate ctr requested array and device sizes to allow 3050 * for superblock analysis needing device sizes defined. 3051 * 3052 * Any existing superblock will overwrite the array and device sizes 3053 */ 3054 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3055 if (r) 3056 goto bad; 3057 3058 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3059 rs->array_sectors = rs->md.array_sectors; 3060 rs->dev_sectors = rs->md.dev_sectors; 3061 3062 /* 3063 * Backup any new raid set level, layout, ... 3064 * requested to be able to compare to superblock 3065 * members for conversion decisions. 3066 */ 3067 rs_config_backup(rs, &rs_layout); 3068 3069 r = analyse_superblocks(ti, rs); 3070 if (r) 3071 goto bad; 3072 3073 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3074 sb_array_sectors = rs->md.array_sectors; 3075 rdev_sectors = __rdev_sectors(rs); 3076 if (!rdev_sectors) { 3077 ti->error = "Invalid rdev size"; 3078 r = -EINVAL; 3079 goto bad; 3080 } 3081 3082 3083 reshape_sectors = _get_reshape_sectors(rs); 3084 if (rs->dev_sectors != rdev_sectors) { 3085 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3086 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3087 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3088 } 3089 3090 INIT_WORK(&rs->md.event_work, do_table_event); 3091 ti->private = rs; 3092 ti->num_flush_bios = 1; 3093 3094 /* Restore any requested new layout for conversion decision */ 3095 rs_config_restore(rs, &rs_layout); 3096 3097 /* 3098 * Now that we have any superblock metadata available, 3099 * check for new, recovering, reshaping, to be taken over, 3100 * to be reshaped or an existing, unchanged raid set to 3101 * run in sequence. 3102 */ 3103 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3104 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3105 if (rs_is_raid6(rs) && 3106 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3107 ti->error = "'nosync' not allowed for new raid6 set"; 3108 r = -EINVAL; 3109 goto bad; 3110 } 3111 rs_setup_recovery(rs, 0); 3112 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3113 rs_set_new(rs); 3114 } else if (rs_is_recovering(rs)) { 3115 /* A recovering raid set may be resized */ 3116 goto size_check; 3117 } else if (rs_is_reshaping(rs)) { 3118 /* Have to reject size change request during reshape */ 3119 if (resize) { 3120 ti->error = "Can't resize a reshaping raid set"; 3121 r = -EPERM; 3122 goto bad; 3123 } 3124 /* skip setup rs */ 3125 } else if (rs_takeover_requested(rs)) { 3126 if (rs_is_reshaping(rs)) { 3127 ti->error = "Can't takeover a reshaping raid set"; 3128 r = -EPERM; 3129 goto bad; 3130 } 3131 3132 /* We can't takeover a journaled raid4/5/6 */ 3133 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3134 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3135 r = -EPERM; 3136 goto bad; 3137 } 3138 3139 /* 3140 * If a takeover is needed, userspace sets any additional 3141 * devices to rebuild and we can check for a valid request here. 3142 * 3143 * If acceptible, set the level to the new requested 3144 * one, prohibit requesting recovery, allow the raid 3145 * set to run and store superblocks during resume. 3146 */ 3147 r = rs_check_takeover(rs); 3148 if (r) 3149 goto bad; 3150 3151 r = rs_setup_takeover(rs); 3152 if (r) 3153 goto bad; 3154 3155 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3156 /* Takeover ain't recovery, so disable recovery */ 3157 rs_setup_recovery(rs, MaxSector); 3158 rs_set_new(rs); 3159 } else if (rs_reshape_requested(rs)) { 3160 /* Only request grow on raid set size extensions, not on reshapes. */ 3161 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3162 3163 /* 3164 * No need to check for 'ongoing' takeover here, because takeover 3165 * is an instant operation as oposed to an ongoing reshape. 3166 */ 3167 3168 /* We can't reshape a journaled raid4/5/6 */ 3169 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3170 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3171 r = -EPERM; 3172 goto bad; 3173 } 3174 3175 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3176 if (reshape_sectors || rs_is_raid1(rs)) { 3177 /* 3178 * We can only prepare for a reshape here, because the 3179 * raid set needs to run to provide the repective reshape 3180 * check functions via its MD personality instance. 3181 * 3182 * So do the reshape check after md_run() succeeded. 3183 */ 3184 r = rs_prepare_reshape(rs); 3185 if (r) 3186 goto bad; 3187 3188 /* Reshaping ain't recovery, so disable recovery */ 3189 rs_setup_recovery(rs, MaxSector); 3190 } 3191 rs_set_cur(rs); 3192 } else { 3193 size_check: 3194 /* May not set recovery when a device rebuild is requested */ 3195 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3196 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3197 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3198 rs_setup_recovery(rs, MaxSector); 3199 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3200 /* 3201 * Set raid set to current size, i.e. size as of 3202 * superblocks to grow to larger size in preresume. 3203 */ 3204 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3205 if (r) 3206 goto bad; 3207 3208 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3209 } else { 3210 /* This is no size change or it is shrinking, update size and record in superblocks */ 3211 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3212 if (r) 3213 goto bad; 3214 3215 if (sb_array_sectors > rs->array_sectors) 3216 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3217 } 3218 rs_set_cur(rs); 3219 } 3220 3221 /* If constructor requested it, change data and new_data offsets */ 3222 r = rs_adjust_data_offsets(rs); 3223 if (r) 3224 goto bad; 3225 3226 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3227 rs->md.ro = 1; 3228 rs->md.in_sync = 1; 3229 3230 /* Keep array frozen */ 3231 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 3232 3233 /* Has to be held on running the array */ 3234 mddev_lock_nointr(&rs->md); 3235 r = md_run(&rs->md); 3236 rs->md.in_sync = 0; /* Assume already marked dirty */ 3237 if (r) { 3238 ti->error = "Failed to run raid array"; 3239 mddev_unlock(&rs->md); 3240 goto bad; 3241 } 3242 3243 r = md_start(&rs->md); 3244 3245 if (r) { 3246 ti->error = "Failed to start raid array"; 3247 mddev_unlock(&rs->md); 3248 goto bad_md_start; 3249 } 3250 3251 rs->callbacks.congested_fn = raid_is_congested; 3252 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 3253 3254 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3255 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3256 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3257 if (r) { 3258 ti->error = "Failed to set raid4/5/6 journal mode"; 3259 mddev_unlock(&rs->md); 3260 goto bad_journal_mode_set; 3261 } 3262 } 3263 3264 mddev_suspend(&rs->md); 3265 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3266 3267 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3268 if (rs_is_raid456(rs)) { 3269 r = rs_set_raid456_stripe_cache(rs); 3270 if (r) 3271 goto bad_stripe_cache; 3272 } 3273 3274 /* Now do an early reshape check */ 3275 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3276 r = rs_check_reshape(rs); 3277 if (r) 3278 goto bad_check_reshape; 3279 3280 /* Restore new, ctr requested layout to perform check */ 3281 rs_config_restore(rs, &rs_layout); 3282 3283 if (rs->md.pers->start_reshape) { 3284 r = rs->md.pers->check_reshape(&rs->md); 3285 if (r) { 3286 ti->error = "Reshape check failed"; 3287 goto bad_check_reshape; 3288 } 3289 } 3290 } 3291 3292 /* Disable/enable discard support on raid set. */ 3293 configure_discard_support(rs); 3294 3295 mddev_unlock(&rs->md); 3296 return 0; 3297 3298 bad_md_start: 3299 bad_journal_mode_set: 3300 bad_stripe_cache: 3301 bad_check_reshape: 3302 md_stop(&rs->md); 3303 bad: 3304 raid_set_free(rs); 3305 3306 return r; 3307 } 3308 3309 static void raid_dtr(struct dm_target *ti) 3310 { 3311 struct raid_set *rs = ti->private; 3312 3313 list_del_init(&rs->callbacks.list); 3314 md_stop(&rs->md); 3315 raid_set_free(rs); 3316 } 3317 3318 static int raid_map(struct dm_target *ti, struct bio *bio) 3319 { 3320 struct raid_set *rs = ti->private; 3321 struct mddev *mddev = &rs->md; 3322 3323 /* 3324 * If we're reshaping to add disk(s)), ti->len and 3325 * mddev->array_sectors will differ during the process 3326 * (ti->len > mddev->array_sectors), so we have to requeue 3327 * bios with addresses > mddev->array_sectors here or 3328 * there will occur accesses past EOD of the component 3329 * data images thus erroring the raid set. 3330 */ 3331 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3332 return DM_MAPIO_REQUEUE; 3333 3334 md_handle_request(mddev, bio); 3335 3336 return DM_MAPIO_SUBMITTED; 3337 } 3338 3339 /* Return sync state string for @state */ 3340 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3341 static const char *sync_str(enum sync_state state) 3342 { 3343 /* Has to be in above sync_state order! */ 3344 static const char *sync_strs[] = { 3345 "frozen", 3346 "reshape", 3347 "resync", 3348 "check", 3349 "repair", 3350 "recover", 3351 "idle" 3352 }; 3353 3354 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3355 }; 3356 3357 /* Return enum sync_state for @mddev derived from @recovery flags */ 3358 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3359 { 3360 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3361 return st_frozen; 3362 3363 /* The MD sync thread can be done with io or be interrupted but still be running */ 3364 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3365 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3366 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3367 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3368 return st_reshape; 3369 3370 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3371 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3372 return st_resync; 3373 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3374 return st_check; 3375 return st_repair; 3376 } 3377 3378 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3379 return st_recover; 3380 3381 if (mddev->reshape_position != MaxSector) 3382 return st_reshape; 3383 } 3384 3385 return st_idle; 3386 } 3387 3388 /* 3389 * Return status string for @rdev 3390 * 3391 * Status characters: 3392 * 3393 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3394 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3395 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3396 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3397 */ 3398 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3399 { 3400 if (!rdev->bdev) 3401 return "-"; 3402 else if (test_bit(Faulty, &rdev->flags)) 3403 return "D"; 3404 else if (test_bit(Journal, &rdev->flags)) 3405 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3406 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3407 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3408 !test_bit(In_sync, &rdev->flags))) 3409 return "a"; 3410 else 3411 return "A"; 3412 } 3413 3414 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3415 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3416 enum sync_state state, sector_t resync_max_sectors) 3417 { 3418 sector_t r; 3419 struct mddev *mddev = &rs->md; 3420 3421 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3422 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3423 3424 if (rs_is_raid0(rs)) { 3425 r = resync_max_sectors; 3426 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3427 3428 } else { 3429 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3430 r = mddev->recovery_cp; 3431 else 3432 r = mddev->curr_resync_completed; 3433 3434 if (state == st_idle && r >= resync_max_sectors) { 3435 /* 3436 * Sync complete. 3437 */ 3438 /* In case we have finished recovering, the array is in sync. */ 3439 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3440 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3441 3442 } else if (state == st_recover) 3443 /* 3444 * In case we are recovering, the array is not in sync 3445 * and health chars should show the recovering legs. 3446 * 3447 * Already retrieved recovery offset from curr_resync_completed above. 3448 */ 3449 ; 3450 3451 else if (state == st_resync || state == st_reshape) 3452 /* 3453 * If "resync/reshape" is occurring, the raid set 3454 * is or may be out of sync hence the health 3455 * characters shall be 'a'. 3456 */ 3457 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3458 3459 else if (state == st_check || state == st_repair) 3460 /* 3461 * If "check" or "repair" is occurring, the raid set has 3462 * undergone an initial sync and the health characters 3463 * should not be 'a' anymore. 3464 */ 3465 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3466 3467 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3468 /* 3469 * We are idle and recovery is needed, prevent 'A' chars race 3470 * caused by components still set to in-sync by constructor. 3471 */ 3472 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3473 3474 else { 3475 /* 3476 * We are idle and the raid set may be doing an initial 3477 * sync, or it may be rebuilding individual components. 3478 * If all the devices are In_sync, then it is the raid set 3479 * that is being initialized. 3480 */ 3481 struct md_rdev *rdev; 3482 3483 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3484 rdev_for_each(rdev, mddev) 3485 if (!test_bit(Journal, &rdev->flags) && 3486 !test_bit(In_sync, &rdev->flags)) { 3487 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3488 break; 3489 } 3490 } 3491 } 3492 3493 return min(r, resync_max_sectors); 3494 } 3495 3496 /* Helper to return @dev name or "-" if !@dev */ 3497 static const char *__get_dev_name(struct dm_dev *dev) 3498 { 3499 return dev ? dev->name : "-"; 3500 } 3501 3502 static void raid_status(struct dm_target *ti, status_type_t type, 3503 unsigned int status_flags, char *result, unsigned int maxlen) 3504 { 3505 struct raid_set *rs = ti->private; 3506 struct mddev *mddev = &rs->md; 3507 struct r5conf *conf = mddev->private; 3508 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3509 unsigned long recovery; 3510 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3511 unsigned int sz = 0; 3512 unsigned int rebuild_writemostly_count = 0; 3513 sector_t progress, resync_max_sectors, resync_mismatches; 3514 enum sync_state state; 3515 struct raid_type *rt; 3516 3517 switch (type) { 3518 case STATUSTYPE_INFO: 3519 /* *Should* always succeed */ 3520 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3521 if (!rt) 3522 return; 3523 3524 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3525 3526 /* Access most recent mddev properties for status output */ 3527 smp_rmb(); 3528 /* Get sensible max sectors even if raid set not yet started */ 3529 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3530 mddev->resync_max_sectors : mddev->dev_sectors; 3531 recovery = rs->md.recovery; 3532 state = decipher_sync_action(mddev, recovery); 3533 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3534 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3535 atomic64_read(&mddev->resync_mismatches) : 0; 3536 3537 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3538 for (i = 0; i < rs->raid_disks; i++) 3539 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3540 3541 /* 3542 * In-sync/Reshape ratio: 3543 * The in-sync ratio shows the progress of: 3544 * - Initializing the raid set 3545 * - Rebuilding a subset of devices of the raid set 3546 * The user can distinguish between the two by referring 3547 * to the status characters. 3548 * 3549 * The reshape ratio shows the progress of 3550 * changing the raid layout or the number of 3551 * disks of a raid set 3552 */ 3553 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3554 (unsigned long long) resync_max_sectors); 3555 3556 /* 3557 * v1.5.0+: 3558 * 3559 * Sync action: 3560 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3561 * information on each of these states. 3562 */ 3563 DMEMIT(" %s", sync_str(state)); 3564 3565 /* 3566 * v1.5.0+: 3567 * 3568 * resync_mismatches/mismatch_cnt 3569 * This field shows the number of discrepancies found when 3570 * performing a "check" of the raid set. 3571 */ 3572 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3573 3574 /* 3575 * v1.9.0+: 3576 * 3577 * data_offset (needed for out of space reshaping) 3578 * This field shows the data offset into the data 3579 * image LV where the first stripes data starts. 3580 * 3581 * We keep data_offset equal on all raid disks of the set, 3582 * so retrieving it from the first raid disk is sufficient. 3583 */ 3584 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3585 3586 /* 3587 * v1.10.0+: 3588 */ 3589 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3590 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3591 break; 3592 3593 case STATUSTYPE_TABLE: 3594 /* Report the table line string you would use to construct this raid set */ 3595 3596 /* 3597 * Count any rebuild or writemostly argument pairs and subtract the 3598 * hweight count being added below of any rebuild and writemostly ctr flags. 3599 */ 3600 for (i = 0; i < rs->raid_disks; i++) { 3601 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3602 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3603 } 3604 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3605 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3606 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3607 raid_param_cnt += rebuild_writemostly_count + 3608 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3609 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3610 /* Emit table line */ 3611 /* This has to be in the documented order for userspace! */ 3612 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3613 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3614 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3615 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3616 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3617 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3618 for (i = 0; i < rs->raid_disks; i++) 3619 if (test_bit(i, (void *) rs->rebuild_disks)) 3620 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3621 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3622 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3623 mddev->bitmap_info.daemon_sleep); 3624 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3625 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3626 mddev->sync_speed_min); 3627 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3628 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3629 mddev->sync_speed_max); 3630 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3631 for (i = 0; i < rs->raid_disks; i++) 3632 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3633 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3634 rs->dev[i].rdev.raid_disk); 3635 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3636 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3637 mddev->bitmap_info.max_write_behind); 3638 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3639 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3640 max_nr_stripes); 3641 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3642 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3643 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3644 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3645 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3646 raid10_md_layout_to_copies(mddev->layout)); 3647 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3648 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3649 raid10_md_layout_to_format(mddev->layout)); 3650 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3651 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3652 max(rs->delta_disks, mddev->delta_disks)); 3653 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3654 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3655 (unsigned long long) rs->data_offset); 3656 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3657 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3658 __get_dev_name(rs->journal_dev.dev)); 3659 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3660 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3661 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3662 DMEMIT(" %d", rs->raid_disks); 3663 for (i = 0; i < rs->raid_disks; i++) 3664 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3665 __get_dev_name(rs->dev[i].data_dev)); 3666 } 3667 } 3668 3669 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3670 char *result, unsigned maxlen) 3671 { 3672 struct raid_set *rs = ti->private; 3673 struct mddev *mddev = &rs->md; 3674 3675 if (!mddev->pers || !mddev->pers->sync_request) 3676 return -EINVAL; 3677 3678 if (!strcasecmp(argv[0], "frozen")) 3679 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3680 else 3681 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3682 3683 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3684 if (mddev->sync_thread) { 3685 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3686 md_reap_sync_thread(mddev); 3687 } 3688 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3689 return -EBUSY; 3690 else if (!strcasecmp(argv[0], "resync")) 3691 ; /* MD_RECOVERY_NEEDED set below */ 3692 else if (!strcasecmp(argv[0], "recover")) 3693 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3694 else { 3695 if (!strcasecmp(argv[0], "check")) { 3696 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3697 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3698 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3699 } else if (!strcasecmp(argv[0], "repair")) { 3700 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3701 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3702 } else 3703 return -EINVAL; 3704 } 3705 if (mddev->ro == 2) { 3706 /* A write to sync_action is enough to justify 3707 * canceling read-auto mode 3708 */ 3709 mddev->ro = 0; 3710 if (!mddev->suspended && mddev->sync_thread) 3711 md_wakeup_thread(mddev->sync_thread); 3712 } 3713 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3714 if (!mddev->suspended && mddev->thread) 3715 md_wakeup_thread(mddev->thread); 3716 3717 return 0; 3718 } 3719 3720 static int raid_iterate_devices(struct dm_target *ti, 3721 iterate_devices_callout_fn fn, void *data) 3722 { 3723 struct raid_set *rs = ti->private; 3724 unsigned int i; 3725 int r = 0; 3726 3727 for (i = 0; !r && i < rs->md.raid_disks; i++) 3728 if (rs->dev[i].data_dev) 3729 r = fn(ti, 3730 rs->dev[i].data_dev, 3731 0, /* No offset on data devs */ 3732 rs->md.dev_sectors, 3733 data); 3734 3735 return r; 3736 } 3737 3738 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3739 { 3740 struct raid_set *rs = ti->private; 3741 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3742 3743 blk_limits_io_min(limits, chunk_size_bytes); 3744 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs)); 3745 3746 /* 3747 * RAID1 and RAID10 personalities require bio splitting, 3748 * RAID0/4/5/6 don't and process large discard bios properly. 3749 */ 3750 if (rs_is_raid1(rs) || rs_is_raid10(rs)) { 3751 limits->discard_granularity = chunk_size_bytes; 3752 limits->max_discard_sectors = rs->md.chunk_sectors; 3753 } 3754 } 3755 3756 static void raid_postsuspend(struct dm_target *ti) 3757 { 3758 struct raid_set *rs = ti->private; 3759 3760 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3761 /* Writes have to be stopped before suspending to avoid deadlocks. */ 3762 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) 3763 md_stop_writes(&rs->md); 3764 3765 mddev_lock_nointr(&rs->md); 3766 mddev_suspend(&rs->md); 3767 mddev_unlock(&rs->md); 3768 } 3769 } 3770 3771 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3772 { 3773 int i; 3774 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3775 unsigned long flags; 3776 bool cleared = false; 3777 struct dm_raid_superblock *sb; 3778 struct mddev *mddev = &rs->md; 3779 struct md_rdev *r; 3780 3781 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3782 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3783 return; 3784 3785 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3786 3787 for (i = 0; i < mddev->raid_disks; i++) { 3788 r = &rs->dev[i].rdev; 3789 /* HM FIXME: enhance journal device recovery processing */ 3790 if (test_bit(Journal, &r->flags)) 3791 continue; 3792 3793 if (test_bit(Faulty, &r->flags) && 3794 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3795 DMINFO("Faulty %s device #%d has readable super block." 3796 " Attempting to revive it.", 3797 rs->raid_type->name, i); 3798 3799 /* 3800 * Faulty bit may be set, but sometimes the array can 3801 * be suspended before the personalities can respond 3802 * by removing the device from the array (i.e. calling 3803 * 'hot_remove_disk'). If they haven't yet removed 3804 * the failed device, its 'raid_disk' number will be 3805 * '>= 0' - meaning we must call this function 3806 * ourselves. 3807 */ 3808 flags = r->flags; 3809 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3810 if (r->raid_disk >= 0) { 3811 if (mddev->pers->hot_remove_disk(mddev, r)) { 3812 /* Failed to revive this device, try next */ 3813 r->flags = flags; 3814 continue; 3815 } 3816 } else 3817 r->raid_disk = r->saved_raid_disk = i; 3818 3819 clear_bit(Faulty, &r->flags); 3820 clear_bit(WriteErrorSeen, &r->flags); 3821 3822 if (mddev->pers->hot_add_disk(mddev, r)) { 3823 /* Failed to revive this device, try next */ 3824 r->raid_disk = r->saved_raid_disk = -1; 3825 r->flags = flags; 3826 } else { 3827 clear_bit(In_sync, &r->flags); 3828 r->recovery_offset = 0; 3829 set_bit(i, (void *) cleared_failed_devices); 3830 cleared = true; 3831 } 3832 } 3833 } 3834 3835 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3836 if (cleared) { 3837 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3838 3839 rdev_for_each(r, &rs->md) { 3840 if (test_bit(Journal, &r->flags)) 3841 continue; 3842 3843 sb = page_address(r->sb_page); 3844 sb_retrieve_failed_devices(sb, failed_devices); 3845 3846 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3847 failed_devices[i] &= ~cleared_failed_devices[i]; 3848 3849 sb_update_failed_devices(sb, failed_devices); 3850 } 3851 } 3852 } 3853 3854 static int __load_dirty_region_bitmap(struct raid_set *rs) 3855 { 3856 int r = 0; 3857 3858 /* Try loading the bitmap unless "raid0", which does not have one */ 3859 if (!rs_is_raid0(rs) && 3860 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3861 r = md_bitmap_load(&rs->md); 3862 if (r) 3863 DMERR("Failed to load bitmap"); 3864 } 3865 3866 return r; 3867 } 3868 3869 /* Enforce updating all superblocks */ 3870 static void rs_update_sbs(struct raid_set *rs) 3871 { 3872 struct mddev *mddev = &rs->md; 3873 int ro = mddev->ro; 3874 3875 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3876 mddev->ro = 0; 3877 md_update_sb(mddev, 1); 3878 mddev->ro = ro; 3879 } 3880 3881 /* 3882 * Reshape changes raid algorithm of @rs to new one within personality 3883 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3884 * disks from a raid set thus growing/shrinking it or resizes the set 3885 * 3886 * Call mddev_lock_nointr() before! 3887 */ 3888 static int rs_start_reshape(struct raid_set *rs) 3889 { 3890 int r; 3891 struct mddev *mddev = &rs->md; 3892 struct md_personality *pers = mddev->pers; 3893 3894 /* Don't allow the sync thread to work until the table gets reloaded. */ 3895 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3896 3897 r = rs_setup_reshape(rs); 3898 if (r) 3899 return r; 3900 3901 /* 3902 * Check any reshape constraints enforced by the personalility 3903 * 3904 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3905 */ 3906 r = pers->check_reshape(mddev); 3907 if (r) { 3908 rs->ti->error = "pers->check_reshape() failed"; 3909 return r; 3910 } 3911 3912 /* 3913 * Personality may not provide start reshape method in which 3914 * case check_reshape above has already covered everything 3915 */ 3916 if (pers->start_reshape) { 3917 r = pers->start_reshape(mddev); 3918 if (r) { 3919 rs->ti->error = "pers->start_reshape() failed"; 3920 return r; 3921 } 3922 } 3923 3924 /* 3925 * Now reshape got set up, update superblocks to 3926 * reflect the fact so that a table reload will 3927 * access proper superblock content in the ctr. 3928 */ 3929 rs_update_sbs(rs); 3930 3931 return 0; 3932 } 3933 3934 static int raid_preresume(struct dm_target *ti) 3935 { 3936 int r; 3937 struct raid_set *rs = ti->private; 3938 struct mddev *mddev = &rs->md; 3939 3940 /* This is a resume after a suspend of the set -> it's already started. */ 3941 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3942 return 0; 3943 3944 /* 3945 * The superblocks need to be updated on disk if the 3946 * array is new or new devices got added (thus zeroed 3947 * out by userspace) or __load_dirty_region_bitmap 3948 * will overwrite them in core with old data or fail. 3949 */ 3950 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3951 rs_update_sbs(rs); 3952 3953 /* Load the bitmap from disk unless raid0 */ 3954 r = __load_dirty_region_bitmap(rs); 3955 if (r) 3956 return r; 3957 3958 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 3959 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3960 mddev->array_sectors = rs->array_sectors; 3961 mddev->dev_sectors = rs->dev_sectors; 3962 rs_set_rdev_sectors(rs); 3963 rs_set_capacity(rs); 3964 } 3965 3966 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 3967 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 3968 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 3969 (rs->requested_bitmap_chunk_sectors && 3970 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 3971 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 3972 3973 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0); 3974 if (r) 3975 DMERR("Failed to resize bitmap"); 3976 } 3977 3978 /* Check for any resize/reshape on @rs and adjust/initiate */ 3979 /* Be prepared for mddev_resume() in raid_resume() */ 3980 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3981 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 3982 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3983 mddev->resync_min = mddev->recovery_cp; 3984 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 3985 mddev->resync_max_sectors = mddev->dev_sectors; 3986 } 3987 3988 /* Check for any reshape request unless new raid set */ 3989 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3990 /* Initiate a reshape. */ 3991 rs_set_rdev_sectors(rs); 3992 mddev_lock_nointr(mddev); 3993 r = rs_start_reshape(rs); 3994 mddev_unlock(mddev); 3995 if (r) 3996 DMWARN("Failed to check/start reshape, continuing without change"); 3997 r = 0; 3998 } 3999 4000 return r; 4001 } 4002 4003 static void raid_resume(struct dm_target *ti) 4004 { 4005 struct raid_set *rs = ti->private; 4006 struct mddev *mddev = &rs->md; 4007 4008 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4009 /* 4010 * A secondary resume while the device is active. 4011 * Take this opportunity to check whether any failed 4012 * devices are reachable again. 4013 */ 4014 attempt_restore_of_faulty_devices(rs); 4015 } 4016 4017 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4018 /* Only reduce raid set size before running a disk removing reshape. */ 4019 if (mddev->delta_disks < 0) 4020 rs_set_capacity(rs); 4021 4022 mddev_lock_nointr(mddev); 4023 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4024 mddev->ro = 0; 4025 mddev->in_sync = 0; 4026 mddev_resume(mddev); 4027 mddev_unlock(mddev); 4028 } 4029 } 4030 4031 static struct target_type raid_target = { 4032 .name = "raid", 4033 .version = {1, 15, 1}, 4034 .module = THIS_MODULE, 4035 .ctr = raid_ctr, 4036 .dtr = raid_dtr, 4037 .map = raid_map, 4038 .status = raid_status, 4039 .message = raid_message, 4040 .iterate_devices = raid_iterate_devices, 4041 .io_hints = raid_io_hints, 4042 .postsuspend = raid_postsuspend, 4043 .preresume = raid_preresume, 4044 .resume = raid_resume, 4045 }; 4046 4047 static int __init dm_raid_init(void) 4048 { 4049 DMINFO("Loading target version %u.%u.%u", 4050 raid_target.version[0], 4051 raid_target.version[1], 4052 raid_target.version[2]); 4053 return dm_register_target(&raid_target); 4054 } 4055 4056 static void __exit dm_raid_exit(void) 4057 { 4058 dm_unregister_target(&raid_target); 4059 } 4060 4061 module_init(dm_raid_init); 4062 module_exit(dm_raid_exit); 4063 4064 module_param(devices_handle_discard_safely, bool, 0644); 4065 MODULE_PARM_DESC(devices_handle_discard_safely, 4066 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4067 4068 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4069 MODULE_ALIAS("dm-raid0"); 4070 MODULE_ALIAS("dm-raid1"); 4071 MODULE_ALIAS("dm-raid10"); 4072 MODULE_ALIAS("dm-raid4"); 4073 MODULE_ALIAS("dm-raid5"); 4074 MODULE_ALIAS("dm-raid6"); 4075 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 4076 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 4077 MODULE_LICENSE("GPL"); 4078